WO2021135125A1 - 用于mems器件的防尘结构及mems麦克风封装结构 - Google Patents

用于mems器件的防尘结构及mems麦克风封装结构 Download PDF

Info

Publication number
WO2021135125A1
WO2021135125A1 PCT/CN2020/099351 CN2020099351W WO2021135125A1 WO 2021135125 A1 WO2021135125 A1 WO 2021135125A1 CN 2020099351 W CN2020099351 W CN 2020099351W WO 2021135125 A1 WO2021135125 A1 WO 2021135125A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
sound
dust
proof structure
fixed connection
Prior art date
Application number
PCT/CN2020/099351
Other languages
English (en)
French (fr)
Inventor
林育菁
Original Assignee
潍坊歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊歌尔微电子有限公司 filed Critical 潍坊歌尔微电子有限公司
Publication of WO2021135125A1 publication Critical patent/WO2021135125A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2231/00Details of apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor covered by H04R31/00, not provided for in its subgroups
    • H04R2231/001Moulding aspects of diaphragm or surround

Definitions

  • the invention belongs to the technical field of acoustic-electric conversion, and specifically relates to a dustproof structure for MEMS devices and a MEMS microphone packaging structure.
  • microphones are one of the most important devices in electroacoustic products.
  • microphones have been widely used in many different types of electronic products such as mobile phones, tablet computers, notebook computers, VR devices, AR devices, and smart wearables.
  • the design of the microphone packaging structure has become the focus and focus of research by those skilled in the art.
  • the existing microphone packaging structure usually includes a housing with a containing cavity in which components such as a microphone device (for example, a MEMS chip and an ASIC chip) are accommodated and fixed; and a sound hole is also provided on the housing. Therefore, in the long-term application, it has been found that external dust, impurities and other particles and foreign objects are easily introduced into the microphone cavity through the sound hole. These external particles and foreign objects can affect the microphone components and other components in the cavity. Causes certain damage, and will eventually affect the acoustic performance and service life of the microphone.
  • a microphone device for example, a MEMS chip and an ASIC chip
  • the existing isolation assembly generally includes a support portion and an isolation mesh.
  • the isolation assembly is installed on the sound hole.
  • a certain internal stress difference is likely to occur at the position where the two are connected; especially when hot-press bonding, Due to the different thermal expansion coefficients of the support part and the insulating mesh, the deformation amount after heating is different.
  • the above factors will cause wrinkles or wrinkles in the omentum on the isolation mesh, which cannot guarantee that the omentum is in a flat state, which will further reduce the quality of the product and even affect the air flow at the omentum.
  • An object of the present invention is to provide a dustproof structure for MEMS devices and a MEMS microphone packaging structure.
  • a dust-proof structure for a MEMS device which includes:
  • a grid film the grid film has a fixed connection area, a buffer area and a sound transmission area, the buffer area surrounds the sound transmission area, the fixed connection area surrounds the buffer area, and the fixed connection area surrounds the sound transmission area.
  • the connection area is located at the edge of the mesh film, and the buffer zone is provided with a through hole penetrating the mesh film;
  • a carrier the carrier has a through opening, the carrier is connected to one side of the fixed connection area, and the opening corresponds to the position of the buffer zone and the sound-transmitting zone.
  • the sound-transmitting area is made of an isolation net, and the isolation net is configured to allow sound to pass through.
  • the isolation mesh is a non-woven fabric of organic material or a metal mesh.
  • a plurality of the through holes are opened on the buffer zone, and the plurality of through holes are distributed along a region surrounding the sound transmission area.
  • the through hole is a round hole.
  • the through hole is an elliptical hole.
  • the width of the buffer zone is smaller than the width of the fixed connection area.
  • the material of the buffer zone and the fixed connection zone are the same.
  • the average thickness of the mesh film ranges from 0.3 micrometers to 1.2 micrometers.
  • a MEMS microphone packaging structure which includes:
  • a housing with a accommodating cavity the housing is provided with a sound hole, and the sound hole communicates the inside and the outside of the housing;
  • a microphone device the microphone device is fixedly arranged in the housing;
  • the carrier is fixedly connected to the housing;
  • the mesh film closes the sound hole; and/or, the mesh film is spaced between the sound hole and the microphone device.
  • a technical effect of the present invention is that the dust-proof structure for MEMS devices provided by the embodiments of the present invention is provided with a buffer zone between the sound-transmitting area on the mesh membrane and the fixed connection zone, and the buffer zone is provided with Through the through holes of the mesh membrane, in this way, when the fixed connection area of the mesh membrane is connected to the carrier, the buffer zone can play the role of releasing stress and alleviating deformation, so that the sound transmission area of the mesh membrane can basically maintain a The flat state avoids the phenomenon of wrinkles on the sound-transmitting area.
  • FIG. 1 is a first schematic diagram of a dust-proof structure for MEMS devices according to an embodiment of the present invention
  • FIG. 2 is a second schematic diagram of a dust-proof structure for MEMS devices provided by an embodiment of the present invention.
  • FIG. 3 is a third schematic diagram of a dust-proof structure for MEMS devices according to an embodiment of the present invention.
  • FIG. 4 is a fourth schematic diagram of a dustproof structure for MEMS devices provided by an embodiment of the present invention.
  • FIG. 5 is a first schematic diagram of a MEMS microphone packaging structure provided by an embodiment of the present invention.
  • FIG. 6 is a second schematic diagram of a MEMS microphone packaging structure provided by an embodiment of the present invention.
  • FIG. 7 is a third schematic diagram of a MEMS microphone packaging structure provided by an embodiment of the present invention.
  • FIG. 8 is a fourth schematic diagram of a MEMS microphone packaging structure provided by an embodiment of the present invention.
  • FIG. 9 is a fifth schematic diagram of a MEMS microphone packaging structure provided by an embodiment of the present invention.
  • the embodiments of the present invention provide a dust-proof structure for MEMS devices, and the dust-proof structure can be applied to, for example, a MEMS microphone packaging structure.
  • the dust-proof structure can effectively block external particles and foreign objects from entering the inside of the microphone packaging structure through the sound holes on the microphone packaging structure, thereby effectively protecting the internal components of the microphone to avoid affecting the acoustic performance and use of the microphone life.
  • the dust-proof structure includes a mesh film 1 and a carrier 2.
  • the mesh film 1 has a fixed connection area 11, a buffer area 12, and a sound-transmitting area 13.
  • the buffer area 12 surrounds the sound-transmitting area 13, and
  • the fixed connection area 11 surrounds the buffer area 12, the fixed connection area 11 is located at the edge of the mesh film 1, and the buffer area 12 is provided with a through hole 121 penetrating the mesh film 1
  • the carrier 2 has a through opening 21, the carrier 2 is connected to one side of the fixed connection area 11, and the opening 21 corresponds to the position of the buffer area 12 and the sound-transmitting area 13.
  • the buffer area 12 is provided with penetrating The through hole 121 of the mesh film 1; when connected to the carrier 2, the fixed connection area 11 of the mesh film 1 is directly connected to the carrier 2, and the opening 21 of the carrier 2 is connected to the buffer area 12 and the sound-transmitting area of the mesh film 1 13 corresponds.
  • the stress difference caused by the difference in materials and the like is released through the through holes 121 opened in the buffer zone 12, thereby significantly reducing the impact on the sound-transmitting zone 13; the difference in deformation caused by the difference in thermal expansion coefficient passes through the buffer zone 12
  • the through holes 121 opened on the upper side will not significantly affect the sound transmission area 13 after being relieved. Therefore, it is ensured that the sound-transmitting area 13 can basically maintain a flat state, and the phenomenon of wrinkles on the sound-transmitting area 13 is avoided.
  • the dust-proof structure provided by the embodiment of the present invention is applied to the MEMS microphone packaging structure, since the sound-transmitting area 13 on the mesh membrane 1 is basically in a flat state, this is beneficial to the smooth flow of air here, without Have an adverse effect on the movement of the airflow.
  • the fixed connection area 11 of the mesh membrane 1 is used to connect with the carrier 2, and the middle of the carrier 2 has a through
  • the opening 21 around the opening 21 is the edge portion 22 of the carrier 2.
  • the fixed connection area 11 of the grid film 1 is specifically connected with the edge portion 22 of the carrier 2, so that the grid film 1 can stably cover all The carrier 2 is on.
  • the fixed connection area 11 of the grid film 1 is used to connect with the carrier 2 in a manner such as bonding through an adhesive, bonding through thermocompression, and of course the two can also be bonded through fasteners or welding. Connected together, those skilled in the art can flexibly choose according to specific needs, which is not limited in the present invention.
  • the buffer area 12 and the sound-transmitting area 13 of the mesh membrane 1 correspond to the opening 21 of the carrier 2 and are suspended.
  • the sound-transmitting area 13 is made of an isolation net, and the isolation net is configured to allow sound to pass through.
  • the isolation mesh may be a metal mesh with a mesh aperture of less than about 10 ⁇ m, so that the air flow can pass smoothly, and at the same time, it can effectively block the ingress of dust, impurities and other particles from the outside.
  • the metal screen has the characteristics of good durability, does not need to be replaced frequently, and has a long service life.
  • the isolation net can also be a mesh fabric of other pore sizes and other materials, for example, a non-woven fabric of organic materials can be used.
  • the organic non-woven fabric has the characteristics of moisture-proof, breathable, flexible, light weight, non-combustible, easy to decompose, non-toxic and non-irritating, low price, and recyclable.
  • the shape of the mesh on the isolation net may be, for example, a circle, a square, a triangle, or the like.
  • the shape of the sound-transmitting area 13 itself can be, for example, a circle, a square, an ellipse, etc.
  • the sound-transmitting area 13 can also have other irregular shapes. Those skilled in the art can make adjustments flexibly according to actual needs, which is not limited in the present invention.
  • the buffer area 12 is provided with a plurality of through holes 121, and the plurality of through holes 121 are evenly distributed along the area surrounding the sound transmission zone 13. Evenly opening a plurality of through holes 121 distributed around the sound-transmitting area 13 on the buffer area 12 can more effectively release stress and relieve deformation, and more reliably ensure that the sound-transmitting area 13 of the mesh membrane 1 can be basically Maintain a flat state to avoid wrinkles on the sound-transmitting area 13.
  • the through hole 121 is a round hole.
  • the circular through hole 121 has the advantages of simple opening process and convenient molding.
  • the through hole 121 is an elliptical hole, and the long axis of a plurality of elliptical holes is distributed around the sound transmission area 13. Designing the through holes 121 as elliptical through holes 121 whose long axis is distributed along the direction surrounding the sound transmission zone 13 can more effectively use the area of the buffer area 12 to distribute the through holes 121, thereby making the buffer area 12 more effective.
  • the ground plays a role in releasing stress and alleviating deformation.
  • other shapes of through holes 121 can be designed according to actual needs. Referring to FIG.
  • the design of through-holes whose long axis is distributed along the radial direction of the sound-transmitting zone 13 121 is arc-shaped; for example, referring to FIG. 4, the through hole 121 is crescent-shaped.
  • the width of the buffer area 12 is smaller than the width of the fixed connection area 11. Setting the width of the fixed connection area 11 to be larger can ensure the stability of the connection between the mesh membrane 1 and the carrier 2.
  • the thickness of the buffer area 12 can also be set to be smaller than the thickness of the fixed connection area 11 to serve as a stress relief and deformation buffer area. The thickness of the buffer area 12 does not need to be set to be very thick.
  • the buffer area 12 and the sound-transmitting area 13 correspond to the opening 21 of the carrier 2 and are suspended, setting the buffer area 12 and the sound-transmitting area 13 to be thinner is beneficial to the stability of the installation of the entire mesh membrane 1. .
  • the material of the buffer area 12 and the fixed connection area 11 are the same.
  • the buffer area 12 and the fixed connection area 11 may also be made of, for example, a metal wire mesh or a non-woven fabric of organic material based on the metal wire mesh, or other materials that facilitate the connection with the carrier 2, which is not limited in the present invention.
  • the average thickness of the mesh film 1 ranges from 0.3 micrometers to 1.2 micrometers.
  • the mesh film 1 within this thickness range can form a stable connection with the carrier 2, and can effectively block the ingress of external dust, impurities and other particles.
  • the embodiment of the present invention also provides a MEMS microphone packaging structure, which includes a housing 3 with a accommodating cavity, the housing 3 is provided with a sound hole 4, and the sound hole 4 communicates the inside and the outside of the housing 3; It includes a microphone device and the dust-proof structure as described above, the microphone device is fixedly arranged in the housing 3; the carrier 2 is fixedly connected to the housing 3; the mesh membrane 1 closes the sound hole 4; And/or, the mesh film 1 is spaced between the sound hole 4 and the microphone device.
  • a MEMS microphone packaging structure which includes a housing 3 with a accommodating cavity, the housing 3 is provided with a sound hole 4, and the sound hole 4 communicates the inside and the outside of the housing 3; It includes a microphone device and the dust-proof structure as described above, the microphone device is fixedly arranged in the housing 3; the carrier 2 is fixedly connected to the housing 3; the mesh membrane 1 closes the sound hole 4; And/or, the mesh film 1 is spaced between the sound hole 4 and the microphone device.
  • the MEMS microphone packaging structure can be applied to various types of electronic products such as mobile phones, notebook computers, Ipads, VR devices, and smart wearable devices, and its applications are relatively wide.
  • the MEMS microphone packaging structure provided by the embodiment of the present invention can effectively prevent internal microphone devices and other components from being damaged by external dust, impurities and other particles and foreign objects, can prolong the service life of the microphone, and also make The microphone maintains excellent acoustic performance.
  • the microphone packaging structure of the present invention has a housing 3 structure that includes a substrate 32 and a packaging cover 31, and the substrate 32 and the packaging cover 31 are combined to form the accommodating cavity .
  • the dust-proof structure is contained in the containing cavity of the housing 3.
  • the sound hole 4 is opened on the substrate 32, and the microphone device includes a MEMS chip 5 and a signal amplifier 6 connected to each other.
  • the MEMS chip 5 includes a substrate and a sensing film
  • the substrate is a hollow structure.
  • the sensing film is, for example, a piezoelectric element, a capacitive element, a piezoresistive element, and the like.
  • the sensing film is arranged at one end of the substrate and covers the hollow structure of the substrate.
  • the hollow structure forms a back cavity which communicates with the acoustic hole 4 and the MEMS chip 5 is mounted on the substrate 32.
  • the dust-proof structure is located in the containing cavity of the housing 3 and covers the sound hole 4.
  • the carrier 2 is connected to the base plate 32.
  • the mesh membrane 1 is arranged on and around the sound hole 4, and the mesh membrane 1 is arranged opposite to the sound hole 4 to block external dust, impurities and other particles and foreign matter from entering the housing cavity of the housing 3 from the sound hole 4.
  • the dust-proof structure is entirely located in the back cavity of the MEMS chip 5. The external airflow first passes through the filtering effect of the mesh membrane 1 of the dust-proof structure and then enters the back cavity of the chip 5. Inside.
  • the dust-proof structure is located in the accommodating cavity of the housing 3 and covers the sound hole 4.
  • the carrier 2 is connected to the base plate 32.
  • the mesh membrane 1 is arranged on and around the sound hole 4, and the mesh membrane 1 is arranged opposite to the sound hole 4 to block external dust, impurities and other particles and foreign matter from entering the housing cavity of the housing 3 from the sound hole 4.
  • the MEMS chip 5 is connected to the side of the mesh membrane 1 of the dust-proof structure away from the carrier 2, specifically connected to the side of the fixed connection area 11 away from the carrier 2. The airflow first passes through the filtering effect of the mesh membrane 1 of the dust-proof structure, and then enters the back cavity of the chip 5.
  • the dust-proof structure of the present invention can also have other settings:
  • the sound hole 4 is opened on the packaging cover 31, and the dust-proof structure cover is provided on the packaging cover 31 at a position corresponding to the sound hole 4 and located outside the housing 3.
  • the sound hole 4 is opened on the packaging cover 31, and the dust-proof structure cover is provided on the packaging cover 31 at a position corresponding to the sound hole 4 and located in the accommodating cavity of the housing 3.
  • the position of the dust-proof structure corresponds to the sound hole 4, which can prevent external particles and foreign objects from being introduced into the microphone packaging structure through the sound hole 4.
  • the sound hole 4 is located on the packaging cover 31, and the dust-proof structure is fixedly connected to the substrate 32 at a position corresponding to the sound hole 4. At this time, the dust-proof structure
  • the microphone device in the microphone packaging structure can be effectively protected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Casings For Electric Apparatus (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

本发明公开了一种用于MEMS器件的防尘结构及MEMS麦克风封装结构,所述用于MEMS器件的防尘结构包括网格膜及载体,所述网格膜具有固定连接区、缓冲区和透声区,所述缓冲区环绕在所述透声区周围,所述固定连接区环绕在所述缓冲区周围,所述固定连接区位于所述网格膜的边缘,所述缓冲区上开设有贯穿所述网格膜的通孔;所述载体具有贯通的开口,所述载体连接在所述固定连接区的一侧,所述开口与所述缓冲区和透声区的位置相对应。

Description

用于MEMS器件的防尘结构及MEMS麦克风封装结构 技术领域
本发明属于声电转换技术领域,具体地,涉及一种用于MEMS器件的防尘结构及MEMS麦克风封装结构。
背景技术
随着电声技术的快速发展,各种电声产品层出不穷。麦克风作为一种将声音信号转换为电信号的换能器件,是电声产品中非常重要的器件之一。如今,麦克风已经被广泛应用于手机、平板电脑、笔记本电脑、VR设备、AR设备以及智能穿戴等多种不同类型的电子产品中。近年来,对于麦克风封装结构的设计成为了本领域技术人员研究的重点和热点。
现有的麦克风封装结构通常为:包括具有容纳腔的外壳,在容纳腔内收容固定有麦克风器件(例如,MEMS芯片和ASIC芯片)等元器件;并且,在外壳上还设置有声孔。因此,在长期的应用中发现,外界的灰尘、杂质等颗粒物和异物很容易经由声孔而被引入到麦克风的容纳腔中,这些外界的颗粒物、异物会对容纳腔中的麦克风器件等元器件造成一定的损伤,并且最终会影响到麦克风的声学性能以及使用寿命。
针对上述技术问题,目前所采用的解决方案通常是,在麦克风封装结构的声孔上设置相应的隔离组件,用以阻挡外界颗粒物、异物等的进入。现有的隔离组件一般包括支撑部和隔离网布,在使用该隔离组件时,将隔离组件安装在声孔上。但现有的隔离组件,由于支撑部与隔离网布在尺寸、材料、结构等方面存在着差异,在二者连接的位置很可能会产生一定的内部应力差;尤其是在热压结合时,由于支撑部与隔离网布的热膨胀系数不 同,受热之后的形变量有差异。以上这些因素将会导致隔离网布上的网膜产生褶皱或者皱纹,不能保证网膜处于平整状态,而这将会进而造成产品的品质下降,甚至还会影响到网膜处的气流流动。
发明内容
本发明的一个目的是提供一种用于MEMS器件的防尘结构及MEMS麦克风封装结构。
根据本发明的第一方面,提供了一种用于MEMS器件的防尘结构,其包括:
网格膜,所述网格膜具有固定连接区、缓冲区和透声区,所述缓冲区环绕在所述透声区周围,所述固定连接区环绕在所述缓冲区周围,所述固定连接区位于所述网格膜的边缘,所述缓冲区上开设有贯穿所述网格膜的通孔;
载体,所述载体具有贯通的开口,所述载体连接在所述固定连接区的一侧,所述开口与所述缓冲区和透声区的位置相对应。
可选地,所述透声区采用隔离网制成,所述隔离网被配置为供声音穿过。
可选地,所述隔离网为有机材料无纺布或金属筛网。
可选地,所述缓冲区上开设有多个所述通孔,多个所述通孔沿着环绕所述透声区的区域分布。
可选地,所述通孔为圆孔。
可选地,所述通孔为椭圆孔。
可选地,所述缓冲区的宽度小于所述固定连接区的宽度。
可选地,所述缓冲区与所述固定连接区的材质相同。
可选地,所述网格膜的平均厚度范围为0.3微米-1.2微米。
根据本发明的另一方面,提供了一种MEMS麦克风封装结构,其包括:
具有容纳腔的外壳,所述外壳上设有声孔,所述声孔将所述外壳的内部和外部连通;
麦克风器件,所述麦克风器件固定设置在所述外壳内;
如上所述的防尘结构,所述载体与所述外壳固定连接;
所述网格膜封闭所述声孔;和/或,所述网格膜间隔于所述声孔与所述麦克风器件之间。
本发明的一个技术效果在于,本发明实施例提供的用于MEMS器件的防尘结构,通过在网格膜上的透声区与固定连接区之间设置缓冲区,所述缓冲区上开设有贯穿所述网格膜的通孔,这样,当网格膜的固定连接区与载体连接时,缓冲区能够起到释放应力、缓解形变的作用,使得网格膜的透声区能够基本保持一个平整的状态,避免透声区上产生褶皱的现象。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1为本发明实施例提供的一种用于MEMS器件的防尘结构的示意图一;
图2为本发明实施例提供的一种用于MEMS器件的防尘结构的示意图二;
图3为本发明实施例提供的一种用于MEMS器件的防尘结构的示意图三;
图4为本发明实施例提供的一种用于MEMS器件的防尘结构的示意图四;
图5为本发明实施例提供的一种MEMS麦克风封装结构的示意图一;
图6为本发明实施例提供的一种MEMS麦克风封装结构的示意图二;
图7为本发明实施例提供的一种MEMS麦克风封装结构的示意图三;
图8为本发明实施例提供的一种MEMS麦克风封装结构的示意图四;
图9为本发明实施例提供的一种MEMS麦克风封装结构的示意图五。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
参考图1、图2所示,本发明实施例提供了一种用于MEMS器件的防尘结构,该防尘结构可以应用在例如MEMS麦克风封装结构上。该防尘结构能够有效阻隔外界的颗粒物、异物经麦克风封装结构上的声孔进入到麦克风封装结构的内部,从而能够有效地保护麦克风内部的各元器件,以避免影响到麦克风的声学性能和使用寿命。所述防尘结构包括网格膜1及载体2,所述网格膜1具有固定连接区11、缓冲区12和透声区13,所述缓冲区12环绕在所述透声区13周围,所述固定连接区11环绕在所述缓冲区 12周围,所述固定连接区11位于所述网格膜1的边缘,所述缓冲区12上开设有贯穿所述网格膜1的通孔121;所述载体2具有贯通的开口21,所述载体2连接在所述固定连接区11的一侧,所述开口21与所述缓冲区12和透声区13的位置相对应。
在本发明实施例提供的用于MEMS器件的防尘结构中,由于在网格膜1的固定连接区11与透声区13之间设置有缓冲区12,缓冲区12上开设有贯穿所述网格膜1的通孔121;在与载体2连接时,网格膜1的固定连接区11直接与载体2相连,而载体2的开口21与网格膜1的缓冲区12和透声区13相对应。这样,由于网格膜1上的透声区13与固定连接区11之间被缓冲区12隔离开,当固定连接区11与载体2连接时,即便由于固定连接区11与载体2的材质及热膨胀系数等有所差异,在二者连接的位置存在应力差及形变量的不同,这些差异对固定连接区11造成的影响经过缓冲区12的缓解作用后再传递给透声区13将会大大减少。具体地,由于材质等的差异造成的应力差通过缓冲区12上开设的通孔121被释放掉,从而明显减少对透声区13的影响;由于热膨胀系数的差异造成的形变不同经过缓冲区12上开设的通孔121缓解后也不会对透声区13造成明显的影响。因此,这样就保证了透声区13可以基本保持一个平整的状态,避免透声区13上产生褶皱的现象。在将本发明实施例提供的防尘结构应用于MEMS麦克风封装结构上后,由于网格膜1上的透声区13基本处于平整的状态,这样有利于空气在此处的顺利流动,不会对气流的运动产生不良影响。
参考图1、图2所示,在本发明实施例提供的用于MEMS器件的防尘结构中,网格膜1的固定连接区11用于与载体2连接,所述载体2的中部具有贯通的开口21,围绕开口21为载体2的边缘部分22,网格膜1的固定连接区11具体是与载体2的边缘部分22相连接,以使所述网格膜1能够稳定的覆盖在所述载体2上。网格膜1的固定连接区11用于与载体2二者的连接方式例如可以是通过粘接剂粘接,通过热压粘合,当然二者之间 也可以通过紧固件或者焊接等方式连接在一起,本领域技术人员可以根据具体需要灵活选择,本发明对此不作限制。所述网格膜1的缓冲区12及透声区13与载体2的开口21相对应,为悬空设置。
在一个实施例中,所述透声区13采用隔离网制成,所述隔离网被配置为供声音穿过。所述隔离网例如可以采用网孔孔径小于10μm左右的金属筛网,以使气流能够顺利地通过,同时还可以有效阻挡住外界的灰尘、杂质等颗粒物进入。而且,金属材质的筛网具有耐用性好的特点,无需频繁更换,具有较长的使用寿命。当然,所述隔离网也可以采用其它孔径尺寸和其它材质的网布,例如,可以采用有机材料无纺布。有机材料无纺布具有防潮、透气、柔韧、质轻、不助燃、容易分解、无毒无刺激性、价格低廉、可循环再用等特点。并且,所述隔离网上网孔的形状例如可以为圆形、方形、三角形等形状。本领域技术人员可以根据具体需要灵活进行调整,本发明对此不作限制。
可以理解的是,在网格膜1上,透声区13本身的形状例如可以为圆形、方形、椭圆形等,当然透声区13也可以为其它不规则的形状。本领域技术人员可以根据实际需要灵活进行调整,本发明对此不作限制。
在一个实施例中,所述缓冲区12上开设有多个所述通孔121,多个所述通孔121沿着环绕所述透声区13的区域均匀分布。在缓冲区12上均匀开设多个环绕透声区13的区域分布的通孔121能够更加有效地起到释放应力、缓解形变的作用,更加可靠地确保网格膜1的透声区13能够基本保持一个平整的状态,避免透声区13上产生褶皱的现象。
在一个实施例中,所述通孔121为圆孔。圆形的通孔121具有开设工艺简单、成型方便的优点。
参考图2所示,在一个实施例中,所述通孔121为椭圆孔,多个所述椭圆孔的长轴环绕所述透声区13分布。将通孔121设计为长轴沿着环绕所述透声区13的方向分布的椭圆形的通孔121能够更加有效地利用缓冲区 12的面积来分布通孔121,进而使得缓冲区12更加有效地起到释放应力、缓解形变的作用。当然根据实际需要也可以设计其他形状的通孔121,参考图1所示,例如在透声区13为圆形的实施方式中,设计长轴沿着透声区13的径向分布的通孔121。例如,参考图3所示,所述通孔121为弧线形;例如,参考图4所示,所述通孔121为月牙形。
在一个实施例中,所述缓冲区12的宽度小于所述固定连接区11的宽度。将固定连接区11的宽度设置得较大一些,可以确保网格膜1与载体2连接的稳定性。此外,还可以将缓冲区12的厚度设置为小于所述固定连接区11的厚度,作为应力释放及形变缓冲的区域,缓冲区12的厚度不需要设置得很厚。并且,由于缓冲区12及透声区13与载体2的开口21相对应,为悬空设置,因此将缓冲区12及透声区13设置得较薄一些有利于整个网格膜1安装的稳固性。
在一个实施例中,所述缓冲区12与所述固定连接区11的材质相同。缓冲区12与固定连接区11例如也可以采用金属丝网或者以金属丝网为基底的有机材料无纺布制成,或者其他便于和载体2连接的材质,本发明对此不作限制。
在一个实施例中,所述网格膜1的平均厚度范围为0.3微米-1.2微米。在该厚度范围内的网格膜1能够与载体2形成稳定的连接,并且能够有效阻挡住外界的灰尘、杂质等颗粒物进入。
本发明实施例还提供了一种MEMS麦克风封装结构,其包括具有容纳腔的外壳3,所述外壳3上设有声孔4,所述声孔4将所述外壳3的内部和外部连通;还包括麦克风器件及如上所述的防尘结构,所述麦克风器件固定设置在所述外壳3内;所述载体2与所述外壳3固定连接;所述网格膜1封闭所述声孔4;和/或,所述网格膜1间隔于所述声孔4与所述麦克风器件之间。
所述MEMS麦克风封装结构可应用于例如手机、笔记本电脑、Ipad、 VR设备以及智能穿戴设备等多种类型的电子产品中,其应用较为广泛。本发明实施例提供的MEMS麦克风封装结构,能够有效避免内部的麦克风器件等元器件受到外部灰尘、杂质等颗粒物、异物的影响而遭到破坏的现象,可以延长麦克风的使用寿命,而且还能使麦克风保持优良的声学性能。
参考图5-图9所示,本发明的麦克风封装结构,其外壳3的结构为:包括基板32和封装盖31,并由所述基板32和所述封装盖31一起围合成所述容纳腔。所述防尘结构收容在外壳3的容纳腔内。具体地,所述声孔4开在基板32上,所述麦克风器件包括相连接的MEMS芯片5和信号放大器6。其中,所述MEMS芯片5包括有衬底和感应膜,衬底为中空结构。感应膜例如为压电元件、电容元件、压阻元件等。感应膜设置在衬底的一端,并覆盖衬底的中空结构,该中空结构形成背腔,背腔与所述声孔4相连通,MEMS芯片5贴装在基板32上。
在本发明一个可选的例子中,如图5所示,所述防尘结构位于外壳3的容纳腔内并且盖设于所述声孔4处,具体地,所述载体2连接在基板32上并且围绕设置在声孔4周围,所述网格膜1与声孔4相对设置用于阻挡外部的灰尘、杂质等颗粒物、异物从声孔4进入到外壳3的容纳腔内。在图5所示的实施例中,所述防尘结构整体位于MEMS芯片5的背腔内,外部的气流首先经过防尘结构的网格膜1的过滤作用后再进入到芯片5的背腔内。
在本发明一个可选的例子中,如图6所示,所述防尘结构位于外壳3的容纳腔内并且盖设于所述声孔4处,具体地,所述载体2连接在基板32上并且围绕设置在声孔4周围,所述网格膜1与声孔4相对设置用于阻挡外部的灰尘、杂质等颗粒物、异物从声孔4进入到外壳3的容纳腔内。在图6所示的实施例中,所述MEMS芯片5连接在防尘结构的网格膜1远离载体2的一侧,具体是连接在固定连接区11上远离载体2的一侧,外部的气流首先经过防尘结构的网格膜1的过滤作用后再进入到芯片5的背腔内。
当然,本发明的防尘结构也可以有其他的设置方式:
例如,如图7所示,声孔4开设在封装盖31上,防尘结构盖设在封装盖31上与声孔4对应的位置处且位于外壳3的外部。例如,如图8所示,声孔4开设在封装盖31上,防尘结构盖设在封装盖31上与声孔4对应的位置处且位于外壳3的容纳腔内。防尘结构的位置对应于声孔4,能够避免外界的颗粒物、异物经声孔4而引入到麦克风封装结构内部。再例如,如图9所示,声孔4位于所述封装盖31上,所述防尘结构固定连接在所述基板32上对应于所述声孔4的位置处,此时,防尘结构能够对麦克风封装结构内的麦克风器件进行有效的保护。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种用于MEMS器件的防尘结构,其特征在于,包括:
    网格膜,所述网格膜具有固定连接区、缓冲区和透声区,所述缓冲区环绕在所述透声区周围,所述固定连接区环绕在所述缓冲区周围,所述固定连接区位于所述网格膜的边缘,所述缓冲区上开设有贯穿所述网格膜的通孔;
    载体,所述载体具有贯通的开口,所述载体连接在所述固定连接区的一侧,所述开口与所述缓冲区和透声区的位置相对应。
  2. 根据权利要求1所述的防尘结构,其特征在于,所述透声区采用隔离网制成,所述隔离网被配置为供声音穿过。
  3. 根据权利要求2所述的防尘结构,其特征在于,所述隔离网为有机材料无纺布或金属筛网。
  4. 根据权利要求1所述的防尘结构,其特征在于,所述缓冲区上开设有多个所述通孔,多个所述通孔沿着环绕所述透声区的区域均匀分布。
  5. 根据权利要求1所述的防尘结构,其特征在于,所述通孔为圆孔。
  6. 根据权利要求1所述的防尘结构,其特征在于,所述通孔为椭圆孔。
  7. 根据权利要求1所述的防尘结构,其特征在于,所述缓冲区的宽度小于所述固定连接区的宽度。
  8. 根据权利要求1所述的防尘结构,其特征在于,所述缓冲区与所述固定连接区的材质相同。
  9. 根据权利要求1所述的防尘结构,其特征在于,所述网格膜的平均厚度范围为0.3微米-1.2微米。
  10. 一种MEMS麦克风封装结构,其特征在于,包括:
    具有容纳腔的外壳,所述外壳上设有声孔,所述声孔将所述外壳的内部和外部连通;
    麦克风器件,所述麦克风器件固定设置在所述外壳内;
    权利要求1-9任意之一所述的防尘结构,所述载体与所述外壳固定连接;
    所述网格膜封闭所述声孔;和/或,所述网格膜间隔于所述声孔与所述麦克风器件之间。
PCT/CN2020/099351 2019-12-31 2020-06-30 用于mems器件的防尘结构及mems麦克风封装结构 WO2021135125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911415087.8A CN111147992A (zh) 2019-12-31 2019-12-31 用于mems器件的防尘结构及mems麦克风封装结构
CN201911415087.8 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135125A1 true WO2021135125A1 (zh) 2021-07-08

Family

ID=70522738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099351 WO2021135125A1 (zh) 2019-12-31 2020-06-30 用于mems器件的防尘结构及mems麦克风封装结构

Country Status (2)

Country Link
CN (1) CN111147992A (zh)
WO (1) WO2021135125A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933579A (zh) * 2019-12-31 2020-03-27 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备
CN111147995A (zh) * 2019-12-31 2020-05-12 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备
CN111147992A (zh) * 2019-12-31 2020-05-12 歌尔股份有限公司 用于mems器件的防尘结构及mems麦克风封装结构
CN111031461A (zh) * 2019-12-31 2020-04-17 歌尔股份有限公司 一种用于mems器件的防尘结构及mems麦克风封装结构
CN111711906B (zh) * 2020-06-30 2021-10-22 歌尔微电子有限公司 微型麦克风防尘装置及mems麦克风

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201563214U (zh) * 2009-10-19 2010-08-25 瑞声声学科技(深圳)有限公司 麦克风
US20150118780A1 (en) * 2013-10-30 2015-04-30 Solid State System Co., Ltd. Microelectromechanical system (mems) microphone with protection film and mems microphonechips at wafer level
US20180070162A1 (en) * 2015-05-14 2018-03-08 Knowles Electronics, Llc Sensor device with ingress protection
CN110572762A (zh) * 2019-09-29 2019-12-13 歌尔股份有限公司 一种mems芯片以及电子设备
CN110944276A (zh) * 2019-12-31 2020-03-31 歌尔股份有限公司 用于mems器件的防尘结构及mems麦克风封装结构
CN111147992A (zh) * 2019-12-31 2020-05-12 歌尔股份有限公司 用于mems器件的防尘结构及mems麦克风封装结构
CN111147995A (zh) * 2019-12-31 2020-05-12 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备
CN111163410A (zh) * 2019-12-31 2020-05-15 歌尔股份有限公司 一种用于mems器件的防尘结构及mems麦克风封装结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201563214U (zh) * 2009-10-19 2010-08-25 瑞声声学科技(深圳)有限公司 麦克风
US20150118780A1 (en) * 2013-10-30 2015-04-30 Solid State System Co., Ltd. Microelectromechanical system (mems) microphone with protection film and mems microphonechips at wafer level
US20180070162A1 (en) * 2015-05-14 2018-03-08 Knowles Electronics, Llc Sensor device with ingress protection
CN110572762A (zh) * 2019-09-29 2019-12-13 歌尔股份有限公司 一种mems芯片以及电子设备
CN110944276A (zh) * 2019-12-31 2020-03-31 歌尔股份有限公司 用于mems器件的防尘结构及mems麦克风封装结构
CN111147992A (zh) * 2019-12-31 2020-05-12 歌尔股份有限公司 用于mems器件的防尘结构及mems麦克风封装结构
CN111147995A (zh) * 2019-12-31 2020-05-12 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备
CN111163410A (zh) * 2019-12-31 2020-05-15 歌尔股份有限公司 一种用于mems器件的防尘结构及mems麦克风封装结构

Also Published As

Publication number Publication date
CN111147992A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2021135125A1 (zh) 用于mems器件的防尘结构及mems麦克风封装结构
WO2021135111A1 (zh) 用于mems器件的防尘结构及mems麦克风封装结构
WO2021135113A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2021135121A1 (zh) 一种用于mems器件的防尘结构及mems麦克风封装结构
WO2021135108A1 (zh) 防尘结构、麦克风封装结构以及电子设备
US9992563B2 (en) MEMS microphone
WO2021135109A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2021135116A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2021135110A1 (zh) 用于mems器件的防尘结构及mems麦克风封装结构
KR102003582B1 (ko) 마이크로폰 시스템의 오프셋 음향 채널
WO2021135115A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2021135107A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2017012122A1 (zh) 硅麦克风装置及使用其的电子设备
TW201503705A (zh) 防水透音構件
WO2021135118A1 (zh) 防尘结构、麦克风封装结构以及电子设备
US20200213769A1 (en) Piezoelectric microphone
TWI572210B (zh) 微型揚聲器
CN109379684A (zh) 麦克风和电子设备
WO2021135120A1 (zh) 防尘结构、麦克风封装结构以及电子设备
WO2021135119A1 (zh) 一种用于mems器件的防尘结构及mems麦克风封装结构
CN109309884B (zh) 一种麦克风和电子设备
KR101303954B1 (ko) 광대역 및 방수 특성을 위한 보텀 포트형 마이크로폰 조립체
CN211047214U (zh) 一种用于mems器件的防尘结构及mems麦克风封装结构
CN211047219U (zh) 一种用于mems器件的防尘结构及mems麦克风封装结构
CN211047215U (zh) 用于mems器件的防尘结构及mems麦克风封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911045

Country of ref document: EP

Kind code of ref document: A1