WO2021135010A1 - 体声波谐振器组、滤波器、电子设备、机电耦合系数调整方法 - Google Patents

体声波谐振器组、滤波器、电子设备、机电耦合系数调整方法 Download PDF

Info

Publication number
WO2021135010A1
WO2021135010A1 PCT/CN2020/088719 CN2020088719W WO2021135010A1 WO 2021135010 A1 WO2021135010 A1 WO 2021135010A1 CN 2020088719 W CN2020088719 W CN 2020088719W WO 2021135010 A1 WO2021135010 A1 WO 2021135010A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
piezoelectric layer
layer
thickness
top electrode
Prior art date
Application number
PCT/CN2020/088719
Other languages
English (en)
French (fr)
Inventor
郝龙
庞慰
徐洋
张巍
杨清瑞
张孟伦
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Priority to EP20910858.8A priority Critical patent/EP4087132A4/en
Publication of WO2021135010A1 publication Critical patent/WO2021135010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/564Monolithic crystal filters implemented with thin-film techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02496Horizontal, i.e. parallel to the substrate plane
    • H03H2009/02503Breath-like, e.g. Lam? mode, wine-glass mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H2009/155Constructional features of resonators consisting of piezoelectric or electrostrictive material using MEMS techniques

Definitions

  • the embodiment of the present invention relates to the semiconductor field, and in particular to a bulk acoustic wave resonator group, a filter having the resonator group, an electronic device having the filter or resonator group, and an electromechanical coupling coefficient Adjustment method.
  • the bulk acoustic wave filter has the advantages of low insertion loss, high rectangular coefficient, high power capacity, etc. Therefore, it is widely used in contemporary wireless communication systems and is an important component that determines the quality of radio frequency signals in and out of communication systems.
  • the electromechanical coupling coefficient of the resonator with the same frequency on the same substrate is not adjustable.
  • the electromechanical coupling coefficient of the resonator is fixed at the frequency and cannot be adjusted.
  • resonators with the same frequency but different electromechanical coupling coefficients are needed. Therefore, there is a requirement in the prior art: different resonators, such as two resonators, are arranged on the same substrate. For example, they can have the same frequency and different electromechanical coupling coefficients on the same substrate.
  • a group of bulk acoustic wave resonators including at least two bulk acoustic wave resonators arranged on the same substrate, each resonator including: an acoustic mirror; a bottom electrode; a top electrode; and The piezoelectric layer, the overlapping area of the acoustic mirror, bottom electrode, piezoelectric layer and top electrode in the thickness direction of the resonator constitutes the effective area of the resonator, wherein:
  • At least two bulk acoustic wave resonators include a first resonator and a second resonator;
  • the first resonator includes a first piezoelectric layer
  • the second resonator includes a second piezoelectric layer.
  • the first piezoelectric layer and the second piezoelectric layer are of the same material and arranged in the same layer, and the thickness of the first piezoelectric layer is greater than that of the first piezoelectric layer. The thickness of the two piezoelectric layers.
  • an electromechanical coupling coefficient adjustment method which includes the steps:
  • the thickness of the second piezoelectric layer corresponding to the second resonator is made smaller than the thickness of the first piezoelectric layer corresponding to the first resonator, so as to adjust the difference between the electromechanical coupling coefficient of the first resonator and the second resonator.
  • a filter including the above-mentioned bulk acoustic wave resonator group, and the electromechanical coupling coefficients of two bulk acoustic wave resonators in at least one of the resonator groups are different.
  • the embodiment of the present invention also relates to an electronic device including the above-mentioned filter or resonator group.
  • Fig. 1 is a schematic cross-sectional view of a bulk acoustic wave resonator group according to an exemplary embodiment of the present invention
  • 2A-2D are schematic cross-sectional views showing the manufacturing process of the bulk acoustic wave resonator group according to an exemplary embodiment of the present invention, and an exemplary process of adjusting the electromechanical coupling coefficient is also shown;
  • FIG. 3 is a schematic cross-sectional view of a bulk acoustic wave resonator group according to an exemplary embodiment of the present invention, in which the top electrode is provided with an eaves structure;
  • FIG. 4 is a schematic cross-sectional view of a bulk acoustic wave resonator group according to an exemplary embodiment of the present invention, in which a gap layer is provided between the top electrode and the piezoelectric layer;
  • FIG. 5 is a schematic cross-sectional view of a bulk acoustic wave resonator group according to an exemplary embodiment of the present invention, in which the top electrode is provided with an eaves structure;
  • Fig. 6 is a schematic cross-sectional view of a bulk acoustic wave resonator group according to an exemplary embodiment of the present invention, wherein the piezoelectric layer of the first resonator is formed by two piezoelectric layers with different materials;
  • Figs. 7A-7E respectively correspond to Figs. 2-6. The difference is that in Figs. 7A-7E, convex and concave structures are respectively provided.
  • the electromechanical coupling coefficient of the resonator with the same frequency on the same substrate is not adjustable.
  • the electromechanical coupling coefficient of the resonator is fixed at the frequency and cannot be adjusted.
  • the current design requirements require the use of resonators with different electromechanical coupling coefficients at the same frequency or a specific frequency difference.
  • the present invention is to make resonators with different electromechanical coupling coefficients on the same substrate while maintaining the same frequency or specific frequency difference. Its advantage is to better meet the design requirements and reduce the design difficulty. Designers have more choices when designing, breaking the limitation of the resonator frequency on the electromechanical coupling coefficient.
  • trimming is used to control the thickness of the piezoelectric layer by bombarding with a particle beam, such as bombarding the target surface with argon, so as to control the electromechanical coupling coefficient.
  • the thickness of the piezoelectric layer can be controlled very accurately by trimming, so as to obtain different thicknesses of the piezoelectric layer. The process is simple and the precision is high.
  • the frequency can be compensated by thickening the top electrode of the trimmed resonator at the same time.
  • piezoelectric materials of different materials can also be used to make the difference in electromechanical coupling coefficient larger, and gaps can also be added in the resonator to further increase the difference in electromechanical coupling coefficient.
  • Substrate, optional materials are monocrystalline silicon, gallium arsenide, sapphire, quartz, etc.
  • Acoustic mirror which can be cavity, or Bragg reflector and other equivalent forms.
  • the acoustic mirror uses a cavity.
  • Bottom electrode the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys.
  • Piezoelectric film layer one, optional aluminum nitride, zinc oxide, PZT, lithium niobate (LiNbO 3 ), quartz (Quartz), potassium niobate (KNbO 3 ) or lithium tantalate (LiTaO 3 ), etc.
  • the material also contains a rare earth element doped material with a certain atomic ratio of the above-mentioned materials.
  • the top electrode the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium, or a combination of the above metals or their alloys.
  • the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium, or their alloys.
  • 100 and 110 The air layer or gap between the top electrode and the piezoelectric layer.
  • Piezoelectric layer thin film layer two which is mainly different from piezoelectric layer one.
  • Different materials can be selected according to different Kt requirements. Materials such as aluminum nitride, zinc oxide, PZT and other materials can be selected and contain rare earths with a certain atomic ratio of the above materials. Element doped materials.
  • Boundary condition layer one the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys, etc.; also can be aluminum nitride, zinc oxide , PZT and other materials and contain rare earth element doped materials with a certain atomic ratio of the above materials.
  • Boundary condition layer two the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys, etc.; aluminum nitride, zinc oxide can also be selected , PZT and other materials and contain rare earth element doped materials with a certain atomic ratio of the above materials.
  • the barrier layer the material of which can be any material, as long as it can block the thickness of the piezoelectric layer of the resonator 2 when trimming the thickness of the piezoelectric layer of the resonator 1, for example, it can be blocked at the end of the trimming There are layers remaining, or for example, when the piezoelectric layer on the second resonator or resonator 2 can be trimmed to a predetermined thickness, the barrier layer prevents the piezoelectric layer of the resonator 1 from being affected by trimming.
  • the barrier layer can be further selected so that there is no excessive piezoelectric layer loss when the barrier layer is removed.
  • Fig. 1 is a schematic cross-sectional view of a bulk acoustic wave resonator group according to an exemplary embodiment of the present invention.
  • the thickness of the piezoelectric layer 40 of the resonator 1 is greater than the thickness of the piezoelectric layer 70 of the resonator 2, and the materials of the piezoelectric layer 40 and the piezoelectric layer 70 are the same (in the case of simultaneous deposition ) And are arranged on the same floor.
  • the same layer arrangement here means that the bottom or lower sides of the two piezoelectric layers are on the same surface or are formed in the same piezoelectric layer forming step.
  • two resonators are provided on the same substrate as an example, but the present invention is not limited to this.
  • more resonators can be provided on the same substrate, as long as they are piezoelectric It can be arranged in the same layer.
  • resonator 1 and resonator 2 there are resonator 1 and resonator 2 on the same substrate.
  • the piezoelectric film layer 40 is deposited, the position of resonator 1 is covered and resonator 2 is trimmed. Then, a relatively thin piezoelectric layer 70 is obtained, and then the top electrode is deposited. The top electrode 50 in the resonator 1 and the top electrode 80 in the resonator 2 are obtained.
  • another mass load layer 90 is deposited on the resonator 2. By controlling the thickness of the load layer 90, the frequency of the resonator 2 can be adjusted, so the adjustment of the electromechanical coupling coefficient is no longer limited by the frequency.
  • the dressing here is to physically bombard the target surface with argon gas.
  • the bombardment does not have any chemical reaction, and the control accuracy is relatively high, and the accuracy of the thickness can be controlled within 3%, for example, the target needs to be trimmed.
  • the trimming method It is suitable to use the trimming method to achieve the range, beyond which the process time will be too long. At this time, it can be achieved by a combination of partial etching + trimming), the actual situation is probably This kind of control precision is incomparable to etching.
  • the trimming machine can also be used for multiple trimmings to achieve uniformity compensation within the chip. Because the trimming uses a particle beam to bombard the target, the diameter of the particle beam is about 13mm, so if the in-plane uniformity is not good when the piezoelectric material is deposited, it can be compensated according to the thickness data during the trimming, such as thick Repair more areas where it is thinner, and repair less where it is thinner.
  • FIGS. 2A-2D are cross-sectional schematic diagrams illustrating the manufacturing process of the bulk acoustic wave resonator group according to an exemplary embodiment of the present invention, and an exemplary process of adjusting the electromechanical coupling coefficient is also shown.
  • the method for realizing the difference in the thickness of the piezoelectric layer between the resonator 1 and the resonator 2 so as to adjust the electromechanical coupling coefficient of the two resonators will be described below with reference to FIGS. 2A-2D.
  • a barrier layer 150 is formed on the piezoelectric layer.
  • the material of the barrier layer is not particularly limited. In a more specific example, as long as the barrier layer is not present at the end of trimming, It can be completely trimmed away, which can be determined by controlling the thickness of the barrier layer. In addition, it is also necessary to consider the etching problems of the barrier layer and the piezoelectric layer during the subsequent removal of the barrier layer, such as avoiding or reducing the etching of the piezoelectric layer when the barrier layer is etched.
  • the barrier layer 150 on the resonator 2 is etched away by photolithography and etching, so that the piezoelectric layer 70 of the resonator 2 is exposed, and the surface of the resonator 1 is a barrier. Layer 150 layers. In this way, the piezoelectric material of the resonator 2 will be trimmed during trimming, and only the barrier layer 150 of the resonator 1 is consumed.
  • trimming is performed.
  • the piezoelectric layer 70 of the resonator 2 will be partially consumed, and at the same time, the barrier layer 150 of the resonator 1 will also be partially consumed.
  • the barrier layer 150 is removed by a dry method or a wet method. Both the dry method and the wet method need to fully consider the impact on the piezoelectric layer when the barrier layer is removed.
  • the structure after removing the barrier layer 150 is shown in FIG. 2D.
  • a top electrode may be disposed on the piezoelectric layer, and then a mass load layer 90 may be disposed on the top electrode of the resonator 2 to form a structure as shown in FIG. 1.
  • the electromechanical coupling coefficient of the two resonators can be adjusted.
  • the present invention can further adjust the electromechanical coupling coefficient of the two resonators on this basis.
  • a canopy structure or a suspended wing structure can be provided on the non-pin end of the top electrode.
  • FIG 3 is a schematic cross-sectional view of a bulk acoustic wave resonator group according to an exemplary embodiment of the present invention, in which the top electrode is provided with an eaves structure.
  • the electromechanical coupling coefficient can be controlled by controlling the thickness C and D of the air layer or the gap layer 100 and 110 and the size of A and B between the top electrode and the piezoelectric layer, thereby obtaining a greater difference in electromechanical coupling coefficient.
  • the electromechanical coupling coefficient of the resonator can be adjusted.
  • the void layer can be filled with a non-conductive medium, such as silicon dioxide.
  • the height range of the eave structure is To E.g with Wait.
  • the width of the eaves structure ranges from 0.5 ⁇ m to 7 ⁇ m, such as 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, and the like.
  • any one of the resonator 1 and the resonator 2 while keeping the height of the eave structure unchanged, increase the width of the eave structure to reduce the electromechanical coupling coefficient of the corresponding resonator, or reduce the width of the eave structure Improve the electromechanical coupling coefficient of the corresponding resonator.
  • the electromechanical coupling coefficient of the corresponding resonator can be increased by increasing the height of the eave structure, or by reducing the eave structure The height reduces the electromechanical coupling coefficient of the corresponding resonator.
  • FIG. 5 is a schematic cross-sectional view of a bulk acoustic wave resonator group according to an exemplary embodiment of the present invention, in which the top electrode is provided with an eaves structure.
  • the difference between Fig. 5 and Fig. 3 lies in the width of the eave structure.
  • the gap under the eave structure extends beyond the edge of the acoustic mirror cavity.
  • FIG. 4 is a schematic cross-sectional view of a bulk acoustic wave resonator group according to an exemplary embodiment of the present invention, in which gap layers 100 and 110 are provided between the top electrode and the piezoelectric layer. Setting the gap layer can also adjust the electromechanical coupling coefficient of the resonator where it is located. As shown in Fig. 4, the electromechanical coupling coefficient of the resonator where it is located can be adjusted by controlling or selecting the parameter A corresponding to each gap layer.
  • FIG. 6 is a schematic cross-sectional view of a bulk acoustic wave resonator group according to an exemplary embodiment of the present invention, in which the piezoelectric layer of the first resonator is formed by two piezoelectric layers with different materials.
  • the piezoelectric film layers 40 and 70 are prepared at the same time. After the preparation of this layer is completed, another layer of material piezoelectric layer film layer two 120 can be prepared. The greater the difference in sound velocity between the second 120 layer and the piezoelectric film layer one 40 and 70 is, the greater the difference in electromechanical coupling coefficient will be while keeping the thickness of the piezoelectric film layer two 120 unchanged.
  • Figs. 7A-7E respectively correspond to Figs. 2-6. The difference is that in Figs. 7A-7E, convex and concave structures (or boundary conditions) are respectively provided. As shown in FIGS. 7A-7E, the boundary condition layer 130 and the boundary condition layer 140 can be on top of the top electrodes 50 and 80, or can be made under the top electrodes 50 and 80, and the boundary condition layer 130 and the boundary condition layer two 140 can be used alone.
  • a bulk acoustic wave resonator assembly comprising at least two bulk acoustic wave resonators arranged on the same substrate, each resonator comprising: an acoustic mirror; a bottom electrode; a top electrode; and a piezoelectric layer, the acoustic mirror, the bottom
  • the overlapping area of the electrode, the piezoelectric layer and the top electrode in the thickness direction of the resonator constitutes the effective area of the resonator, where:
  • At least two bulk acoustic wave resonators include a first resonator and a second resonator;
  • the first resonator includes a first piezoelectric layer
  • the second resonator includes a second piezoelectric layer.
  • the first piezoelectric layer and the second piezoelectric layer are arranged in the same layer, and the thickness of the first piezoelectric layer is greater than that of the second piezoelectric layer. The thickness of the layer.
  • the second resonator is also provided with a mass load layer; or
  • Both the first resonator and the second resonator are provided with a mass load layer, and the thickness of the mass load layer provided by the first resonator is smaller than the thickness of the mass load layer provided by the second resonator.
  • the non-pin end of the top electrode of the first resonator is provided with a first eaves structure, the first eaves structure has a first height and a first width, and a gap or non-conductive is provided between the first eaves structure and the piezoelectric layer Dielectric layer; and/or
  • the non-pin end of the top electrode of the second resonator is provided with a second eaves structure, the second eaves structure has a second height and a second width, and a gap or non-conductive is provided between the second eaves structure and the piezoelectric layer Medium layer.
  • the first height is different from the second height, and/or the first width is different from the second width.
  • the first height is different from the second height, and the two heights are at To Within the scope of; and/or
  • the first width is different from the second width, and the two widths are in the range of 0.2 ⁇ m to 7 ⁇ m.
  • the first resonator is provided with a first gap structure within the effective area between the top electrode and the piezoelectric layer; and/or
  • the second resonator is provided with a second gap structure within the effective area between the top electrode and the piezoelectric layer.
  • the first piezoelectric layer includes a first piezo-electron layer
  • the first piezoelectric layer also includes a second piezo layer, the second piezo layer is located above or below the first piezo layer, and the material of the first piezo layer is different from the material of the second piezo layer.
  • the first resonator and/or the second resonator are further provided with a convex and/or concave structure near the boundary of the effective area.
  • An electromechanical coupling coefficient adjustment method including the steps:
  • the thickness of the second piezoelectric layer corresponding to the second resonator is made smaller than the thickness of the first piezoelectric layer corresponding to the first resonator, so as to adjust the difference between the electromechanical coupling coefficient of the first resonator and the second resonator.
  • Adjusting the frequency difference between the first resonator and the second resonator includes the step of: setting a mass load layer on the second resonator to adjust the frequency of the second resonator.
  • Adjusting the frequency difference between the first resonator and the second resonator includes the step of: adjusting at least one of the frequency of the second resonator and the frequency of the first resonator so that they are the same or the frequency of the second resonator is the same as the frequency of the first resonator.
  • the frequency difference of a resonator is a predetermined value.
  • the step of making the thickness of the second piezoelectric layer corresponding to the second resonator smaller than the thickness of the first piezoelectric layer corresponding to the first resonator includes:
  • the barrier layer on the first resonator and the piezoelectric layer corresponding to the second resonator are thinned until the thickness of the piezoelectric layer corresponding to the second resonator is reduced to become a second piezoelectric layer with a predetermined thickness.
  • the step of making the thickness of the second piezoelectric layer corresponding to the second resonator smaller than the thickness of the first piezoelectric layer corresponding to the first resonator includes:
  • the material of the additional piezoelectric layer is different from the material of the piezoelectric layer of the first resonator
  • the step of making the thickness of the second piezoelectric layer corresponding to the second resonator smaller than the thickness of the first piezoelectric layer corresponding to the first resonator includes:
  • the piezoelectric layer is made of a different material from the other piezoelectric layer;
  • the method includes depositing a top electrode on the upper surface of the piezoelectric layer of the first resonator and the second resonator;
  • the steps of depositing the top electrode include:
  • a first eaves structure is provided at the non-pin end of the top electrode of the first resonator, the first eaves structure has a first height and a first width, and a medium is provided between the first eaves structure and the piezoelectric layer; and/ or
  • a second eaves structure is provided at the non-pin end of the top electrode of the second resonator, the second eaves structure has a second height and a second width, and a gap or non-conductive is provided between the second eaves structure and the piezoelectric layer Medium layer.
  • any one of the first resonator and the second resonator while keeping the height of the eave structure unchanged, increase the width of the eave structure to reduce the electromechanical coupling coefficient of the corresponding resonator, or reduce the width of the eave structure to increase Corresponds to the electromechanical coupling coefficient of the resonator.
  • the method includes depositing a top electrode on the upper surface of the piezoelectric layer of the first resonator and the second resonator;
  • the steps of depositing the top electrode include:
  • a second gap structure is provided within the effective area between the top electrode of the second resonator and the piezoelectric layer.
  • a convex and/or concave structure is provided near the boundary of the effective area of the first resonator and/or the second resonator.
  • the step of making the thickness of the second piezoelectric layer corresponding to the second resonator smaller than the thickness of the first piezoelectric layer corresponding to the first resonator bombarding the target surface with a particle beam to adjust the thickness of the target piezoelectric layer.
  • the thickness range of the piezoelectric layer removed by particle beam bombardment is in In the range.
  • a filter comprising the bulk acoustic wave resonator group according to any one of 1 to 8, wherein two bulk acoustic wave resonators in at least one of the resonator groups have different electromechanical coupling coefficients.
  • the frequencies of the two bulk acoustic wave resonators in at least one resonator group are the same or the frequency difference is a predetermined value.
  • An electronic device comprising the filter according to 24 or 25 or the bulk acoustic wave resonator group according to any one of 1-8.
  • the electronic equipment here includes, but is not limited to, intermediate products such as radio frequency front-ends, filter amplification modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及一种体声波谐振器组件,包括设置在同一基底上的至少两个体声波谐振器,每一个谐振器包括:声学镜;底电极;顶电极;和压电层,所述声学镜、底电极、压电层和顶电极在谐振器厚度方向上的重叠区域构成谐振器的有效区域,其中:至少两个体声波谐振器包括第一谐振器与第二谐振器;第一谐振器包括第一压电层,第二谐振器包括第二压电层,第一压电层与第二压电层材料相同且同层布置,且第一压电层的厚度大于第二压电层的厚度。本发明还涉及一种机电耦合系数调整方法,一种包括上述体声波谐振器组的滤波器以及一种电子设备。

Description

体声波谐振器组、滤波器、电子设备、机电耦合系数调整方法 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器组,一种具有该谐振器组的滤波器,一种具有该滤波器或谐振器组的电子设备,以及一种机电耦合系数调整方法。
背景技术
体声波滤波器具有低插入损耗、高矩形系数、高功率容量等优点,因此,被广泛应用在当代无线通讯系统中,是决定射频信号进出通讯系统质量的重要元器件。
以现有技术在同一个基底上相同频率的谐振器的机电耦合系数都不可调,通常频率定了谐振器的机电耦合系数就定了,不可调整。
但实际中需要用到相同频率但机电耦合系数不同的谐振器。因此,现有技术中存在如下需求:在同一基底上设置不同的谐振器,例如两个谐振器,例如其在同一基底上,可以具有相同的频率,同时具有不同的机电耦合系数。
发明内容
为解决现有技术中的上述技术问题的至少一个方面,提出本发明。
根据本发明的实施例的一个方面,提出了一种体声波谐振器组,包括设置在同一基底上的至少两个体声波谐振器,每一个谐振器包括:声学镜;底电极;顶电极;和压电层,所述声学镜、底电极、压电层和顶电极在谐振器厚度方向上的重叠区域构成谐振器的有效区域,其中:
至少两个体声波谐振器包括第一谐振器与第二谐振器;
第一谐振器包括第一压电层,第二谐振器包括第二压电层,第一压电层与第二压电层材料相同且同层布置,且第一压电层的厚度大于第二压电层的厚度。
根据本发明的实施例的另一方面,提出了一种机电耦合系数调整方法,包括步骤:
在同一基底上形成共用于第一体声波谐振器和第二体声波谐振器的压电层;
使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度,以调整第一谐振器与第二谐振器的机电耦合系数之间的差值。
根据本发明的实施例的再一方面,提出了一种滤波器,包括上述的体声波谐振器组,在至少一个所述谐振器组中的两个体声波谐振器的机电耦合系数不同。
本发明的实施例还涉及一种电子设备,包括上述的滤波器或者谐振器组。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为根据本发明的一个示例性实施例的体声波谐振器组的截面示意图;
图2A-2D为示出根据本发明的一个示例性实施例的体声波谐振器组的制造过程的截面示意图,其中也示出了调整机电耦合系数的一种示例性过程;
图3为根据本发明的一个示例性实施例的体声波谐振器组的截面示意图,其中顶电极设置有檐结构;
图4为根据本发明的一个示例性实施例的体声波谐振器组的截面示意图,其中顶电极与压电层之间设置有空隙层;
图5为根据本发明的一个示例性实施例的体声波谐振器组的截面示意图,其中顶电极设置有檐结构;
图6为根据本发明的一个示例性实施例的体声波谐振器组的截面示 意图,其中第一谐振器的压电层为两层材料不同的压电层形成;
图7A-7E分别对应于图2-6,不同的是,在图7A-7E中,还分别设置有凸起凹陷结构。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
以目前的技术在同一个衬底上相同频率的谐振器机电耦合系数都不可调,通常频率定了谐振器的机电耦合系数就定了,不可调整。而目前设计需求,需要用到相同频率或者特定频率差下不同机电耦合系数的谐振器。本发明就是在保持同样频率或者特定频率差的同时,在同一个衬底上作出不同机电耦合系数的谐振器。其优点就是更好的满足设计需求,降低了设计难度。设计人员在做设计时有了更多的选择,打破了谐振器频率对机电耦合系数的限制。
此外,如后面会提及的,在本发明中,用修整(trim,用粒子束轰击,例如用氩气对目标表面进行轰击)的方式控制压电层厚度,进而实现控制机电耦合系数,本发明中,用修整的方式可以非常精准的控制压电层的厚度,从而获得不同的压电层厚度,其工艺简单,且精度高。在本发明中,可以同时采用对被修整了的谐振器顶电极加厚的方式对频率做补偿。
此外,在本发明中,还可以采用不同材料的压电材料使得机电耦合系数差异变大,另外也可以在谐振器中增加空隙来进一步增大机电耦合系数的差异。
在附图1-2D中,各附图标记如下:
10:基底,可选材料为单晶硅、砷化镓、蓝宝石、石英等。
20:声学镜,可为空腔,也可采用布拉格反射层及其他等效形式。在示例性实施例中,声学镜采用的是空腔。
30和60:底电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
40和70:压电薄膜层一,可选氮化铝,氧化锌,PZT、铌酸锂(LiNbO 3)、石英(Quartz)、铌酸钾(KNbO 3)或钽酸锂(LiTaO 3)等材料并包含上述材料的一定原子比的稀土元素掺杂材料。
50和80:顶电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
90:质量负载层,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
100和110:顶电极与压电层之间空气层或者空隙。
120:压电层薄膜层二,主要区别于压电层一,根据不同的Kt需求可以选择不同的材料,可选氮化铝,氧化锌,PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料。
130:边界条件层一,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等;也可选氮化铝,氧化锌,PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料。
140:边界条件层二,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等;也可选氮化铝,氧化锌,PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料。
150:阻挡层,其材料可以是任何材料,只要可以阻挡例如在修整谐振器2的压电层的厚度时,不影响谐振器1的压电层的厚度即可,例如可以在修整结束时阻挡层还有剩余,或者例如在第二谐振器或谐振器2上的压电层可以修整到预定的厚度时,阻挡层使得谐振器1的压电层不受修整的影响。阻挡层还可以进一步选择,使得去除阻挡层的时候没有过多的压电层损失。
图1为根据本发明的一个示例性实施例的体声波谐振器组的截面示意图。在图1中,可以看到谐振器1的压电层40的厚度大于谐振器2的压电层70的厚度,而且压电层40和压电层70的材料相同(在同时沉积的情况下)且为同层布置。这里的同层布置表示两个压电层的底侧或下侧处于同一面或者是在同一压电层形成步骤中形成。
还需要指出的是,在本发明中,以同一基底上设置了两个谐振器为例做了说明,但是本发明不限于此,例如同一基底上可以设置更多的谐振 器,只要其压电层同层布置即可。
需要指出的是,如果想实现这种不同厚度的压电层,通常采用的方法是刻蚀,但是刻蚀存在很多问题,比如刻蚀的精度无法保证,采用控制刻蚀时间来控制其厚度,这种工艺局限性很大,对于刻蚀的速度以及机台的要求比较苛刻,同时因为刻蚀的时候会有化学反应,会影响压电层的质量。
如图1所示,在同一个基底上有谐振器1和谐振器2,采用修整的方式,在沉积完压电薄膜层一40之后,遮挡住谐振器1的位置,对谐振器2进行修整,进而得到比较薄的压电层70,之后再沉积顶电极,谐振器1中为顶电极50,谐振器2中为顶电极80。为了使谐振器2和谐振器1有相同的频率或者特定的频率差,还要对谐振器2再沉积一层质量负载层90。通过对负载层90的厚度的控制,可以调整谐振器2的频率,因此机电电耦合系数的调整不再受到频率的限制。
本发明中,这里的修整是采用氩气对目标表面进行物理的轰击。该轰击没有任何化学反应,而且控制的精度比较高,厚度的精度可以控制在3%以内,例如要对目标修整掉
Figure PCTCN2020088719-appb-000001
(
Figure PCTCN2020088719-appb-000002
是适合使用修整方法实现的范围,超出该范围则会导致工艺时间过长,此时可以采用部分刻蚀+修整两者相结合的方式来实现),实际大概在
Figure PCTCN2020088719-appb-000003
这种控制精度是刻蚀没有办法比拟的。
另外,使用修整机台还可以进行多次修整来实现片内均匀性补偿。因为修整所采用的是用粒子束对目标进行轰击,粒子束直径大概13mm左右,所以如果在沉积压电材料的时候面内均匀性不好,可以在修整时根据厚度的数据进行补偿,比如厚的地方就多修整一些,薄的地方就少修整一些。
图2A-2D为示出根据本发明的一个示例性实施例的体声波谐振器组的制造过程的截面示意图,其中也示出了调整机电耦合系数的一种示例性过程。下面参照图2A-2D描述实现谐振器1和谐振器2之间压电层厚度差异,从而调整两个谐振器的机电耦合系数的方法。
首先,如图2A所示,在整体形成压电层之后在压电层上形成阻挡层150,该阻挡层的材料不做特殊限制,在更具体的示例中,只要在修整结束时阻挡层没有完全被修整掉即可,这可以通过控制阻挡层厚度来确定。另外还需要考虑阻挡层与压电层在后续去除阻挡层时的刻蚀问题,例如避 免或减少在刻蚀阻挡层时刻蚀压电层。
其次,如图2B所示,通过光刻和刻蚀把谐振器2上的阻挡层150层刻蚀掉,如此,把谐振器2的压电层70露出来,而谐振器1的表面是阻挡层150层。这样,在修整时谐振器2的压电材料会被修整掉,而谐振器1只有阻挡层150在消耗。
再次,如图2C所示,执行修整,此时谐振器2的压电层70会部分被消耗掉,同时谐振器1的阻挡层150也会被消耗一部分。
最后,如图2D所示,通过干法或者湿法去除阻挡层150,无论干法还是湿法都需要充分考虑在去除阻挡层时对压电层的影响。去除阻挡层150后的结构如图2D所示。
如本领域技术人员能够理解的,后续可以在压电层上设置顶电极,然后在谐振器2的顶电极上设置质量负载层90,形成如图1所示的结构。
通过对压电层的厚度进行调整,使得两个谐振器的压电层的厚度差别到预定差值,可以实现对两个谐振器的机电耦合系数的调整。
本发明还可以在此基础之上,对两个谐振器的机电耦合系数做进一步的调整。例如,可以通过在顶电极的非引脚端设置檐结构或者悬翼结构。
图3为根据本发明的一个示例性实施例的体声波谐振器组的截面示意图,其中顶电极设置有檐结构。
通过控制顶电极与压电层之间空气层或者空隙层100和110的厚度C和D以及A和B的尺寸可以控制机电耦合系数,进而得到更大的机电耦合系数的差异。换言之,可以通过调整谐振器中的檐的宽度A、B和/或高度C、D,可调整谐振器的机电耦合系数。
在本发明中,空隙层可以填充不导电介质,例如二氧化硅等。
在本发明的示例性实施例中,檐结构的高度范围在
Figure PCTCN2020088719-appb-000004
Figure PCTCN2020088719-appb-000005
例如
Figure PCTCN2020088719-appb-000006
Figure PCTCN2020088719-appb-000007
等。
在本发明的示例性实施例中,所述檐结构的宽度范围在0.5μm到7μm,例如0.5μm、0.6μm和0.7μum等。
具体的,对于谐振器1与谐振器2中的任一个,在保持檐结构的高度不变的情况下,通过提高檐结构的宽度降低对应谐振器的机电耦合系数,或者通过降低檐结构的宽度提高对应谐振器的机电耦合系数。
或者具体的,对于谐振器1与谐振器2中的任一个,在保持檐结构的宽度不变的情况下,通过提高檐结构的高度提高对应谐振器的机电耦合系数,或者通过降低檐结构的高度降低对应谐振器的机电耦合系数。
图5为根据本发明的一个示例性实施例的体声波谐振器组的截面示意图,其中顶电极设置有檐结构。图5与图3的不同在于檐结构的宽度不同,在图5中,檐结构下面的空隙延伸到声学镜空腔的边缘之外。
图4为根据本发明的一个示例性实施例的体声波谐振器组的截面示意图,其中顶电极与压电层之间设置有空隙层100和110。设置空隙层也可以调整其所在的谐振器的机电耦合系数。如图4所示,可以通过控制或选择各空隙层对应的参数A来调整其所在的谐振器的机电耦合系数。
为了得到更大的机电耦合系数差异,还可以采用不同的压电层材料。图6为根据本发明的一个示例性实施例的体声波谐振器组的截面示意图,其中第一谐振器的压电层为两层材料不同的压电层形成。如图6所示,压电薄膜层一40和70是在同一时间制备而成的,在这层制备完成后,可以再制备另外一层材料压电层薄膜层二120,压电层薄膜层二120层与压电薄膜层一40和70材料声速差异越大,在保持压电层薄膜层二120厚度不变的情况下机电耦合系数差异就会做的越大。
图7A-7E分别对应于图2-6,不同的是,在图7A-7E中,还分别设置有凸起凹陷结构(或边界条件)。如图7A-7E所示,边界条件层一130和边界条件层二140可以在顶电极50和80上面,也可以做在顶电极50和80下面,且边界条件层一130和边界条件层二140均可单独使用。
基于以上,本发明提出了如下技术方案:
1、一种体声波谐振器组件,包括设置在同一基底上的至少两个体声波谐振器,每一个谐振器包括:声学镜;底电极;顶电极;和压电层,所述声学镜、底电极、压电层和顶电极在谐振器厚度方向上的重叠区域构成谐振器的有效区域,其中:
至少两个体声波谐振器包括第一谐振器与第二谐振器;
第一谐振器包括第一压电层,第二谐振器包括第二压电层,第一压电层与第二压电层同层布置,且第一压电层的厚度大于第二压电层的厚度。
2、根据1所述的组件,其中:
第二谐振器还设置有质量负载层;或者
第一谐振器与第二谐振器均设置有质量负载层,且第一谐振器设置的质量负载层的厚度小于第二谐振器设置的质量负载层的厚度。
3、根据1或2所述的组件,其中:
第一谐振器的顶电极的非引脚端设置有第一檐结构,第一檐结构具有第一高度以及第一宽度,所述第一檐结构与压电层之间设置有空隙或不导电介质层;和/或
第二谐振器的顶电极的非引脚端设置有第二檐结构,第二檐结构具有第二高度以及第二宽度,所述第二檐结构与压电层之间设置有空隙或不导电介质层。
4、根据3所述的组件,其中:
第一高度不同于第二高度,和/或第一宽度不同于第二宽度。
5、根据4所述的组件,其中:
第一高度不同于第二高度,且两个高度在
Figure PCTCN2020088719-appb-000008
Figure PCTCN2020088719-appb-000009
的范围内;和/或
第一宽度不同于第二宽度,且两个宽度在0.2μm到7μm的范围内。
6、根据1或2所述的组件,其中:
第一谐振器在其顶电极与压电层之间在有效区域的范围内设置有第一空隙结构;和/或
第二谐振器在其顶电极与压电层之间在有效区域的范围内设置有第二空隙结构。
7、根据1-6中任一项所述的组件,其中:
所述第一压电层包括第一压电子层;
第一压电层还包括第二压电子层,第二压电子层位于第一压电子层上方或下方,且第一压电子层的材料与第二压电子层的材料不同。
8、根据1-7中任一项所述的组件,其中:
第一谐振器和/或第二谐振器在有效区域的边界附近还设置有凸起和/或凹陷结构。
9、一种机电耦合系数调整方法,包括步骤:
在同一基底上形成共用于第一体声波谐振器和第二体声波谐振器的压电层;
使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度,以调整第一谐振器与第二谐振器的机电耦合系数之间的差值。
10、根据9所述的方法,还包括步骤:
调整第一谐振器与第二谐振器之间的频率差值。
11、根据10所述的方法,其中:
调整第一谐振器与第二谐振器之间的频率差值包括步骤:在第二谐振器设置质量负载层,以调整第二谐振器的频率。
12、根据10或11所述的方法,其中:
调整第一谐振器与第二谐振器之间的频率差值包括步骤:调整第二谐振器的频率与第一谐振器的频率中的至少一个使得两者相同或第二谐振器的频率与第一谐振器的频率差值为预定值。
13、根据9-12中任一项所述的方法,其中:
使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度的步骤包括:
在共用于第一谐振器和第二谐振器的压电层上沉积阻挡层;
从第二谐振器对应的压电层上移除阻挡层;
同时减薄第一谐振器上的阻挡层以及第二谐振器对应的压电层,直至第二谐振器对应的压电层的厚度减小而成为具有预定厚度的第二压电层。
14、根据13所述的方法,还包括步骤:
从第一谐振器的压电层上移除剩余的阻挡层。
15、根据9-12中任一项所述的方法,其中:
使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度的步骤包括:
在第一谐振器和第二谐振器分别对应的基底部分上沉积底电极、以及预定厚度的压电层;
在第一谐振器的压电层上沉积另外的压电层,所述另外的压电层的材料不同于第一谐振器的所述压电层的材料,
或者
使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度的步骤包括:
在第一谐振器和第二谐振器分别对应的基底部分上沉积底电极和压电层和另外的压电层,以及阻挡层,所述压电层与另外的压电层的材料不同;
去除第二谐振器的阻挡层;
同时减薄第一谐振器上的阻挡层以及第二谐振器上的所述另外的压电层,直至第二谐振器上的另外的压电层完全被消耗掉;
去除第一谐振器上的阻挡层。
16、根据9-15中任一项所述的方法,其中:
所述方法包括在在第一谐振器与第二谐振器的压电层上表面沉积顶电极;且
沉积顶电极的步骤包括:
在第一谐振器的顶电极的非引脚端设置第一檐结构,第一檐结构具有第一高度以及第一宽度,所述第一檐结构与压电层之间设置有介质;和/或
在第二谐振器的顶电极的非引脚端设置第二檐结构,第二檐结构具有第二高度以及第二宽度,所述第二檐结构与压电层之间设置有空隙或不导电介质层。
17、根据16所述的方法,包括步骤:
通过调整第一高度和第二高度中的至少一个和/或调整第一宽度与第二宽度中的至少一个,和/或通过选择具有不同介电常数的不导电介质,调节对应的谐振器的机电耦合系数。
18、根据17所述的方法,其中:
对于第一谐振器与第二谐振器中的任一个,在保持檐结构的高度不变的情况下,通过提高檐结构的宽度降低对应谐振器的机电耦合系数,或者通过降低檐结构的宽度提高对应谐振器的机电耦合系数。
19、根据17所述的方法,其中:
对于第一谐振器与第二谐振器中的任一个,在保持檐结构的宽度不变 的情况下,通过提高檐结构的高度提高对应谐振器的机电耦合系数,或者通过降低檐结构的高度降低对应谐振器的机电耦合系数。
20、根据9-15中任一项所述的方法,其中:
所述方法包括在在第一谐振器与第二谐振器的压电层上表面沉积顶电极;且
沉积顶电极的步骤包括:
在第一谐振器的顶电极与压电层之间在有效区域的范围内设置第一空隙结构;和/或
在第二谐振器的顶电极与压电层之间在有效区域的范围内设置第二空隙结构。
21、根据9-20中任一项所述的方法,还包括步骤:
在第一谐振器和/或第二谐振器的有效区域的边界附近设置凸起和/或凹陷结构。
22、根据9-20中任一项所述的方法,其中:
使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度的步骤中:利用粒子束轰击目标表面以调整目标压电层的厚度。
23、根据22所述的方法,其中:
利用粒子束轰击移除压电层的厚度范围在
Figure PCTCN2020088719-appb-000010
的范围内。
24、一种滤波器,包括根据1-8中任一项所述的体声波谐振器组,在至少一个所述谐振器组中的两个体声波谐振器的机电耦合系数不同。
25、根据24所述的滤波器,其中:
至少一个谐振器组中的两个体声波谐振器的频率相同或者频率差为预定值。
26、一种电子设备,包括根据24或25所述的滤波器或者根据1-8中任一项所述的体声波谐振器组。
需要指出的是,这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例 进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (26)

  1. 一种体声波谐振器组件,包括设置在同一基底上的至少两个体声波谐振器,每一个谐振器包括:声学镜;底电极;顶电极;和压电层,所述声学镜、底电极、压电层和顶电极在谐振器厚度方向上的重叠区域构成谐振器的有效区域,其中:
    至少两个体声波谐振器包括第一谐振器与第二谐振器;
    第一谐振器包括第一压电层,第二谐振器包括第二压电层,第一压电层与第二压电层同层布置,且第一压电层的厚度大于第二压电层的厚度。
  2. 根据权利要求1所述的组件,其中:
    第二谐振器还设置有质量负载层;或者
    第一谐振器与第二谐振器均设置有质量负载层,且第一谐振器设置的质量负载层的厚度小于第二谐振器设置的质量负载层的厚度。
  3. 根据权利要求1或2所述的组件,其中:
    第一谐振器的顶电极的非引脚端设置有第一檐结构,第一檐结构具有第一高度以及第一宽度,所述第一檐结构与压电层之间设置有空隙或不导电介质层;和/或
    第二谐振器的顶电极的非引脚端设置有第二檐结构,第二檐结构具有第二高度以及第二宽度,所述第二檐结构与压电层之间设置有空隙或不导电介质层。
  4. 根据权利要求3所述的组件,其中:
    第一高度不同于第二高度,和/或第一宽度不同于第二宽度。
  5. 根据权利要求4所述的组件,其中:
    第一高度不同于第二高度,且两个高度在
    Figure PCTCN2020088719-appb-100001
    Figure PCTCN2020088719-appb-100002
    的范围内;和/或
    第一宽度不同于第二宽度,且两个宽度在0.2μm到7μm的范围内。
  6. 根据权利要求1或2所述的组件,其中:
    第一谐振器在其顶电极与压电层之间在有效区域的范围内设置有第一空隙结构;和/或
    第二谐振器在其顶电极与压电层之间在有效区域的范围内设置有第二空隙结构。
  7. 根据权利要求1-6中任一项所述的组件,其中:
    所述第一压电层包括第一压电子层;
    第一压电层还包括第二压电子层,第二压电子层位于第一压电子层上方或下方,且第一压电子层的材料与第二压电子层的材料不同。
  8. 根据权利要求1-7中任一项所述的组件,其中:
    第一谐振器和/或第二谐振器在有效区域的边界附近还设置有凸起和/或凹陷结构。
  9. 一种机电耦合系数调整方法,包括步骤:
    在同一基底上形成共用于第一体声波谐振器和第二体声波谐振器的压电层;
    使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度,以调整第一谐振器与第二谐振器的机电耦合系数之间的差值。
  10. 根据权利要求9所述的方法,还包括步骤:
    调整第一谐振器与第二谐振器之间的频率差值。
  11. 根据权利要求10所述的方法,其中:
    调整第一谐振器与第二谐振器之间的频率差值包括步骤:在第二谐振器设置质量负载层,以调整第二谐振器的频率。
  12. 根据权利要求10或11所述的方法,其中:
    调整第一谐振器与第二谐振器之间的频率差值包括步骤:调整第二谐振器的频率与第一谐振器的频率中的至少一个使得两者相同或第二谐振器的频率与第一谐振器的频率差值为预定值。
  13. 根据权利要求9-12中任一项所述的方法,其中:
    使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度的步骤包括:
    在共用于第一谐振器和第二谐振器的压电层上沉积阻挡层;
    从第二谐振器对应的压电层上移除阻挡层;
    同时减薄第一谐振器上的阻挡层以及第二谐振器对应的压电层,直至第二谐振器对应的压电层的厚度减小而成为具有预定厚度的第二压电层。
  14. 根据权利要求13所述的方法,还包括步骤:
    从第一谐振器的压电层上移除剩余的阻挡层。
  15. 根据权利要求9-12中任一项所述的方法,其中:
    使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度的步骤包括:
    在第一谐振器和第二谐振器分别对应的基底部分上沉积底电极以及预定厚度的压电层;
    在第一谐振器的压电层上沉积另外的压电层,所述另外的压电层的材料不同于第一谐振器的所述压电层的材料,
    或者
    使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度的步骤包括:
    在第一谐振器和第二谐振器分别对应的基底部分上沉积底电极和压电层和另外的压电层,以及阻挡层,所述压电层与另外的压电层的材料不同;
    去除第二谐振器的阻挡层;
    同时减薄第一谐振器上的阻挡层以及第二谐振器上的所述另外的压电层,直至第二谐振器上的另外的压电层完全被消耗掉;
    去除第一谐振器上的阻挡层。
  16. 根据权利要求9-15中任一项所述的方法,其中:
    所述方法包括在在第一谐振器与第二谐振器的压电层上表面沉积顶电极;且
    沉积顶电极的步骤包括:
    在第一谐振器的顶电极的非引脚端设置第一檐结构,第一檐结构具有第一高度以及第一宽度,所述第一檐结构与压电层之间设置有介质;和/或
    在第二谐振器的顶电极的非引脚端设置第二檐结构,第二檐结构具有第二高度以及第二宽度,所述第二檐结构与压电层之间设置有空隙或不导电介质层。
  17. 根据权利要求16所述的方法,包括步骤:
    通过调整第一高度和第二高度中的至少一个和/或调整第一宽度与第 二宽度中的至少一个,和/或通过选择具有不同介电常数的不导电介质,调节对应的谐振器的机电耦合系数。
  18. 根据权利要求17所述的方法,其中:
    对于第一谐振器与第二谐振器中的任一个,在保持檐结构的高度不变的情况下,通过提高檐结构的宽度降低对应谐振器的机电耦合系数,或者通过降低檐结构的宽度提高对应谐振器的机电耦合系数。
  19. 根据权利要求17所述的方法,其中:
    对于第一谐振器与第二谐振器中的任一个,在保持檐结构的宽度不变的情况下,通过提高檐结构的高度提高对应谐振器的机电耦合系数,或者通过降低檐结构的高度降低对应谐振器的机电耦合系数。
  20. 根据权利要求9-15中任一项所述的方法,其中:
    所述方法包括在在第一谐振器与第二谐振器的压电层上表面沉积顶电极;且
    沉积顶电极的步骤包括:
    在第一谐振器的顶电极与压电层之间在有效区域的范围内设置第一空隙结构;和/或
    在第二谐振器的顶电极与压电层之间在有效区域的范围内设置第二空隙结构。
  21. 根据权利要求9-20中任一项所述的方法,还包括步骤:
    在第一谐振器和/或第二谐振器的有效区域的边界附近设置凸起和/或凹陷结构。
  22. 根据权利要求9-20中任一项所述的方法,其中:
    使得第二谐振器对应的第二压电层的厚度小于第一谐振器对应的第一压电层的厚度的步骤中:利用粒子束轰击目标表面以调整目标压电层的厚度。
  23. 根据权利要求22所述的方法,其中:
    利用粒子束轰击移除压电层的厚度范围在
    Figure PCTCN2020088719-appb-100003
    的范围内。
  24. 一种滤波器,包括根据权利要求1-8中任一项所述的体声波谐振器组,在至少一个所述谐振器组中的两个体声波谐振器的机电耦合系数不同。
  25. 根据权利要求24所述的滤波器,其中:
    至少一个谐振器组中的两个体声波谐振器的频率相同或者频率差为预定值。
  26. 一种电子设备,包括根据权利要求24或25所述的滤波器或者根据权利要求1-8中任一项所述的体声波谐振器组。
PCT/CN2020/088719 2019-12-31 2020-05-06 体声波谐振器组、滤波器、电子设备、机电耦合系数调整方法 WO2021135010A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20910858.8A EP4087132A4 (en) 2019-12-31 2020-05-06 ACOUSTIC VOLUME RESONATOR, FILTER, ELECTRONIC DEVICE, METHOD FOR ADJUSTING THE ELECTROMECHANICAL COUPLING COEFFICIENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911419061.0 2019-12-31
CN201911419061.0A CN111262548B (zh) 2019-12-31 2019-12-31 体声波谐振器组、滤波器、电子设备、机电耦合系数调整方法

Publications (1)

Publication Number Publication Date
WO2021135010A1 true WO2021135010A1 (zh) 2021-07-08

Family

ID=70948607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088719 WO2021135010A1 (zh) 2019-12-31 2020-05-06 体声波谐振器组、滤波器、电子设备、机电耦合系数调整方法

Country Status (3)

Country Link
EP (1) EP4087132A4 (zh)
CN (1) CN111262548B (zh)
WO (1) WO2021135010A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115567026A (zh) * 2022-12-06 2023-01-03 深圳新声半导体有限公司 基于压电材料的声表面滤波器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600566B (zh) * 2020-04-21 2021-06-01 诺思(天津)微系统有限责任公司 滤波器、体声波谐振器组件及其制造方法、电子设备
WO2022183379A1 (zh) * 2021-03-02 2022-09-09 天津大学 石英薄膜谐振器及其制造方法
CN115241622B (zh) * 2021-04-23 2024-05-03 诺思(天津)微系统有限责任公司 谐振器、滤波器及电子设备
CN115694388A (zh) * 2022-10-26 2023-02-03 河源市艾佛光通科技有限公司 一种体声波滤波器及其制作方法
CN116722837A (zh) * 2023-05-31 2023-09-08 锐石创芯(重庆)科技有限公司 体声波滤波器组件、射频前端模块及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089395A1 (en) * 2001-01-05 2002-07-11 Juha Ella Baw filters having different center frequencies on a single substrate and a method for providing same
US20140125203A1 (en) * 2009-11-25 2014-05-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave (baw) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with varying amounts of dopant
CN104854793A (zh) * 2012-12-21 2015-08-19 埃普科斯股份有限公司 Baw部件、baw部件的叠层和用于制造baw部件的方法,所述baw部件包括两个不同的堆叠压电材料
CN105048986A (zh) * 2014-04-30 2015-11-11 安华高科技通用Ip(新加坡)公司 具有空气环及温度补偿层的声谐振器装置
US20150333727A1 (en) * 2012-12-21 2015-11-19 Epcos Ag MEMS Component Having AlN and Sc and Method for Manufacturing a MEMS Component
US20180062617A1 (en) * 2016-08-25 2018-03-01 Qualcomm Incorporated Single-chip multi-frequency film bulk acoustic-wave resonators
CN111010108A (zh) * 2019-03-02 2020-04-14 天津大学 带凹陷和空气翼结构的体声波谐振器、滤波器及电子设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787048B2 (en) * 2001-03-05 2004-09-07 Agilent Technologies, Inc. Method for producing thin bulk acoustic resonators (FBARs) with different frequencies on the same substrate by subtracting method and apparatus embodying the method
EP1575165B1 (en) * 2004-03-09 2008-05-07 Infineon Technologies AG Bulk acoustic wave filter and method for eliminating unwanted side passands
JPWO2009013938A1 (ja) * 2007-07-20 2010-09-30 株式会社村田製作所 圧電共振子及び圧電フィルタ装置
JP5360432B2 (ja) * 2011-01-27 2013-12-04 株式会社村田製作所 圧電デバイス
US9148117B2 (en) * 2011-02-28 2015-09-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Coupled resonator filter comprising a bridge and frame elements
US10284173B2 (en) * 2011-02-28 2019-05-07 Avago Technologies International Sales Pte. Limited Acoustic resonator device with at least one air-ring and frame
US9490771B2 (en) * 2012-10-29 2016-11-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator comprising collar and frame
US9608594B2 (en) * 2014-05-29 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Capacitive coupled resonator device with air-gap separating electrode and piezoelectric layer
US10312882B2 (en) * 2015-07-22 2019-06-04 Cindy X. Qiu Tunable film bulk acoustic resonators and filters
US9948272B2 (en) * 2015-09-10 2018-04-17 Qorvo Us, Inc. Air gap in BAW top metal stack for reduced resistive and acoustic loss
CN110166014B (zh) * 2018-02-11 2020-09-08 诺思(天津)微系统有限责任公司 体声波谐振器及其制造方法
JP7169083B2 (ja) * 2018-04-04 2022-11-10 太陽誘電株式会社 弾性波デバイスおよびマルチプレクサ
US10727811B2 (en) * 2018-06-01 2020-07-28 Akoustis, Inc. Effective coupling coefficients for strained single crystal epitaxial film bulk acoustic resonators

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089395A1 (en) * 2001-01-05 2002-07-11 Juha Ella Baw filters having different center frequencies on a single substrate and a method for providing same
US20140125203A1 (en) * 2009-11-25 2014-05-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave (baw) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with varying amounts of dopant
CN104854793A (zh) * 2012-12-21 2015-08-19 埃普科斯股份有限公司 Baw部件、baw部件的叠层和用于制造baw部件的方法,所述baw部件包括两个不同的堆叠压电材料
US20150333727A1 (en) * 2012-12-21 2015-11-19 Epcos Ag MEMS Component Having AlN and Sc and Method for Manufacturing a MEMS Component
CN105048986A (zh) * 2014-04-30 2015-11-11 安华高科技通用Ip(新加坡)公司 具有空气环及温度补偿层的声谐振器装置
US20180062617A1 (en) * 2016-08-25 2018-03-01 Qualcomm Incorporated Single-chip multi-frequency film bulk acoustic-wave resonators
CN111010108A (zh) * 2019-03-02 2020-04-14 天津大学 带凹陷和空气翼结构的体声波谐振器、滤波器及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHEN HONGXIA , OU WEN: "Design and Verification of A Film Bulk Acoustic Resonator", JOURNAL OF XIDIAN UNIVERSITY, vol. 46, no. 4, 16 April 2019 (2019-04-16), pages 144 - 149, XP055826753, ISSN: 1001-2400, DOI: 10.19665/j.issn1001-2400.2019.04.020 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115567026A (zh) * 2022-12-06 2023-01-03 深圳新声半导体有限公司 基于压电材料的声表面滤波器

Also Published As

Publication number Publication date
CN111262548B (zh) 2021-06-22
EP4087132A4 (en) 2023-11-15
EP4087132A1 (en) 2022-11-09
CN111262548A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2021135010A1 (zh) 体声波谐振器组、滤波器、电子设备、机电耦合系数调整方法
US7109826B2 (en) Tapered electrode in an acoustic resonator
WO2021051812A1 (zh) 具有调节层的体声波谐振器、滤波器和电子设备
US6617751B2 (en) Film bulk acoustic resonator and method for fabrication thereof
JP4688070B2 (ja) 圧電薄膜共振子、圧電薄膜デバイスおよびその製造方法
CN102075161B (zh) 声波器件及其制作方法
EP1914888A1 (en) Ladder type filter
US20070247260A1 (en) Electronic device
JP2005286945A (ja) 共振子、フィルタおよび共振子の製造
JP4395892B2 (ja) 圧電薄膜デバイス及びその製造方法
WO2021077714A1 (zh) 体声波谐振器及其频率调整方法、滤波器、电子设备
WO2021223731A1 (zh) 体声波谐振器、滤波器、电子设备和调整机电耦合系数的方法
WO2021135022A1 (zh) 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备
CN114884480B (zh) 声表面波谐振装置的形成方法
US9105846B2 (en) Method of manufacturing a boundary acoustic wave device
US11527700B2 (en) Microphone device with single crystal piezoelectric film and method of forming the same
JP2007129776A (ja) 薄膜圧電共振器、薄膜圧電デバイスおよびその製造方法
JP3846406B2 (ja) 電子部品、その製造方法、それを用いたフィルタおよびデュプレクサならびに電子通信機器
CN114696773A (zh) 体声波谐振器及制造方法、滤波器及电子设备
WO2022083712A1 (zh) 体声波谐振器及组件、滤波器、电子设备
JP2018125792A (ja) バルク弾性波共振器の製造方法
JP2005142902A (ja) 弾性表面波素子用基板
JP6892061B2 (ja) バルク弾性波共振器の製造方法
JP6828973B2 (ja) バルク弾性波共振器の製造方法
CN114448371A (zh) 体声波谐振器组件及其制造方法、滤波器、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910858

Country of ref document: EP

Effective date: 20220801