WO2021164636A1 - 欠压保护设备及方法 - Google Patents

欠压保护设备及方法 Download PDF

Info

Publication number
WO2021164636A1
WO2021164636A1 PCT/CN2021/076174 CN2021076174W WO2021164636A1 WO 2021164636 A1 WO2021164636 A1 WO 2021164636A1 CN 2021076174 W CN2021076174 W CN 2021076174W WO 2021164636 A1 WO2021164636 A1 WO 2021164636A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
circuit
protection device
bridge arm
undervoltage protection
Prior art date
Application number
PCT/CN2021/076174
Other languages
English (en)
French (fr)
Inventor
张海波
湛康
Original Assignee
博世汽车部件(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博世汽车部件(苏州)有限公司 filed Critical 博世汽车部件(苏州)有限公司
Publication of WO2021164636A1 publication Critical patent/WO2021164636A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/09Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against over-voltage; against reduction of voltage; against phase interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an undervoltage protection mechanism, and more specifically, to an undervoltage protection method, an undervoltage protection device, a motor control unit, a vehicle, and a computer storage medium.
  • the motor control unit needs to ensure that it can safely and effectively control the motor during normal operation, and it can ensure that the vehicle enters a relatively safe state in the event of a vehicle collision or other failures. Because the back EMF of the on-board motor will be very large when the vehicle is running at high speed, at this time, if all the switching tubes of its three-phase bridge inverter are directly turned off, the excessive back EMF will cause the DC bus to overvoltage and generate a large amount of power generation. Braking torque. Overvoltage on the DC bus may damage the switch tube of the inverter, and a large gen-brake torque may cause the battery to overcharge or even explode or increase the risk of overturning.
  • the existing high-speed vehicle ECU (motor control unit) includes a three-phase inverter unit (power stage), a gate driver unit (GDU), a power supply unit, a peripheral interface unit, a control and protection circuit, and ASCL (active down tube short circuit) ) Unit to control the motor. If any failure occurs, such as overvoltage, the ASCL unit is used to turn on the switch tube in the lower bridge arm to prevent component damage.
  • GDU gate driver unit
  • ASCL active down tube short circuit
  • Figure 2 shows the topology of an existing three-phase bridge inverter.
  • the DC side of the three-phase bridge inverter is connected to the battery, and the AC side is connected to the motor M.
  • the upper bridge arm of the three-phase bridge inverter includes three switching tubes S1, S3, and S5, and the lower bridge arm includes three switching tubes S2, S4, and S6. That is to say, in practical applications, the ASCL unit can turn on the switch tubes S2, S4, and S6 (that is, the switch tubes in the lower bridge arm) when a certain fault occurs. However, in some special cases, when the battery is accidentally disconnected when the motor rotates at high speed, this will trigger the ASCL unit and turn on the switches S2, S4, and S6 to limit the DC bus voltage.
  • the gate driver unit GDU will continuously output PWM (Pulse Amplitude Modulation) signals without a power supply, and the GDU supply voltage will drop. Therefore, the switching tubes S2, S4, and S6 will enter the linear mode and cause huge The heat dissipated, which will burn out the switch tube in the lower bridge arm.
  • PWM Pulse Amplitude Modulation
  • an under-voltage protection mechanism which can provide protection for the switch tubes in the upper/lower bridge arm in a special situation (the battery is accidentally disconnected).
  • an undervoltage protection method for a motor control unit comprising: receiving an enable signal of an active short circuit, the enable signal indicating whether to control a gate driver to turn on three-phase The switch tube in the upper arm or lower arm of the inverter; receiving a second signal, the second signal representing the power supply voltage applied to the three-phase inverter; and when the enable signal is " True", and when the power supply voltage indicated by the second signal is lower than the preset threshold, a shutdown signal is sent to the gate driver to make the upper bridge arm or the lower bridge arm in the three-phase inverter The switch tube is turned off.
  • an undervoltage protection device for a motor control unit.
  • the undervoltage protection device includes: a first receiving end for receiving an enable signal of an active short circuit; The energy signal indicates whether to control the gate driver to turn on the switch tube in the upper bridge arm or the lower bridge arm in the three-phase inverter; the second receiving end is used to receive the second signal, and the second signal represents The power supply voltage of the three-phase inverter; and a switch tube protection device for sending a shutdown signal to the gate driver when the enable signal is "true" and the power supply voltage is lower than a preset threshold The switch tube in the upper bridge arm or the lower bridge arm in the three-phase inverter is turned off.
  • the switch tube protection device includes: a detection circuit for detecting that the enable signal from the active short circuit is "true”; and a threshold setting circuit for setting A preset threshold; and a comparator circuit for sending an off signal to the gate driver when it is detected that the enable signal is "true” and the power supply voltage is lower than the preset threshold.
  • the switch tube protection device further includes: a bleeder circuit, the bleeder circuit is connected to the grid of the switch tube, and is used to provide a bleeder to the switch tube. Current path; and an isolation circuit, one end of the isolation circuit is connected to the bleeder circuit, and the other end is connected to the comparator circuit for isolating the bleeder circuit and the comparator circuit during normal operation .
  • the threshold setting circuit includes: a voltage stabilizing circuit for providing a stable reference comparison potential to the comparator circuit; and a voltage dividing circuit for comparing the The power supply voltage is divided.
  • the voltage stabilizing circuit includes a first voltage regulator tube and a tenth resistor, and the first end of the tenth resistor is connected to the second receiving end, and the The second end of the tenth resistor is connected to the first end of the first zener tube, and the second end of the first zener tube is grounded; and the voltage divider circuit includes an eighth resistor and a ninth resistor The first end of the eighth resistor is connected to the first end of the ninth resistor, the second end of the eighth resistor is grounded, and the second end of the ninth resistor is connected to the The second receiving end is connected.
  • the threshold setting circuit further includes: a filter circuit including a first capacitor and a second capacitor, wherein the first terminal of the first capacitor and the eighth resistor The first end of the first capacitor is connected to the ground, and the second end of the first capacitor is connected to the ground; and the first end of the second capacitor is connected to the second end of the tenth resistor, and the second end of the second capacitor is grounded .
  • the detection circuit includes a first triode, wherein the emitter of the first triode is grounded, and the collector of the first triode is connected to the second transistor. The first end of the two capacitors is connected, and the base of the first triode is connected to the first receiving end.
  • the comparator circuit includes a first comparator and a seventh resistor, wherein the first input terminal of the first comparator and the first input terminal of the ninth resistor Terminal and the first terminal of the seventh resistor; the second input terminal of the first comparator is connected with the first terminal of the eighth resistor; the output terminal of the first comparator is connected with the The second end of the seventh resistor is connected.
  • the bleeder circuit includes: a first diode array, a second diode array, a third diode array, a fourth resistor, a semiconductor transistor, and a first diode array.
  • a resistor wherein the first terminal of the first resistor is connected to the gate of the semiconductor transistor, the second terminal of the first resistor is grounded, the source of the semiconductor transistor is grounded, and the semiconductor transistor’s
  • the drain is connected to the first end of the fourth resistor, and the second end of the fourth resistor is connected to the first diode array, the second diode array, and the third diode, respectively.
  • the first end of the pole tube array is connected, and the second ends of the first diode array, the second diode array, and the third diode array are respectively connected to the three-phase inverter
  • the grids of the three switch tubes in the upper bridge arm or the lower bridge arm are connected.
  • the isolation circuit includes: a second resistor, a second triode, a third resistor, a fifth resistor, and a sixth resistor, wherein the second resistor The first end of the device is connected to the first end of the first resistor, the second end of the second resistor is connected to the collector of the second triode, and the emitter of the second triode is connected to the The pole is connected to the second receiving end, the base of the second triode is connected to the first end of the third resistor, and the second end of the third resistor is connected to the second receiving end Connected, the first end of the fifth resistor is connected to the base of the second triode, the second end of the fifth resistor is connected to the first end of the sixth resistor, the The second end of the sixth resistor is connected to the second receiving end.
  • a motor control unit which includes the undervoltage protection device as described above.
  • a vehicle including the motor control unit as described above.
  • a computer storage medium including instructions that execute the above-mentioned method at runtime.
  • the under-voltage protection scheme of the present invention is adopted when the enable signal is "true” (that is, an active short circuit is required), and the power supply voltage is lower than a preset threshold (Note: Generally speaking, after the battery is accidentally disconnected, the second signal represents The power supply voltage gradually decreases due to the presence of energy storage components such as capacitors. Therefore, “the power supply voltage is lower than the preset threshold” means that the battery is accidentally disconnected.)
  • the shutdown signal is sent to the gate driver, the three-phase inverter The switch tubes in the upper bridge arm or lower bridge arm are turned off, thereby avoiding the switching tubes from entering the linear mode (that is, working in the "linear region") due to insufficient external drive capability, and effectively protecting these switching tubes.
  • Fig. 1 shows a schematic diagram of an undervoltage protection method according to an embodiment of the present invention
  • Figure 2 shows the topology of the existing three-phase bridge inverter
  • Figure 3 shows a schematic diagram of an undervoltage protection device according to an embodiment of the present invention
  • Figure 4 shows a schematic diagram of a switch tube protection device according to an embodiment of the present invention
  • Fig. 5 shows a schematic diagram of a threshold setting circuit according to an embodiment of the present invention.
  • Fig. 6 shows a schematic structural diagram of an undervoltage protection device according to an embodiment of the present invention.
  • vehicle or other similar terms used herein includes various motor vehicles and non-motor vehicles, such as passenger vehicles (including sport utility vehicles, buses, trucks, etc.), various commercial vehicles, Ships, airplanes, motorcycles, bicycles, etc., including hybrid vehicles, electric vehicles, etc.
  • a hybrid vehicle is a vehicle with two or more power sources, such as gasoline-powered and electric vehicles.
  • the method logic of the present invention may be included on a computer-readable medium as executable program instructions, and the executable program instructions are implemented by a processor or the like.
  • Examples of computer readable media include, but are not limited to, ROM, RAM, optical disks, magnetic tapes, floppy disks, flash drives, smart cards, and optical data storage devices.
  • the computer-readable recording medium may also be distributed in a computer system connected to a network, so that the computer-readable medium is stored and implemented in a distributed manner, for example, through an in-vehicle telecommunication service or a controller area network (CAN).
  • CAN controller area network
  • Fig. 1 shows a schematic diagram of an undervoltage protection method 1000 according to an embodiment of the present invention.
  • the undervoltage protection method 1000 includes:
  • step S110 an enable signal of the active short circuit is received, the enable signal indicates whether to control the gate driver to turn on the switch tube in the upper bridge arm or the lower bridge arm in the three-phase inverter;
  • step S120 a second signal is received, the second signal representing the power supply voltage applied to the three-phase inverter.
  • step S130 when the enable signal is "true” and the power supply voltage indicated by the second signal is lower than a preset threshold, a shutdown signal is sent to the gate driver to make the three-phase inverter The switch tube in the upper bridge arm or the lower bridge arm in is closed.
  • the active short circuit is a functional circuit in the motor controller.
  • the active short circuit is used to switch the switch of the lower arm or upper arm of the three-phase inverter when a fault occurs. Turn on at the same time to short-circuit the three-phase stator windings of the motor.
  • the active short circuit includes a down tube active short circuit ASCL.
  • Three-phase bridge inverter is a high-power inverter power supply used in uninterrupted power supply systems. Any phase of its three-phase output works with the neutral line N. The method is basically the same as the half-bridge conversion circuit. The phase difference between the output three-phase voltage is determined by the time difference of the power switch on each bridge arm of the three-phase inverter. In the context of the present invention, “the power supply voltage applied to the three-phase inverter” refers to a low-voltage direct current power supply.
  • ASCL when the battery is accidentally disconnected, ASCL will be activated (for example, from high to low), and the lower three tubes (for example, S2, S4, and S6 shown in Figure 2) are opened to consume the ECU's Energy, but because the battery is disconnected, the ECU no longer has power and will drop to a low voltage, causing the lower three tubes to enter linear mode.
  • the power supply voltage applied to the three-phase inverter represented by the second signal does not directly drop to 0, but gradually decreases due to the existence of energy storage elements such as capacitors.
  • FIG. 3 shows a schematic diagram of an undervoltage protection device 3000 according to an embodiment of the present invention.
  • the undervoltage protection device 3000 includes a first receiving end 310, a second receiving end 320 and a switch protection device 330.
  • the first receiving terminal 310 is used to receive the enable signal of the active short circuit, and the enable signal indicates whether to control the gate driver to turn on the switch tube in the upper bridge arm or the lower bridge arm in the three-phase inverter (for example, The switch tubes S1, S3, S5 or S2, S4, S6 in Figure 2).
  • the second receiving terminal 320 is used to receive a second signal, and the second signal represents the power supply voltage applied to the three-phase inverter.
  • the switch tube protection device 330 is used to send a shutdown signal to the gate driver when the enable signal is "true” and the power supply voltage is lower than a preset threshold, so that all of the three-phase inverter The switch tube in the upper bridge arm or the lower bridge arm is closed.
  • FIG. 4 further shows a schematic diagram of the switch tube protection device 330.
  • the switch protection device 330 includes a detection circuit 410, a threshold setting circuit 420 and a comparator circuit 430.
  • the detection circuit 410 is used to detect that the enable signal from the active short circuit is "true”
  • the threshold setting circuit 420 is used to set a preset threshold
  • the comparator circuit 430 is used to detect the enable signal.
  • a shutdown signal is sent to the gate driver.
  • the switch tube protection device 330 may further include: a bleeder circuit 440 and an isolation circuit 450.
  • the bleeder circuit 440 is connected to the gate of the switch tube to provide a path for bleeder current to the switch tube, and one end of the isolation circuit 450 is connected to the bleeder circuit 440, and the other end is connected to the
  • the comparator circuit 430 is connected to isolate the bleeder circuit 440 and the comparator circuit 430 during normal operation.
  • FIG. 5 further shows a schematic diagram of a threshold setting circuit 420 according to an embodiment of the present invention.
  • the threshold setting circuit 420 includes a voltage stabilizing circuit 510 and a voltage dividing circuit 520.
  • the voltage stabilizing circuit 510 is used to provide a stable reference comparison potential to the comparator circuit 430; the voltage dividing circuit 520 is used to divide the power supply voltage.
  • Fig. 6 shows a schematic structural diagram of an undervoltage protection device according to an embodiment of the present invention.
  • the first receiving terminal 310 for receiving the enable signal of the active short circuit is shown as port P2 in FIG.
  • the second receiving terminal 320 of the power supply voltage of the phase inverter is shown in FIG. 6 as ports VGT1, VGT2, and VGT3.
  • the ports connected to the gates of the three switch tubes in the upper arm or the lower arm of the three-phase inverter are respectively shown as PORT1, PORT2, and PORT3 in FIG. 6.
  • the connection port with the gate driver is shown as port P1 in FIG. 6.
  • the leftmost part of FIG. 6 shows a schematic diagram of the circuit structure of a bleeder circuit 440 according to an embodiment of the present invention.
  • the bleeder circuit 440 includes: a first diode array D1, a second diode array D2, a third diode array D3, a fourth resistor R4, a semiconductor transistor T3, and a first resistor R1, wherein The first end of the first resistor R1 is connected to the gate of the semiconductor transistor T3, the second end of the first resistor R1 is grounded to GND1, the source of the semiconductor transistor T3 is grounded to GND1, and the drain of the semiconductor transistor T3 is connected to the fourth resistor The first end of R4 is connected, and the second end of the fourth resistor R4 is connected to the first ends of the first diode array D1, the second diode array D2, and the third diode array D3, respectively.
  • the second ends of the pole tube array D1, the second diode array D2, and the third diode array D3 are connected to the three phases in the upper arm or the lower arm of the three-phase inverter via ports PORT1, PORT2, and PORT3, respectively.
  • the gates of the two switching tubes are connected.
  • the isolation circuit 450 may include a second resistor R2, a second triode T2, a third resistor R3, a fifth resistor R5, and a sixth resistor R6. One end is connected to the first end of the first resistor R1, the second end of the second resistor R2 is connected to the collector of the second transistor T2, and the emitter of the second transistor T2 is connected to the port VGT1.
  • the base of the second transistor T2 is connected to the first end of the third resistor R3, the second end of the third resistor R3 is connected to the port VGT1, and the first end of the fifth resistor R5 is connected to the second transistor T2
  • the base of the fifth resistor R5 is connected to the first end of the sixth resistor R6, and the second end of the sixth resistor R6 is connected to the port VGT2.
  • the first terminal of the sixth resistor R6 in the isolation circuit 450 is connected to the output terminal of the comparator circuit 430.
  • the comparator circuit 430 includes a first comparator U1 and a seventh resistor R7, wherein the first input terminal of the first comparator U1 and the first terminal of the ninth resistor R9 and The first end of the seventh resistor R7 is connected; the second input end of the first comparator U1 is connected to the first end of the eighth resistor R8; the output end of the first comparator U1 is connected to the second end of the seventh resistor R7 ⁇ End connection. It should be pointed out that the output terminal of the first comparator U1 is also connected to the connection port P1 of the gate driver.
  • a control signal can be sent to the gate driver through the output of the first comparator U1 (for example, a turn-off signal is sent to the gate driver to turn off the switch tube in the upper arm or the lower arm of the three-phase inverter).
  • the threshold setting circuit 420 Connected to the comparator circuit 430 are a threshold setting circuit 420 (in one embodiment, the threshold setting circuit 420 further includes a voltage stabilizing circuit 510 and a voltage dividing circuit 520) and a detection circuit 410.
  • the voltage stabilizing circuit 510 includes a first voltage regulator tube Z1 and a tenth resistor R10, wherein the first end of the tenth resistor R10 is connected to the port VGT3, and the second end of the tenth resistor R10 is connected to the first The first end of the voltage regulator tube Z1 is connected, and the second end of the first voltage regulator tube Z1 is grounded to GND2.
  • the voltage divider circuit 520 includes an eighth resistor R8 and a ninth resistor R9, wherein the first end of the eighth resistor R8 is connected to the first end of the ninth resistor R9, and the eighth resistor R8 The second end is grounded to GND2, and the second end of the ninth resistor R9 is connected to VGT3.
  • the threshold setting circuit 420 further includes a filter circuit.
  • the filter circuit includes a first capacitor C1 and a second capacitor C2. The first end of the first capacitor C1 is connected to the first end of the eighth resistor R8, the second end of the first capacitor C2 is grounded to GND2, and the second capacitor C2 The first end of is connected to the second end of the tenth resistor R10, and the second end of the second capacitor C2 is grounded to GND2.
  • the detection circuit 410 includes a first triode T1, wherein the emitter of the first triode T1 is grounded to GND2, the collector of the first triode T1 is connected to the first end of the second capacitor C2, The base of a triode T1 is connected to the port P2.
  • the P2 port ie, the first receiving end 310 for receiving the enable signal of the active short circuit
  • the enable signal is displayed as "False”
  • the first transistor T1 is turned on, and both ends of the first voltage regulator tube Z1 are forcibly grounded to GND2, so that regardless of the voltage of the port VGT3, the output of the first comparator U1 will always be "1" (ie High level), which causes the second transistor T2 (PNP transistor) to be always off or in an off state, so that the leakage circuit in the leftmost part of Figure 6 is isolated from other parts of the circuit and will not affect each other.
  • the three switch tubes in the upper bridge arm or the lower bridge arm of the three-phase inverter can discharge to the bleeder circuit in FIG. 6 through the ports PORT1, PORT2, and PORT3, respectively.
  • the first diode array D1, the second diode array D2, and the third diode array D3 are respectively turned on, so that the discharge current flows into the ground GND1 via the fourth resistor R4 and the semiconductor transistor T3.
  • the active short circuit When the battery is accidentally disconnected, the active short circuit will be activated (from high to low), that is, the P2 port will be displayed as low. At this time, the first transistor T1 is turned off, and the second terminal (ie, the "-" terminal) of the first comparator U1 will be stabilized at a potential (for example, 2.7V) through the first voltage regulator Z1.
  • the power supply voltage applied to the three-phase inverter that is, the voltage of the ports VGT1, VGT2, and VGT3 does not directly drop to 0, but is due to energy storage such as capacitors.
  • the presence of components gradually decreases. Therefore, in an embodiment of the present invention, when it is detected that the voltages of the ports VGT1, VGT2, and VGT3 are lower than a preset threshold (for example, 10V), it is determined that the battery has been disconnected.
  • a preset threshold for example, 10V
  • the preset threshold value can be implemented, for example, by reasonably setting the resistance values of the eighth resistor R8, the ninth resistor R9, and the tenth resistor R10 in FIG. 6. Referring to FIG. 6, if the potential on the first terminal of the first comparator U1 is lower than the potential on the second terminal of the first comparator U1, the first comparator U1 will output a low level ("0"). This low level will be sent to the gate driver as a turn-off signal, so that the switching tubes in the upper or lower bridge of the three-phase inverter are turned off, so as to prevent these switching tubes from entering the linear region due to insufficient external drive capability. Effectively protect these switch tubes.
  • the enable signal when the enable signal is at a high level, it means that the active short circuit is not working.
  • the enable signal when the enable signal is low, the active short circuit will control the gate driver to turn on the switch in the upper arm or lower arm of the three-phase inverter.
  • the enable signal can be inverted according to actual needs. For example, when the enable signal is at a high level, it means that the active short circuit circuit works, and when it is at a low level, it means it does not work. In this case, it is only necessary to adjust the detection circuit of the present invention adaptively (for example, the first transistor T1 in FIG. 6 is set as a low-level conductive PNP tube).
  • the aforementioned undervoltage protection device/circuit is preferably located in the motor control unit ECU of the vehicle. It should be noted that although FIG. 6 shows a schematic structural diagram of a specific under-voltage protection circuit, those skilled in the art can understand that the under-voltage protection device of the present invention is not limited to the specific circuit structure in FIG. 6, but can It is implemented by software, hardware, and/or a combination of software and hardware.
  • the under-voltage protection scheme of the present invention passes when the enable signal is "true” (that is, an active short circuit is required), and the power supply voltage is lower than the preset threshold (when the shutdown signal is sent to the gate driver to make the three-phase inverter
  • the switch tubes in the upper or lower bridge arms of the device are turned off, thereby avoiding these switching tubes from entering the linear mode (that is, working in the "linear region") due to insufficient external drive capability, and effectively protecting these switching tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种用于电机控制单元(ECU)的欠压保护方法(1000),包括:接收主动短路电路的使能信号,使能信号表示是否控制栅极驱动器开启三相逆变器中的上桥臂或下桥臂内的开关管;接收第二信号,第二信号代表施加给所述三相逆变器的电源电压;以及当使能信号为"真",并且第二信号所表示的电源电压低于预设阈值时,向栅极驱动器发送关闭信号使得三相逆变器中的上桥臂或下桥臂内的开关管关闭。本发明还涉及一种欠压保护设备(3000)、电机控制单元(ECU)、车辆以及计算机存储介质。

Description

欠压保护设备及方法 技术领域
本发明涉及欠压保护机制,更具体地,涉及一种欠压保护方法、欠压保护设备、电机控制单元、车辆以及计算机存储介质。
背景技术
电机控制单元作为车辆的核心部件,需要保证其在正常运行时能安全有效地控制电机,并且在车辆发生碰撞以及其他故障时能够保证车辆进入相对安全的状态。因为当车辆高速运行时车载电机的反电动势会很大,此时若直接关闭其三相桥式逆变器的所有开关管,过高的反电动势会导致直流母线过压以及产生很大的发电制动转矩。直流母线过压可能会损坏逆变器的开关管,很大的发电制动转矩可能导致电池过充甚至爆炸或者增加翻车危险。因此,需要采用主动短路方案,即通过微控制器输出驱动信号使逆变器上/下桥臂内的3个开关管全开通,来短路电机定子绕组,进而使车辆在发生碰撞以及其他故障时能够进入相对安全的状态。
现有的高速车辆ECU(电机控制单元)包含三相逆变器单元(功率级)、栅极驱动器单元(GDU)、电源单元,外围接口单元,控制和保护电路以及ASCL(下管主动短路电路)单元来控制电机。如果发生任何故障,例如过压,则ASCL单元用于开启下桥臂内的开关管,从而防止组件损坏。
图2示出了现有的三相桥式逆变器的拓扑结构图。其中,三相桥式逆变器的直流侧与电池相连,其交流侧与电机M相连。并且,该三相桥式逆变器的上桥臂中包括三个开关管S1、S3和S5,其下桥臂中包括三个开关管S2、S4和S6。也就是说,在实际应用中,ASCL单元可在某个故障发生时,打开开关管S2、S4和S6(即下桥臂内的开关管)。但是,在某些特殊情况下,当电机高速旋转时电池意外断开连接时,这将触发ASCL单元并打开开关管S2、S4和S6以限制直流 母线的电压。但是在这种情况下,栅极驱动器单元GDU会在没有电源的情况下连续输出PWM(脉冲幅度调制)信号,GDU供电电压下降,因此开关管S2、S4和S6将进入线性模式,并导致巨大的发散热量,从而烧坏下桥臂内的开关管。
因此,期望一种欠压保护机制,该机制能够在特殊情形(电池意外断开连接)时为上桥臂/下桥臂内的开关管提供保护。
发明内容
根据本发明的一方面,提供了一种用于电机控制单元的欠压保护方法,所述方法包括:接收主动短路电路的使能信号,所述使能信号表示是否控制栅极驱动器开启三相逆变器中的上桥臂或下桥臂内的开关管;接收第二信号,所述第二信号代表施加给所述三相逆变器的电源电压;以及当所述使能信号为“真”,并且所述第二信号所表示的电源电压低于预设阈值时,向所述栅极驱动器发送关闭信号使得所述三相逆变器中的所述上桥臂或下桥臂内的所述开关管关闭。
根据本发明的另一个方面,提供了一种用于电机控制单元的欠压保护设备,所述欠压保护设备包括:第一接收端,用于接收主动短路电路的使能信号,所述使能信号表示是否控制栅极驱动器开启三相逆变器中的上桥臂或下桥臂内的开关管;第二接收端,用于接收第二信号,所述第二信号代表施加给所述三相逆变器的电源电压;以及开关管保护装置,用于在所述使能信号为“真”,并且所述电源电压低于预设阈值时,向所述栅极驱动器发送关闭信号使得所述三相逆变器中的所述上桥臂或下桥臂内的所述开关管关闭。
可选地,在上述欠压保护设备中,所述开关管保护装置包括:检测电路,用于检测来自所述主动短路电路的使能信号为“真”;阈值设定电路,用于设定预设阈值;以及比较器电路,用于在检测到所述使能信号为“真”并且所述电源电压低于所述预设阈值时,向所述栅极驱动器发送关闭信号。
可选地,在上述欠压保护设备中,所述开关管保护装置还包括:泄放电路,所述泄放电路与所述开关管的栅极相连,用于向所述开关 管提供泄放电流的通路;以及隔离电路,所述隔离电路的一端与所述泄放电路连接,另一端与所述比较器电路相连,用于在正常工作时隔离所述泄放电路与所述比较器电路。
可选地,在上述欠压保护设备中,所述阈值设定电路包括:稳压电路,用于向所述比较器电路提供稳定的参考比对电位;以及分压电路,用于对所述电源电压进行分压。
可选地,在上述欠压保护设备中,所述稳压电路包括第一稳压管和第十电阻器,所述第十电阻器的第一端与所述第二接收端连接,所述第十电阻器的第二端与所述第一稳压管的第一端连接,所述第一稳压管的第二端接地;以及所述分压电路包括第八电阻器和第九电阻器,所述第八电阻器的第一端与所述第九电阻器的第一端相连,所述第八电阻器的第二端接地,所述第九电阻器的第二端与所述第二接收端连接。
可选地,在上述欠压保护设备中,所述阈值设定电路还包括:包含第一电容器和第二电容器的滤波电路,其中所述第一电容器的第一端与所述第八电阻器的第一端连接,所述第一电容器的第二端接地;以及所述第二电容器的第一端与所述第十电阻器的第二端连接,所述第二电容器的第二端接地。
可选地,在上述欠压保护设备中,所述检测电路包括第一三极管,其中所述第一三极管的发射极接地,所述第一三极管的集电极与所述第二电容器的第一端连接,所述第一三极管的基极与所述第一接收端连接。
可选地,在上述欠压保护设备中,所述比较器电路包括第一比较器以及第七电阻器,其中所述第一比较器的第一输入端与所述第九电阻器的第一端以及所述第七电阻器的第一端连接;所述第一比较器的第二输入端与所述第八电阻器的第一端连接;所述第一比较器的输出端与所述第七电阻器的第二端连接。
可选地,在上述欠压保护设备中,所述泄放电路包括:第一二极管阵列、第二二极管阵列、第三二极管阵列、第四电阻器、半导体晶体管以及第一电阻器,其中所述第一电阻器的第一端与所述半导体晶 体管的栅极连接,所述第一电阻器的第二端接地,所述半导体晶体管的源极接地,所述半导体晶体管的漏极与所述第四电阻器的第一端连接,所述第四电阻器的第二端分别与所述第一二极管阵列、所述第二二极管阵列以及所述第三二极管阵列的第一端连接,所述第一二极管阵列、所述第二二极管阵列以及所述第三二极管阵列的第二端分别与所述三相逆变器中的所述上桥臂或下桥臂内的三个开关管的栅极相连。
可选地,在上述欠压保护设备中,所述隔离电路包括:第二电阻器、第二三极管、第三电阻器、第五电阻器以及第六电阻器,其中所述第二电阻器的第一端与所述第一电阻器的第一端连接,所述第二电阻器的第二端与所述第二三极管的集电极连接,所述第二三极管的发射极与所述第二接收端连接,所述第二三极管的基极与所述第三电阻器的第一端连接,所述第三电阻器的第二端与所述第二接收端连接,所述第五电阻器的第一端与所述第二三极管的基极连接,所述第五电阻器的第二端与所述第六电阻器的第一端连接,所述第六电阻器的第二端与所述第二接收端连接。
根据本发明的又一个方面,提供了一种电机控制单元,其包括如上所述的欠压保护设备。
根据本发明的又一个方面,提供了一种车辆,其包括如上所述的电机控制单元。
根据本发明的又一个方面,提供了一种计算机存储介质,所述介质包括指令,所述指令在运行时执行如上所述的方法。
本发明的欠压保护方案通过在使能信号为“真”(即需要进行主动短路),并且电源电压低于预设阈值(注:一般而言,电池意外断开后,第二信号所代表的电源电压由于电容等储能元件的存在而逐渐降低,因此“电源电压低于预设阈值”即代表了电池意外断开的情形)时,向栅极驱动器发送关闭信号使得三相逆变器中的上桥臂或下桥臂内的开关管关闭,从而避免了这些开关管由于外部驱动能力不足而进入线性模式(即工作在“线性区”),有效地保护了这些开关管。
附图说明
从结合附图的以下详细说明中,将会使本发明的上述和其他目的及优点更加完整清楚,其中,相同或相似的要素采用相同的标号表示。
图1示出了根据本发明的一个实施例的欠压保护方法的示意图;
图2示出了现有的三相桥式逆变器的拓扑结构图;
图3示出了根据本发明的一个实施例的欠压保护设备的示意图;
图4示出了根据本发明的一个实施例的开关管保护装置的示意图;
图5示出了根据本发明的一个实施例的阈值设定电路的示意图;以及
图6示出了根据本发明的一个实施例的欠压保护设备的结构示意图。
具体实施方式
应理解,这里所使用的术语“车辆”或者其他类似的术语包括各种机动车辆和非机动车辆,例如乘用车(包括运动型多用途车、公共汽车、卡车等)、各种商用车、船舶、飞机、摩托车、自行车等等,并包括混合动力汽车、电动车等。混合动力汽车是一种具有两个或更多个功率源的车辆,例如汽油动力和电动车辆。
虽然将示例性实施例描述为使用多个单元来执行示例性过程,但是应理解,这些示例性过程也可由一个或多个模块来执行。
而且,本发明的方法逻辑可作为可执行程序指令而包含在计算机可读介质上,该可执行程序指令由处理器等实施。计算机可读介质的实例包括,但不限于,ROM、RAM、光盘、磁带、软盘、闪盘驱动器、智能卡和光学数据存储装置。计算机可读记录介质也可分布在连接有网络的计算机系统中,使得例如通过车载远程通信服务或者控制器局域网(CAN)以分布式方式储存并实施计算机可读介质。
除非具体地提到或者从上下文中显而易见,否则如这里使用的,将术语“大约”理解为在本领域中的正常公差的范围内,例如在平均值的2个标准差内。
在下文中,将参考附图详细地描述根据本发明的各示例性实施例的欠压保护方法及设备。
图1示出了根据本发明的一个实施例的欠压保护方法1000的示意图。如图1所示,欠压保护方法1000包括:
在步骤S110,接收主动短路电路的使能信号,所述使能信号表示是否控制栅极驱动器开启三相逆变器中的上桥臂或下桥臂内的开关管;
在步骤S120,接收第二信号,所述第二信号代表施加给所述三相逆变器的电源电压;以及
在步骤S130,当所述使能信号为“真”,并且所述第二信号所表示的电源电压低于预设阈值时,向所述栅极驱动器发送关闭信号使得所述三相逆变器中的所述上桥臂或下桥臂内的所述开关管关闭。
在本发明的上下文中,“主动短路电路”是电机控制器中的一个功能电路,该主动短路电路用于在发生故障时将三相逆变器中的下桥臂或上桥臂的开关管同时开通,从而将电机的三相定子绕组短路。在一些实施例中,主动短路电路包括下管主动短路电路ASCL。
“三相逆变器”或“三相桥式逆变器”是一种用于不间断供电系统的电力用大功率逆变电源,其三相输出的任意一相与中性线N的工作方式与半桥式变换电路基本相同。输出三相电压之间的相位差是通过三相逆变器每个桥臂上功率开关管导通的时间差来决定的。在本发明的上下文中,“施加给三相逆变器的电源电压”指代低压直流电源。
一般而言,当电池意外断开连接时,ASCL将激活(例如从高电平变为低电平),下三管(例如图2所示的S2、S4和S6)被打开以消耗ECU的能量,但是由于电池断开连接,因此ECU不再有电源,将降至低压,从而导致下三管进入线性模式。需要说明的是,电池意外断开后,第二信号所代表的施加给所述三相逆变器的电源电压并不是直接下降为0,而是由于电容等储能元件的存在而逐渐降低。
因此,在检测到主动短路电路的使能信号为“真”,并检测到施加给三相逆变器的栅极驱动器单元(GDU)的电源电压(正常情况下例如为15V)低于预设阈值(例如10V)时,则可确定发生电池意外断 开。在这种情形下,向栅极驱动器发送关闭信号使得三相逆变器中的上桥臂或下桥臂内的开关管关闭,可避免这些开关管由于外部驱动能力不足而进入线性模式(即工作在“线性区”),有效地保护了这些开关管。
参考图3,图3示出了根据本发明的一个实施例的欠压保护设备3000的示意图。如图3所示,欠压保护设备3000包括第一接收端310、第二接收端320以及开关保护装置330。其中,第一接收端310用于接收主动短路电路的使能信号,所述使能信号表示是否控制栅极驱动器开启三相逆变器中的上桥臂或下桥臂内的开关管(例如图2中的开关管S1、S3、S5或S2、S4、S6)。第二接收端320用于接收第二信号,所述第二信号代表施加给所述三相逆变器的电源电压。开关管保护装置330用于在所述使能信号为“真”,并且所述电源电压低于预设阈值时,向所述栅极驱动器发送关闭信号使得所述三相逆变器中的所述上桥臂或下桥臂内的所述开关管关闭。
图4进一步示出了开关管保护装置330的示意图。如图4所示,开关管保护装置330包括检测电路410、阈值设定电路420以及比较器电路430。其中,检测电路410用于检测来自所述主动短路电路的使能信号为“真”,阈值设定电路420用于设定预设阈值,比较器电路430用于在检测到所述使能信号为“真”并且所述电源电压低于所述预设阈值时,向所述栅极驱动器发送关闭信号。
在一些实施例中,如图4中用虚线示出,开关管保护装置330还可包括:泄放电路440和隔离电路450。其中,泄放电路440与所述开关管的栅极相连,用于向所述开关管提供泄放电流的通路,并且隔离电路450的一端与所述泄放电路440连接,另一端与所述比较器电路430相连,用于在正常工作时隔离所述泄放电路440与所述比较器电路430。
图5进一步示出了根据本发明的一个实施例的阈值设定电路420的示意图。如图5所示,阈值设定电路420包括稳压电路510和分压电路520。其中,稳压电路510用于向所述比较器电路430提供稳定的参考比对电位;分压电路520用于对所述电源电压进行分压。
图6示出了根据本发明的一个实施例的欠压保护设备的结构示意图。如图6所示,用于接收主动短路电路的使能信号的第一接收端310在图6中示出为端口P2,用于接收第二信号(所述第二信号代表施加给所述三相逆变器的电源电压)的第二接收端320在图6中示出为端口VGT1、VGT2以及VGT3。与三相逆变器中的上桥臂或下桥臂内的三个开关管的栅极相连的端口在图6中分别示出为PORT1、PORT2以及PORT3。与栅极驱动器的连接端口在图6中示出为端口P1。
参考图6,图6的最左边部分示出了根据本发明的一个实施例的泄放电路440的电路结构示意图。其中,该泄放电路440包括:第一二极管阵列D1、第二二极管阵列D2、第三二极管阵列D3、第四电阻器R4、半导体晶体管T3以及第一电阻器R1,其中第一电阻器R1的第一端与半导体晶体管T3的栅极连接,第一电阻器R1的第二端接地GND1,半导体晶体管T3的源极接地GND1,半导体晶体管T3的漏极与第四电阻器R4的第一端连接,第四电阻器R4的第二端分别与第一二极管阵列D1、第二二极管阵列D2以及第三二极管阵列D3的第一端连接,第一二极管阵列D1、第二二极管阵列D2以及第三二极管阵列D3的第二端分别经由端口PORT1、PORT2以及PORT3与三相逆变器中的上桥臂或下桥臂内的三个开关管的栅极相连。
与泄放电路440相连的是隔离电路450。如图6所示,隔离电路450可包括第二电阻器R2、第二三极管T2、第三电阻器R3、第五电阻器R5以及第六电阻器R6,其中第二电阻器R2的第一端与第一电阻器R1的第一端连接,第二电阻器R2的第二端与第二三极管T2的集电极连接,第二三极管T2的发射极与端口VGT1连接,第二三极管T2的基极与第三电阻器R3的第一端连接,第三电阻器R3的第二端与端口VGT1连接,第五电阻器R5的第一端与第二三极管T2的基极连接,第五电阻器R5的第二端与第六电阻器R6的第一端连接,第六电阻器R6的第二端与端口VGT2连接。
继续参考图6,隔离电路450中的第六电阻器R6的第一端与比较器电路430的输出端相连。具体来说,在图6中,比较器电路430包括第一比较器U1以及第七电阻器R7,其中所述第一比较器U1的第 一输入端与第九电阻器R9的第一端以及第七电阻器R7的第一端连接;第一比较器U1的第二输入端与第八电阻器R8的第一端连接;第一比较器U1的输出端与第七电阻器R7的第二端连接。需要指出的是,第一比较器U1的输出端还与栅极驱动器的连接端口P1相连。这样,通过第一比较器U1的输出即可向栅极驱动器发送控制信号(例如向栅极驱动器发送关闭信号使得三相逆变器中的上桥臂或下桥臂内的开关管关闭)。
与比较器电路430相连的分别是阈值设定电路420(其中在一个实施例中,阈值设定电路420进一步包括稳压电路510以及分压电路520)以及检测电路410。进一步参考图6,稳压电路510包括第一稳压管Z1和第十电阻器R10,其中第十电阻器R10的第一端与端口VGT3连接,第十电阻器R10的第二端与第一稳压管Z1的第一端连接,第一稳压管Z1的第二端接地GND2。在图6中,分压电路520包括第八电阻器R8和第九电阻器R9,其中第八电阻器R8的第一端与第九电阻器R9的第一端相连,第八电阻器R8的第二端接地GND2,第九电阻器R9的第二端与VGT3连接。
在图6的实施例中,阈值设定电路420还包括滤波电路。其中该滤波电路包含第一电容器C1和第二电容器C2,第一电容器C1的第一端与第八电阻器R8的第一端连接,第一电容器C2的第二端接地GND2,第二电容器C2的第一端与第十电阻器R10的第二端连接,第二电容器C2的第二端接地GND2。
在图6中,检测电路410包括第一三极管T1,其中第一三极管T1的发射极接地GND2,第一三极管T1的集电极与第二电容器C2的第一端连接,第一三极管T1的基极与端口P2连接。
通过图6的欠压保护设备/电路,当正常的工况下,P2端口(即用于接收主动短路电路的使能信号的第一接收端310)显示为高电平(使能信号显示为“假”),第一三极管T1导通,第一稳压管Z1两端被强制接地GND2,这样无论端口VGT3的电压如何,第一比较器U1的输出将始终为“1”(即高电平),这导致第二三极管T2(PNP三极管)始终关闭或处于截止状态,这样图6中最左边部分的泄流电 路与其他部分的电路隔离,不会相互影响。
三相逆变器中的上桥臂或下桥臂内的三个开关管可分别通过端口PORT1、PORT2以及PORT3向图6中的泄放电路进行放电。在放电期间,第一二极管阵列D1、第二二极管阵列D2以及第三二极管阵列D3分别导通,从而泄放电流经由第四电阻R4、半导体晶体管T3流入地GND1中。
在电池意外断开连接时,主动短路电路将激活(从高电平变为低电平),即P2端口将显示为低电平。这时,第一三极管T1关闭,第一比较器U1的第二端(即“-”端)将通过第一稳压管Z1稳定在一电位上(例如2.7V)。
另外,如前所述,电池意外断开后,施加给所述三相逆变器的电源电压(即端口VGT1、VGT2以及VGT3的电压)并不是直接下降为0,而是由于电容等储能元件的存在而逐渐降低。因此,在本发明的一个实施例中,当检测到端口VGT1、VGT2以及VGT3的电压低于一预设阈值(例如10V)时,即认定电池已断开。
该预设阈值可例如通过合理设置图6中的第八电阻器R8、第九电阻器R9以及第十电阻器R10的阻值来实现。参考图6,若第一比较器U1的第一端上的电位低于其第二端上的电位时,该第一比较器U1将输出低电平(“0”)。该低电平将作为关闭信号发送给栅极驱动器,使得三相逆变器中的上桥臂或下桥臂内的开关管关闭,从而避免这些开关管由于外部驱动能力不足而进入线性区,有效地保护了这些开关管。
需要说明的是,在上面的各个实施例中,当使能信号为高电平时表示主动短路电路不工作。当使能信号为低电平时,主动短路电路将会控制栅极驱动器开启三相逆变器中的上桥臂或下桥臂内的开关管。本领域技术人员可以理解,可以根据实际需要,对使能信号进行反转,例如在使能信号为高电平时表示主动短路电路工作,而在低电平时表示不工作。在这种情况下,只需适应性地调整本发明的检测电路(例如将图6中的第一三极管T1设置为低电平导通的PNP管)即可。
前述欠压保护设备/电路优选地位于车辆的电机控制单元ECU 中。需要说明的是,尽管图6中示出了具体的欠压保护电路的结构示意图,但本领域技术人员可以理解,本发明的欠压保护设备不限于图6中的具体电路结构,而是可以通过软件、硬件和/或软硬件结合的方式来进行实现。
综上,本发明的欠压保护方案通过在使能信号为“真”(即需要进行主动短路),并且电源电压低于预设阈值(时,向栅极驱动器发送关闭信号使得三相逆变器中的上桥臂或下桥臂内的开关管关闭,从而避免了这些开关管由于外部驱动能力不足而进入线性模式(即工作在“线性区”),有效地保护了这些开关管。
以上例子主要说明了本发明的欠压保护方法和设备。尽管只对其中一些本发明的实施方式进行了描述,但是本领域普通技术人员应当了解,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。

Claims (14)

  1. 一种用于电机控制单元的欠压保护方法,其特征在于,所述方法包括:
    接收主动短路电路的使能信号,所述使能信号表示是否控制栅极驱动器开启三相逆变器中的上桥臂或下桥臂内的开关管;
    接收第二信号,所述第二信号代表施加给所述三相逆变器的电源电压;以及
    当所述使能信号为“真”,并且所述第二信号所表示的电源电压低于预设阈值时,向所述栅极驱动器发送关闭信号使得所述三相逆变器中的所述上桥臂或下桥臂内的所述开关管关闭。
  2. 一种用于电机控制单元的欠压保护设备,其特征在于,所述欠压保护设备包括:
    第一接收端,用于接收主动短路电路的使能信号,所述使能信号表示是否控制栅极驱动器开启三相逆变器中的上桥臂或下桥臂内的开关管;
    第二接收端,用于接收第二信号,所述第二信号代表施加给所述三相逆变器的电源电压;以及
    开关管保护装置,用于在所述使能信号为“真”,并且所述电源电压低于预设阈值时,向所述栅极驱动器发送关闭信号使得所述三相逆变器中的所述上桥臂或下桥臂内的所述开关管关闭。
  3. 如权利要求2所述的欠压保护设备,其中,所述开关管保护装置包括:
    检测电路,用于检测来自所述主动短路电路的使能信号为“真”;
    阈值设定电路,用于设定预设阈值;以及
    比较器电路,用于在检测到所述使能信号为“真”并且所述电源电压低于所述预设阈值时,向所述栅极驱动器发送关闭信号。
  4. 如权利要求3所述的欠压保护设备,其中,所述开关管保护装置还包括:
    泄放电路,所述泄放电路与所述开关管的栅极相连,用于向所述 开关管提供泄放电流的通路;以及
    隔离电路,所述隔离电路的一端与所述泄放电路连接,另一端与所述比较器电路相连,用于在正常工作时隔离所述泄放电路与所述比较器电路。
  5. 如权利要求3所述的欠压保护设备,其中,所述阈值设定电路包括:
    稳压电路,用于向所述比较器电路提供稳定的参考比对电位;以及
    分压电路,用于对所述电源电压进行分压。
  6. 如权利要求5所述的欠压保护设备,其中,所述稳压电路包括第一稳压管和第十电阻器,所述第十电阻器的第一端与所述第二接收端连接,所述第十电阻器的第二端与所述第一稳压管的第一端连接,所述第一稳压管的第二端接地;以及
    所述分压电路包括第八电阻器和第九电阻器,所述第八电阻器的第一端与所述第九电阻器的第一端相连,所述第八电阻器的第二端接地,所述第九电阻器的第二端与所述第二接收端连接。
  7. 如权利要求6所述的欠压保护设备,其中,所述阈值设定电路还包括:
    包含第一电容器和第二电容器的滤波电路,其中所述第一电容器的第一端与所述第八电阻器的第一端连接,所述第一电容器的第二端接地;以及所述第二电容器的第一端与所述第十电阻器的第二端连接,所述第二电容器的第二端接地。
  8. 如权利要求7所述的欠压保护设备,其中,所述检测电路包括第一三极管,其中所述第一三极管的发射极接地,所述第一三极管的集电极与所述第二电容器的第一端连接,所述第一三极管的基极与所述第一接收端连接。
  9. 如权利要求6所述的欠压保护设备,其中,所述比较器电路包括第一比较器以及第七电阻器,其中所述第一比较器的第一输入端与所述第九电阻器的第一端以及所述第七电阻器的第一端连接;所述第一比较器的第二输入端与所述第八电阻器的第一端连接;所述第一比 较器的输出端与所述第七电阻器的第二端连接。
  10. 如权利要求4所述的欠压保护设备,其中,所述泄放电路包括:第一二极管阵列、第二二极管阵列、第三二极管阵列、第四电阻器、半导体晶体管以及第一电阻器,其中所述第一电阻器的第一端与所述半导体晶体管的栅极连接,所述第一电阻器的第二端接地,所述半导体晶体管的源极接地,所述半导体晶体管的漏极与所述第四电阻器的第一端连接,所述第四电阻器的第二端分别与所述第一二极管阵列、所述第二二极管阵列以及所述第三二极管阵列的第一端连接,所述第一二极管阵列、所述第二二极管阵列以及所述第三二极管阵列的第二端分别与所述三相逆变器中的所述上桥臂或下桥臂内的三个开关管的栅极相连。
  11. 如权利要求10所述的欠压保护设备,其中,所述隔离电路包括:第二电阻器、第二三极管、第三电阻器、第五电阻器以及第六电阻器,其中所述第二电阻器的第一端与所述第一电阻器的第一端连接,所述第二电阻器的第二端与所述第二三极管的集电极连接,所述第二三极管的发射极与所述第二接收端连接,所述第二三极管的基极与所述第三电阻器的第一端连接,所述第三电阻器的第二端与所述第二接收端连接,所述第五电阻器的第一端与所述第二三极管的基极连接,所述第五电阻器的第二端与所述第六电阻器的第一端连接,所述第六电阻器的第二端与所述第二接收端连接。
  12. 一种电机控制单元,包括如权利要求2至11中任一项所述的欠压保护设备。
  13. 一种车辆,包括如权利要求12所述的电机控制单元。
  14. 一种计算机存储介质,其特征在于,所述介质包括指令,所述指令在运行时执行如权利要求1所述的方法。
PCT/CN2021/076174 2020-02-20 2021-02-09 欠压保护设备及方法 WO2021164636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010104158.9 2020-02-20
CN202010104158.9A CN113300327A (zh) 2020-02-20 2020-02-20 欠压保护设备及方法

Publications (1)

Publication Number Publication Date
WO2021164636A1 true WO2021164636A1 (zh) 2021-08-26

Family

ID=77317505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076174 WO2021164636A1 (zh) 2020-02-20 2021-02-09 欠压保护设备及方法

Country Status (3)

Country Link
CN (1) CN113300327A (zh)
TW (1) TW202133523A (zh)
WO (1) WO2021164636A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037193A (zh) * 2022-06-09 2022-09-09 常熟理工学院 具有保护功能的直流无刷电机驱动板
CN118017658A (zh) * 2024-04-09 2024-05-10 深圳市德兰明海新能源股份有限公司 一种光伏充电激活电路及光伏充电系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066556A (zh) * 2012-12-04 2013-04-24 联合汽车电子有限公司 高压直流系统的过压保护方法
CN105514941A (zh) * 2015-12-31 2016-04-20 联合汽车电子有限公司 电动汽车逆变器保护装置及其保护方法
CN107112937A (zh) * 2014-11-14 2017-08-29 爱信艾达株式会社 逆变器控制装置以及车辆用控制装置
CN110460254A (zh) * 2018-05-07 2019-11-15 株式会社电装 用于电力转换器的控制电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066556A (zh) * 2012-12-04 2013-04-24 联合汽车电子有限公司 高压直流系统的过压保护方法
CN107112937A (zh) * 2014-11-14 2017-08-29 爱信艾达株式会社 逆变器控制装置以及车辆用控制装置
CN105514941A (zh) * 2015-12-31 2016-04-20 联合汽车电子有限公司 电动汽车逆变器保护装置及其保护方法
CN110460254A (zh) * 2018-05-07 2019-11-15 株式会社电装 用于电力转换器的控制电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037193A (zh) * 2022-06-09 2022-09-09 常熟理工学院 具有保护功能的直流无刷电机驱动板
CN118017658A (zh) * 2024-04-09 2024-05-10 深圳市德兰明海新能源股份有限公司 一种光伏充电激活电路及光伏充电系统
CN118017658B (zh) * 2024-04-09 2024-06-11 深圳市德兰明海新能源股份有限公司 一种光伏充电激活电路及光伏充电系统

Also Published As

Publication number Publication date
CN113300327A (zh) 2021-08-24
TW202133523A (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
CN101814720B (zh) 电动车辆逆变器设备及其保护方法
JP6110796B2 (ja) インバータを動作させるためのシステムおよび方法
CN109039221B (zh) 一种主动短路电路以及电机控制器
WO2021164636A1 (zh) 欠压保护设备及方法
CN110768213B (zh) 电动汽车电机系统三相主动短路的控制电路及控制方法
US20120039100A1 (en) Power conversion device, method of controlling power conversion device, and vehicle with the same mounted thereon
CN111038261B (zh) 拖车保护方法
JP2012065530A (ja) インバータ駆動装置
CN205509478U (zh) 电动汽车逆变器保护装置
CN210123890U (zh) 电机控制器硬件电路
JP2006311775A (ja) 負荷駆動装置およびそれを搭載した車両
US20130076405A1 (en) Systems and methods for discharging bus voltage using semiconductor devices
CN112803360A (zh) 浪涌保护电路、浪涌保护方法及电池供电电路
WO2023040236A1 (zh) 过压保护电路、过压保护方法及电机控制器
JP2006304408A (ja) 電源装置および電源装置の制御方法
US12107571B2 (en) Control circuit for power conversion apparatus
JP2005312156A (ja) 電源制御装置およびそれを備えたモータ駆動装置
CN212380935U (zh) 制动电阻保护电路及变频器
CN105337596A (zh) 电机系统及其igbt开关电路
CN210866051U (zh) 具有保护功能的感性线圈驱动电路
CN112994441A (zh) 一种车载ecu电源输入电路
JP2022030603A (ja) 電力変換器の制御回路
CN114204784B (zh) 一种碳化硅mosfet驱动电源
CN110718897A (zh) 具自动侦测功能的电压控制装置
CN210350776U (zh) 母线电压过压保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756349

Country of ref document: EP

Kind code of ref document: A1