WO2021135511A1 - 一种铝合金轮毂及对其表面涂层的方法 - Google Patents

一种铝合金轮毂及对其表面涂层的方法 Download PDF

Info

Publication number
WO2021135511A1
WO2021135511A1 PCT/CN2020/121503 CN2020121503W WO2021135511A1 WO 2021135511 A1 WO2021135511 A1 WO 2021135511A1 CN 2020121503 W CN2020121503 W CN 2020121503W WO 2021135511 A1 WO2021135511 A1 WO 2021135511A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
coating
layer
wheel hub
alloy wheel
Prior art date
Application number
PCT/CN2020/121503
Other languages
English (en)
French (fr)
Inventor
刘字光
Original Assignee
中信戴卡股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中信戴卡股份有限公司 filed Critical 中信戴卡股份有限公司
Priority to US17/775,447 priority Critical patent/US20220403496A1/en
Priority to KR1020227011158A priority patent/KR102662673B1/ko
Publication of WO2021135511A1 publication Critical patent/WO2021135511A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/60Surface treatment; After treatment
    • B60B2310/614Painting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/60Surface treatment; After treatment
    • B60B2310/616Coating with thin films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/60Surface treatment; After treatment
    • B60B2310/64Effect of treatments
    • B60B2310/654Anti-corrosive

Definitions

  • the invention belongs to the field of surface treatment of aluminum alloy wheel hubs, and specifically relates to an aluminum alloy wheel hub and a method for coating the surface thereof.
  • Aluminum alloy wheels have the advantages of fuel saving, good heat dissipation, extended engine life, good roundness, sturdiness and durability, etc., so they are widely used in the automotive industry.
  • the electroplated automotive aluminum wheels have a very attractive appearance and become a fashion in developed countries and regions such as Europe, Japan, South Korea, and the United States.
  • the surface of aluminum alloy wheels is generally treated by painting, plating, electroplating and other methods, which can play a role in corrosion prevention and decoration.
  • Chinese patent application CN 103320791 A discloses a method for electroplating aluminum alloy wheels. Firstly, the aluminum alloy wheel is pretreated; secondly, the aluminum alloy wheel is immersed in phosphoric acid for 5-10 minutes for surface activation; then a layer of epoxy polyester powder is sprayed on the surface of the aluminum alloy wheel by electrostatic spraying; then nickel plating is performed twice ; Finally, vacuum chrome plating is performed.
  • the electroplating process is complicated, and the waste liquid produced after electroplating has a large environmental pollution, which does not conform to the energy-saving and environmental protection policies advocated by the state.
  • Chinese patent application CN 105525266 A discloses a vacuum coating process for aluminum alloy wheels.
  • the process includes: firstly pretreating the aluminum alloy wheel; secondly, spraying epoxy resin on the aluminum alloy wheel by electrostatic spraying; then grinding and cleaning the above powder; then using vacuum coating method to coat the aluminum alloy wheel, and the coating material is alloy Plating materials include aluminum, iron, nickel and chromium; finally, finish varnishing on aluminum alloy wheels.
  • the four main processes of pretreatment, electrostatic spraying, vacuum coating and varnishing are used to improve the bonding strength between the aluminum alloy wheel and the coating, and to enhance the corrosion resistance of the aluminum alloy wheel.
  • the cost of the vacuum coating method is relatively high.
  • the main purpose of the present invention is to provide a low-cost and environmentally friendly surface treatment method for aluminum alloy wheels to form aluminum alloy wheels with improved corrosion resistance.
  • the first aspect of the present invention provides an aluminum alloy wheel hub having an aluminum alloy substrate and a coating attached to the surface of the aluminum alloy substrate, and the coating on the surface of the aluminum alloy substrate sequentially includes nickel-coated aluminum or Pre-coating, Cr 3 C 2 layer and varnish layer formed by aluminum-clad nickel powder.
  • the thickness of the pre-coating layer may be 0.05 to 0.08 mm.
  • the thickness of the Cr 3 C 2 layer may be 0.10-0.06 mm, preferably 0.08 mm.
  • the porosity of the Cr 3 C 2 layer may be 1.5-2.5%, preferably 1.8-2.0%.
  • the thickness of the varnish layer may be 0.40 ⁇ 0.08 mm.
  • a second aspect of the present invention provides a method for coating the surface of an aluminum alloy wheel hub, the method comprising: pre-treating the surface of the aluminum alloy wheel hub, spraying a pre-coating, spraying a Cr 3 C 2 layer, and post-processing Step, the step of spraying the Cr 3 C 2 layer is to use a high-speed flame spraying method to form a Cr 3 C 2 layer with a thickness of ⁇ 0.15 mm on the surface of the aluminum alloy wheel hub, and finish it to a predetermined thickness.
  • the pretreatment step may include cleaning, roughening and preheating the surface of the aluminum alloy wheel hub by degreasing, decontamination and rust removal.
  • the spraying pre-coating step may include: forming a 0.12-0.13 mm pre-coating on the surface of the aluminum alloy wheel by a high-speed flame spraying method, and turning it to a roughness of 0.05-0.08 mm, preferably
  • the pre-coating layer is formed of nickel-coated aluminum or aluminum-coated nickel powder.
  • the post-treatment step may include: after sandblasting with silica sand with a particle size of 0.5-1.0 mm, spraying a finishing varnish for decoration.
  • the aluminum alloy wheel of the present invention through the above-mentioned surface treatment method of spraying the Cr 3 C 2 layer on the surface of the aluminum alloy wheel, reduces the cost, avoids the pollution in the electroplating method, and obtains more excellent corrosion resistance.
  • Fig. 1 is a schematic partial cross-sectional view of an aluminum alloy wheel hub according to the present invention.
  • the aluminum alloy wheel hub has an aluminum alloy substrate 100 and a coating 200 attached to the surface of the aluminum alloy substrate.
  • the coating 200 on the surface of the aluminum alloy substrate 100 in turn includes nickel-clad aluminum or aluminum-clad
  • the pre-coating layer 210, the Cr 3 C 2 layer 220 and the varnish layer 230 are formed of nickel powder.
  • the thickness of the pre-coating layer 210 may be 0.05 to 0.08 mm.
  • the thickness of the Cr 3 C 2 layer 220 may be 0.10-0.06 mm, more preferably 0.08 mm.
  • the porosity of the Cr 3 C 2 layer 220 may be 1.5-2.5%, more preferably 1.8-2.0%.
  • the thickness of the varnish layer 230 may be 0.40-0.08 mm.
  • the invention provides a method for surface coating an aluminum alloy wheel hub.
  • the method forms a dense chromium carbide layer on the surface of the aluminum alloy substrate through the high-speed flame spraying method, which not only reduces the cost of surface treatment of the aluminum alloy wheel hub, but also obtains improved corrosion resistance.
  • the pretreatment step includes cleaning the surface of the aluminum alloy wheel hub by degreasing, decontamination and rust removal, removing the surface oxide scale, and making the surface of the workpiece present a metallic luster; and then using turning processing to make the surface rough to further ensure the surface quality , Improve the bonding strength and reserved coating thickness; then use a resistance furnace to preheat the aluminum alloy wheel at 120 ⁇ 140 °C, so that the temperature of the workpiece is uniform, and no water vapor is generated on the surface.
  • the pre-coating layer 210 is then sprayed using a high-speed flame spray gun.
  • the process parameters are shown in the following table.
  • the thickness of the sprayed pre-coating layer is 0.12 ⁇ 0.13mm, and the thickness after turning and roughening is 0.05 ⁇ 0.08mm.
  • the pre-coating layer 210 may be formed of nickel-coated aluminum or aluminum-coated nickel powder. .
  • the Cr 3 C 2 layer 220 is sprayed with a high-speed flame spray gun.
  • the process parameters are shown in the table below, and the thickness of the sprayed Cr 3 C 2 layer 220 is ⁇ 0.15mm.
  • the surface of the aluminum alloy wheel hub is post-treated, using 0.5-1.0mm silica sand for sandblasting; after finishing the car, the thickness of the Cr 3 C 2 layer 220 is about 0.08mm; finally, the finishing varnish 230 is sprayed for decoration, and the thickness of the varnish layer is 0.40 ⁇ 0.08mm, the thickness of the varnish layer in specific production is within a range.
  • the embodiment uses the high-speed flame spraying method to spray Cr 3 C 2 powder on the surface of the aluminum alloy sample block
  • Bottom layer material aluminum coated nickel powder (particle size 230 ⁇ 240, particle size: 15 ⁇ m)
  • Spraying material Cr 3 C 2 powder (particle size: 10 ⁇ m)
  • Degreasing, decontamination, and rust removal are performed on the surface of the aluminum alloy sample block. Then the turning process is used for roughening treatment. Use resistance furnace to preheat at 120 ⁇ 140°C, preheating time is 5min.
  • a high-speed flame spray gun to spray the pre-coating according to the following conditions, with a thickness of 0.12 ⁇ 0.13mm. Then it is turned and roughened again. The remaining thickness is 0.05mm.
  • a high-speed flame spray gun is used to spray Cr 3 C 2 powder with a thickness of 0.15 mm under the following conditions. Then, the surface of Cr 3 C 2 is sandblasted with silica sand with a particle size of 0.5 to 1.0 mm, and the thickness of the Cr 3 C 2 layer after finishing is 0.08 mm. Finally, spray finishing varnish for decoration.
  • the comparative example adopts electroplating method to electroplate the surface of aluminum alloy sample block
  • Thickness of electroplating layer is the thickness of electroplating layer
  • Microporous nickel layer (no minimum requirements, but must meet STEP requirements);
  • the thickness of the copper layer is 10 ⁇ m (minimum);
  • the total thickness of the nickel layer is 40 ⁇ m (minimum);
  • the total coating thickness is 50 ⁇ m (minimum).
  • Density Detected by metallographic method (Zeiss metallographic microscope)
  • Porosity Detected by metallographic method (Zeiss metallographic microscope)
  • Bonding strength test with a tensile machine (German Zwick/Z100)
  • Density/porosity detection method take the section of the wheel hub coating, after mounting, after grinding and polishing, look at the section under a 200x microscope for inspection.
  • Bonding strength testing method The material of the tensile specimen is ordinary Q235 steel, which is processed by turning. The specific test steps are as follows: sandblasting the sample pair A and B, spray the end face A of the test piece evenly with the coating of the bond strength to be tested, the thickness is about 0.8mm, and then use E-7 glue to fix the test piece A , B is glued, and the A test piece is placed on the B test piece to make it coaxial. After heating and curing at 100°C for 1 hour, the test piece is clamped on the fixture of the testing machine at a speed of 1m/min. Stretching, note the size of the load applied when it is broken, and observe the peeling of the coating on the end surface of the test piece when it is broken.
  • a salt spray box (manufacturer: ATLAS, brand: FS-2000) equipment was used for 240h copper salt accelerated acetic acid salt spray test (CASS) (ISO9227-2006).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种铝合金轮毂及对其表面涂层的方法,所述铝合金轮毂具有铝合金基体(100)和附着在所述铝合金基体(100)表面上的涂层(200),所述涂层(200)在所述铝合金基体(100)表面上依次包括由镍包铝或铝包镍粉末形成的预涂层(210)、Cr 3C 2层(220)和清漆层(230)。通过对铝合金轮毂表面喷涂Cr 3C 2层(220)获得了更优异的耐腐蚀性能。

Description

一种铝合金轮毂及对其表面涂层的方法 技术领域
本发明属于铝合金轮毂表面处理领域,具体涉及一种铝合金轮毂及对其表面涂层的方法。
背景技术
铝合金轮毂具有省油、散热好、延长发动机寿命、真圆度好、坚固耐用等优点,因而广泛应用于汽车行业。而电镀汽车铝轮毂更兼有非常吸引人的外观,在欧洲、日本、韩国、美国等发达国家和地区成为一种时尚。
铝合金轮毂表面一般通过涂装、镀膜、电镀等方法来处理,既能够起到防腐蚀作用又能够起到装饰作用。
随着生活水平及品味的提升,在中国电镀汽车铝轮毂也具有巨大的市场前景。然而电镀铝合金轮毂外形越来越复杂,质量要求高。中国专利申请CN 103320791 A公开了一种铝合金轮毂的电镀方法。首先对铝合金轮毂进行预处理;其次将铝合金轮毂浸入磷酸中5~10min进行表面活化;然后采用静电喷涂的方法在铝合金轮毂表面喷涂一层环氧聚酯粉末;随后进行两次镀镍;最后再进行真空镀铬。但是电镀工艺复杂,且电镀后产生的废液对环境污染较大,不符合国家提倡的节能环保的政策。
中国专利申请CN 105525266 A则公开了一种铝合金轮毂真空镀膜工艺。该工艺包括:首先对铝合金轮毂进行预处理;其次采用静电喷涂法对铝合金轮毂喷涂环氧树脂;随后打磨、清洗上述粉体;然后采用真空镀膜法对铝合金轮毂镀膜,镀材为合金镀材,包括铝、铁、镍以及铬;最后对铝合金轮毂喷涂罩光清漆。该申请中通过预处理、静电喷涂、真空镀膜和喷涂罩光清漆四个主要工序提高铝合金轮毂与镀层之间的结合强度,增强铝合金轮毂的防腐蚀性能。但 真空镀膜法的成本较高。
发明内容
有鉴于此,本发明的主要目的在于提供一种低成本且环保的铝合金轮毂表面处理方法,以形成具有改进的耐腐蚀性的铝合金轮毂。
本发明的第一方面提供一种铝合金轮毂,具有铝合金基体和附着在所述铝合金基体表面上的涂层,所述涂层在所述铝合金基体表面上依次包括由镍包铝或铝包镍粉末形成的预涂层、Cr 3C 2层和清漆层。
根据本发明的一种实施方式,所述预涂层厚度可为0.05~0.08mm。
根据本发明的一种实施方式,所述Cr 3C 2层厚度可为0.10~0.06mm,优选为0.08mm。
进一步地,所述Cr 3C 2层的气孔率可为1.5~2.5%,优选为1.8~2.0%。
根据本发明的一种实施方式,所述清漆层厚度可为0.40~0.08mm。
本发明第二方面提供一种对铝合金轮毂表面涂层的方法,所述方法包括:对所述铝合金轮毂的表面进行预处理、喷涂预涂层、喷涂Cr 3C 2层和后处理的步骤,所述喷涂Cr 3C 2层步骤为采用高速火焰喷涂法在铝合金轮毂表面形成厚度≥0.15mm的Cr 3C 2层,并精车为预定厚度。
根据本发明的一种实施方式,所述预处理步骤可包括对铝合金轮毂表面进行脱脂、去污和除锈的清理,粗糙化和预热。
根据本发明的一种实施方式,所述喷涂预涂层步骤可包括:采用高速火焰喷涂法在铝合金轮毂表面形成0.12~0.13mm的预涂层,并车削粗化为0.05~0.08mm,优选地,所述预涂层由镍包铝或铝包镍粉末形成。
根据本发明的一种实施方式,所述后处理步骤可包括:经粒径0.5~1.0mm的硅砂进行喷砂处理后,喷涂罩光清漆装饰。
本发明的铝合金轮毂,通过上述对铝合金轮毂表面喷涂Cr 3C 2层的表面处理方法,降低了成本,避免了电镀法中的污染,且获得了更优异的耐腐蚀性能。
附图说明
图1为根据本发明的铝合金轮毂部分截面示意图。
具体实施方式
下面将结合本发明实施方式及附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明的一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
本文中的附图仅为示意性结构图,其中的尺寸和形状并不表示真实的尺寸和形状。
如图1所示,铝合金轮毂具有铝合金基体100和附着在所述铝合金基体表面上的涂层200,所述涂层200在铝合金基体100表面上依次包括由镍包铝或铝包镍粉末形成的预涂层210、Cr 3C 2层220和清漆层230。优选地,所述预涂层210厚度可为0.05~0.08mm。优选地,所述Cr 3C 2层220厚度可为0.10~0.06mm,更优选为0.08mm。优选地,所述Cr 3C 2层220的气孔率可为1.5~2.5%,更优选为1.8~2.0%。优选地,所述清漆层230厚度可为0.40~0.08mm。
本发明提供了对铝合金轮毂进行表面涂层的方法。该方法通过高速火焰喷涂法在铝合金基体表面形成致密的碳化铬层,不但降低了对铝合金轮毂表面处理的成本,且获得了改进的耐腐蚀性。
下面根据本发明一种具体实施方式,结合图1来详细说明本发明的方法。
首先对铝合金轮毂基体100的表面进行预处理。所述预处理步骤包括对铝合金轮毂表面进行脱脂、去污和除锈的清理,去除其表面氧化皮,使工件表面呈现出金属光泽;然后采用车削加工使其表面粗糙化,进一步保证表面质量,提高结合强度和预留涂层厚度;随后采用电阻炉在120~140℃对铝合金轮毂进行预热,使工件温度均匀,表面不产生水汽。
然后采用高速火焰喷枪喷涂预涂层210。工艺参数如下表所示,喷涂预涂 层的厚度为0.12~0.13mm,并车削粗化后厚度为0.05~0.08mm,优选地,所述预涂层210可由镍包铝或铝包镍粉末形成。
接着,仍然采用高速火焰喷枪喷涂Cr 3C 2层220。工艺参数如下表所示,喷涂Cr 3C 2层220的厚度≥0.15mm。
Figure PCTCN2020121503-appb-000001
最后对铝合金轮毂表面进行后处理,采用0.5~1.0mm的硅砂进行喷砂;精车后,Cr 3C 2层220厚度为约0.08mm;最后喷涂罩光清漆230装饰,清漆层的厚度为0.40~0.08mm,具体生产中清漆层的厚度为一个范围。
以下,用具体实施例来进一步说明本发明。以下实施例中所用的试剂均为市售购买。
实施例采用高速火焰喷涂法对铝合金样块表面喷涂Cr 3C 2
1、试验器材:
设备:SQP-1型火焰喷枪(厂商:上海欧亚喷涂机械有限公司)
工件:铝合金轮毂基材样块
打底层材料:铝包镍粉末(粒度号为230~240,粒径:15μm)
喷涂材料:Cr 3C 2粉(粒径:10μm)
2、试验方法
对铝合金样块表面进行脱脂、去污、除锈处理。然后采用车削工艺进行粗糙化处理。采用电阻炉在120~140℃预热,预热时间为5min。
采用高速火焰喷枪按以下条件喷涂预涂层,厚度0.12~0.13mm。然后再次车削粗化。剩余厚度为0.05mm。采用高速火焰喷枪按以下条件喷涂厚度为0.15mm的Cr 3C 2粉。然后采用粒径为0.5~1.0mm的硅砂对Cr 3C 2表面进行喷砂后处理,并精车后Cr 3C 2层厚度为0.08mm。最后喷涂罩光清漆装饰。
喷涂预涂层和工作层的工艺参数如下:
Figure PCTCN2020121503-appb-000002
对比例采用电镀法对铝合金样块表面电镀
采用常规电镀方法,按照“抛光-前处理-清洗-活化-除油-镀半亮镍-镀高硫镍-镀亮镍-镀铬-检验”的工艺流程对用于制备铝合金轮毂的铝合金样块进行表面电镀,获得具有以下结构的电镀样块:
电镀层厚度:
铬层0.25~0.40μm;
微孔镍层(无最小要求,但必须满足STEP要求);
亮镍层16μm(最小);
高硫镍层(无最小要求,但必须满足STEP要求);
半亮镍层24μm(最小);
铜层厚度10μm(最小);
总镍层厚度40μm(最小);
总镀层厚度50μm(最小)。
测试例1实施例和对比例涂层性能测试
1、测试方法及仪器
致密度:用金相法检测(蔡司金相显微镜)
气孔率:用金相法检测(蔡司金相显微镜)
结合强度:用拉伸机进行试验(德国紫威克/Z100)
致密度/气孔率检测方法:取轮毂涂层断面,镶样后,经过研磨抛光,在200倍显微镜下看断面,进行检查。
结合强度检测方法:拉伸试样的材质是普通的Q235钢,经车削加工而成。具体试验步骤如下:将试样对偶件A、B喷砂处理,将试件端面A均匀地喷上待测结合强度的涂层,厚度约为0.8mm,然后用E-7胶将试件A、B件粘合,并将A试件置于B试件之上,使其同轴,经过100℃、1h加热固化以后,将试件夹在试验机夹具上,以1m/min的速度进行拉伸,记下拉断时所施加的载荷大小,同时观察拉断时,试件端面涂层的剥落情况。
2、测试结果
Figure PCTCN2020121503-appb-000003
测试例2实施例和对比例涂层耐腐蚀性能测试
1、测试方法
采用盐雾箱(厂商:ATLAS,牌号:FS-2000)设备进行240h铜盐加速醋酸盐雾试验(CASS)(ISO9227-2006)。
2、测试结果
  第一阶段 第二阶段 第三阶段
对比例 66h无变化 120h有腐蚀点 168h严重腐蚀
实施例 66h无变化 120h无变化 240h无腐蚀
以上所述仅为本发明的优选实施方式,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (9)

  1. 一种铝合金轮毂,具有铝合金基体和附着在所述铝合金基体表面上的涂层,其特征在于,所述涂层在所述铝合金基体表面上依次包括由镍包铝或铝包镍粉末形成的预涂层、Cr 3C 2层和清漆层。
  2. 如权利要求1所述铝合金轮毂表面涂层,其特征在于,所述预涂层厚度为0.05~0.08mm。
  3. 如权利要求1所述铝合金轮毂表面涂层,其特征在于,所述Cr 3C 2层厚度为0.10~0.06mm,优选为0.08mm。
  4. 如权利要求1所述铝合金轮毂表面涂层,其特征在于,所述Cr 3C 2层的气孔率为1.5~2.5%,优选为1.8~2.0%。
  5. 如权利要求1所述铝合金轮毂表面涂层,其特征在于,所述清漆层厚度为0.40~0.08mm。
  6. 一种铝合金轮毂表面涂层的方法,其特征在于,所述方法包括:对所述铝合金轮毂的表面进行预处理、喷涂预涂层、喷涂Cr 3C 2层和后处理的步骤,所述喷涂Cr 3C 2层步骤为采用高速火焰喷涂法在铝合金轮毂表面形成厚度≥0.15mm的Cr 3C 2层,并精车为预定厚度。
  7. 根据权利要求6所述对铝合金轮毂表面涂层的方法,其特征在于,所述预处理步骤包括对铝合金轮毂表面进行脱脂、去污和除锈的清理,粗糙化和预热。
  8. 根据权利要求6所述对铝合金轮毂表面涂层的方法,其特征在于,所述喷涂预涂层步骤包括:采用高速火焰喷涂法在铝合金轮毂表面形成0.12~0.13mm的预涂层,并车削粗化为0.05~0.08mm,优选地,所述预涂层由镍包铝或铝包镍粉末形成。
  9. 根据权利要求6所述对铝合金轮毂表面涂层的方法,其特征在于,所述后处理步骤包括:经粒径0.5~1.0mm的硅砂进行喷砂处理后,喷涂罩光清漆装饰。
PCT/CN2020/121503 2019-12-31 2020-10-16 一种铝合金轮毂及对其表面涂层的方法 WO2021135511A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/775,447 US20220403496A1 (en) 2019-12-31 2020-10-16 Aluminum alloy hub and method for coating surface of aluminum alloy hub
KR1020227011158A KR102662673B1 (ko) 2019-12-31 2020-10-16 알루미늄 합금 허브 및 그 표면 코팅 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911420043.4A CN110983231A (zh) 2019-12-31 2019-12-31 一种铝合金轮毂及对其表面涂层的方法
CN201911420043.4 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135511A1 true WO2021135511A1 (zh) 2021-07-08

Family

ID=70080200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121503 WO2021135511A1 (zh) 2019-12-31 2020-10-16 一种铝合金轮毂及对其表面涂层的方法

Country Status (4)

Country Link
US (1) US20220403496A1 (zh)
KR (1) KR102662673B1 (zh)
CN (1) CN110983231A (zh)
WO (1) WO2021135511A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983231A (zh) * 2019-12-31 2020-04-10 中信戴卡股份有限公司 一种铝合金轮毂及对其表面涂层的方法
CN112251704A (zh) * 2020-10-05 2021-01-22 宝克(中国)测试设备有限公司 一种带有复合涂层的轮毂制造工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201120829Y (zh) * 2007-11-30 2008-09-24 湖州金泰镀业有限公司 铝合金轮毂
WO2014097186A1 (en) * 2012-12-21 2014-06-26 Freni Brembo S.P.A. A method of making a brake disc, brake disc for disc brake and a disc brake
CN105525266A (zh) * 2015-12-25 2016-04-27 湖州标立节能技术有限公司 一种铝合金轮毂真空镀膜工艺
CN108559941A (zh) * 2018-04-27 2018-09-21 齐鲁工业大学 一种不锈钢汽车消音器表面高致密梯度金属陶瓷涂层及其制备方法
CN109321860A (zh) * 2018-10-24 2019-02-12 新冶高科技集团有限公司 一种工件耐磨涂层及其喷涂方法
CN110144559A (zh) * 2019-05-17 2019-08-20 中信戴卡股份有限公司 一种金属表面保护层及其制备方法
CN110983231A (zh) * 2019-12-31 2020-04-10 中信戴卡股份有限公司 一种铝合金轮毂及对其表面涂层的方法
CN211848105U (zh) * 2019-12-31 2020-11-03 中信戴卡股份有限公司 一种铝合金轮毂表面涂层

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1578540E (pt) * 2002-09-25 2011-01-19 Alcoa Inc Roda de veículo revestida e método de revestimento
WO2007100363A1 (en) * 2006-03-03 2007-09-07 Chameleon Scientific Corporation Chrome coated surfaces and deposition methods therefor
CN102381134A (zh) * 2011-09-23 2012-03-21 湖州金泰科技股份有限公司 一种铝合金轮毂制品
CN202242780U (zh) * 2011-09-23 2012-05-30 湖州金泰科技股份有限公司 一种铝合金轮毂制品
US20130177437A1 (en) * 2012-01-05 2013-07-11 General Electric Company Processes for coating a turbine rotor and articles thereof
ITUB20153615A1 (it) * 2015-09-14 2017-03-14 Freni Brembo Spa Metodo per realizzare un disco freno e disco freno per freni a disco
CN109396418B (zh) * 2018-11-23 2021-07-09 江苏科技大学 一种用于铝合金轮毂的涂层与制法、及将该涂层复合于轮毂上的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201120829Y (zh) * 2007-11-30 2008-09-24 湖州金泰镀业有限公司 铝合金轮毂
WO2014097186A1 (en) * 2012-12-21 2014-06-26 Freni Brembo S.P.A. A method of making a brake disc, brake disc for disc brake and a disc brake
CN105525266A (zh) * 2015-12-25 2016-04-27 湖州标立节能技术有限公司 一种铝合金轮毂真空镀膜工艺
CN108559941A (zh) * 2018-04-27 2018-09-21 齐鲁工业大学 一种不锈钢汽车消音器表面高致密梯度金属陶瓷涂层及其制备方法
CN109321860A (zh) * 2018-10-24 2019-02-12 新冶高科技集团有限公司 一种工件耐磨涂层及其喷涂方法
CN110144559A (zh) * 2019-05-17 2019-08-20 中信戴卡股份有限公司 一种金属表面保护层及其制备方法
CN110983231A (zh) * 2019-12-31 2020-04-10 中信戴卡股份有限公司 一种铝合金轮毂及对其表面涂层的方法
CN211848105U (zh) * 2019-12-31 2020-11-03 中信戴卡股份有限公司 一种铝合金轮毂表面涂层

Also Published As

Publication number Publication date
KR20220057591A (ko) 2022-05-09
KR102662673B1 (ko) 2024-05-03
US20220403496A1 (en) 2022-12-22
CN110983231A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021135511A1 (zh) 一种铝合金轮毂及对其表面涂层的方法
CN104451549B (zh) 金属工件及金属工件的外表面喷涂加工方法
CN105525266A (zh) 一种铝合金轮毂真空镀膜工艺
US20080156638A1 (en) Process for sputtering aluminum or copper onto aluminum or magnalium alloy substrates
US8357055B2 (en) Golf club shaft, production method therefor, and golf club therewith
CN106319446B (zh) 一种装饰用涂膜打底真空镀膜的制备方法
CN102517536A (zh) 一种新型等离子粉芯丝材内壁喷涂方法
CN211848105U (zh) 一种铝合金轮毂表面涂层
CN108543687A (zh) 一种高延展性周期变量合金保护膜及形成方法
CN112877742A (zh) 一种铝合金压铸件的复合表面处理方法
CN111036518A (zh) 仿铜拉丝板及其制作工艺
US7150923B2 (en) Chrome coating composition
KR100707513B1 (ko) 알로이휠 표면처리방법 및 그 알로이휠
JPH0673937B2 (ja) 金属表面処理方法
US10160007B1 (en) Aluminum alloy hub surface treatment process
CN101870090A (zh) 一种提升汽车铝车轮表面涂覆层性能及外观质量的抛丸方法
US1268987A (en) Metal coating.
CN111763944A (zh) 一种铝合金车轮表面镀膜方法
CN106319420A (zh) 一种改善7075铝合金表面热喷涂陶瓷涂层结合强度的方法
JP6289222B2 (ja) 耐食性マグネシウム合金鍛造ホイール及びその製造方法
CN109913918A (zh) 摩托车轮毂复合电镀方法
CN105586582A (zh) 一种不粘制品涂层的基础层及其制造方法
JP3673180B2 (ja) アルミニウム基材又はアルミニウム合金基材の処理方法及び処理されてなるアルミニウム基材又はアルミニウム合金基材
JP6455446B2 (ja) 車両用ホイール及びその製造方法
KR100726786B1 (ko) 크롬 도금 지그

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227011158

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910269

Country of ref document: EP

Kind code of ref document: A1