WO2021135020A1 - 悬翼结构具有角部的体声波谐振器、滤波器及电子设备 - Google Patents

悬翼结构具有角部的体声波谐振器、滤波器及电子设备 Download PDF

Info

Publication number
WO2021135020A1
WO2021135020A1 PCT/CN2020/088730 CN2020088730W WO2021135020A1 WO 2021135020 A1 WO2021135020 A1 WO 2021135020A1 CN 2020088730 W CN2020088730 W CN 2020088730W WO 2021135020 A1 WO2021135020 A1 WO 2021135020A1
Authority
WO
WIPO (PCT)
Prior art keywords
passivation layer
wing structure
resonator
resonator according
upper edge
Prior art date
Application number
PCT/CN2020/088730
Other languages
English (en)
French (fr)
Inventor
庞慰
张巍
杨清瑞
张孟伦
Original Assignee
天津大学
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 诺思(天津)微系统有限责任公司 filed Critical 天津大学
Publication of WO2021135020A1 publication Critical patent/WO2021135020A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/564Monolithic crystal filters implemented with thin-film techniques

Definitions

  • the present invention relates to the field of semiconductors, and in particular to a bulk acoustic wave resonator, a filter, and an electronic device having the resonator or the filter.
  • FBAR Film Bulk Acoustic Resonator
  • BAW Bulk Acoustic Wave Resonator
  • SAW surface acoustic wave
  • the present invention is proposed.
  • a bulk acoustic wave resonator including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode
  • the top electrode has a suspended wing structure, the suspended wing structure has a corner, the corner has a first inclined surface, and the first inclined surface extends in a manner inclined upward from the outermost edge of the suspended wing structure toward the inner side, so The first inclined surface has a first lower edge and a first upper edge, the outermost edge constitutes the first lower edge, and the bottom side of the corner portion extends outward along the transverse direction of the resonator.
  • the embodiment of the present invention also relates to a filter including the above-mentioned bulk acoustic wave resonator.
  • the embodiment of the present invention also relates to an electronic device including the above-mentioned filter or the above-mentioned resonator.
  • Fig. 1A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which the suspended wing structure of the resonator has corners;
  • Fig. 1B is an enlarged schematic view of the suspended wing structure in Fig. 1A, in which the lower edge of the vertical end surface of the passivation layer coincides with the upper edge of the corner portion;
  • FIG. 1C exemplarily shows the relationship between the Q value of the parallel resonance of the resonator and the oblique angle of the corner slope
  • FIG. 2A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, wherein the suspended wing structure of the resonator has corners, and the suspended wing structure is covered with a passivation layer;
  • FIG. 2B is an enlarged schematic diagram of the suspended wing structure in FIG. 2A, wherein the end slope of the passivation layer and the slope of the corner are coplanar;
  • 2C is a schematic partial cross-sectional view of a bulk acoustic wave resonator according to another embodiment of the present invention, wherein the corner of the passivation layer extends to the outside of the corner of the boundary top electrode;
  • 3A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which the suspended wing structure of the resonator has corners, and the suspended wing structure is covered with a passivation layer;
  • FIG. 3B is an enlarged schematic diagram of the suspended wing structure in FIG. 3A, wherein the top surface of the passivation layer is in contact with and coplanar with the top surface of the horizontal portion of the suspended wing structure;
  • Fig. 4A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, wherein the cantilever structure of the resonator has corners and inclined rising portions connected thereto, and the cantilever structure is covered with a passivation layer;
  • Fig. 4B is an enlarged schematic view of the suspended wing structure in Fig. 4A, in which the top surface of the passivation layer and the inclined surface of the corner intersect on the upper edge of the corner;
  • 5A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which the suspended wing structure of the resonator has corners, and the suspended wing structure is covered with a passivation layer;
  • FIG. 5B is an enlarged schematic view of the cantilever structure in FIG. 5A, in which the end bevel and corner bevel of the passivation layer intersect at the upper edge of the corner, and the inclination angle of the end bevel is smaller than the inclination angle of the corner bevel.
  • FIG. 1A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which the suspended wing structure of the resonator has corners
  • FIG. 1B is an enlarged schematic diagram of the suspended wing structure in FIG. 1A, in which the passivation layer The lower edge of the vertical end face coincides with the upper edge of the corner.
  • Substrate, optional materials are monocrystalline silicon, gallium arsenide, sapphire, quartz, etc.
  • Acoustic mirror which can be cavity, or Bragg reflector and other equivalent forms.
  • Bottom electrode (electrode pin), the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys.
  • Piezoelectric film layer or piezoelectric layer which can be selected from materials such as aluminum nitride, zinc oxide, PZT, and contains rare earth element doped materials with a certain atomic ratio of the above materials.
  • the top electrode (electrode pin), the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys.
  • the passivation layer on the top electrode surface can be silicon dioxide, aluminum nitride, silicon nitride, silicon carbide, resin, rubber and other materials.
  • L1 The lower boundary (lower edge) of the first inclined plane.
  • L2 The upper boundary (upper edge) of the first inclined plane.
  • FIG. 1C exemplarily shows the relationship between the Q value of the parallel resonance of the resonator in FIG. 1A and the oblique angle of the corner slope.
  • the change of the angle ⁇ 1 of the corner slope of the boundary top electrode has an effect on the Qp value at the parallel resonance of the resonator.
  • ⁇ 1 is between 50-70°
  • the Qp value of the resonator Larger, obviously larger than the vertical 90° situation.
  • the eigenfrequency of the suspended wing structure is roughly inversely proportional to the square of the suspended wing structure width.
  • the energy of the entire resonator can be effectively constrained to increase the Q value of the resonator.
  • the end face angle of the suspension wing structure is 90°, the suspension wing structure has only one width value and can only support A-mode resonance at one frequency.
  • the suspension structure can be seen microscopically In the thickness direction, it can be divided into multiple sub-suspended wing structures, which can support a series of A-mode resonances with continuous frequency changes, thereby broadening the A-mode resonance frequency bandwidth of the suspended wing structure, and confining the A-mode energy more. Further improve the overall resonator performance.
  • ⁇ 1 can be in the range of 40-80°, and its value can be 40°, 50°, 70°, 80°, and so on.
  • FIG. 2A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which the boundary top electrode 501 of the resonator has corners, and the boundary top electrode 501 is covered with a boundary passivation layer 601.
  • Figure 2B is an enlarged schematic view of the cantilever structure in Figure 2A, in which the end slope of the boundary passivation layer is coplanar with the slope of the corner. Obviously, at this time, the slope ⁇ 2 of the end slope of the boundary passivation layer is the same as the corner. The oblique angle ⁇ 1 of the inclined surface is the same.
  • the passivation layer can also extend to the outside of the boundary top electrode, as shown in FIG. 2C.
  • 3A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which the boundary top electrode 501 of the resonator has corners, and the boundary top electrode 501 is covered with a boundary passivation layer 601.
  • FIG. 3B the horizontal portion 502 of the boundary top electrode 501 is more clearly, as shown in FIG. 3B, no boundary passivation layer is provided.
  • 3B is an enlarged schematic diagram of the suspended wing structure in FIG. 3A, in which the top surface of the boundary passivation layer 601 and the top surface of the horizontal portion 502 of the suspended wing structure are in contact and coplanar.
  • FIG. 4A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which the boundary top electrode 501 of the resonator has a corner portion and an inclined rising portion 503 connected to it.
  • FIG. 4B And the boundary top electrode is covered with a boundary passivation layer 601.
  • FIG. 4B is an enlarged schematic diagram of the suspended wing structure in FIG. 4A, in which the top surface of the boundary passivation layer 601 and the inclined surface of the corner intersect at the upper edge of the corner.
  • FIG. 5A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention, in which the boundary top electrode 501 of the resonator has corners, and the boundary top electrode is covered with a boundary passivation layer 601.
  • Fig. 5B is an enlarged schematic view of the cantilever structure in Fig. 5A, in which the end bevel of the boundary passivation layer and the corner bevel intersect on the upper edge of the corner, and the bevel angle ⁇ 2 of the end bevel is smaller than the bevel angle ⁇ 1 of the corner bevel.
  • ⁇ 2 is smaller than ⁇ 1, and its value can be changed based on ⁇ 1.
  • ⁇ 2 may be in the range of 10-80°, and further, 15-60°, ⁇ 2 may be 10°, 15°, 40°, 60°, and 80°.
  • the upper edge of the corner bevel constitutes the intersection of the corner bevel and the end bevel of the passivation layer.
  • the end surface of the passivation layer may also be located on the upper edge of the corner bevel. Inside or outside.
  • the inner side means the side close to the center of the resonator in the transverse direction of the resonator
  • the outer side means the side far from the center of the resonator in the transverse direction of the resonator
  • the direction toward the inner side or inward means In the direction toward the center of the resonator, the direction toward the outside or outward, that is, the direction away from the center of the resonator.
  • the boundary top electrode or the suspended wing structure has a corner
  • the corner has a corner bevel
  • the corner bevel has a lower edge and an upper edge
  • the corner bevel extends between the upper edge and the lower edge.
  • the outermost edge of the corner constitutes the lower edge of the corner.
  • the outermost edge is the edge of the corner that is farthest from the center of the resonator in the lateral direction of the resonator.
  • the upper edge of the inclined surface represents the upper boundary of the inclined surface
  • the lower edge of the inclined surface represents the lower boundary of the inclined surface.
  • the boundary top electrode 501 has an inclined surface
  • the lower edge of the inclined surface is L1
  • the upper edge of the inclined surface is L2.
  • the bulk acoustic wave resonator according to the present invention can be used to form a filter.
  • a bulk acoustic wave resonator including:
  • the piezoelectric layer is arranged between the bottom electrode and the top electrode
  • the top electrode has a boundary top electrode forming a suspended wing structure, the suspended wing structure has a corner, the corner has a first inclined surface, and the first inclined surface is inclined upward from the outermost edge of the suspended wing structure toward the inner side
  • the first inclined surface has a first lower edge and a first upper edge, the outermost edge constitutes the first lower edge, and the bottom side of the corner portion extends outward along the transverse direction of the resonator.
  • the first inclined surface and the bottom side form a first included angle, and the first included angle is in the range of 40°-80°.
  • the first included angle is in the range of 50°-70°.
  • the suspended wing structure includes the corner portion, a horizontal portion, and an inclined rising portion.
  • One end of the inclined rising portion is connected to the top electrode body, the other end is connected to one end of the horizontal portion, and the other end of the horizontal portion is connected to
  • the bottom side of the corner portion is coplanar with the bottom side of the horizontal portion.
  • the resonator further includes a passivation layer including a boundary passivation layer covering a horizontal portion of the suspended wing structure.
  • the end surface of the boundary passivation layer is a vertical surface, and the lower edge of the vertical surface coincides with the first upper edge or is located inside the first upper edge or outside the first upper edge; or
  • the end surface of the boundary passivation layer is a second inclined surface, the lower edge of the second lower surface coincides with the first upper edge or is located inside the first upper edge or outside the first upper edge, and the second inclined surface
  • the second inclined surface and the top side of the horizontal portion form a second included angle.
  • the end surface of the boundary passivation layer is a second inclined surface, the second inclined surface has a second lower edge and a second upper edge, the second lower edge coincides with the first upper edge or the second lower edge is located on the first upper edge.
  • the inner side of the edge, or the second lower edge extends to the outer side of the first upper edge;
  • the second inclined surface extends upward obliquely toward the inner side, and the second inclined surface forms a second included angle with the top side of the horizontal portion.
  • the first inclined plane and the second inclined plane are coplanar; or the second included angle is smaller than the first included angle.
  • the second included angle is smaller than the first included angle, and the second included angle is in the range of 10-80°.
  • the second included angle is in the range of 15-60°.
  • the resonator further includes a passivation layer, the passivation layer includes a boundary passivation layer covering the inclined rising portion of the suspended wing structure, and the top surface of the boundary passivation layer is at the level of the suspended wing structure The top surfaces of the parts meet and are coplanar.
  • the suspended wing structure includes an inclined rising portion, one end of the inclined rising portion is connected to the top electrode body, and the other end is connected to the corner portion.
  • the resonator further includes a passivation layer, the passivation layer includes a boundary passivation layer covering the inclined rising portion of the suspended wing structure, and the top surface of the boundary passivation layer is parallel to the bottom side of the corner portion , And the first edge constitutes the intersection line of the first inclined plane and the second inclined plane.
  • a filter comprising the bulk acoustic wave resonator according to any one of 1-13.
  • An electronic device comprising the filter according to 14 or the bulk acoustic wave resonator according to any one of 1-13.
  • the electronic equipment here includes but is not limited to intermediate products such as radio frequency front-ends, filter amplification modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种体声波谐振器,包括:基底;声学镜;底电极;顶电极;压电层,设置在底电极与顶电极之间,其中:顶电极具有形成悬翼结构的边界顶电极,所述悬翼结构具有角部,所述角部具有第一斜面,所述第一斜面以从所述悬翼结构的最外侧边缘朝向内侧倾斜向上的方式延伸,所述第一斜面具有第一下沿与第一上沿,所述最外侧边缘构成所述第一下沿,所述角部的底侧沿谐振器的横向方向向外延伸。本发明还公开了一种具有该谐振器的滤波器及具有该滤波器或谐振器的电子设备。

Description

悬翼结构具有角部的体声波谐振器、滤波器及电子设备 技术领域
本发明涉及半导体领域,尤其涉及一种体声波谐振器、一种滤波器,以及一种具有该谐振器或该滤波器的电子设备。
背景技术
电子器件作为电子设备的基本元素,已经被广泛应用,其应用范围包括移动电话、汽车、家电设备等。此外,未来即将改变世界的人工智能、物联网、5G通讯等技术仍然需要依靠电子器件作为基础。
薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR,又称为体声波谐振器,也称BAW)作为压电器件的重要成员正在通信领域发挥着重要作用,特别是FBAR滤波器在射频滤波器领域市场占有份额越来越大,FBAR具有尺寸小、谐振频率高、品质因数高、功率容量大、滚降效应好等优良特性,其组成的滤波器正在逐步取代传统的声表面波(SAW)滤波器和陶瓷滤波器,在无线通信射频领域发挥巨大作用,其高灵敏度的优势也能应用到生物、物理、医学等传感领域。
但谐振器在并联谐振处的Q值仍需要进一步提高。
发明内容
为提高体声波谐振器在并联谐振处的Q值,提出本发明。
根据本发明的实施例的一个方面,提出了一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;
压电层,设置在底电极与顶电极之间,
其中:
顶电极具有悬翼结构,所述悬翼结构具有角部,所述角部具有第一斜 面,所述第一斜面以从所述悬翼结构的最外侧边缘朝向内侧倾斜向上的方式延伸,所述第一斜面具有第一下沿与第一上沿,所述最外侧边缘构成所述第一下沿,所述角部的底侧沿谐振器的横向方向向外延伸。
本发明的实施例还涉及一种滤波器,包括上述的体声波谐振器。
本发明的实施例也涉及一种电子设备,包括上述的滤波器或者上述的谐振器。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1A为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图,其中谐振器的悬翼结构具有角部;
图1B为图1A中的悬翼结构的放大示意图,其中钝化层的竖直端面的下沿与角部的上沿重合;
图1C示例性示出了谐振器的并联谐振Q值随角部斜面的斜角变化的关系;
图2A为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图,其中谐振器的悬翼结构具有角部,且悬翼结构覆盖有钝化层;
图2B为图2A中的悬翼结构的放大示意图,其中钝化层的端部斜面与角部的斜面共面;
图2C为根据本发明的另一个实施例的体声波谐振器的局部剖面示意图,其中,钝化层的角部延伸到边界顶电极的角部的外侧;
图3A为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图,其中谐振器的悬翼结构具有角部,且悬翼结构覆盖有钝化层;
图3B为图3A中的悬翼结构的放大示意图,其中钝化层的顶面与悬翼结构的水平部的顶面相接且共面;
图4A为根据本发明的一个示例性实施例的体声波谐振器的剖面示意 图,其中谐振器的悬翼结构具有角部和与之相连的倾斜上升部,且悬翼结构覆盖有钝化层;
图4B为图4A中的悬翼结构的放大示意图,其中钝化层的顶面与角部斜面相交于角部上沿;
图5A为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图,其中谐振器的悬翼结构具有角部,且悬翼结构覆盖有钝化层;
图5B为图5A中的悬翼结构的放大示意图,其中钝化层的端部斜面与角部斜面相交于角部上沿,且端部斜面的倾斜角度小于角部斜面的倾斜角度。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
图1A为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图,其中谐振器的悬翼结构具有角部,图1B为图1A中的悬翼结构的放大示意图,其中钝化层的竖直端面的下沿与角部的上沿重合。
图1A和1B中,附图标记如下:
10:衬底,可选材料为单晶硅、砷化镓、蓝宝石、石英等。
20:声学镜,可为空腔,也可采用布拉格反射层及其他等效形式。
30:底电极(电极引脚),材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
40:压电薄膜层或压电层,可选氮化铝,氧化锌,PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料。
50:顶电极(电极引脚),材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
60:顶电极表面的钝化层,材料可选二氧化硅、氮化铝、氮化硅、碳 化硅、树脂、橡胶等材料。
70:边界空气隙。
501:边界顶电极。
502:边界顶电极的水平部。
503:边界顶电极的倾斜上升部。
601:边界钝化层。
L1:第一斜面的下边界(下沿)。
L2:第一斜面的上边界(上沿)。
图1C示例性示出了图1A中的谐振器的并联谐振Q值随角部斜面的斜角变化的关系。如图1C所示,边界顶电极的角部斜面的角度α1的变化对谐振器的并联谐振处的Qp值有影响,例如在α1为50-70°之间的情况下,谐振器的Qp值较大,明显大于垂直90°情况。这是因为在悬翼结构中,支持的是非对称模式(A模式)的声波传播,即上下表面同相位振动,此时,悬翼结构的本征频率大致与悬翼结构宽度的平方成反比,当悬翼结构的本征频率位于谐振器并联谐振频率附近时,可以有效束缚整个谐振器的能量使谐振器的Q值提高。当悬翼结构的端面角度为90°时,悬翼结构仅具有一个宽度值,只能支持一种频率的A模式谐振,而当悬翼结构的端面为锐角时,微观来看,悬翼结构在厚度方向上可以划分为多个子悬翼结构,从而可以支持具有频率连续变化的一系列A模式谐振,从而拓宽了悬翼结构的A模式谐振频率带宽,能够更多的束缚A模式能量,从而进一步提高整体谐振器性能。
在本发明中,α1可以在40-80°的范围内,其取值可以为40°、50°、70°和80°等。
图2A为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图,其中谐振器的边界顶电极501具有角部,且边界顶电极501覆盖有边界钝化层601。图2B为图2A中的悬翼结构的放大示意图,其中边界钝化层的端部斜面与角部的斜面共面,显然,此时边界钝化层的端部斜面的斜角α2与角部斜面的斜角α1相同。
钝化层也可以延伸到边界顶电极的外侧,如图2C所示。
图3A为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图,其中谐振器的边界顶电极501具有角部,且边界顶电极501覆盖有边界钝化层601,不过,与图2A中不同的是,如图3A和3B中所示,边界顶电极501的水平部502,更清晰的,如图3B所示,并未设置边界钝化层。图3B为图3A中的悬翼结构的放大示意图,其中边界钝化层601的顶面与悬翼结构的水平部502的顶面相接且共面。
图4A为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图,其中谐振器的边界顶电极501具有角部和与之相连的倾斜上升部503,更清楚的,参见图4B,且边界顶电极覆盖有边界钝化层601。图4A与图2A中的结构不同的是,在图4A中,边界顶电极501并不包括水平部。图4B为图4A中的悬翼结构的放大示意图,其中边界钝化层601的顶面与角部斜面相交于角部上沿。
图5A为根据本发明的一个示例性实施例的体声波谐振器的剖面示意图,其中谐振器的边界顶电极501具有角部,且边界顶电极覆盖有边界钝化层601。图5B为图5A中的悬翼结构的放大示意图,其中边界钝化层的端部斜面与角部斜面相交于角部上沿,且端部斜面的斜角α2小于角部斜面的斜角α1。在本实施例中,α2小于α1,其取值可以基于α1而变化。α2可以在10-80°的范围内,进一步的,15-60°,α2可以为10°,15°,40°,60°和80°。
在本发明中,角部斜面的上沿构成角部斜面与钝化层端部斜面的交线,但在本发明的其他实施例中,钝化层端面也可以处于角部斜面的上沿的内侧或外侧。
在本发明中,内侧表示在谐振器的横向方向上靠近谐振器的中心的一侧,而外侧表示在谐振器的横向方向上远离谐振器的中心的一侧;朝向内侧或向内的方向即朝向谐振器的中心的方向上,朝向外侧或向外的方向即远离谐振器的中心的方向。
在本发明中,边界顶电极或者悬翼结构具有角部,角部具有角部斜面,该角部斜面具有下沿与上沿,角部斜面在上沿与下沿之间延伸,在本 发明的附图中,角部的最外侧边缘构成角部的下沿。这里最外侧边缘即角部在谐振器的横向方向上距离谐振器的中心最远的边缘。在本发明中,斜面倾斜向上延伸时,斜面的上沿表示该斜面的上边界,斜面的下沿表示该斜面的下边界。例如,在图1B中,边界顶电极501具有斜面,该斜面的下沿为L1,该斜面的上沿为L2。
如本领域技术人员能够理解的,根据本发明的体声波谐振器可以用于形成滤波器。
基于以上,本发明提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;
压电层,设置在底电极与顶电极之间,
其中:
顶电极具有形成悬翼结构的边界顶电极,所述悬翼结构具有角部,所述角部具有第一斜面,所述第一斜面以从所述悬翼结构的最外侧边缘朝向内侧倾斜向上的方式延伸,所述第一斜面具有第一下沿与第一上沿,所述最外侧边缘构成所述第一下沿,所述角部的底侧沿谐振器的横向方向向外延伸。
2、根据1所述的谐振器,其中:
所述第一斜面与所述底侧形成第一夹角,第一夹角在40°-80°的范围内。
3、根据2所述的谐振器,其中:
所述第一夹角在50°-70°的范围内。
4、根据1-3中任一项所述的谐振器,其中:
所述悬翼结构包括所述角部、水平部和倾斜上升部,所述倾斜上升部一端连接于顶电极本体,另一端连接到所述水平部的一端,所述水平部的另一端连接到所述角部,所述角部底侧与所述水平部的底侧共面。
5、根据4所述的谐振器,其中:
所述谐振器还包括钝化层,所述钝化层包括覆盖所述悬翼结构的水平部的边界钝化层。
6、根据5所述的谐振器,其中:
所述边界钝化层的端面为竖直面,所述竖直面的下沿与所述第一上沿重合或者位于所述第一上沿的内侧或者位于第一上沿的外侧;或者
所述边界钝化层的端面为第二斜面,所述第二下面的下沿与第一上沿重合或者位于第一上沿的内侧或者位于第一上沿的外侧,且所述第二斜面朝向外侧倾斜向上延伸,第二斜面与水平部的顶侧形成第二夹角。
7、根据5所述的谐振器,其中:
所述边界钝化层的端面为第二斜面,第二斜面具有第二下沿与第二上沿,所述第二下沿与所述第一上沿重合或者第二下沿位于第一上沿的内侧,或者第二下沿延伸到第一上沿的外侧;且
所述第二斜面朝向内侧倾斜向上延伸,第二斜面与水平部的顶侧形成第二夹角。
8、根据7所述的谐振器,其中:
第一斜面与第二斜面共面;或者第二夹角小于第一夹角。
9、根据6-8中任一项所述的谐振器,其中:
第二夹角小于第一夹角,且第二夹角在10-80°的范围内。
10、根据9所述的谐振器,其中:
第二夹角在15-60°的范围内。
11、根据4所述的谐振器,其中:
所述谐振器还包括钝化层,所述钝化层包括覆盖所述悬翼结构的倾斜上升部的边界钝化层,且所述边界钝化层的顶面与所述悬翼结构的水平部的顶面相接且共面。
12、根据1-3中任一项所述的谐振器,其中:
所述悬翼结构包括倾斜上升部,所述倾斜上升部一端连接于顶电极本体,另一端连接到所述角部。
13、根据12所述的谐振器,其中:
所述谐振器还包括钝化层,所述钝化层包括覆盖所述悬翼结构的倾斜上升部的边界钝化层,所述边界钝化层的顶面与所述角部的底侧平行,且 第一边沿构成第一斜面与第二斜面的交线。
14、一种滤波器,包括根据1-13中任一项所述的体声波谐振器。
15、一种电子设备,包括根据14所述的滤波器或者根据1-13中任一项所述的体声波谐振器。
这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (15)

  1. 一种体声波谐振器,包括:
    基底;
    声学镜;
    底电极;
    顶电极;
    压电层,设置在底电极与顶电极之间,
    其中:
    顶电极具有形成悬翼结构的边界顶电极,所述悬翼结构具有角部,所述角部具有第一斜面,所述第一斜面以从所述悬翼结构的最外侧边缘朝向内侧倾斜向上的方式延伸,所述第一斜面具有第一下沿与第一上沿,所述最外侧边缘构成所述第一下沿,所述角部的底侧沿谐振器的横向方向向外延伸。
  2. 根据权利要求1所述的谐振器,其中:
    所述第一斜面与所述底侧形成第一夹角,第一夹角在40°-80°的范围内。
  3. 根据权利要求2所述的谐振器,其中:
    所述第一夹角在50°-70°的范围内。
  4. 根据权利要求1-3中任一项所述的谐振器,其中:
    所述悬翼结构包括所述角部、水平部和倾斜上升部,所述倾斜上升部一端连接于顶电极本体,另一端连接到所述水平部的一端,所述水平部的另一端连接到所述角部,所述角部底侧与所述水平部的底侧共面。
  5. 根据权利要求4所述的谐振器,其中:
    所述谐振器还包括钝化层,所述钝化层包括覆盖所述悬翼结构的水平部的边界钝化层。
  6. 根据权利要求5所述的谐振器,其中:
    所述边界钝化层的端面为竖直面,所述竖直面的下沿与所述第一上沿重合或者位于所述第一上沿的内侧或者位于第一上沿的外侧;或者
    所述边界钝化层的端面为第二斜面,所述第二下面的下沿与第一上沿重合或者位于第一上沿的内侧或者位于第一上沿的外侧,且所述第二斜面 朝向外侧倾斜向上延伸,第二斜面与水平部的顶侧形成第二夹角。
  7. 根据权利要求5所述的谐振器,其中:
    所述边界钝化层的端面为第二斜面,第二斜面具有第二下沿与第二上沿,所述第二下沿与所述第一上沿重合或者第二下沿位于第一上沿的内侧,或者第二下沿延伸到第一上沿的外侧;且
    所述第二斜面朝向内侧倾斜向上延伸,第二斜面与水平部的顶侧形成第二夹角。
  8. 根据权利要求7所述的谐振器,其中:
    第一斜面与第二斜面共面;或者第二夹角小于第一夹角。
  9. 根据权利要求6-8中任一项所述的谐振器,其中:
    第二夹角小于第一夹角,且第二夹角在10-80°的范围内。
  10. 根据权利要求9所述的谐振器,其中:
    第二夹角在15-60°的范围内。
  11. 根据权利要求4所述的谐振器,其中:
    所述谐振器还包括钝化层,所述钝化层包括覆盖所述悬翼结构的倾斜上升部的边界钝化层,且所述边界钝化层的顶面与所述悬翼结构的水平部的顶面相接且共面。
  12. 根据权利要求1-3中任一项所述的谐振器,其中:
    所述悬翼结构包括倾斜上升部,所述倾斜上升部一端连接于顶电极本体,另一端连接到所述角部。
  13. 根据权利要求12所述的谐振器,其中:
    所述谐振器还包括钝化层,所述钝化层包括覆盖所述悬翼结构的倾斜上升部的边界钝化层,所述边界钝化层的顶面与所述角部的底侧平行,且第一边沿构成第一斜面与第二斜面的交线。
  14. 一种滤波器,包括根据权利要求1-13中任一项所述的体声波谐振器。
  15. 一种电子设备,包括根据权利要求14所述的滤波器或者根据权利要求1-13中任一项所述的体声波谐振器。
PCT/CN2020/088730 2019-12-31 2020-05-06 悬翼结构具有角部的体声波谐振器、滤波器及电子设备 WO2021135020A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911424760.4 2019-12-31
CN201911424760.4A CN111130492B (zh) 2019-12-31 2019-12-31 悬翼结构具有角部的体声波谐振器、滤波器及电子设备

Publications (1)

Publication Number Publication Date
WO2021135020A1 true WO2021135020A1 (zh) 2021-07-08

Family

ID=70507158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088730 WO2021135020A1 (zh) 2019-12-31 2020-05-06 悬翼结构具有角部的体声波谐振器、滤波器及电子设备

Country Status (2)

Country Link
CN (1) CN111130492B (zh)
WO (1) WO2021135020A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841313A (zh) * 2009-03-19 2010-09-22 太阳诱电株式会社 压电薄膜谐振器、滤波器、通信模块和通信装置
CN101931380A (zh) * 2009-06-24 2010-12-29 安华高科技无线Ip(新加坡)私人有限公司 包括桥部的声学谐振器结构
US20120218057A1 (en) * 2011-02-28 2012-08-30 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator comprising a bridge
US8692631B2 (en) * 2009-10-12 2014-04-08 Hao Zhang Bulk acoustic wave resonator and method of fabricating same
CN105048986A (zh) * 2014-04-30 2015-11-11 安华高科技通用Ip(新加坡)公司 具有空气环及温度补偿层的声谐振器装置
US20180254764A1 (en) * 2017-03-02 2018-09-06 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011022A1 (ja) * 2007-07-13 2009-01-22 Fujitsu Limited 圧電薄膜共振素子及びこれを用いた回路部品
JP5294779B2 (ja) * 2008-09-29 2013-09-18 京セラ株式会社 薄膜圧電共振器の製造方法
US8902023B2 (en) * 2009-06-24 2014-12-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US9520856B2 (en) * 2009-06-24 2016-12-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US10903814B2 (en) * 2016-11-30 2021-01-26 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave resonator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841313A (zh) * 2009-03-19 2010-09-22 太阳诱电株式会社 压电薄膜谐振器、滤波器、通信模块和通信装置
CN101931380A (zh) * 2009-06-24 2010-12-29 安华高科技无线Ip(新加坡)私人有限公司 包括桥部的声学谐振器结构
US8692631B2 (en) * 2009-10-12 2014-04-08 Hao Zhang Bulk acoustic wave resonator and method of fabricating same
US20120218057A1 (en) * 2011-02-28 2012-08-30 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator comprising a bridge
CN105048986A (zh) * 2014-04-30 2015-11-11 安华高科技通用Ip(新加坡)公司 具有空气环及温度补偿层的声谐振器装置
US20180254764A1 (en) * 2017-03-02 2018-09-06 Samsung Electro-Mechanics Co., Ltd. Acoustic resonator and method of manufacturing the same

Also Published As

Publication number Publication date
CN111130492A (zh) 2020-05-08
CN111130492B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2021135019A1 (zh) 底电极为空隙电极的体声波谐振器、滤波器及电子设备
WO2021109426A1 (zh) 体声波谐振器及制造方法、体声波谐振器单元、滤波器及电子设备
WO2021077715A1 (zh) 电极具有空隙层和凸起结构的体声波谐振器、滤波器及电子设备
CN210431367U (zh) 一种频率可调的横向场激励薄膜体声波谐振器
US9461616B2 (en) Bulk wave resonator having an aluminum nitride film containing scandium and ScAlN protective layer
CN103532516B (zh) 体波谐振器及其制造方法
US9853626B2 (en) Acoustic resonator comprising acoustic redistribution layers and lateral features
US7161448B2 (en) Acoustic resonator performance enhancements using recessed region
CN1322671C (zh) 压电谐振器、压电滤波器以及通信装置
JP2006217281A (ja) 薄膜バルク音響装置の製造方法
JP6505152B2 (ja) 質量調整構造付きバルク音波共振器およびバルク音波フィルター
WO2021135022A1 (zh) 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备
CN113193846B (zh) 一种带混合横向结构特征的薄膜体声波谐振器
CN112436819A (zh) 具有多种顶电极形状的薄膜体声波谐振器及制备方法
US20070018538A1 (en) Film bulk acoustic resonator (FBAR) with high thermal conductivity
WO2020098478A1 (zh) 体声波谐振器、滤波器和电子设备
JP2008109573A (ja) 薄膜圧電共振器
CN104917476B (zh) 一种声波谐振器的制造方法
WO2021135020A1 (zh) 悬翼结构具有角部的体声波谐振器、滤波器及电子设备
JP2002076824A (ja) 圧電薄膜共振子、フィルタおよび電子機器
WO2023030359A1 (zh) 包括间隙电极的体声波谐振器、滤波器及电子设备
JP2007227998A (ja) 薄膜圧電共振器とそれを用いた薄膜圧電フィルタ
CN111010125B (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN204810241U (zh) 声波谐振器
WO2020181976A1 (zh) 带弧形结构的薄膜封装的mems器件组件及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909441

Country of ref document: EP

Kind code of ref document: A1