WO2021135211A1 - 基于电阻抗成像的三维血液灌注图像产生方法与装置 - Google Patents
基于电阻抗成像的三维血液灌注图像产生方法与装置 Download PDFInfo
- Publication number
- WO2021135211A1 WO2021135211A1 PCT/CN2020/106754 CN2020106754W WO2021135211A1 WO 2021135211 A1 WO2021135211 A1 WO 2021135211A1 CN 2020106754 W CN2020106754 W CN 2020106754W WO 2021135211 A1 WO2021135211 A1 WO 2021135211A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood perfusion
- image
- signal
- dimensional
- electrical impedance
- Prior art date
Links
- 230000008081 blood perfusion Effects 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000002593 electrical impedance tomography Methods 0.000 title abstract description 4
- 238000002847 impedance measurement Methods 0.000 claims abstract description 58
- 238000003384 imaging method Methods 0.000 claims description 21
- 239000000284 extract Substances 0.000 claims description 13
- 238000003491 array Methods 0.000 claims description 3
- 201000010099 disease Diseases 0.000 abstract description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 4
- 238000003745 diagnosis Methods 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 2
- 238000010191 image analysis Methods 0.000 abstract description 2
- 210000000746 body region Anatomy 0.000 abstract 2
- 238000005259 measurement Methods 0.000 description 13
- 230000010412 perfusion Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000001914 filtration Methods 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 210000000115 thoracic cavity Anatomy 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0536—Impedance imaging, e.g. by tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6804—Garments; Clothes
- A61B5/6805—Vests
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/725—Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/04—Arrangements of multiple sensors of the same type
- A61B2562/046—Arrangements of multiple sensors of the same type in a matrix array
Definitions
- the present disclosure relates to electrical impedance imaging technology, and more particularly to a method and device for generating a three-dimensional blood perfusion image based on electrical impedance imaging.
- EIT Electrical Impedance Tomography
- the human body is a large biological electrical conductor, and each tissue and organ has a certain impedance.
- the impedance of the local part must be different from other parts. Therefore, the disease of the human organ can be measured by impedance measurement. Make a diagnosis.
- the prior art electrical impedance imaging method can only reconstruct a two-dimensional blood perfusion image.
- This two-dimensional image reflects the change in electrical impedance caused by blood perfusion in a certain section of the human body area to be tested. It is difficult for a two-dimensional image to reflect the blood perfusion in a certain volume area in the three-dimensional space.
- the purpose of the present disclosure is to provide a method and device for generating a three-dimensional blood perfusion image.
- the method and device perform electrical impedance measurement on the human body area to be measured, extract blood perfusion signals from the measurement signals, and finally reconstruct a three-dimensional blood perfusion image; or first reconstruct a three-dimensional differential image based on the measurement signal, and then extract a measurement signal from the three-dimensional differential image
- the three-dimensional blood perfusion image reflected in the blood perfusion signal.
- the three-dimensional blood perfusion image generated by the method and device can be displayed by a display device.
- the first aspect of the present disclosure provides a method for generating a three-dimensional blood perfusion image based on electrical impedance imaging.
- the method may include the following steps: using an electrode array distributed in a three-dimensional space to perform electrical impedance measurement on the human body area to be tested to obtain an electrical impedance measurement signal; based on the blood perfusion signal in the electrical impedance measurement signal, reconstruct the three-dimensional Blood perfusion image.
- the blood perfusion signal can be extracted from the electrical impedance measurement signal, and then the extracted blood perfusion signal can be used to reconstruct a three-dimensional blood perfusion image through an image reconstruction algorithm.
- extracting the blood perfusion signal from the electrical impedance measurement signal may further include extracting the blood perfusion signal from the electrical impedance measurement signal by using the time-frequency characteristics of the signal.
- the extraction of the blood perfusion signal from the electrical impedance measurement signal by using the time-frequency characteristics of the signal may include using a band-pass filter to separate the signal in a specific frequency range from the electrical impedance measurement signal to form blood perfusion. signal.
- the method of the first aspect of the present disclosure it is also possible to reconstruct a three-dimensional differential image through an image reconstruction algorithm based on the electrical impedance measurement signal, and then extract the blood perfusion signal reflected in the electrical impedance measurement signal from the three-dimensional differential image. Three-dimensional blood perfusion image.
- the extraction of the three-dimensional blood perfusion image reflected by the blood perfusion signal in the electrical impedance measurement signal from the three-dimensional differential image may further include extracting the three-dimensional blood perfusion image by using the time-frequency characteristics of pixels in the three-dimensional differential image.
- the extraction of the three-dimensional blood perfusion image by using the time-frequency characteristics of the pixels in the three-dimensional differential image may include the time-domain signal of each pixel in the three-dimensional differential image, and the use of a band-pass filter to separate a specific frequency therefrom. Range signal to form the time domain signal of the corresponding pixel of the three-dimensional blood perfusion image.
- the electrode array may be arranged on one or more impedance bands, on the electrode vest or on the electrode head cover, so that the electrodes are distributed in three dimensions.
- a second aspect of the present disclosure provides a three-dimensional blood perfusion image generating device based on electrical impedance imaging.
- the device may include: an electrode array distributed in a three-dimensional space, used to perform electrical impedance measurement on the human body area to be measured to obtain electrical impedance measurement signals; an image reconstruction processor, which executes a program stored in a memory, so as to make: The blood perfusion signal in the electrical impedance measurement signal is used to reconstruct a three-dimensional blood perfusion image through an image reconstruction algorithm.
- the image reconstruction processor may further execute a program stored in a memory, so as to: extract the blood perfusion signal from the electrical impedance measurement signal; The extracted blood perfusion signal is used to reconstruct a three-dimensional blood perfusion image through an image reconstruction algorithm.
- the image reconstruction processor may further execute a program stored in the memory, so as to: reconstruct a three-dimensional difference image through an image reconstruction algorithm; and extract from the three-dimensional difference image The three-dimensional blood perfusion image reflected by the blood perfusion signal in the electrical impedance measurement signal.
- the electrode array may be arranged on one or more impedance bands, on the electrode vest or on the electrode head cover, so that the electrodes are distributed in three dimensions.
- the blood perfusion image generation method and device can generate a three-dimensional image of electrical impedance changes caused by blood perfusion, and can more intuitively reflect a volume in the three-dimensional space of the human body area than the two-dimensional image in the prior art.
- the blood perfusion in the area is conducive to image analysis and comparison, disease detection and diagnosis.
- FIG. 1 is a schematic flowchart of a method for generating a three-dimensional blood perfusion image based on electrical impedance imaging according to an embodiment of the present disclosure.
- FIG. 1A and FIG. 1B are respectively schematic flowcharts of two preferred embodiments of a method for generating a three-dimensional blood perfusion image based on electrical impedance imaging according to an embodiment of the present disclosure.
- Fig. 2 is a diagram illustrating an example of human thoracic cavity measurement data according to the preferred embodiment of Fig. 1A, wherein (a) is a time domain signal and (b) is a frequency domain signal.
- Fig. 3 illustrates the perfusion-related signals extracted by filtering according to the preferred embodiment of Fig. 1A, wherein (a) is a time domain signal and (b) is a frequency domain signal.
- Fig. 4 illustrates an example of a three-dimensional differential image and a time-frequency signal of a pixel according to the preferred embodiment of Fig. 1B, in which (a) is a three-dimensional differential image, (b) is a time-domain signal of an example pixel, and (c) is The frequency domain signal of the sample pixel.
- Fig. 5 is a diagram illustrating the perfusion-related signal of an example pixel extracted by filtering according to the preferred embodiment of Fig. 1B, where (a) is a time domain signal and (b) is a frequency domain signal.
- Fig. 6 is a schematic diagram of a three-dimensional blood perfusion image of a human lung according to a preferred embodiment of the present disclosure.
- Fig. 7 is a schematic block diagram of a three-dimensional blood perfusion image generating device based on electrical impedance imaging according to an embodiment of the present disclosure.
- FIG. 1 is a schematic flowchart of a method 100 for generating a three-dimensional blood perfusion image based on electrical impedance imaging according to an embodiment of the present disclosure.
- the method 100 of FIG. 1 starts at step 110, where the electrical impedance signal of the human body is measured.
- the electrode array distributed in the three-dimensional space is used to perform electrical impedance measurement on the human body area to be measured to obtain electrical impedance measurement signals.
- the electrical impedance measurement first needs to fix the electrode array around the area of the human body to be measured.
- the electrode array includes several electrodes distributed in a three-dimensional space. Then, the electrode array is used to excite the human body area to be measured and the resulting response is measured, such as applying current excitation to the electrodes in turn, and measuring the resulting voltage signals on other electrodes in turn.
- the sensor module containing electrodes is fixed to the measured part of the human body, such as the chest cavity, brain, abdomen or limbs, in the form of an electrode array such as an impedance band, an electrode vest, and an electrode hood.
- the electrodes may take the form of in-vivo electrodes.
- the so-called intracorporeal electrode refers to the placement of the electrode into the human body such as the esophagus and trachea.
- one or more electrode arrays in the form of impedance strips, electrode vests, electrode head covers, etc. can be used for signal measurement. That is to say, the electrode array is arranged on one or more impedance bands, on the electrode vest or on the electrode head cover, so that the electrodes are distributed in three dimensions.
- the electrode arrays are usually distributed in a three-dimensional space instead of being distributed in a two-dimensional plane or an approximate two-dimensional plane.
- multiple impedance bands or an electrode vest and electrode head cover with three-dimensionally distributed electrodes can be used.
- the measured electrical impedance measurement signal may be a voltage signal, and specifically may be a complex voltage signal.
- the complex voltage signal can be expressed in the form of amplitude and phase, or can be expressed in the form of real and imaginary parts.
- step 120 based on the blood perfusion signal in the electrical impedance measurement signal, a three-dimensional blood perfusion image is reconstructed through an image reconstruction algorithm.
- Step 120 can be implemented in two ways.
- 1A and 1B are schematic flowcharts of two preferred embodiments 100A and 100B of a method for generating a three-dimensional blood perfusion image based on electrical impedance imaging according to an embodiment of the present disclosure, respectively.
- step 121A the blood perfusion signal is extracted from the electrical impedance measurement signal.
- the blood perfusion signal needs to be extracted from the electrical impedance measurement signal obtained in the previous step.
- the time-frequency characteristics of the signal can be used to extract the blood perfusion signal from the electrical impedance measurement signal obtained in the previous step.
- a filter is used to separate the blood perfusion signal from the measured electrical impedance signal.
- the following is an example of a human thoracic cavity measurement signal.
- Fig. 2 is a diagram illustrating an example of human thoracic cavity measurement data according to the preferred embodiment of Fig. 1A.
- Figure 2(a) shows a time-domain graph of a certain measurement data. The curve in the figure represents the voltage signal measured on the specific electrode when the specific electrode is excited. The data obtained in other stimulus-measurement situations is similar. It should be noted that the ordinate in the figure is the value directly read from the digital voltmeter, which has not yet been converted into a voltage value.
- Figure 2(b) shows the frequency domain graph of the measured signal. In one embodiment, it can be obtained by Fourier transform of the signal in Figure 2(a). From Figure 2(b), the signal component caused by respiration and the signal component caused by perfusion can be distinguished. In order to extract the perfusion signal component, a band-pass filter can be designed.
- Fig. 3 is a diagram illustrating perfusion-related signals extracted by filtering according to the preferred embodiment of Fig. 1A. Among them, Fig. 3(a) corresponds to the time domain graph of the filtered signal, and Fig. 3(b) corresponds to the frequency domain graph of the filtered signal.
- a band-pass filter is used to separate a signal in a specific frequency range from the electrical impedance measurement signal to form a blood perfusion signal.
- step 122A the extracted blood perfusion signal is used to reconstruct a three-dimensional blood perfusion image through an image reconstruction algorithm.
- the reconstruction process is as follows: first extract the perfusion signal from the measurement data, and then use the difference of the perfusion signal at different times to reconstruct the image.
- the three-dimensional blood perfusion image reflects changes in electrical impedance in the area of the human body to be measured due to blood perfusion, such as changes in electrical conductivity. As a result, the changes in the blood content of the lungs at different times are correspondingly displayed.
- the image reconstruction algorithm is a linear differential imaging algorithm.
- the following is an example of a linear differential imaging algorithm.
- EIT differential reconstruction can be expressed as the following least squares problem:
- J is the Jacobian matrix
- ⁇ is the conductivity change caused by blood perfusion at the above two moments
- R is the regularization matrix
- ⁇ is the regularization parameter.
- ⁇ is defined in a discretized three-dimensional model, such as a tetrahedral grid or a voxel grid.
- ⁇ * (J T ⁇ J+ ⁇ R T ⁇ R) -1 ⁇ J T ⁇ u.
- ⁇ * is the calculated blood perfusion image.
- the linear differential imaging algorithm is specifically used as the image reconstruction algorithm to calculate and reconstruct the three-dimensional image of blood perfusion
- the image reconstruction algorithm may include multiple reconstruction algorithms. : Linear or non-linear, iterative or non-iterative, random or deterministic image reconstruction algorithms, etc.
- step 120 in FIG. 1 further includes another implementation 100B, that is, after step 110 in FIG. 1, step 121B is executed, that is, according to the electrical impedance measurement signal, a three-dimensional differential image is reconstructed through an image reconstruction algorithm.
- the image reconstruction algorithm can use the same image reconstruction algorithm as in the first preferred embodiment 100A of the present disclosure.
- step 122B the three-dimensional blood perfusion image reflected by the blood perfusion signal in the electrical impedance measurement signal is extracted from the three-dimensional differential image.
- a three-dimensional blood perfusion image can be extracted from a three-dimensional differential image by using the time-frequency characteristics of the image signal.
- a filter is used to separate the three-dimensional blood perfusion image from the three-dimensional difference image.
- Fig. 4 illustrates the reconstructed three-dimensional difference image according to the preferred embodiment of Fig. 1B.
- Fig. 4(a) is a schematic diagram of a three-dimensional difference image.
- Figure 4(b) is an example pixel selected from the three-dimensional difference image, and the time-domain signal of the pixel is drawn.
- Figure 4(c) is the frequency domain signal of the pixel.
- the signal in Fig. 4(c) can be obtained by Fourier transform of the signal in Fig. 4(b).
- Figure 4(c) can distinguish the signal component caused by respiration and the signal component caused by perfusion. In order to extract the perfusion signal component from it, a band-pass filter can be designed.
- the band pass filter performs a filtering operation on the time domain signal of each pixel in the above-mentioned three-dimensional difference image.
- the filtered signal of the above example pixel is shown in Figure 5.
- Figure 5 (a) is the filtered time domain signal.
- Figure 5(b) is the filtered frequency domain signal.
- a three-dimensional blood perfusion image After filtering each pixel in the above-mentioned three-dimensional difference image, a three-dimensional blood perfusion image can be obtained.
- the three-dimensional blood perfusion image reflects changes in electrical impedance in the area of the human body to be measured due to blood perfusion, such as changes in electrical conductivity. As a result, the changes in the blood content of the lungs at different times are correspondingly displayed.
- Fig. 6 shows a schematic diagram of a three-dimensional blood perfusion image of a human lung produced by the above-mentioned method including the embodiment 100A and the embodiment 100B.
- step 120 of the method 100 in FIG. 1 the difference between the two implementations of step 120 of the method 100 in FIG. 1 is: first extract the blood perfusion signal from the electrical impedance measurement signal and then perform image reconstruction, or first reconstruct the three-dimensional difference based on the measurement signal The image then extracts a special perfusion image from the image.
- the protection scope of the present disclosure hopes to include these two implementations.
- FIG. 7 is a schematic block diagram of a three-dimensional blood perfusion image generating apparatus 700 based on electrical impedance imaging according to an embodiment of the present disclosure.
- an electrical impedance imaging-based three-dimensional blood perfusion image generation device 700 may include: an electrode array 710 distributed in a three-dimensional space for electrical impedance measurement on the human body area to obtain electrical impedance Measurement signal; an image reconstruction processor 720, which executes a program stored in a memory, so that: based on the blood perfusion signal in the electrical impedance measurement signal, a three-dimensional blood perfusion image is reconstructed through an image reconstruction algorithm.
- the electrode array 710 may be arranged on one or more impedance bands, on an electrode vest or on an electrode head cover, so that the electrodes are distributed in three dimensions.
- the image reconstruction processor 720 further executes the program stored in the memory, so as to: extract the blood perfusion signal from the electrical impedance measurement signal; and use the extracted blood perfusion signal to reconstruct the image
- the algorithm reconstructs a three-dimensional blood perfusion image.
- the image reconstruction processor 720 may extract the blood perfusion signal from the electrical impedance measurement signal by using the time-frequency characteristic of the signal. In another embodiment, the image reconstruction processor 720 may use a band-pass filter to separate signals in a specific frequency range from the electrical impedance measurement signal to form a blood perfusion signal.
- the image reconstruction algorithm is a linear differential imaging algorithm.
- the image reconstruction algorithms that can be used in the present disclosure may include a variety of reconstruction algorithms: linear or non-linear, iterative or non-iterative, random or deterministic image reconstruction algorithms, etc.
- the image reconstruction processor 720 further executes a program stored in a memory, so as to: reconstruct a three-dimensional differential image through an image reconstruction algorithm; and extract resistance from the three-dimensional differential image The three-dimensional blood perfusion image reflected by the blood perfusion signal in the anti-measurement signal.
- the image reconstruction processor 720 may use the same image reconstruction algorithm as in the first implementation manner when reconstructing a three-dimensional difference image.
- the image reconstruction processor 720 may extract a three-dimensional blood perfusion image from the time-frequency characteristics of pixels in the three-dimensional difference image.
- the image reconstruction processor 720 may use a band-pass filter to separate the three-dimensional blood perfusion image from the three-dimensional difference image.
- the device 700 may also include a display unit, such as an LCD display, for presenting a three-dimensional blood perfusion image after image reconstruction. Shown in 6. Since the present disclosure focuses more on the generation of three-dimensional blood perfusion images, the display unit is not an essential element of the method or device of the present disclosure. The scope of the present disclosure should be subject to the claims, and is not limited by any embodiments recorded or not recorded in the specification of the present disclosure.
- Non-transitory computer readable media include various types of tangible storage media.
- non-transitory computer readable media examples include magnetic recording media (such as floppy disks, magnetic tapes, and hard drives), magneto-optical recording media (such as magneto-optical disks), CD-ROM (compact disk read-only memory), CD-R, CD-R /W and semiconductor memory (such as ROM, PROM (programmable ROM), EPROM (erasable PROM), flash ROM and RAM (random access memory)).
- these programs can be provided to computers by using various types of transitory computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can be used to provide a program to a computer through a wired communication path such as an electric wire and an optical fiber or a wireless communication path.
- the imaging method for generating a three-dimensional blood perfusion image includes the following operations: using an electrode array distributed in a three-dimensional space to perform electrical impedance measurement on the human body area to be tested to obtain an electrical impedance measurement signal; based on the blood perfusion signal in the electrical impedance measurement signal, pass The image reconstruction algorithm reconstructs a three-dimensional blood perfusion image.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Physiology (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本公开提供一种基于电阻抗成像的三维血液灌注图像产生方法与装置。所述方法(100)包括:利用分布在三维空间内的电极阵列,对待测人体区域进行电阻抗测量,得到电阻抗测量信号(110);基于电阻抗测量信号中的血液灌注信号,通过图像重建算法重建三维血液灌注图像(120)。由此,可以产生血液灌注引起的电阻抗变化的三维图像,相比于现有技术的二维图像,可以更加直观地反映出人体区域三维空间内一个体积区域上的血液灌注情况,有利于图像分析对比、疾病检测和诊断。
Description
本公开要求享有2019年12月31日提交的名称为“基于电阻抗成像的三维血液灌注图像产生方法与装置”的中国专利申请CN201911424085.5的优先权,其全部内容通过引用并入本文中。
本公开涉及电阻抗成像技术,更具体涉及一种基于电阻抗成像的三维血液灌注图像产生方法与装置。
电阻抗成像(Electrical Impedance Tomography,EIT)是一种无创的、以人体或其他生物体内部的电阻率分布为目标的重建体内组织图像的技术。人体是一个大的生物电导体,各组织、器官均有一定的阻抗,当人体的局部器官发生病变时,局部部位的阻抗必然与其他部位不同,因而可以通过阻抗的测量来对人体器官的病变进行诊断。
现有技术的电阻抗成像方法只能重建二维的血液灌注图像。这个二维的图像反映的是待测人体区域某个断面内由于血液灌注引起的电阻抗变化。二维的图像难以反映三维空间中某个体积区域内的血液灌注情况。
因此,希望能够提供一种基于电阻抗成像的三维血液灌注图像产生方法与装置,该方法与装置能够基于电阻抗测量结果,重建关于血液灌注的三维图像。
发明内容
如前所述,为了解决现有技术中存在的问题,本公开的目的是提供一种三维血液灌注图像的生成方法与装置。所述方法和装置通过对待测人体区域进行电阻抗测量,从测量信号中提取血液灌注信号,最后重建三维血液灌注图像;或者先根据测量信号重建三维差分图像,然后从三维差分图像中提取测量信号中的血液灌注信号所反映的三维血液灌注图像。利用所述方法和装置产生三维血液灌注图像可以通过显示设备进行显示。
根据本公开的实施例,本公开的第一方面提供了一种基于电阻抗成像的三维血液灌 注图像产生方法。所述方法可以包括如下步骤:利用分布在三维空间内的电极阵列,对待测人体区域进行电阻抗测量,得到电阻抗测量信号;基于电阻抗测量信号中的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
根据本公开的第一方面的方法,在一种实施方式中,可以从电阻抗测量信号中提取血液灌注信号,然后利用所提取的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
在此情况下,所述的从电阻抗测量信号中提取血液灌注信号可以进一步包括利用信号的时频特性从电阻抗测量信号中提取血液灌注信号。
在一种实施方式中,所述的利用信号的时频特性从电阻抗测量信号中提取血液灌注信号可以包括使用带通滤波器从电阻抗测量信号中分离特定频率范围的信号,以形成血液灌注信号。
根据本公开的第一方面的方法,另一方面,也可以根据电阻抗测量信号,通过图像重建算法重建三维差分图像,然后从三维差分图像中提取电阻抗测量信号中的血液灌注信号所反映的三维血液灌注图像。
在此情况下,所述的从三维差分图像中提取电阻抗测量信号中的血液灌注信号所反映的三维血液灌注图像可以进一步包括利用三维差分图像中像素的时频特性提取三维血液灌注图像。
在一种实施方式中,所述的利用三维差分图像中像素的时频特性提取三维血液灌注图像可以包括对三维差分图像中每个像素的时域信号,使用带通滤波器从中分离出特定频率范围的信号,以形成三维血液灌注图像相应像素的时域信号。
根据本公开的第一方面的方法,在一种实施方式中,所述电极阵列可以设置在一条或多条阻抗带上、电极背心上或电极头罩上,使得电极呈三维分布。
根据本公开的实施例,本公开的第二方面提供了一种基于电阻抗成像的三维血液灌注图像产生装置。所述装置可以包括:分布在三维空间内的电极阵列,用于对待测人体区域进行电阻抗测量,得到电阻抗测量信号;图像重建处理器,其执行存储于存储器中的程序,以便使得:基于电阻抗测量信号中的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
根据本公开的第二方面的装置,在一种实施方式中,所述图像重建处理器可以进一步执行存储于存储器中的程序,以便使得:从电阻抗测量信号中提取血液灌注信号;以 及利用所提取的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
根据本公开的第二方面的装置,另一方面,所述图像重建处理器也可以进一步执行存储于存储器中的程序,以便使得:通过图像重建算法重建三维差分图像;以及从三维差分图像中提取电阻抗测量信号中的血液灌注信号所反映的三维血液灌注图像。
根据本公开的第二方面的装置,在一种实施方式中,所述电极阵列可以设置在一条或多条阻抗带上、电极背心上或电极头罩上,使得电极呈三维分布。
根据本公开实施例的血液灌注图像产生方法和装置可以产生血液灌注引起的电阻抗变化的三维图像,相比于现有技术的二维图像,可以更加直观地反映出人体区域三维空间内一个体积区域上的血液灌注情况,有利于图像分析对比、疾病检测和诊断。
下面参考附图结合实施例说明本公开。
图1是根据本公开实施例的基于电阻抗成像的三维血液灌注图像产生方法的示意流程图。
图1A和图1B分别是根据本公开实施例的基于电阻抗成像的三维血液灌注图像产生方法的两种优选实施例的示意流程图。
图2是根据图1A的优选实施例图示说明人体胸腔测量数据实例,其中,(a)是时域信号,(b)是频域信号。
图3是根据图1A的优选实施例图示说明通过滤波提取出的灌注相关信号,其中,(a)为时域信号,(b)为频域信号。
图4是根据图1B的优选实施例图示说明三维差分图像以及像素点的时频信号示例,其中,(a)为三维差分图像,(b)为示例像素的时域信号,(c)为示例像素的频域信号。
图5是根据图1B的优选实施例图示说明通过滤波提取出的示例像素的灌注相关信号,其中,(a)为时域信号,(b)为频域信号。
图6是根据本公开的优选实施例的人体肺部三维血液灌注图像示意图。
图7是根据本公开实施例的基于电阻抗成像的三维血液灌注图像产生装置的示意框图。
附图仅用于示例说明,不能理解为对本公开的限制。下面结合附图和实施例对本公开的技术方案做进一步的说明。
图1是根据本公开实施例的基于电阻抗成像的三维血液灌注图像产生方法100的示意流程图。
图1的方法100开始于步骤110,在此步骤,测量人体的电阻抗信号。在一种实施方式中,利用分布在三维空间内的电极阵列,对待测人体区域进行电阻抗测量,得到电阻抗测量信号。
电阻抗测量首先需要在待测人体区域周围固定电极阵列。所述电极阵列包含若干个分布在三维空间内的电极。然后,通过电极阵列对待测人体区域进行激励并测量由此产生的响应,如:轮流对电极施加电流激励,并依次在其他电极上测量由此产生的电压信号。
在一种实施方式中,将包含电极的传感模块固定在人体被测量部位,如胸腔、脑部、腹部或四肢的周围,采用阻抗带、电极背心、电极头罩等电极阵列的形式。在有些实施例中,电极可以采用体内电极的形式。所谓的体内电极是指,将该电极置入人体食道、气管等人体内位置。
根据本公开的优选实施例,可以利用一条或多条阻抗带、电极背心、电极头罩等形式的电极阵列进行信号测量。也就是说,所述电极阵列设置在一条或多条阻抗带上、电极背心上或电极头罩上,使得电极呈三维分布。在一种实施方式中,为了使重建图像具有三维分辨率,所述电极阵列通常分布在三维空间内,而不是分布在一个二维平面或近似的二维平面内。为了使电极阵列分布在三维空间内,可以采用多条阻抗带或采用电极呈三维分布的电极背心、电极头罩等方案。
测量得到的电阻抗测量信号可以是电压信号,具体可以是复电压信号。复电压信号可以用幅度和相位的形式表达,或者可以用实部和虚部的形式表达。
接下来,在步骤120,基于电阻抗测量信号中的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
步骤120可以通过两种方式来实现。图1A和图1B分别是根据本公开实施例的基于电阻抗成像的三维血液灌注图像产生方法的两种优选实施例100A和100B的示意流程图。
如图1A中所示,根据本公开的一种优选实施例100A,在步骤110之后,在步骤121A,从电阻抗测量信号中提取血液灌注信号。
在此步骤中,需要从上一步骤获得的电阻抗测量信号中提取血液灌注信号。根据本公 开的优选实施例,可以利用信号的时频特性从上一步骤获得的电阻抗测量信号中提取血液灌注信号。在一种实施方式中,利用滤波器从所测量的电阻抗信号中分离血液灌注信号。
下面以一个人体胸腔测量信号的例子来说明。
图2是根据图1A的优选实施例图示说明人体胸腔测量数据实例。图2(a)显示了某个测量数据的时域图形。图中曲线代表特定电极激励时,在特定电极上测量得到的电压信号。其他激励-测量情况得到的数据与之类似。需要说明的是,图中纵坐标为从数字电压表直接读取的数值,仍未将其转换为电压值。图2(b)显示了该测量信号的频域图形。在一种实施方式中,可以由图2(a)中信号经过傅里叶变换得到。从图2(b)可以分辨出由呼吸引起的信号分量和由灌注引起的信号分量。为了提取灌注信号分量,可以设计一个带通滤波器。
滤波后的信号如图3所示。图3是根据图1A的优选实施例图示说明通过滤波提取出的灌注相关信号。其中,图3(a)对应滤波后信号的时域图形,图3(b)对应滤波后信号的频域图形。
在上述例子中,使用带通滤波器从电阻抗测量信号中分离特定频率范围的信号,以形成血液灌注信号。
在步骤122A,利用所提取的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
一般来说,如果以肺部血液灌注图像的重建为例,其重建过程为:首先从测量数据中提取灌注信号,然后利用不同时刻灌注信号的差进行图像重建。所述三维血液灌注图像反映由于血液灌注引起的待测人体区域内的电阻抗变化,例如电导率的变化。由此,相应地展示出不同时刻肺部血液含量的变化。
在本公开的一个优选实施例中,所述图像重建算法是线性差分成像算法。下面就以一个线性差分成像算法的例子来说明。
假设上一步骤所提取出的灌注信号的时域形式为u(t),其中t为时间变量。EIT差分重建可以表述为如下最小二乘问题:
min
δσ‖J·δσ-δu‖
2+α‖R·δσ‖
2,
其中,J为雅可比矩阵,δu=u(t
2)-u(t
1)为信号在时刻t
2相对于时刻t
1的变化,δσ为上述两个时刻由于血液灌注引起的电导率变化,R为正则化矩阵,α为正则化参数。δσ定义在离散化的三维模型中,如四面体网格或体素网格。上述问题的解为
δσ
*=(J
T·J+αR
T·R)
-1·J
T·δu.
令D=(J
T·J+αR
T·R)
-1·J
T,则上述公式可以表示为:
δσ
*=D·δu.
上述δσ
*即为计算所得的血液灌注图像。
尽管在上述例子中,具体使用了线性差分成像算法作为图像重建算法来计算并重建血液灌注的三维图像,但是本领域普通技术人员应该理解,本公开可以利用的图像重建算法可以包含多种重建算法:线性的或非线性的、迭代的或非迭代的、随机的或确定性的图像重建算法等。
回到图1以及图1B。如图1B所示,图1的步骤120还包括另外一种实施方式100B,即在图1的步骤110之后,执行步骤121B,即根据电阻抗测量信号,通过图像重建算法重建三维差分图像。
在此步骤,所述图像重建算法可以使用与本公开的第一种优选实施例100A中相同的图像重建算法。
然后,在步骤122B,从三维差分图像中提取电阻抗测量信号中的血液灌注信号所反映的三维血液灌注图像。根据本公开的优选实施例,可以利用图像信号的时频特性从三维差分图像中提取三维血液灌注图像。在一种实施方式中,利用滤波器从三维差分图像中分离三维血液灌注图像。
下面仍以上述人体胸腔测量信号的例子来说明。
图4是根据图1B的优选实施例图示说明重建出的三维差分图像。图4(a)是三维差分图像的示意图。图4(b)是从三维差分图像上选取了一个示例像素点,所绘制出的该像素点的时域信号。图4(c)是该像素点的频域信号。在一种实施方式中,图4(c)中信号可以由图4(b)中信号经过傅里叶变换得到。由图4(c)可以分辨出由呼吸引起的信号分量和由灌注引起的信号分量。为了从中提取灌注信号分量,可以设计一个带通滤波器。
带通滤波器对上述三维差分图像中的每个像素的时域信号执行滤波操作。对上述示例像素点滤波后的信号如图5所示。其中,图5(a)是滤波后的时域信号。图5(b)是滤波后的频域信号。
对上述三维差分图像中的每个像素滤波之后,即可得到三维血液灌注图像。所述三维血液灌注图像反映由于血液灌注引起的待测人体区域内的电阻抗变化,例如电导率的变化。由此,相应地展示出不同时刻肺部血液含量的变化。图6显示了利用包括实施例100A和实施例100B在内的上述方法所产生的人体肺部的三维血液灌注图像的一个示意图。
由此可以看出,在图1的方法100的步骤120的两种实现方式之间,区别在于:先从电阻抗测量信号中提取血液灌注信号再进行图像重建,还是先根据测量信号重建三维差分图像再从图像中提取专门的灌注图像。本公开的保护范围希望包括这两种实现方式。
图7是根据本公开实施例的基于电阻抗成像的三维血液灌注图像产生装置700的示意框图。
根据本公开的实施例,参见图7,基于电阻抗成像的三维血液灌注图像产生装置700可以包括:分布在三维空间内的电极阵列710,用于对待测人体区域进行电阻抗测量,得到电阻抗测量信号;图像重建处理器720,其执行存储于存储器中的程序,以便使得:基于电阻抗测量信号中的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
根据本公开的一个优选实施例,所述电极阵列710可以设置在一条或多条阻抗带上、电极背心上或电极头罩上,使得电极呈三维分布。
根据本公开的优选实施方式,所述图像重建处理器720进一步执行存储于存储器中的程序,以便使得:从电阻抗测量信号中提取血液灌注信号;以及利用所提取的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
在一种实施方式中,所述图像重建处理器720可以利用信号的时频特性从电阻抗测量信号中提取血液灌注信号。在另一种实施方式中,所述图像重建处理器720可以使用带通滤波器从电阻抗测量信号中分离特定频率范围的信号,以形成血液灌注信号。
在本公开的一个具体实施例中,所述图像重建算法是线性差分成像算法。然而,本领域技术人员应该理解,本公开可以利用的图像重建算法可以包含多种重建算法:线性的或非线性的、迭代的或非迭代的、随机的或确定性的图像重建算法等。
另一方面,根据本公开的另一种实现方式,所述图像重建处理器720进一步执行存储于存储器中的程序,以便使得:通过图像重建算法重建三维差分图像;以及从三维差分图像中提取电阻抗测量信号中的血液灌注信号所反映的三维血液灌注图像。
在一种实施方式中,所述图像重建处理器720在重建三维差分图像时,可以使用与第一种实现方式中相同的图像重建算法。所述图像重建处理器720可以利用所述三维差分图像中像素的时频特性从中提取三维血液灌注图像。在另一种实施方式中,所述图像重建处理器720可以使用带通滤波器从所述三维差分图像中分离三维血液灌注图像。
此外,尽管图7中未示出,本领域技术人员应该能够认识到,装置700还可以包括显示单元,例如LCD显示器,用于呈现图像重建后的三维血液灌注图像,其显示的示意例 如如图6中所示。由于本公开更关注于三维血液灌注图像的产生,因此显示单元并非本公开的方法或装置所必不可少的元素。本公开的范围应以权利要求书为准,而不受到本公开说明书中记载或未记载的任何实施例的限制。
此外,本领域普通技术人员应该认识到,本公开的方法可以实现为计算机程序。如上结合图1、1A、1B所述,通过一个或多个程序执行上述实施例的方法,包括指令来使得计算机或处理器执行结合附图所述的算法。这些程序可以使用各种类型的非瞬时计算机可读介质存储并提供给计算机或处理器。非瞬时计算机可读介质包括各种类型的有形存贮介质。非瞬时计算机可读介质的示例包括磁性记录介质(诸如软盘、磁带和硬盘驱动器)、磁光记录介质(诸如磁光盘)、CD-ROM(紧凑盘只读存储器)、CD-R、CD-R/W以及半导体存储器(诸如ROM、PROM(可编程ROM)、EPROM(可擦写PROM)、闪存ROM和RAM(随机存取存储器))。进一步,这些程序可以通过使用各种类型的瞬时计算机可读介质而提供给计算机。瞬时计算机可读介质的示例包括电信号、光信号和电磁波。瞬时计算机可读介质可以用于通过诸如电线和光纤的有线通信路径或无线通信路径提供程序给计算机。
因此,根据本公开,还可以提议一种计算机程序或一种计算机可读介质,用于记录可由处理器执行的指令,所述指令在被处理器执行时,使得处理器执行一种基于电阻抗成像的三维血液灌注图像产生方法,包括如下操作:利用分布在三维空间内的电极阵列,对待测人体区域进行电阻抗测量,得到电阻抗测量信号;基于电阻抗测量信号中的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
上面已经描述了本公开的各种实施例和实施情形。但是,本公开的精神和范围不限于此。本领域技术人员将能够根据本公开的教导而做出更多的应用,而这些应用都在本公开的范围之内。
也就是说,本公开的上述实施例仅仅是为清楚说明本公开所做的举例,而非对本公开实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本公开的精神和原则之内所作的任何修改、替换或改进等,均应包含在本公开权利要求的保护范围之内。
Claims (10)
- 一种基于电阻抗成像的三维血液灌注图像产生方法,包括如下步骤:利用分布在三维空间内的电极阵列,对待测人体区域进行电阻抗测量,得到电阻抗测量信号;基于电阻抗测量信号中的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
- 如权利要求1所述的方法,其中,所述的基于电阻抗测量信号中的血液灌注信号,通过图像重建算法重建三维血液灌注图像进一步包括:从电阻抗测量信号中提取血液灌注信号;以及利用所提取的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
- 如权利要求1所述的方法,其中,所述的基于电阻抗测量信号中的血液灌注信号,通过图像重建算法重建三维血液灌注图像进一步包括:根据电阻抗测量信号,通过图像重建算法重建三维差分图像;以及从三维差分图像中提取电阻抗测量信号中的血液灌注信号所反映的三维血液灌注图像。
- 如权利要求1所述的方法,其中,所述电极阵列设置在一条或多条阻抗带上、电极背心上或电极头罩上,使得电极呈三维分布。
- 如权利要求2所述的方法,其中,所述的从电阻抗测量信号中提取血液灌注信号进一步包括:利用信号的时频特性从电阻抗测量信号中提取血液灌注信号。
- 如权利要求5所述的方法,其中,所述的利用信号的时频特性从电阻抗测量信号中提取血液灌注信号进一步包括:使用带通滤波器从电阻抗测量信号中分离特定频率范围的信号,以形成血液灌注信号。
- 如权利要求3所述的方法,其中,所述的从三维差分图像中提取电阻抗测量信号中的血液灌注信号所反映的三维血液灌注图像进一步包括:利用三维差分图像中像素的时频特性提取三维血液灌注图像。
- 如权利要求7所述的方法,其中,所述的利用三维差分图像中像素的时频特性提 取三维血液灌注图像进一步包括:对三维差分图像中每个像素的时域信号,使用带通滤波器从中分离出特定频率范围的信号,以形成三维血液灌注图像相应像素的时域信号。
- 一种基于电阻抗成像的三维血液灌注图像产生装置,包括:分布在三维空间内的电极阵列,用于对待测人体区域进行电阻抗测量,得到电阻抗测量信号;图像重建处理器,其执行存储于存储器中的程序,以便使得:基于电阻抗测量信号中的血液灌注信号,通过图像重建算法重建三维血液灌注图像。
- 如权利要求9所述的装置,其中,所述电极阵列设置在一条或多条阻抗带上、电极背心上或电极头罩上,使得电极呈三维分布。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20909510.8A EP4085828A4 (en) | 2019-12-31 | 2020-08-04 | METHOD AND DEVICE BASED ON ELECTRICAL IMPEDANCE TOMOGRAPHY FOR GENERATING A THREE-DIMENSIONAL IMAGE OF BLOOD PERFUSION |
US17/790,414 US20230045401A1 (en) | 2019-12-31 | 2020-08-04 | Electrical impedance tomography based method and device for generating three-dimensional blood perfusion image |
JP2022538885A JP7430303B2 (ja) | 2019-12-31 | 2020-08-04 | 電気インピーダンス・トモグラフィーによる3次元血液灌流画像生成方法及び装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911424085.5A CN111067521B (zh) | 2019-12-31 | 2019-12-31 | 基于电阻抗成像的三维血液灌注图像产生方法与装置 |
CN201911424085.5 | 2019-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021135211A1 true WO2021135211A1 (zh) | 2021-07-08 |
Family
ID=70321461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/106754 WO2021135211A1 (zh) | 2019-12-31 | 2020-08-04 | 基于电阻抗成像的三维血液灌注图像产生方法与装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230045401A1 (zh) |
EP (1) | EP4085828A4 (zh) |
JP (1) | JP7430303B2 (zh) |
CN (1) | CN111067521B (zh) |
WO (1) | WO2021135211A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115040100A (zh) * | 2022-06-14 | 2022-09-13 | 安影科技(北京)有限公司 | 一种视神经血流灌注数值快速采集方法 |
CN116524123A (zh) * | 2023-04-20 | 2023-08-01 | 深圳市元甪科技有限公司 | 一种三维电阻抗断层扫描图像重建方法及相关设备 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111067521B (zh) * | 2019-12-31 | 2021-10-01 | 北京华睿博视医学影像技术有限公司 | 基于电阻抗成像的三维血液灌注图像产生方法与装置 |
CN112057073A (zh) * | 2020-09-08 | 2020-12-11 | 北京华睿博视医学影像技术有限公司 | 呼吸及血液灌注图像同步生成方法、设备和系统 |
CN114469046A (zh) | 2020-10-23 | 2022-05-13 | 北京华睿博视医学影像技术有限公司 | 电阻抗成像方法、系统、存储介质以及电子设备 |
CN113749636B (zh) * | 2021-01-26 | 2022-06-24 | 北京华睿博视医学影像技术有限公司 | 一种三维通气图像产生方法、控制器及装置 |
CN113208578B (zh) * | 2021-05-26 | 2022-04-26 | 北京华睿博视医学影像技术有限公司 | 血液灌注信号分离模型训练方法及设备 |
CN114081468B (zh) * | 2022-01-19 | 2022-05-06 | 北京华睿博视医学影像技术有限公司 | 具有准周期性凹凸持液结构的电极片及电极带 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102688041A (zh) * | 2012-06-08 | 2012-09-26 | 思澜科技(成都)有限公司 | 基于电极采用交错位方式排列的三维电阻抗断层成像方法 |
CN104582566A (zh) * | 2012-08-20 | 2015-04-29 | 德尔格医疗有限责任公司 | 用于确定肺灌注的量的区域分布的装置 |
CN106264524A (zh) * | 2015-05-18 | 2017-01-04 | 财团法人交大思源基金会 | 三维电阻抗断层扫描方法 |
WO2018078540A1 (en) * | 2016-10-25 | 2018-05-03 | Navix International Limited | Systems and methods for registration of intra-body electrical readings with a pre-acquired three dimensional image |
CN109864712A (zh) * | 2019-04-02 | 2019-06-11 | 北京华睿博视医学影像技术有限公司 | 电阻抗成像设备和方法 |
CN111067521A (zh) * | 2019-12-31 | 2020-04-28 | 北京华睿博视医学影像技术有限公司 | 基于电阻抗成像的三维血液灌注图像产生方法与装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006012181A1 (en) * | 2004-06-24 | 2006-02-02 | Ksn Energies, Llc | Electrical impedance tomography to characterize tissue |
WO2009040742A2 (en) * | 2007-09-27 | 2009-04-02 | Philips Intellectual Property & Standards Gmbh | Methods for imaging the blood perfusion |
CN101658428A (zh) * | 2008-08-28 | 2010-03-03 | 西门子(中国)有限公司 | 灌注成像技术中对位图进行处理的方法和系统 |
EP2593006B1 (en) | 2010-07-16 | 2013-12-04 | Csem Sa | Method and apparatus for the non-invasive measurement of pulse transit times (ptt) |
CN103381096B (zh) * | 2013-04-19 | 2015-04-15 | 西安交通大学 | 骨表微血管血流灌注分离检测与成像方法 |
DE102017006107A1 (de) * | 2017-06-28 | 2019-01-03 | Drägerwerk AG & Co. KGaA | Vorrichtung und Verfahren zur Verarbeitung und Visualisierung von mittels eines Elektro-lmpedanz-Tomographie-Gerätes (EIT) gewonnenen Daten hinsichtlich eines Durchblutungszustandes von Herz und Lunge |
CN109965877B (zh) * | 2019-04-08 | 2023-03-14 | 中国人民解放军陆军军医大学第二附属医院 | 基于腹部电阻抗频谱参数的便携式组织血流灌注监护仪 |
-
2019
- 2019-12-31 CN CN201911424085.5A patent/CN111067521B/zh active Active
-
2020
- 2020-08-04 WO PCT/CN2020/106754 patent/WO2021135211A1/zh unknown
- 2020-08-04 EP EP20909510.8A patent/EP4085828A4/en active Pending
- 2020-08-04 JP JP2022538885A patent/JP7430303B2/ja active Active
- 2020-08-04 US US17/790,414 patent/US20230045401A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102688041A (zh) * | 2012-06-08 | 2012-09-26 | 思澜科技(成都)有限公司 | 基于电极采用交错位方式排列的三维电阻抗断层成像方法 |
CN104582566A (zh) * | 2012-08-20 | 2015-04-29 | 德尔格医疗有限责任公司 | 用于确定肺灌注的量的区域分布的装置 |
CN106264524A (zh) * | 2015-05-18 | 2017-01-04 | 财团法人交大思源基金会 | 三维电阻抗断层扫描方法 |
WO2018078540A1 (en) * | 2016-10-25 | 2018-05-03 | Navix International Limited | Systems and methods for registration of intra-body electrical readings with a pre-acquired three dimensional image |
CN109864712A (zh) * | 2019-04-02 | 2019-06-11 | 北京华睿博视医学影像技术有限公司 | 电阻抗成像设备和方法 |
CN111067521A (zh) * | 2019-12-31 | 2020-04-28 | 北京华睿博视医学影像技术有限公司 | 基于电阻抗成像的三维血液灌注图像产生方法与装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4085828A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115040100A (zh) * | 2022-06-14 | 2022-09-13 | 安影科技(北京)有限公司 | 一种视神经血流灌注数值快速采集方法 |
CN115040100B (zh) * | 2022-06-14 | 2023-10-27 | 安影科技(北京)有限公司 | 一种视神经血流灌注数值快速采集方法 |
CN116524123A (zh) * | 2023-04-20 | 2023-08-01 | 深圳市元甪科技有限公司 | 一种三维电阻抗断层扫描图像重建方法及相关设备 |
CN116524123B (zh) * | 2023-04-20 | 2024-02-13 | 深圳市元甪科技有限公司 | 一种三维电阻抗断层扫描图像重建方法及相关设备 |
Also Published As
Publication number | Publication date |
---|---|
JP2023508167A (ja) | 2023-03-01 |
CN111067521A (zh) | 2020-04-28 |
US20230045401A1 (en) | 2023-02-09 |
CN111067521B (zh) | 2021-10-01 |
EP4085828A1 (en) | 2022-11-09 |
JP7430303B2 (ja) | 2024-02-13 |
EP4085828A4 (en) | 2024-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021135211A1 (zh) | 基于电阻抗成像的三维血液灌注图像产生方法与装置 | |
JP7244136B2 (ja) | 電気インピーダンス断層撮影装置及び方法 | |
Gharibans et al. | High-resolution electrogastrogram: a novel, noninvasive method for determining gastric slow-wave direction and speed | |
Harikumar et al. | Electrical impedance tomography (EIT) and its medical applications: A review | |
US12059260B2 (en) | Channel integrity detection and reconstruction of electrophysiological signals | |
Ammari | An introduction to mathematics of emerging biomedical imaging | |
Zolgharni et al. | Imaging cerebral haemorrhage with magnetic induction tomography: numerical modelling | |
Huang et al. | Improved imaging resolution of electrical impedance tomography using artificial neural networks for image reconstruction | |
US10555682B2 (en) | Signal processing methods | |
JP2012179352A (ja) | 電流双極子を構築するシステムおよび電流双極子を構築する方法 | |
WO2013177123A1 (en) | Method and system for tomographic imaging | |
JP2014528333A (ja) | 心臓のイメージング方法 | |
GB2567294A (en) | Noise removal in magnetometer for medical use | |
Calder et al. | Torso-tank validation of high-resolution electrogastrography (EGG): Forward modelling, methodology and results | |
CN106132288B (zh) | 三维心脏轮廓重构方法 | |
JP2003339658A (ja) | 体脂肪測定装置 | |
WO2024007877A1 (zh) | 用于呈现呼吸阻抗与呼吸阻抗变化率关系的方法及装置 | |
Al Younis et al. | Non-invasive technologies for heart failure, systolic and diastolic dysfunction modeling: A scoping review | |
Sze | Detection of breast cancer with electrical impedance mammography | |
WO2022160899A1 (zh) | 一种三维通气图像产生方法、控制器及装置 | |
Mason et al. | Non-invasive imaging of neural activity with magnetic detection electrical impedance tomography (MDEIT): a modelling study | |
Rajagopal et al. | Nonlinear electrocardiographic imaging using polynomial approximation networks | |
Sun et al. | A new method for electrical impedance tomography with incomplete electrode array | |
US11779310B2 (en) | Systems and methods for magnetic resonance elastography with unconstrained optimization inversion | |
Cortés et al. | Electrical Impedance Tomography Simulation for Detection of Breast Tumors Based on Tumor Emulators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20909510 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022538885 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020909510 Country of ref document: EP Effective date: 20220801 |