WO2021135121A1 - 一种用于mems器件的防尘结构及mems麦克风封装结构 - Google Patents

一种用于mems器件的防尘结构及mems麦克风封装结构 Download PDF

Info

Publication number
WO2021135121A1
WO2021135121A1 PCT/CN2020/099303 CN2020099303W WO2021135121A1 WO 2021135121 A1 WO2021135121 A1 WO 2021135121A1 CN 2020099303 W CN2020099303 W CN 2020099303W WO 2021135121 A1 WO2021135121 A1 WO 2021135121A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
sound
dust
proof structure
fixed connection
Prior art date
Application number
PCT/CN2020/099303
Other languages
English (en)
French (fr)
Inventor
林育菁
佐佐木宽充
畠山庸平
Original Assignee
潍坊歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊歌尔微电子有限公司 filed Critical 潍坊歌尔微电子有限公司
Publication of WO2021135121A1 publication Critical patent/WO2021135121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present invention belongs to the technical field of acoustic-electric conversion. Specifically, the present invention relates to a dustproof structure for MEMS devices and a MEMS microphone packaging structure.
  • the microphone as a transducer that converts sound into electrical signals, is one of the most important devices in electroacoustic products.
  • microphones have been widely used in many different types of electronic products such as mobile phones, tablet computers, notebook computers, VR devices, AR devices, smart watches, and smart wearables.
  • the design of the structure has become the focus and focus of research by those skilled in the art.
  • the existing microphone packaging structure usually includes a housing with a accommodating cavity in which components such as chip components (for example, MEMS chips and ASIC chips) are housed and fixed; and a sound pickup hole is also provided on the housing.
  • chip components for example, MEMS chips and ASIC chips
  • a sound pickup hole is also provided on the housing.
  • the currently adopted solution is usually to provide a corresponding isolation component on the pickup hole of the microphone packaging structure to block the entry of foreign particles, foreign objects, etc.
  • the existing isolation assembly includes a support part and an isolation mesh. When using the isolation component, install the isolation component on the pickup hole.
  • the existing isolation components due to the difference in the thickness and material properties of the support part and the isolation mesh, will easily cause different degrees of expansion and deformation of the components in the isolation assembly after being heated, which will easily cause stress concentration and deformation damage. The sound quality of the microphone.
  • An object of the present invention is to provide a dustproof structure for MEMS devices and a MEMS microphone packaging structure.
  • a dust-proof structure for a MEMS device including:
  • a carrier the carrier has a columnar frame structure, the carrier has a through opening arranged along its own axial direction, and the side wall of the carrier has an arc-shaped surface;
  • a grid membrane the grid membrane has a fixed connection area and a sound-transmitting area, the fixed connection area surrounds the sound-transmitting area, and the fixed connection area is located at the edge of the grid film;
  • the mesh film is arranged on the end surface of the carrier, and the sound-transmitting area corresponds to the position of the opening.
  • the carrier has a polygonal columnar structure, and the side wall of the carrier is formed with the arc-shaped surface at the edge.
  • the carrier has a quadrangular prism structure.
  • the arc-shaped surface is formed by chamfering.
  • the carrier has a cylindrical structure or an elliptical cylindrical structure, and the sidewall of the carrier as a whole constitutes the arc-shaped surface.
  • the sound-transmitting area is made of an isolation net, and the isolation net is configured to allow sound to pass through.
  • the isolation mesh is an organic non-woven fabric or a metal mesh.
  • the grid membrane has a buffer area, the buffer area surrounds the sound-transmitting area, and the fixed connection area surrounds the buffer area;
  • the buffer zone and the sound-transmitting area correspond to the position of the opening.
  • the material of the buffer zone and the fixed connection zone are the same.
  • a MEMS microphone packaging structure including:
  • a housing provided with a accommodating cavity, the housing is provided with a sound hole, and the sound hole communicates the inside and the outside of the housing;
  • a microphone device the microphone device is fixedly arranged in the housing;
  • the carrier is fixedly connected to the housing;
  • the mesh film closes the sound hole; and/or, the mesh film is spaced between the sound hole and the microphone device.
  • the invention discloses a dust-proof structure for MEMS devices, comprising a grid membrane and a carrier, the carrier is in a columnar frame structure, the carrier has a through opening arranged along its own axis, and the side wall of the carrier Has a curved surface.
  • the side wall of the carrier is arranged as an arc-shaped surface to avoid stress concentration and transfer to the mesh film, which has a good protective effect on the mesh film.
  • Fig. 1 is a schematic structural diagram of a dust-proof structure for MEMS devices according to the present invention
  • FIG. 2 is a schematic structural diagram of another dust-proof structure for MEMS devices according to the present invention.
  • FIG. 3 is a schematic structural diagram of another dust-proof structure for MEMS devices according to the present invention.
  • FIG. 4 is a schematic structural diagram of another dust-proof structure for MEMS devices according to the present invention.
  • Fig. 5 is a schematic structural diagram of a MEMS microphone packaging structure of the present invention.
  • FIG. 6 is a schematic structural diagram of another MEMS microphone packaging structure of the present invention.
  • the present invention discloses a dust-proof structure 100 for MEMS devices, including:
  • the carrier 2 has a columnar frame structure, the carrier 2 has a through opening 3 arranged along its own axis, and the side wall of the carrier 2 has an arc-shaped surface;
  • the grid membrane 1 has a fixed connection area 101 and a sound-transmitting area 102, the fixed connection area 101 surrounds the sound-transmitting area 102, and the fixed connection area 101 is located at the edge of the mesh film 1;
  • the mesh film 1 Set on the end surface of the carrier 2, the sound-transmitting area 102 corresponds to the position of the opening 3.
  • the sound-transmitting area 102 of the mesh membrane 1 has a plurality of through holes through which air can pass, which facilitates the transmission of sound, and the carrier 2 plays a very good role in supporting and protecting the mesh membrane 1.
  • the direct contact damage of the mesh membrane 1 can be avoided, and the opening 3 is arranged opposite to the sound-transmitting area 102 on the mesh membrane 1 to provide a smooth passage for the air and facilitate the transmission of sound.
  • the carrier 2 and the MEMS device are generally fixedly connected, and the carrier 2 and the MEMS device are different due to the thickness and material characteristics. Different, the mechanical properties will be quite different. In this way, during the thermal expansion process, the carrier 2 and the MEMS device will deform to different degrees, resulting in high stress. If these stresses continue to be transmitted to the net As for the grid film 1, since the grid film 1 itself is provided with more through holes, the structural strength of the grid film 1 is low, and large deformation and stress can easily cause the grid film 1 to wrinkle or even be damaged.
  • the sidewall of the carrier 2 is set as an arc surface, the deformation and stress caused by the difference in thickness and material characteristics of the carrier 2 and the MEMS device can be well released, and avoid The stress is concentrated and transmitted to the mesh film 1, which has a good protective effect on the mesh film 1 and improves the stability and service life of the dust-proof structure 100.
  • the arc-shaped surface may be a smooth arc-shaped surface, or when the side wall of the carrier 2 has an edge, one, two or more cut surfaces are provided at the edge. A surface that is nearly arc-shaped is formed. A plurality of the cut surfaces and the cut surfaces form an obtuse angle with the side wall of the carrier 2. The closer the obtuse angle is to 180°, the more cut surfaces are needed to connect the edges of the carrier 2. On the side walls on both sides of the edge, the curved surface formed by the connection of multiple cut surfaces is closer to the curved surface.
  • the carrier 2 has a polygonal columnar structure, and the side wall of the carrier 2 is formed with the arc-shaped surface at the edge.
  • the carrier 2 When the carrier 2 has a polygonal prism structure, it can be a triangular prism, a quadrangular prism, a pentagonal prism, a hexagonal prism or more prisms.
  • the edge of the side wall of the carrier 2 is closer to the arc-shaped surface; when the prismatic carrier 2 has fewer edges, such as a triangular prism, a quadrangular prism, or a pentagonal prism carrier 2, then the edges of the carrier 2
  • the angles at the sides are small, and stress concentration is likely to occur, which in turn causes damage to the carrier 2 and even the mesh film 1.
  • the side walls of the carrier 2 are formed with the arc at the edges. On the surface, this greatly disperses the stress on the carrier 2 and avoids stress concentration.
  • the carrier 2 has a quadrangular prism structure, and the side wall of the carrier 2 is formed with the arc-shaped surface at four edges.
  • the carrier 2 may be fixedly connected to the MEMS device, and more importantly, the four edges of the carrier 2 need to be fixed to the MEMS device. Connection, the force between the carrier 2 and the MEMS device will be directly concentrated on the four edges of the carrier 2, and the four edges with arc-shaped surfaces will disperse the stress well. To protect the carrier 2 and even the mesh film 1.
  • the arc-shaped surface may be formed by chamfering.
  • the carrier 2 has a quadrangular prism structure, and the side wall of the carrier 2 is formed with a chamfered structure at four edges, and the chamfered structure consists of one
  • the chamfered surface is formed, and an obtuse angle is formed between the chamfered surface and the side walls of the two adjacent carriers 2, so that the chamfered surface and the side walls of the two adjacent carriers 2 form an obtuse angle
  • the structure of the curved surface greatly disperses the stress on the carrier 2.
  • the carrier 2 has a quadrangular prism structure
  • the side wall of the carrier 2 is formed with a chamfered structure at four edges
  • the chamfered structure is composed of two Two chamfered surfaces are formed
  • an obtuse angle is formed between the two chamfered surfaces and the side walls of the two adjacent carriers 2 so that the two chamfered surfaces and the adjacent two carriers 2 form an obtuse angle.
  • the side wall forms a structure close to the curved surface, which greatly disperses the stress on the carrier 2.
  • the number of the beveled surfaces can also be three, four, five or even more. The more the beveled surfaces, the structure where the beveled surfaces are close to the side walls of the two adjacent carriers 2 The closer to the curved surface, the better the stress can be dispersed.
  • the carrier 2 has a cylindrical structure or an elliptical cylindrical structure, and the side wall of the carrier 2 as a whole constitutes the arc-shaped surface.
  • the carrier 2 has a cylindrical structure, and the side wall of the carrier 2 integrally constitutes the arc-shaped surface.
  • Such an arc-shaped surface structure is not only simple to manufacture, but also easy to shape.
  • the entire side wall is used as an arc-shaped surface, which greatly disperses the stress on the carrier 2.
  • the sound-transmitting area 102 is made of an isolation net, and the isolation net is configured to allow sound to pass through.
  • the isolation mesh can be an organic non-woven fabric or a metal mesh.
  • the isolation net is an organic non-woven fabric
  • the non-woven fabric's soft, air-permeable planar structure and high toughness, and the size of the through holes on the surface of the non-woven fabric can be flexibly adjusted, it can provide
  • the sound zone 102 has better sound transmission properties, and is suitable for MEMS devices that require relatively high dust-proof effects; when the isolation mesh is a metal mesh, because the metal mesh has higher strength, it can be used in a very thin situation.
  • a good dust-proof effect can be achieved by lowering, which saves the internal space of the dust-proof structure 100 and achieves a good dust-proof effect at the same time.
  • the mesh film 1 has a buffer zone 103, the buffer zone 103 surrounds the sound-transmitting area 102, and the fixed connection zone 101 surrounds the buffer zone 103 Around; the buffer zone 103 and the sound-transmitting area 102 correspond to the position of the opening 3.
  • the fixed connection area 101 of the mesh membrane 1 provides a stable connection structure for the mesh membrane 1, but the structure strength is relatively high.
  • the sound-transmitting area 102 is provided with through holes to facilitate sound transmission and at the same time play a good role.
  • the arrangement of the buffer zone 103 of the present invention can indirectly transmit the deformation and stress of the fixed connection area 101 to the sound-transmitting area 102, which provides more advantages for the slow deformation, stress dispersion and structural stability of the sound-transmitting area 102. space.
  • the material of the buffer zone 103 and the fixed connection area 101 may be the same.
  • the structure of the dust-proof structure 100 can be simplified, and the buffer area 103 and the fixed connection area 101 may be integrally formed.
  • the MEMS device may be a MEMS microphone, a MEMS sensor, a MEMS chip, a MEMS switch, and the like.
  • the present invention also discloses a MEMS microphone packaging structure, including:
  • the housing 4 is provided with a sound hole 5, and the sound hole 5 communicates the inside and the outside of the housing 4;
  • a microphone device 6, the microphone device 6 is fixedly arranged in the housing 4;
  • the carrier 2 is fixedly connected to the housing 4;
  • the mesh film 1 closes the sound hole 5; and/or, the mesh film 1 is spaced between the sound hole 5 and the microphone device 6.
  • the carrier 2 of the dust-proof structure 100 may be fixedly connected to the housing 4.
  • the dust-proof structure 100 may be arranged outside the housing 4 opposite to the sound hole 5, or It is arranged inside the housing 4 opposite to the sound hole 5, or is further arranged directly around the microphone device 6 in the housing 4. It may be arranged directly around a plurality of the microphone devices 6, or it may be only It is arranged around important microphone devices 6 such as chips. It is also possible to use the dust-proof structure 100 around the microphone device 6 and the dust-proof structure 100 at the sound hole 5 to play a dual protective role.
  • the housing 4 includes a substrate 7, the sound hole 5 is provided on the substrate 7, the dust-proof structure 100 encloses the sound hole 5, the microphone device 6 includes a MEMS chip, and the dust-proof structure 100 The structure 100 is spaced between the sound hole 7 and the MEMS chip.
  • the dust-proof structure 100 and the MEMS chip may be directly connected or not connected to form a spaced support structure as shown in FIG. 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种用于MEMS器件的防尘结构及MEMS麦克风封装结构,该防尘结构包括网格膜和载体,所述载体呈柱状框架结构,所述载体具有沿自身轴向设置的贯通的开口,所述载体的侧壁具有弧形表面;所述网格膜具有固定连接区和透声区,所述固定连接区环绕在所述透声区周围,所述固定连接区位于所述网格膜的边缘;所述网格膜设置在所述载体的端面上,所述透声区与所述开口的位置对应。将所述载体的侧壁设置成弧形表面,就可以很好地释放由于所述载体与所述MEMS器件厚度尺寸和材料特性的不同带来的变形和应力,避免了应力集中并传递至所述网格膜,对所述网格膜起到了很好地保护作用,提高了所述防尘结构的稳定性和使用寿命。

Description

一种用于MEMS器件的防尘结构及MEMS麦克风封装结构 技术领域
本发明属于声电转换技术领域,具体地,本发明涉及一种用于MEMS器件的防尘结构及MEMS麦克风封装结构。
背景技术
随着电声技术的快速发展,各种电声产品层出不穷。麦克风作为一种将声音转换为电信号的换能器,是电声产品中非常重要的器件之一。如今,麦克风已经被广泛地应用于手机、平板电脑、笔记本电脑、VR设备、AR设备、智能手表以及智能穿戴等多种不同类型的电子产品中。近年来,对于麦克风封装结构而言,对其结构的设计成为了本领域技术人员研究的重点和热点。
现有的麦克风封装结构通常为:包括具有容纳腔的外壳,在容纳腔内收容固定有芯片组件(例如,MEMS芯片和ASIC芯片)等元器件;并且,在外壳上还设置有拾音孔。然而,在长期的应用中发现,外界的灰尘、杂质等颗粒物和异物很容易经拾音孔而被引入到麦克风的容纳腔中,而这些外界的颗粒物、异物会对容纳腔中的芯片组件等元器件造成一定的损伤,最终会影响到麦克风的声学性能以及使用寿命。
针对上述的问题,目前所采用的解决方案通常是,在麦克风封装结构的拾音孔上设置相应的隔离组件,用以阻挡外界颗粒物、异物等的进入。现有的隔离组件,包括有支撑部和隔离网布。在使用该隔离组件时,将隔离组件安装在拾音孔上。但现有的隔离组件,由于支撑部和隔离网布的厚度尺寸及材料特性的差异,在受热后容易导致隔离组件中各部件发生不同程度的膨胀变形,进而容易出现应力集中及变形损坏,影响麦克风的发声品质。
发明内容
本发明的一个目的是提供一种用于MEMS器件的防尘结构及MEMS麦克风封装结构。
根据本发明的第一方面,提供了一种用于MEMS器件的防尘结构,包括:
载体,所述载体呈柱状框架结构,所述载体具有沿自身轴向设置的贯通的开口,所述载体的侧壁具有弧形表面;
网格膜,所述网格膜具有固定连接区和透声区,所述固定连接区环绕在所述透声区周围,所述固定连接区位于所述网格膜的边缘;
所述网格膜设置在所述载体的端面上,所述透声区与所述开口的位置对应。
可选地,所述载体呈多棱柱状结构,所述载体的侧壁在棱边处形成有所述弧形表面。
可选地,所述载体呈四棱柱状结构。
可选地,所述弧形表面由斜切倒角构成。
可选地,所述载体呈圆柱状结构或椭圆柱状结构,所述载体的侧壁整体构成所述弧形表面。
可选地,所述透声区采用隔离网制成,所述隔离网被配置为供声音穿过。
可选地,所述隔离网为有机无纺布或金属筛网。
可选地,所述网格膜具有缓冲区,所述缓冲区环绕在所述透声区周围,所述固定连接区环绕在所述缓冲区周围;
所述缓冲区和所述透声区与所述开口的位置对应。
可选地,所述缓冲区与所述固定连接区的材质相同。
根据本发明的第二方面,提供了一种MEMS麦克风封装结构,包括:
设有容纳腔的外壳,所述外壳上设有声孔,所述声孔将所述外壳的内部和外部连通;
麦克风器件,所述麦克风器件固定设置在所述外壳内;
所述的防尘结构,所述载体与所述外壳固定连接;
所述网格膜封闭所述声孔;和/或,所述网格膜间隔于所述声孔与所 述麦克风器件之间。
本发明的一个技术效果在于:
本发明公开了一种用于MEMS器件的防尘结构,包括网格膜和载体,所述载体呈柱状框架结构,所述载体具有沿自身轴向设置的贯通的开口,所述载体的侧壁具有弧形表面。将所述载体的侧壁设置成弧形表面,避免了应力集中并传递至所述网格膜,对所述网格膜起到了很好地保护作用。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1为本发明一种用于MEMS器件的防尘结构的结构示意图;
图2为本发明另一种用于MEMS器件的防尘结构的结构示意图;
图3为本发明又一种用于MEMS器件的防尘结构的结构示意图;
图4为本发明再一种用于MEMS器件的防尘结构的结构示意图;
图5为本发明一种MEMS麦克风封装结构的结构示意图;
图6为本发明另一种MEMS麦克风封装结构的结构示意图。
其中:100-防尘结构;1-网格膜;101-固定连接区;102-透声区;103-缓冲区;2-载体;3-开口;4-外壳;5-声孔;6-麦克风器件;7-基板。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨 论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
参见图1,本发明公开了一种用于MEMS器件的防尘结构100,包括:
网格膜1和载体2,所述载体2呈柱状框架结构,所述载体2具有沿自身轴向设置的贯通的开口3,所述载体2的侧壁具有弧形表面;所述网格膜1具有固定连接区101和透声区102,所述固定连接区101环绕在所述透声区102周围,所述固定连接区101位于所述网格膜1的边缘;所述网格膜1设置在所述载体2的端面上,所述透声区102与所述开口3的位置对应。
所述网格膜1的透声区102上具有多个可以让空气通过的通孔,便于声音的传递,而所述载体2对所述网格膜1起到很好的支撑和保护作用,可以避免所述网格膜1的直接接触损坏,而所述开口3与所述网格膜1上的透声区102相对设置,给空气提供了顺畅的通道,便于声音的传递。
更重要的是,所述防尘结构100在MEMS器件中应用时,一般是将所述载体2与所述MEMS器件固定连接,而且所述载体2与所述MEMS器件由于厚度尺寸和材料特性的不同,力学性能会有较大的差异,这样在受热膨胀过程中,所述载体2和所述MEMS器件上就会发生不同程度变形,产生很高的应力,如果这些应力继续传递至所述网格膜1,由于网格膜1本身设置有较多的通孔,导致网格膜1的结构强度较低,较大的变形及应力容易导致所述网格膜1的褶皱甚至损坏。本发明中,将所述载体2的侧壁设置成弧形表面,就可以很好地释放由于所述载体2与所述MEMS器件厚度尺寸和材料特性的不同带来的变形和应力,避免了应力集中并传递至所述网格膜1,对所述网格膜1起到了很好地保护作用,提高了所述防尘结构100的稳定性和使用寿命。
具体地,所述弧形表面可以是平滑的弧形表面,也可以是在所述载体2的侧壁具有棱边时,在所述棱边处设置由一个、两个或者更多个切面连接而成的接近弧形的表面,多个所述切面以及所述切面与所述载体2的侧壁形成钝角,所述钝角越接近180°,就需要更多的切面来连接所述载体2棱边两侧的侧壁,多个切面连接而成的曲面也就越接近弧形表面。
可选地,所述载体2呈多棱柱状结构,所述载体2的侧壁在棱边处形成有所述弧形表面。
所述载体2呈多棱柱状结构时,可以是三棱柱、四棱柱、五棱柱、六棱柱或者更多棱柱体,所述棱柱状载体2的棱越多时,也就越接近于圆柱体,所述载体2的侧壁棱边处也就越接近弧形表面;当所述棱柱状载体2的棱较少时,比如三棱柱、四棱柱或五棱柱载体2,这时所述载体2的棱边处角度较小,很容易产生应力集中,进而导致所述载体2甚至所述网格膜1的损坏,而本发明中将所述载体2的侧壁在棱边处形成有所述弧形表面,这就大大分散了所述载体2受到的应力,避免了应力集中。
参见图1,在一种具体的实施方式中,所述载体2呈四棱柱状结构,所述载体2的侧壁在四个棱边处形成有所述弧形表面。所述防尘结构100在MEMS器件中应用时,可以是将所述载体2与所述MEMS器件固定连接,更重要的是需要将所述载体2的四个棱边处与所述MEMS器件固定连接,所述载体2与所述MEMS器件之间的作用力会直接集中到所述载体2的四个棱边处,具有弧形表面的四个棱边就会很好地将应力分散,起到保护所述载体2甚至所述网格膜1的作用。
可选地,所述弧形表面可以由斜切倒角构成。
参见图2,在另一种具体的实施方式中,所述载体2呈四棱柱状结构,所述载体2的侧壁在四个棱边处形成有倒角结构,所述倒角结构由一个斜切面形成,所述斜切面与相邻的两个所述载体2的侧壁之间形成钝角,这样所述斜切面与相邻的两个所述载体2的侧壁就形成了接近所述弧形表面的结构,大大分散了所述载体2受到的应力。
参见图3,在又一种具体的实施方式中,所述载体2呈四棱柱状结构,所述载体2的侧壁在四个棱边处形成有倒角结构,所述倒角结构由两个斜 切面形成,两个所述斜切面之间以及与相邻的两个所述载体2的侧壁之间形成钝角,这样两个所述斜切面与相邻的两个所述载体2的侧壁就形成了接近所述弧形表面的结构,大大分散了所述载体2受到的应力。当然,所述斜切面的数量还可以是三个、四个、五个甚至更多,所述斜切面越多,所述斜切面与相邻的两个所述载体2的侧壁接近的结构就越接近所述弧形表面,也就可以更好地分散应力。
可选地,所述载体2呈圆柱状结构或椭圆柱状结构,所述载体2的侧壁整体构成所述弧形表面。
参见图4,在再一种具体的实施方式中,所述载体2呈圆柱状结构,所述载体2的侧壁整体构成所述弧形表面,这样的弧形表面结构不仅制造简单,易于成型,而且整个侧壁作为弧形表面,大大分散了所述载体2受到的应力。
可选地,所述透声区102采用隔离网制成,所述隔离网被配置为供声音穿过。所述隔离网可以为有机无纺布或金属筛网。
当所述隔离网为有机无纺布时,借助于无纺布柔软、透气的平面结构和较高的韧性,而且所述无纺布表面的通孔大小可以灵活调节,可提供给所述透声区102较好的声音传递性,适合于对防尘效果要求比较高的MEMS器件;当所述隔离网为金属筛网时,由于金属筛网有较高的强度,可以在很薄的情况下就可以达到很好的防尘效果,节省了所述防尘结构100内部空间的同时达到了很好的防尘效果。
参见图1至图4,可选地,所述网格膜1具有缓冲区103,所述缓冲区103环绕在所述透声区102周围,所述固定连接区101环绕在所述缓冲区103周围;所述缓冲区103和所述透声区102与所述开口3的位置对应。
所述网格膜1的固定连接区101给所述网格膜1提供了稳定的连接结构,但结构强度较高,所述透声区102开设有通孔便于声音传递的同时起到了很好的防尘效果,但是结构强度较低,所以当所述固定连接区101与所述透声区102直接连接时由于两者的厚度尺寸及材料特征的差异,容易导致两者之间受力不均匀,给所述透声区102带来褶皱甚至损坏的可能性。而本发明缓冲区103的设置可以所述固定连接区101的变形和应力间接传 递给所述透声区102,给所述透声区102的缓慢变形、应力分散和结构稳定提供了更多的空间。
可选地,在一种具体实施方式中,所述缓冲区103与所述固定连接区101的材质可以相同。这样就可以简化所述防尘结构100的结构,提供给所述缓冲区103与所述固定连接区101一体成型的可能性。
所述MEMS器件可以是MEMS麦克风、MEMS传感器、MEMS芯片、MEMS开关等。
参见图5和图6,本发明还公开了一种MEMS麦克风封装结构,包括:
如有容纳腔的外壳4,所述外壳4上设有声孔5,所述声孔5将所述外壳4的内部和外部连通;
麦克风器件6,所述麦克风器件6固定设置在所述外壳4内;
所述的防尘结构100,所述载体2与所述外壳4固定连接;
所述网格膜1封闭所述声孔5;和/或,所述网格膜1间隔于所述声孔5与所述麦克风器件6之间。
所述防尘结构100的载体2可以与所述外壳4固定连接,对于所述载体2的具体位置,所述防尘结构100可以设置在与所述声孔5相对的外壳4外侧,也可以设置在与所述声孔5相对的外壳4内侧,或者进一步直接设置在所述外壳4内的所述麦克风器件6周围,可以是直接设置在多个所述麦克风器件6周围,也可以仅仅是设置在芯片等重要麦克风器件6的周围。还可以是采用所述麦克风器件6周围的防尘结构100与所述声孔5处的防尘结构100起到双重的防护作用。
具体地,所述外壳4包括基板7,所述声孔5设置在所述基板7上,所述防尘结构100封闭所述声孔5,所述麦克风器件6包括MEMS芯片,所述防尘结构100间隔于所述声孔7与所述MEMS芯片之间,所述防尘结构100与所述MEMS芯片可以直接连接,也可以不连接,形成如图5的间隔支撑结构。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围 和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种用于MEMS器件的防尘结构,其特征在于,包括:
    载体,所述载体呈柱状框架结构,所述载体具有沿自身轴向设置的贯通的开口,所述载体的侧壁具有弧形表面;
    网格膜,所述网格膜具有固定连接区和透声区,所述固定连接区环绕在所述透声区周围,所述固定连接区位于所述网格膜的边缘;
    所述网格膜设置在所述载体的端面上,所述透声区与所述开口的位置对应。
  2. 根据权利要求1所述的防尘结构,其特征在于,所述载体呈多棱柱状结构,所述载体的侧壁在棱边处形成有所述弧形表面。
  3. 根据权利要求2所述的防尘结构,其特征在于,所述载体呈四棱柱状结构。
  4. 根据权利要求2所述的防尘结构,其特征在于,所述弧形表面由斜切倒角构成。
  5. 根据权利要求1所述的防尘结构,其特征在于,所述载体呈圆柱状结构或椭圆柱状结构,所述载体的侧壁整体构成所述弧形表面。
  6. 根据权利要求1所述的防尘结构,其特征在于,所述透声区采用隔离网制成,所述隔离网被配置为供声音穿过。
  7. 根据权利要求6所述的防尘结构,其特征在于,所述隔离网为有机无纺布或金属筛网。
  8. 根据权利要求1所述的防尘结构,其特征在于,所述网格膜具有缓冲区,所述缓冲区环绕在所述透声区周围,所述固定连接区环绕在所述缓冲区周围;
    所述缓冲区和所述透声区与所述开口的位置对应。
  9. 根据权利要求8所述的防尘结构,其特征在于,所述缓冲区与所述固定连接区的材质相同。
  10. 一种MEMS麦克风封装结构,其特征在于,包括:
    设有容纳腔的外壳,所述外壳上设有声孔,所述声孔将所述外壳的内 部和外部连通;
    麦克风器件,所述麦克风器件固定设置在所述外壳内;
    权利要求1-9任意之一所述的防尘结构,所述载体与所述外壳固定连接;
    所述网格膜封闭所述声孔;和/或,所述网格膜间隔于所述声孔与所述麦克风器件之间。
PCT/CN2020/099303 2019-12-31 2020-06-30 一种用于mems器件的防尘结构及mems麦克风封装结构 WO2021135121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911416451.2A CN111163410A (zh) 2019-12-31 2019-12-31 一种用于mems器件的防尘结构及mems麦克风封装结构
CN201911416451.2 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135121A1 true WO2021135121A1 (zh) 2021-07-08

Family

ID=70560278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099303 WO2021135121A1 (zh) 2019-12-31 2020-06-30 一种用于mems器件的防尘结构及mems麦克风封装结构

Country Status (2)

Country Link
CN (1) CN111163410A (zh)
WO (1) WO2021135121A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163410A (zh) * 2019-12-31 2020-05-15 歌尔股份有限公司 一种用于mems器件的防尘结构及mems麦克风封装结构
CN110933579A (zh) * 2019-12-31 2020-03-27 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备
CN111147995A (zh) * 2019-12-31 2020-05-12 歌尔股份有限公司 防尘结构、麦克风封装结构以及电子设备
CN111147992A (zh) * 2019-12-31 2020-05-12 歌尔股份有限公司 用于mems器件的防尘结构及mems麦克风封装结构
CN111711902B (zh) * 2020-06-24 2021-08-06 歌尔微电子有限公司 微型麦克风防尘装置及mems麦克风
CN111711904B (zh) * 2020-06-24 2021-06-25 歌尔微电子有限公司 微型麦克风防尘装置及mems麦克风
CN111711912A (zh) * 2020-06-30 2020-09-25 歌尔微电子有限公司 微型麦克风防尘装置及mems麦克风
CN111711906B (zh) * 2020-06-30 2021-10-22 歌尔微电子有限公司 微型麦克风防尘装置及mems麦克风

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140353779A1 (en) * 2013-05-28 2014-12-04 Zilltek Technology Corp. Mems microphone and electronic equipment having the mems microphone
CN105657627A (zh) * 2014-11-11 2016-06-08 晶镁电子股份有限公司 具有防尘功能的电子装置以及用于制造该电子装置的方法
CN110113687A (zh) * 2019-04-12 2019-08-09 苏州敏芯微电子技术股份有限公司 硅麦克风
CN110545514A (zh) * 2019-08-16 2019-12-06 瑞声声学科技(深圳)有限公司 压电式mems麦克风
CN111163410A (zh) * 2019-12-31 2020-05-15 歌尔股份有限公司 一种用于mems器件的防尘结构及mems麦克风封装结构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204550046U (zh) * 2015-04-20 2015-08-12 歌尔声学股份有限公司 一种mems麦克风芯片及其封装结构
CN106210992A (zh) * 2016-07-25 2016-12-07 北京小米移动软件有限公司 在出声孔中设置防尘网的方法及防尘结构
CN110087173A (zh) * 2018-01-26 2019-08-02 安徽奥飞声学科技有限公司 具有软支撑结构的mems压电扬声器及其制备方法
CN208778527U (zh) * 2018-06-11 2019-04-23 苏州德格玛精密部件有限公司 一种复合式汽车滑动叉防尘堵盖及滑动叉总成
CN208821003U (zh) * 2018-11-13 2019-05-03 Oppo广东移动通信有限公司 用于电子装置麦克风的防尘支架组件及电子装置
CN208971808U (zh) * 2018-11-16 2019-06-11 歌尔科技有限公司 一种mems麦克风
CN208971809U (zh) * 2018-11-16 2019-06-11 歌尔科技有限公司 一种mems麦克风
CN209057360U (zh) * 2018-12-07 2019-07-02 歌尔科技有限公司 一种振动组件、扬声器和音箱
CN209105452U (zh) * 2019-01-15 2019-07-12 歌尔科技有限公司 Mems麦克风和电子设备
CN211047219U (zh) * 2019-12-31 2020-07-17 潍坊歌尔微电子有限公司 一种用于mems器件的防尘结构及mems麦克风封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140353779A1 (en) * 2013-05-28 2014-12-04 Zilltek Technology Corp. Mems microphone and electronic equipment having the mems microphone
CN105657627A (zh) * 2014-11-11 2016-06-08 晶镁电子股份有限公司 具有防尘功能的电子装置以及用于制造该电子装置的方法
CN110113687A (zh) * 2019-04-12 2019-08-09 苏州敏芯微电子技术股份有限公司 硅麦克风
CN110545514A (zh) * 2019-08-16 2019-12-06 瑞声声学科技(深圳)有限公司 压电式mems麦克风
CN111163410A (zh) * 2019-12-31 2020-05-15 歌尔股份有限公司 一种用于mems器件的防尘结构及mems麦克风封装结构

Also Published As

Publication number Publication date
CN111163410A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2021135121A1 (zh) 一种用于mems器件的防尘结构及mems麦克风封装结构
WO2021135111A1 (zh) 用于mems器件的防尘结构及mems麦克风封装结构
US11212623B2 (en) Piezoelectric MEMS microphone
WO2021135125A1 (zh) 用于mems器件的防尘结构及mems麦克风封装结构
WO2021135113A1 (zh) 防尘结构、麦克风封装结构以及电子设备
US10715899B2 (en) Wind noise prevention microphone and earphone cable control apparatus
US9049511B2 (en) Diaphragm and speaker using same
WO2021135108A1 (zh) 防尘结构、麦克风封装结构以及电子设备
US20080159558A1 (en) Internal microphone array or microphone module not affecting appearance of electronic device
MY163865A (en) Method of making wafer level optical elements
US20170366889A1 (en) Microphone housing with screen for wind noise reduction
WO2017069057A1 (ja) 電気音響変換器
CN211047219U (zh) 一种用于mems器件的防尘结构及mems麦克风封装结构
KR102502460B1 (ko) 발성 구조 및 단말
US10659857B1 (en) Rapidly mountable ceiling loudspeaker device
WO2021135110A1 (zh) 用于mems器件的防尘结构及mems麦克风封装结构
JP2020027286A (ja) レンズモジュール
WO2021135119A1 (zh) 一种用于mems器件的防尘结构及mems麦克风封装结构
JP2012151821A (ja) スピーカ構造
US10863283B2 (en) MEMS microphone for frame-free device
CN204031451U (zh) 一种mems麦克风
CN211557479U (zh) 防尘结构、麦克风封装结构以及电子设备
WO2008011435A3 (en) High fidelity loudspeaker
CN103269468A (zh) 号角式多点激励扬声器箱
US7676052B1 (en) Differential microphone assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909478

Country of ref document: EP

Kind code of ref document: A1