WO2021135222A1 - 多官能环氧植物油基uv固化预聚物及其制备方法和应用 - Google Patents

多官能环氧植物油基uv固化预聚物及其制备方法和应用 Download PDF

Info

Publication number
WO2021135222A1
WO2021135222A1 PCT/CN2020/107053 CN2020107053W WO2021135222A1 WO 2021135222 A1 WO2021135222 A1 WO 2021135222A1 CN 2020107053 W CN2020107053 W CN 2020107053W WO 2021135222 A1 WO2021135222 A1 WO 2021135222A1
Authority
WO
WIPO (PCT)
Prior art keywords
vegetable oil
epoxy
reaction
acid
oil
Prior art date
Application number
PCT/CN2020/107053
Other languages
English (en)
French (fr)
Inventor
袁腾
尹鉴
肖亚亮
李小平
杨卓鸿
Original Assignee
华南农业大学
广东蓝洋科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南农业大学, 广东蓝洋科技有限公司 filed Critical 华南农业大学
Publication of WO2021135222A1 publication Critical patent/WO2021135222A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1472Fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1494Polycondensates modified by chemical after-treatment followed by a further chemical treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/10Epoxy resins modified by unsaturated compounds

Definitions

  • the invention belongs to the technical field of UV curing materials, and specifically relates to a multifunctional epoxy vegetable oil-based UV curing prepolymer and a preparation method and application thereof.
  • natural vegetable oil has a wide range of sources, is easy to regenerate, is low in price, has a certain degree of chemical reaction activity, and has the structural basis to replace petrochemical-based raw materials and prepare polymer materials.
  • vegetable oil derivatives such as epoxy soybean oil, epoxy castor oil, and castor oil-based polyol have been industrialized and commercialized, and are gradually replacing petrochemical raw materials in the field of polymer materials.
  • UV curable coatings and water-based coatings are two types of environmentally friendly coatings that are currently being vigorously developed, and are gradually replacing solvent-based coatings.
  • Castor oil-based polyol has been widely used to synthesize water-based polyurethane and other materials, which can be used in the field of water-based coatings.
  • Epoxidized soybean oil, epoxy castor oil and other epoxy vegetable oils have certain cationic photopolymerization activity, so they can be used in cationic photocurable materials.
  • free radical light-curing materials are more widely used at present.
  • vegetable oils also contain unsaturated double bonds, their reactivity is relatively low, and their application in free-radical light-curing material systems is limited.
  • synthetic vegetable oil-based UV curing prepolymers the molecular weight of the synthesized prepolymers is not large, and the molecular weight is generally not more than 1500.
  • the preparation of cured prepolymer has not been reported yet.
  • the prepared vegetable oil-based UV curable prepolymers with a smaller molecular weight can also be cured into a film, because the molecular chain between the double bonds is shorter, the cured coating film is brittle and less flexible, so it needs A certain amount of petroleum-based UV curing prepolymer is added to modify it to obtain a coating film with better comprehensive performance, which limits the industrial use of vegetable oil-based UV curing prepolymer to a certain extent.
  • the primary purpose of the present invention is to provide a method for preparing a multifunctional epoxy vegetable oil-based UV curable prepolymer.
  • the present invention uses epoxy vegetable oil as the basic raw material, through the ring-opening grafting of vegetable oleic acid to obtain a prepolymer with a molecular weight about twice the molecular weight of the vegetable oil, and then connects the double bond with high UV curing activity to obtain a multifunctional epoxy Vegetable oil-based UV-curable prepolymer, the prepared prepolymer has a relatively large molecular weight of more than 1500, which can significantly reduce the amount of petroleum-based raw materials in the UV-curable prepolymer, and has the advantages of low pollution, low production cost and simple process.
  • Another object of the present invention is to provide a multifunctional epoxy vegetable oil-based UV curable prepolymer prepared by the above method.
  • the UV curing prepolymer of the present invention has the advantages of large molecular weight, high reactivity, fast biodegradation and the like.
  • Another object of the present invention is to provide the application of the above-mentioned multifunctional epoxy vegetable oil-based UV curing prepolymer in the field of UV curing materials.
  • a preparation method of multifunctional epoxy vegetable oil-based UV curing prepolymer includes the following steps:
  • step (1) based on moles, 5-10 parts of epoxy vegetable oil and 20-60 parts of vegetable oleic acid are used.
  • step (1) the amount of the catalyst is 0.5-1% of the total mass of epoxy vegetable oil and vegetable oleic acid, and the amount of reaction solvent is 1 to 3 times of the total mass of epoxy vegetable oil and vegetable oleic acid.
  • the epoxy vegetable oil is at least one of epoxy soybean oil, epoxy castor oil, and epoxy linseed oil.
  • the vegetable oleic acid is at least one of soybean oleic acid, ricinoleic acid, tung oleic acid, linoleic acid, rapeseed oleic acid, and corn oleic acid.
  • the catalyst can be at least one of triethylamine and N,N-dimethylethanolamine.
  • the reaction solvent is at least one of acetone, methyl ethyl ketone, tetrachloromethane, and tetrahydrofuran.
  • step (1) the reaction temperature is 110-130°C, after the dropwise addition of vegetable oleic acid is completed, the temperature is kept and the reaction is continued for 3 to 5 hours; the dropwise addition flow rate of vegetable oleic acid is 1-10 drops/sec.
  • step (1) after the reaction, it also includes the purification of the intermediate product.
  • the steps are as follows: after the reaction, filter while hot, transfer the liquid to a separatory funnel and dissolve it with a solvent; use saturated sodium bicarbonate solution and saturated sodium chloride solution Wash separately, separate liquids to obtain the upper organic phase, then the organic phase is dried with desiccant and filtered, and finally the organic phase is distilled under reduced pressure to obtain the intermediate product.
  • the solvent can be at least one of n-hexane, diethyl ether and petroleum ether.
  • step (2) based on moles, 5-10 parts of intermediate product and 40-120 parts of double bond monomer.
  • step (2) the amount of the catalyst is 0.5 to 1% of the total mass of the intermediate product and the double bond monomer, and the amount of the polymerization inhibitor is 0.5 to 1% of the total mass of the intermediate product and the double bond monomer.
  • the amount of solvent used is 1 to 3 times the total mass of the intermediate product and the double bond monomer.
  • the double bond monomer is at least one of acrylic acid, methacrylic acid, chloropropene, and bromopropene.
  • the polymerization inhibitor can be at least one of p-hydroxyanisole, 2-tert-butyl hydroquinone and hydroquinone.
  • the catalyst when the double-bond monomer used is acrylic acid or/and methacrylic acid, the catalyst can be p-toluenesulfonic acid, boron trifluoride ether solution, concentrated sulfuric acid, concentrated hydrochloric acid, and concentrated nitric acid. At least one.
  • the concentrated acid of the present invention is a commercially available product, the mass fraction of concentrated sulfuric acid is greater than or equal to 70%, the mass fraction of concentrated hydrochloric acid is 36-38%, and the mass fraction of concentrated nitric acid is 68%.
  • the catalyst can be tetrabutylammonium chloride.
  • step (2) after the reaction, it also includes the purification of the product.
  • the steps are as follows: After the reaction is completed, transfer the mixture to a separatory funnel and dissolve it with a solvent, wash it repeatedly with saturated sodium bicarbonate solution until no bubbles are generated, and then use it. Wash with saturated sodium chloride solution and separate liquids to obtain the upper organic phase, then the organic phase is dried with a desiccant and filtered, and finally the organic phase is distilled under reduced pressure to obtain a polyfunctional epoxy vegetable oil-based UV curing prepolymer.
  • the solvent can be at least one of n-hexane, diethyl ether and petroleum ether.
  • the epoxy vegetable oil is ring-opened grafted with vegetable oleic acid, and then reacted with double bond monomers to synthesize a multifunctional epoxy vegetable oil-based UV curing prepolymer.
  • the vegetable oil is used as the raw material to prepare the UV curing material, which reduces the UV curing material.
  • the system's dependence on petroleum-based raw materials has the effect of energy saving and emission reduction.
  • the multifunctional epoxy vegetable oil-based UV curing prepolymer prepared by the present invention has 3-6 vegetable oleic acid attached to each epoxy vegetable oil molecule, so its molecular weight distribution is between 1800-2700, which is similar to the vegetable oils commonly reported in the literature.
  • the molecular weight of the base UV curable prepolymer around 1000 is much larger.
  • it contains 3-6 double bonds, so it has high UV curing activity.
  • the required UV curing energy is less than or equal to 1500mJ ⁇ cm -2 .
  • the cured film has excellent performance and can meet the application requirements of UV curing materials.
  • the present invention also provides the application of the above-mentioned multifunctional epoxy vegetable oil-based UV curing prepolymer in the field of UV curing materials, especially in the field of UV curing materials such as UV curing coatings, UV curing inks, UV curing adhesives, and 3D printing. Applications.
  • the present invention Compared with the prior art, the present invention has the following advantages and beneficial effects: (1)
  • the present invention introduces vegetable oil from a wide range of sources into the UV curing material system, and synthesizes a multifunctional epoxy vegetable oil-based UV curing prepolymer to make vegetable oil
  • the content of the ingredients in the UV curing prepolymer exceeds 80%, which greatly reduces the proportion of traditional petroleum-based raw materials in the UV curing prepolymer, opens up new application directions for vegetable oil resources, and improves its economic value. Reduce production costs.
  • the preparation method of the present invention is simple, the conditions are mild, the product quality is stable, and the yield is high, which is suitable for large-scale production.
  • the UV curing prepolymer of the present invention has the advantages of high functionality, large molecular weight, fast curing speed, excellent mechanical properties after film formation, strong chemical resistance, and good biodegradability.
  • the present invention will be further described in detail below in conjunction with examples, but the implementation of the present invention is not limited thereto.
  • the materials involved in the following examples can all be obtained from commercial channels.
  • the raw materials in the following embodiments are in moles, the mass fraction of concentrated sulfuric acid is greater than or equal to 70%, the mass fraction of concentrated hydrochloric acid is 36-38%, and the mass fraction of concentrated nitric acid is 68%.
  • the mixture was transferred to a separatory funnel while it was hot and dissolved with ether, washed repeatedly with saturated sodium bicarbonate solution until no bubbles were generated, and then washed with saturated sodium chloride solution three times to separate the upper organic phase, and then use the organic phase Anhydrous magnesium sulfate was dried and filtered, and finally the organic phase was distilled under reduced pressure to obtain a multifunctional epoxy vegetable oil-based UV curing prepolymer.
  • the final product yield was 90.2%.
  • the mixture was transferred to a separatory funnel while it was hot and dissolved with ether, washed repeatedly with saturated sodium bicarbonate solution until no bubbles were generated, and then washed with saturated sodium chloride solution three times to separate the upper organic phase, and then use the organic phase Anhydrous magnesium sulfate was dried and filtered, and finally the organic phase was distilled under reduced pressure to obtain a multifunctional epoxy vegetable oil-based UV curing prepolymer, and the final product yield was 91.0%.
  • the mixture was transferred to a separatory funnel while it was hot and dissolved with ether, washed repeatedly with saturated sodium bicarbonate solution until no bubbles were generated, and then washed with saturated sodium chloride solution three times to separate the upper organic phase, and then use the organic phase Anhydrous magnesium sulfate was dried and filtered, and finally the organic phase was distilled under reduced pressure to obtain a multifunctional epoxy vegetable oil-based UV curing prepolymer, and the final product yield was 90.8%.
  • the mixture was transferred to a separatory funnel while it was hot and dissolved with ether, washed repeatedly with saturated sodium bicarbonate solution until no bubbles were generated, and then washed with saturated sodium chloride solution three times to separate the upper organic phase, and then use the organic phase Anhydrous magnesium sulfate was dried and filtered, and finally the organic phase was distilled under reduced pressure to obtain a multifunctional epoxy vegetable oil-based UV curing prepolymer, and the final product yield was 90.6%.
  • the mixture was transferred to a separatory funnel while it was hot and dissolved with ether, washed repeatedly with saturated sodium bicarbonate solution until no bubbles were generated, and then washed with saturated sodium chloride solution three times to separate the upper organic phase, and then use the organic phase Anhydrous magnesium sulfate was dried and filtered, and finally the organic phase was distilled under reduced pressure to obtain a multifunctional epoxy vegetable oil-based UV curing prepolymer.
  • the final product yield was 90.2%.
  • the mixture was transferred to a separatory funnel while it was hot and dissolved with ether, washed repeatedly with saturated sodium bicarbonate solution until no bubbles were generated, and then washed with saturated sodium chloride solution three times to separate the upper organic phase, and then use the organic phase Anhydrous magnesium sulfate was dried and filtered, and finally the organic phase was distilled under reduced pressure to obtain a multifunctional epoxy vegetable oil-based UV curing prepolymer, and the final product yield was 90.8%.
  • Multifunctional epoxy vegetable oil-based UV curing prepolymer and its UV curing film performance test example Multifunctional epoxy vegetable oil-based UV curing prepolymer and its UV curing film performance test example
  • the adhesion test is tested in accordance with the "cross-cut test of paints, varnishes and paint films (GB/T 9286-1998)).
  • the hardness test is in accordance with the method of "Pencil Method for Paint and Varnish Determination of Paint Film Hardness (GB/T 6739-2006)”.
  • Dynamic thermo-mechanical analysis was used to test the above-mentioned cured film with the DMA 242C dynamic mechanical analyzer from Netzsch, Germany.
  • Sample holder stretched holder; oscillation frequency: 1Hz; sample size: 20mm ⁇ 6mm ⁇ 0.5mm; heating rate: 3 °C/min; temperature range: -80 ⁇ 180°C.
  • T g measured glass transition temperature
  • the biodegradability of the above-mentioned cured film was tested according to the sealed compost biodegradation test, and the degree of decomposition of the cured film was determined by the mineralization rate.
  • the polyfunctional epoxy vegetable oil-based UV curable prepolymer cured film prepared by the present invention has fast curing speed, good adhesion, high hardness, good thermal stability, good mechanical properties and good biodegradability. Etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Emergency Medicine (AREA)
  • Epoxy Resins (AREA)

Abstract

涉及一种多官能环氧植物油基UV固化预聚物及其制备方法和应用。所述制备方法包括以下步骤:将环氧植物油、催化剂和反应溶剂混合均匀,加热保温,滴加植物油酸,滴加完毕后,保温继续反应获得中间产物;将中间产物、双键单体、催化剂、阻聚剂和反应溶剂混合均匀,于60~70℃反应1~5h,获得多官能环氧植物油基UV固化预聚物。所制得的UV固化预聚物具有官能度高、分子量大、固化速度快、成膜后力学性能优异、耐化学性强、生物降解性能好等优点,并且具有很高的UV固化活性,所需的UV固化能量小于等于1500mJ·cm-2,固化膜具有优异的使用性能,能够满足UV固化材料的应用要求。

Description

多官能环氧植物油基UV固化预聚物及其制备方法和应用 技术领域
本发明属于UV固化材料技术领域,具体涉及一种多官能环氧植物油基UV固化预聚物及其制备方法和应用。
背景技术
天然植物油作为一种可再生资源,来源广泛、易于再生、价格低廉、具有一定的化学反应活性,完全具备取代石化基原材料,制备高分子材料的结构基础。目前环氧大豆油、环氧蓖麻油、蓖麻油基多元醇等植物油衍生物已经实现了产业化和商业化,正在逐步取代石化原材料用于高分子材料领域中。UV固化涂料和水性涂料是目前大力发展的两类环保型涂料,正在逐步取代溶剂型涂料。蓖麻油基多元醇已广泛应用合成水性聚氨酯等材料,从而可以应用于水性涂料领域中。而环氧大豆油、环氧蓖麻油等环氧植物油具有一定的阳离子光聚合反应活性,从而可以应用于阳离子光固化材料中。但是目前应用更为广泛的是自由基光固化材料,而植物油中虽然也含有不饱和双键,但是其反应活性较低,在自由基光固化材料体系中的应用受到了限制。目前虽有不少关于合成植物油基UV固化预聚物的报道,但是其所合成的预聚物分子量均不大,一般分子量都不超过1500,关于较大分子量和较高植物油含量的植物油基UV固化预聚物的制备还未见报道。目前所制备的分子量较小的植物油基UV固化预聚物虽然也可以固化成膜,但是因其双键之间的分子链较短,固化后的涂膜较脆,柔韧性较差,因此需要加入一定量的石油基UV固化预聚物对其进行改性,以获得综合性能较好的涂膜,从而在一定程度上限制了植物油基UV固化预聚物在工业上的使用量。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种多官能环氧植物油基UV固化预聚物的制备方法。
本发明以环氧植物油为基础原材料,通过植物油酸开环接枝,得到分子量约为植物油分子量两倍的预聚物,再接上具有高UV固化活性的双键后即可得到多官能环氧植物油基UV固化预聚物,所制备的预聚物分子量较大,超过1500,可以明显减少了UV固化预聚物中石油基原材料的用量,具有低污染、生产成本低和工艺简单等优势。
本发明的另一目的在于提供上述方法制备的多官能环氧植物油基UV固化预聚物。本发明的UV固化预聚物具有分子量大、反应活性高和生物降解速度快等优点。
本发明的再一目的在于提供上述多官能环氧植物油基UV固化预聚物在UV固化材料领域中的应用。
本发明目的通过以下技术方案实现:
一种多官能环氧植物油基UV固化预聚物的制备方法,包括以下步骤:
(1)将环氧植物油、催化剂和反应溶剂混合均匀,加热到反应温度后保温,滴加植物油酸,滴加完毕后,保温继续反应一段时间,获得中间产物;
(2)将中间产物、催化剂、阻聚剂和反应溶剂混合均匀,将温度降至60~70℃,反应1~5h,滴加双键单体,滴加流速为1~10滴/秒,旋转蒸发除去溶剂即获得多官能环氧植物油基UV固化预聚物。
步骤(1)中,按摩尔份计,环氧植物油5~10份,植物油酸20~60份。
步骤(1)中,所述的催化剂的用量为环氧植物油和植物油酸总质量的0.5~1%,反应溶剂的用量为环氧植物油和植物油酸总质量的1~3倍。
步骤(1)中,所述的环氧植物油为环氧大豆油、环氧蓖麻油、环氧亚麻油中的至少一种。
步骤(1)中,所述的植物油酸为大豆油酸、蓖麻油酸、桐油酸、亚麻油酸、菜籽油酸、玉米油酸中的至少一种。
步骤(1)中,所述的催化剂可为三乙胺和N,N-二甲基乙醇胺中至少一种。
步骤(1)和(2)中,所述的反应溶剂为丙酮、丁酮、四氯甲烷、四氢呋喃中的至少一种。
步骤(1)中,所述的反应温度为110~130℃,植物油酸滴加完毕后保温继续反应3~5h;植物油酸滴加流速为1~10滴/秒。
步骤(1)中,反应结束后还包括对中间产物的纯化,步骤如下:反应结束后趁热过滤,将液体转移到分液漏斗并用溶剂溶解;用饱和碳酸氢钠溶液和饱和氯化钠溶液分别洗涤,分液得到上层有机相,然后有机相用干燥剂干燥并过滤,最后有机相通过减压蒸馏得到中间产物。
所述的溶剂可为正己烷、乙醚和石油醚中的至少一种。
步骤(2)中,按摩尔份计,中间产物5~10份,双键单体40~120份。
步骤(2)中,所述的催化剂的用量为中间产物和双键单体总质量的0.5~1%,阻聚剂的用量为中间产物和双键单体总质量的0.5~1%,反应溶剂的用量为中间产物和双键单体总质量的1~3倍。
步骤(2)中,所述的双键单体为丙烯酸、甲基丙烯酸、氯丙烯、溴丙烯中的至少一种。
步骤(2)中,所述的阻聚剂可为对羟基苯甲醚、2-叔丁基对苯二酚和对苯二酚中的至少一种。
步骤(2)中,当所用双键单体为丙烯酸或/和甲基丙烯酸时,所述的催化剂可为对甲苯磺酸、三氟化硼乙醚溶液、浓硫酸、浓盐酸、浓硝酸中的至少一种。
本发明所述浓酸为市售常用产品,浓硫酸质量分数大于或等于70%,浓盐酸质量分数36~38%,浓硝酸质量分数68%。
步骤(2)中,当所用双键单体为氯丙烯或/和溴丙烯时,所述的催化剂可为四丁基氯化铵。
步骤(2)中,反应结束后还包括对产物的纯化,步骤如下:反应结束后趁热将混合物转移到分液漏斗并用溶剂溶解,用饱和碳酸氢钠溶液反复洗涤直至无气泡产生,再用饱和氯化钠溶液洗涤,分液得到上层有机相,然后有机相用干燥剂干燥并过滤,最后有机相通过减压蒸馏得到多官能环氧植物油基UV固化预聚物。
所述的溶剂可为正己烷、乙醚和石油醚中的至少一种。
我国的植物油资源存量巨大,以这些植物油资源为原材料开发出来的产品具有良好的经济价值并且在许多领域中得到应用,其中最主要的应用领域有涂料、3D打印以及生物医药等。植物油衍生物可以在许多领域替代石油化工制品,在理论研究和实际应用中具有重要价值。本发明用植物油酸将环氧植物油进行开环接枝,然后与双键单体反应合成了多官能环氧植物油基UV固化预聚物,以植物油为原材料制备UV固化材料,减轻了UV固化材料体系对石油基原材料的依赖,起到节能减排的效果。
本发明所制备的多官能环氧植物油基UV固化预聚物为每个环氧植物油分子上接上3~6个植物油酸,因此其分子量分布在1800~2700之间,与文献常见报道的植物油基UV固化预聚物1000左右的分子量大很多。另外含有3~6个双键,因而具有很高的UV固化活性,所需的UV固化能量小于等于1500mJ·cm -2,固化膜具有优异的使用性能,能够满足UV固化材料的应用要求。
本发明还提供了上述多官能环氧植物油基UV固化预聚物在UV固化材料领域中的应用,特别是UV固化涂料、UV固化油墨、UV固化胶黏剂及3D打印等UV固化材料领域中的应用。
本发明相对于现有技术,具有如下的优点及有益效果:(1)本发明将来源广泛的植物油引入UV固化材料体系,合成了一种多官能环氧植物油基UV固化预聚物,使植物油成份在UV固化预聚物中的含量超过80%,从而大大减少了传统的石油基原材料在UV固化预聚物中的占比,为植物油资源开辟了新的应用方向,提高了其经济价值,降低了生产成本。(2)本发明的制备方法简单, 条件温和,产品质量稳定,产率高,适合大规模生产。(3)本发明的UV固化预聚物具有官能度高、分子量大、固化速度快、成膜后力学性能优异、耐化学性强、生物降解性能好等优点。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。下列实施例中涉及的物料均可从商业渠道获得。以下实施例中的原料份数为摩尔份,浓硫酸质量分数大于或等于70%,浓盐酸质量分数36~38%,浓硝酸质量分数68%。
实施例1
环氧大豆油-蓖麻油酸基UV固化预聚物的制备:
(1)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入5份环氧大豆油(采购自上海阿拉丁生化科技股份有限公司)、三乙胺以及丙酮(用量分别为环氧植物油和植物油酸总质量的0.5%和1倍)后搅拌均匀,油浴加热至120℃保温,滴加20份蓖麻油酸(采购自上海阿拉丁生化科技股份有限公司),滴加流速为每秒1滴,滴加完毕后,保温继续反应5h,反应结束后趁热过滤,将液体转移到分液漏斗并用石油醚溶解。用饱和碳酸氢钠溶液和饱和氯化钠溶液分别洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到中间产物,其产率为94.7%。
(2)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入5份中间产物、对甲苯磺酸、对羟基苯甲醚以及四氢呋喃(其用量分别为中间产物和双键单体总质量的1%、0.6%和2倍)后搅拌均匀,水浴加热至60℃保温,滴加40份丙烯酸,滴加流速为每秒10滴,滴加完毕后,保温继续反应1h。反应结束后趁热将混合物转移到分液漏斗并用乙醚溶解,用饱和碳酸氢钠溶液反复洗涤直至无气泡产生,再用饱和氯化钠溶液洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到多官能环 氧植物油基UV固化预聚物,最终产物产率为90.2%。
实施例2
环氧大豆油-大豆油酸基UV固化预聚物的制备:
(1)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入10份环氧大豆油(采购自上海阿拉丁生化科技股份有限公司)、N,N-二甲基乙醇胺以及丁酮(用量分别为环氧植物油和植物油酸总质量的1%和3倍)后搅拌均匀,油浴加热至110℃保温,滴加60份大豆油酸(采购自上海立森化工有限公司),滴加流速为每秒10滴,滴加完毕后,保温继续反应5h,反应结束后趁热过滤,将液体转移到分液漏斗并用石油醚溶解。用饱和碳酸氢钠溶液和饱和氯化钠溶液分别洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到中间产物,其产率为93.8%。
(2)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入10份中间产物、四丁基氯化铵、2-叔丁基对苯二酚以及丙酮(其用量分别为中间产物和双键单体总质量的1%、1%和3倍)后搅拌均匀,水浴加热至70℃保温,滴加120份氯丙烯,滴加流速为每秒1滴,滴加完毕后,保温继续反应1h。反应结束后趁热将混合物转移到分液漏斗并用乙醚溶解,用饱和碳酸氢钠溶液反复洗涤直至无气泡产生,再用饱和氯化钠溶液洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到多官能环氧植物油基UV固化预聚物,最终产物产率为91.0%。
实施例3
环氧大豆油-桐油酸基UV固化预聚物的制备:
(1)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入5份环氧大豆油(采购自上海阿拉丁生化科技股份有限公司)、三乙胺以及四氢呋喃(用量分别为环氧植物油和植物油酸总质量的0.7%和2倍)后搅拌均匀, 油浴加热至130℃保温,滴加30份桐油酸(采购自山东绿城化工有限公司),滴加流速为每秒5滴,滴加完毕后,保温继续反应5h,反应结束后趁热过滤,将液体转移到分液漏斗并用石油醚溶解。用饱和碳酸氢钠溶液和饱和氯化钠溶液分别洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到中间产物,其产率为93.9%。
(2)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入7.5份中间产物、三氟化硼乙醚溶液、对苯二酚以及四氯甲烷(其用量分别为中间产物和双键单体总质量的0.8%、0.7%和2.5倍)后搅拌均匀,水浴加热至60℃保温,滴加60份甲基丙烯酸,滴加流速为每秒6滴,滴加完毕后,保温继续反应1h。反应结束后趁热将混合物转移到分液漏斗并用乙醚溶解,用饱和碳酸氢钠溶液反复洗涤直至无气泡产生,再用饱和氯化钠溶液洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到多官能环氧植物油基UV固化预聚物,最终产物产率为90.8%。
实施例4
环氧蓖麻油-大豆油酸基UV固化预聚物的制备:
(1)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入7.5份环氧蓖麻油(采购自广州尚德化工有限公司)、N,N-二甲基乙醇胺以及四氯甲烷(用量分别为环氧植物油和植物油酸总质量的0.6%和1.5倍)后搅拌均匀,油浴加热至110℃保温,滴加50份大豆油酸(采购自上海立森化工有限公司),滴加流速为每秒8滴,滴加完毕后,保温继续反应5h,反应结束后趁热过滤,将液体转移到分液漏斗并用石油醚溶解。用饱和碳酸氢钠溶液和饱和氯化钠溶液分别洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到中间产物,其产率为93.5%。
(2)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入10份中间产物、四丁基氯化铵、对羟基苯甲醚以及丁酮(其用量分别为中间产 物和双键单体总质量的0.5%、1%和2倍)后搅拌均匀,水浴加热至70℃保温,滴加80份溴丙烯,滴加流速为每秒7滴,滴加完毕后,保温继续反应1h。反应结束后趁热将混合物转移到分液漏斗并用乙醚溶解,用饱和碳酸氢钠溶液反复洗涤直至无气泡产生,再用饱和氯化钠溶液洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到多官能环氧植物油基UV固化预聚物,最终产物产率为90.6%。
实施例5
环氧亚麻油-蓖麻油酸基UV固化预聚物的制备:
(1)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入10份环氧亚麻油(采购自百灵威科技有限公司)、三乙胺以及四氢呋喃(用量分别为环氧植物油和植物油酸总质量的0.9%和3倍)后搅拌均匀,油浴加热至125℃保温,滴加60份蓖麻油酸(采购自上海阿拉丁生化科技股份有限公司),滴加流速为每秒4滴,滴加完毕后,保温继续反应5h,反应结束后趁热过滤,将液体转移到分液漏斗并用石油醚溶解。用饱和碳酸氢钠溶液和饱和氯化钠溶液分别洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到中间产物,其产率为94.0%。
(2)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入5份中间产物、浓硫酸、2-叔丁基对苯二酚以及丙酮(其用量分别为中间产物和双键单体总质量的1%、0.8%和3倍)后搅拌均匀,水浴加热至60℃保温,滴加120份甲基丙烯酸,滴加流速为每秒10滴,滴加完毕后,保温继续反应4h。反应结束后趁热将混合物转移到分液漏斗并用乙醚溶解,用饱和碳酸氢钠溶液反复洗涤直至无气泡产生,再用饱和氯化钠溶液洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到多官能环氧植物油基UV固化预聚物,最终产物产率为90.2%。
实施例6
环氧蓖麻油-蓖麻油酸基UV固化预聚物的制备:
(1)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入5份环氧蓖麻油(采购自广州尚德化工有限公司)、N,N-二甲基乙醇胺以及四氢呋喃(用量分别为环氧植物油和植物油酸总质量的0.5%和2倍)后搅拌均匀,油浴加热至130℃保温,滴加30份蓖麻油酸(采购自上海阿拉丁生化科技股份有限公司),滴加流速为每秒10滴,滴加完毕后,保温继续反应3h,反应结束后趁热过滤,将液体转移到分液漏斗并用石油醚溶解。用饱和碳酸氢钠溶液和饱和氯化钠溶液分别洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到中间产物,其产率为94.2%。
(2)在带有机械搅拌装置、冷凝回流装置和温度计的四口烧瓶中依次加入10份中间产物、浓硝酸、对苯二酚以及四氢呋喃(其用量分别为中间产物和双键单体总质量的0.5%、0.6%和1倍)后搅拌均匀,水浴加热至70℃保温,滴加40份丙烯酸,滴加流速为每秒10滴,滴加完毕后,保温继续反应5h。反应结束后趁热将混合物转移到分液漏斗并用乙醚溶解,用饱和碳酸氢钠溶液反复洗涤直至无气泡产生,再用饱和氯化钠溶液洗涤三次,分液得到上层有机相,然后有机相用无水硫酸镁干燥并过滤,最后有机相通过减压蒸馏得到多官能环氧植物油基UV固化预聚物,最终产物产率为90.8%。
多官能环氧植物油基UV固化预聚物及其UV固化膜性能测试实施例
将各实施例所制备的多官能环氧植物油基UV固化预聚物添加总质量5%的光引发剂1173(2-羟基-2-甲基-1-苯基-1-丙酮)混合均匀,然后将其用涂膜器涂于马口铁板表面,使用365nm UV-LED点光源进行固化,光照强度为115.8mW·cm -2,固化一定时间,对得到的光固化膜进行一系列性能测试。
按《漆膜、腻子膜干燥时间测定法(GB/T 1728-1978)》的方法测试上述固化膜的表干时间,在固化膜表面铺放一张滤纸用200g干燥砝码压住,一定时间后 移去砝码,翻转马口铁板,滤纸能自由落下,即认定为表干,可以根据等式(1)计算固化能量:固化能量(mJ·cm -2)=光照强度*表干时间(1)。
附着力测试按照《色漆和清漆、漆膜的划格试验(GB/T 9286-1998)》的方法测试。硬度测试按照《色漆和清漆铅笔法测定漆膜硬度(GB/T 6739-2006)》的方法测试。
热稳定性分析(TGA分析),采用德国Netzsch公司STA 449C型热重分析仪对上述固化膜进行测试,升温速率:10℃/min;气氛:氮气;温度范围:35~660℃,将各实施例质量损失达5%时的初始分解温度记入表1中。
动态热机械分析(DMA)采用德国Netzsch公司DMA 242C动态力学分析仪对上述固化膜进行测试,样品支架:拉伸支架;振荡频率:1Hz;样品尺寸:20mm×6mm×0.5mm;升温速率:3℃/min;温度范围:-80~180℃。将测得的固化膜玻璃化转变温度(T g)记入表1中。
机械性能分析采用日本Shimadzu公司AGS-X 1kN型万能试验机对上述固化膜进行测试,十字头速度:10mm/min;样品尺寸:40mm×10mm×0.5mm。
按密封堆肥生物降解试验测试上述固化膜的可生物降解性,固化膜的分解程度由矿化率决定。
表1 各实施例最终产物综合性能测试结果
Figure PCTCN2020107053-appb-000001
由表1可以看出,本发明制备的多官能环氧植物油基UV固化预聚物固化 膜具有固化速度快、附着力好、硬度高、热稳定性好、机械性能好和可生物降解性好等优点。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种多官能环氧植物油基UV固化预聚物的制备方法,其特征在于,包括以下步骤:
    (1)将环氧植物油、催化剂和反应溶剂混合均匀,加热到反应温度后保温,滴加植物油酸,滴加完毕后,保温继续反应一段时间,获得中间产物;
    (2)将中间产物、双键单体、催化剂、阻聚剂和反应溶剂混合均匀,将温度降至60~70℃,反应1~5h,获得多官能环氧植物油基UV固化预聚物。
  2. 根据权利要求1所述的一种多官能环氧植物油基UV固化预聚物的制备方法,其特征在于,步骤(1)中,按摩尔份计,环氧植物油5~10份,植物油酸20~60份;步骤(1)中所述的催化剂的用量为环氧植物油和植物油酸总质量的0.5~1%,反应溶剂的用量为环氧植物油和植物油酸总质量的1~3倍。
  3. 根据权利要求1所述的一种多官能环氧植物油基UV固化预聚物的制备方法,其特征在于,步骤(1)中所述的环氧植物油为环氧大豆油、环氧蓖麻油、环氧亚麻油中的至少一种;
    步骤(1)中所述的植物油酸为大豆油酸、蓖麻油酸、桐油酸、亚麻油酸、菜籽油酸、玉米油酸中的至少一种;
    步骤(1)中所述的催化剂可为三乙胺和N,N-二甲基乙醇胺中至少一种。
  4. 根据权利要求1所述的一种多官能环氧植物油基UV固化预聚物的制备方法,其特征在于,步骤(1)中,所述的反应温度为110~130℃,植物油酸滴加完毕后保温继续反应3~5h;植物油酸滴加流速为1~10滴/秒。
  5. 根据权利要求1所述的一种多官能环氧植物油基UV固化预聚物的制备方法,其特征在于,步骤(2)中,按摩尔份计,中间产物5~10份,双键单体40~120份;步骤(2)中所述的催化剂的用量为中间产物和双键单体总质量的0.5~1%,阻聚剂的用量为中间产物和双键单体总质量的0.5~1%,反应溶剂的用量为中间产物和双键单体总质量的1~3倍。
  6. 根据权利要求1所述的一种多官能环氧植物油基UV固化预聚物的制备方法,其特征在于,步骤(2)中所述的双键单体为丙烯酸、甲基丙烯酸、氯丙烯、溴丙烯中的一种;
    步骤(2)中所述的阻聚剂可为对羟基苯甲醚、2-叔丁基对苯二酚和对苯二酚中的至少一种;
    步骤(2)中,当所用双键单体为丙烯酸或/和甲基丙烯酸时,所述的催化剂可为对甲苯磺酸、三氟化硼乙醚溶液、浓硫酸、浓盐酸、浓硝酸中的至少一种;当所用双键单体为氯丙烯或/和溴丙烯时,所述的催化剂可为四丁基氯化铵。
  7. 根据权利要求1所述的一种多官能环氧植物油基UV固化预聚物的制备方法,其特征在于,步骤(1)中,中间产物进行纯化后再进入下一步骤的反应,纯化步骤如下:反应结束后趁热过滤,将液体转移到分液漏斗并用溶剂溶解;用饱和碳酸氢钠溶液和饱和氯化钠溶液分别洗涤,分液得到上层有机相,然后有机相用干燥剂干燥并过滤,最后有机相通过减压蒸馏得到中间产物;
    步骤(2)中,反应结束后还包括对产物的纯化,步骤如下:反应结束后趁热将混合物转移到分液漏斗并用溶剂溶解,用饱和碳酸氢钠溶液反复洗涤直至无气泡产生,再用饱和氯化钠溶液洗涤,分液得到上层有机相,然后有机相用干燥剂干燥并过滤,最后有机相通过减压蒸馏得到多官能环氧植物油基UV固化预聚物。
  8. 根据权利要求1所述的一种多官能环氧植物油基UV固化预聚物的制备方法,其特征在于,步骤(1)和(2)中,所述的反应溶剂均为丙酮、丁酮、四氯甲烷、四氢呋喃中的至少一种。
  9. 一种由权利要求1-8任一项方法制得的多官能环氧植物油基UV固化预聚物。
  10. 权利要求9所述多官能环氧植物油基UV固化预聚物在UV固化材料领域中的应用。
PCT/CN2020/107053 2019-12-30 2020-08-05 多官能环氧植物油基uv固化预聚物及其制备方法和应用 WO2021135222A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911390353.6A CN111154071B (zh) 2019-12-30 2019-12-30 多官能环氧植物油基uv固化预聚物及其制备方法和应用
CN201911390353.6 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021135222A1 true WO2021135222A1 (zh) 2021-07-08

Family

ID=70559339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107053 WO2021135222A1 (zh) 2019-12-30 2020-08-05 多官能环氧植物油基uv固化预聚物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111154071B (zh)
WO (1) WO2021135222A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111154071B (zh) * 2019-12-30 2021-03-26 华南农业大学 多官能环氧植物油基uv固化预聚物及其制备方法和应用
WO2022027220A1 (zh) * 2020-08-04 2022-02-10 华南农业大学 光诱导阳离子聚合纯植物油基聚合物及其制备方法和应用
CN112011271B (zh) * 2020-08-04 2021-07-27 华南农业大学 有机无机杂化型光固化植物油基涂料及其制备方法和应用
CN112442318A (zh) * 2020-11-24 2021-03-05 中国林业科学研究院林产化学工业研究所 一种生物基自修复光固化涂料及其制备方法和应用
CN113292516B (zh) * 2021-05-28 2023-10-24 华南农业大学 一种多官能度环氧植物油基丙烯酸酯及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723227A (zh) * 2003-01-08 2006-01-18 得克萨斯科技大学 蓖麻油/环氧化豆油基弹性体组合物
CN104211931A (zh) * 2014-08-12 2014-12-17 江西科技师范大学 一种纯植物油基多烯类可uv固化预聚物
CN106967015A (zh) * 2017-03-30 2017-07-21 中国林业科学研究院林产化学工业研究所 一种环氧二缩脂肪酸酯及其制备方法和应用
CN107540820A (zh) * 2017-07-28 2018-01-05 华南农业大学 一种生物油脂基环氧树脂及其制备方法和应用
CN109160999A (zh) * 2018-08-03 2019-01-08 华南农业大学 植物油基环氧预聚物及其制备方法、植物油基uv固化预聚物及其制备方法和应用
CN110396176A (zh) * 2019-07-31 2019-11-01 中国林业科学研究院林产化学工业研究所 一种植物油基类环氧丙烯酸酯树脂及其制备方法和应用
CN111154071A (zh) * 2019-12-30 2020-05-15 华南农业大学 多官能环氧植物油基uv固化预聚物及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005001607T5 (de) * 2004-07-08 2007-05-24 Archer-Daniels-Midland Co., Decatur Epoxidierte Ester von Pflanzenöl-Fettsäuren als reaktive Verdünnungsmittel
US7863485B2 (en) * 2004-12-10 2011-01-04 Omnitech Environmental, Llc Additive and vehicle for inks, paints, coatings and adhesives
CN106832196A (zh) * 2016-12-15 2017-06-13 湖北大学 一种大豆油基水性聚氨酯光固化树脂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723227A (zh) * 2003-01-08 2006-01-18 得克萨斯科技大学 蓖麻油/环氧化豆油基弹性体组合物
CN104211931A (zh) * 2014-08-12 2014-12-17 江西科技师范大学 一种纯植物油基多烯类可uv固化预聚物
CN106967015A (zh) * 2017-03-30 2017-07-21 中国林业科学研究院林产化学工业研究所 一种环氧二缩脂肪酸酯及其制备方法和应用
CN107540820A (zh) * 2017-07-28 2018-01-05 华南农业大学 一种生物油脂基环氧树脂及其制备方法和应用
CN109160999A (zh) * 2018-08-03 2019-01-08 华南农业大学 植物油基环氧预聚物及其制备方法、植物油基uv固化预聚物及其制备方法和应用
CN110396176A (zh) * 2019-07-31 2019-11-01 中国林业科学研究院林产化学工业研究所 一种植物油基类环氧丙烯酸酯树脂及其制备方法和应用
CN111154071A (zh) * 2019-12-30 2020-05-15 华南农业大学 多官能环氧植物油基uv固化预聚物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG XIUYUN, DENG JIANGUO, HUANG YIGANG, ZHOU HUAYAN: "Synthesis of UV Curing Epoxidized Soybean Oil Acrylate", CHINA OILS AND FATS, vol. 36, no. 1, 1 January 2011 (2011-01-01), pages 45 - 49, XP055828292 *

Also Published As

Publication number Publication date
CN111154071B (zh) 2021-03-26
CN111154071A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2021135222A1 (zh) 多官能环氧植物油基uv固化预聚物及其制备方法和应用
CN107759757B (zh) 一种超支化聚氨酯丙烯酸酯的制备方法及紫外光固化涂料
CN101747594B (zh) 环氧丙烯酸预聚体树脂及其制法和在光固化涂料中的应用
CN107383270B (zh) 一种环氧油脂基不饱和酯光固化树脂及其制备方法和应用
CN111138290B (zh) 一种含芳香环二苯甲酮衍生物及其制备方法和应用
CN101928508B (zh) 一种聚乙二醇改性的环氧丙烯酸酯涂料及其制备方法
CN107089914B (zh) 一种腰果酚基丙烯酸酯活性稀释剂及其制备方法和应用
AU2020101245A4 (en) A Benzophenone Derivative Containing Aromatic Ester Group and Preparation Method and Application Thereof
Zhou et al. Facile synthesis and characterization of urushiol analogues from tung oil via ultraviolet photocatalysis
CN111205203B (zh) 含有二苯氨基甲酸酯基的二苯甲酮衍生物及其制备和应用
CN111440082A (zh) 一种植物油基uv树脂及压敏胶
CN112048077B (zh) 一种蓖麻油基水性光固化非离子乳液及其制备方法和应用
CN107936746A (zh) 一种有机硅改性阳离子光固化脂环族环氧树脂涂料及其应用
CN109160999B (zh) 植物油基环氧预聚物和uv固化预聚物及其制备方法和应用
CN109776347B (zh) 一种热固性植物油基丙烯酸酯衍生物及其制备方法和应用
CN108530990A (zh) 一种生物基改性uv固化喷墨油墨及其制备方法和应用
CN111056943B (zh) 一种多官能亚麻油基uv固化预聚物及其制备方法和应用
CN110305086B (zh) 一种含五元杂环的二苯甲酮衍生物及其制备方法和应用
CN107129714B (zh) 一种大豆油丙烯酸酯型紫外光固化树脂的制备方法
CN103819654B (zh) 一种水性紫外光固化涂料专用树脂及其制备方法和应用
CN106496511B (zh) 桐马酸酐基超支化uv固化聚氨酯丙烯酸酯及其制备方法和应用
CN109097198B (zh) 一种三官能蓖麻油基uv固化预聚物及其制备方法和应用
CN115710457B (zh) 一种紫外光固化组合物及其制备方法和应用
CN111019418A (zh) 多官能腰果酚基uv固化活性稀释剂及其制备方法和应用
CN113651904B (zh) 一种可光聚合单组分硫杂蒽酮类光引发剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910233

Country of ref document: EP

Kind code of ref document: A1