WO2021051812A1 - 具有调节层的体声波谐振器、滤波器和电子设备 - Google Patents

具有调节层的体声波谐振器、滤波器和电子设备 Download PDF

Info

Publication number
WO2021051812A1
WO2021051812A1 PCT/CN2020/086563 CN2020086563W WO2021051812A1 WO 2021051812 A1 WO2021051812 A1 WO 2021051812A1 CN 2020086563 W CN2020086563 W CN 2020086563W WO 2021051812 A1 WO2021051812 A1 WO 2021051812A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
layer
adjustment layer
bulk acoustic
acoustic wave
Prior art date
Application number
PCT/CN2020/086563
Other languages
English (en)
French (fr)
Inventor
庞慰
杨清瑞
张孟伦
Original Assignee
天津大学
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 诺思(天津)微系统有限责任公司 filed Critical 天津大学
Priority to EP20865508.4A priority Critical patent/EP4033660A4/en
Publication of WO2021051812A1 publication Critical patent/WO2021051812A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/564Monolithic crystal filters implemented with thin-film techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type

Definitions

  • the embodiments of the present invention relate to the semiconductor field, and in particular to a bulk acoustic wave resonator, a filter, an electronic device having one of the above-mentioned components, and a method for adjusting the electromechanical coupling coefficient of the bulk acoustic wave resonator.
  • FBAR Film Bulk Acoustic Resonator
  • BAW Bulk Acoustic Wave Resonator
  • FBAR filter has small size ( ⁇ m level), High resonant frequency (GHz), high quality factor (1000), large power capacity, good roll-off effect and other excellent characteristics, are gradually replacing traditional surface acoustic wave (SAW) filters and ceramic filters, and play in the field of wireless communication radio frequency It has a huge effect, and its high sensitivity advantage can also be applied to the sensing fields of biology, physics, medicine and so on.
  • SAW surface acoustic wave
  • Film bulk acoustic wave resonators are used in bulk acoustic wave filters.
  • the bulk acoustic wave filter has the advantages of low insertion loss, high rectangular coefficient, high power capacity, etc. Therefore, it is widely used in contemporary wireless communication systems and is an important component that determines the quality of radio frequency signals in and out of communication systems.
  • Figure 9A shows an abstract circuit diagram of a certain ladder topology (common structure) filter.
  • the filter includes 1 input (Input), 1 output (Output), and 4 series bulk acoustic wave resonators Rs1-4 located between the output and input.
  • FIG. 9B is a top view of an actual distribution structure of a resonator corresponding to the circuit shown in FIG. 9A.
  • the top view shows the substrate 10, the bottom electrodes 31-36 (dashed lines), the piezoelectric film 40, the top electrodes 61-66 (solid shaded parts), the input terminal Input, the output terminal Output, and two ground terminals GND. If the filter is cut along the broken line A1OA2, a cross-sectional view as shown in FIG. 9C can be obtained.
  • Figure 9B shows acoustic mirror cavities 21-23 that are not visible in Figure 9A.
  • Substrate usually the material can be monocrystalline silicon, gallium arsenide, sapphire, quartz, etc.
  • Acoustic mirror In the above example, it is an air cavity. Bragg reflection layer or other equivalent acoustic reflection structure can also be used.
  • Bottom electrode/top electrode which can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium, or their alloys.
  • Piezoelectric layer film ie piezoelectric layer
  • materials such as aluminum nitride, zinc oxide, PZT, etc., and rare earth element doped materials with a certain atomic ratio containing the above materials can be selected.
  • FIG. 9D is an abstract circuit diagram of a Lattice topology (common structure) filter in the prior art. Among them, Input1 and Input2 represent input terminals, Output1 and Output2 represent output terminals, Rp1 and Rp2 represent parallel resonators, and Rs1 and Rs2 represent series resonators.
  • the performance of a bulk acoustic wave filter is determined by the bulk acoustic wave resonator that constitutes it.
  • the resonant frequency of the bulk acoustic wave resonator determines the working frequency of the filter
  • the effective electromechanical coupling coefficient Determine the bandwidth of the filter, and together with the quality factor affect the filter insertion loss and roll-off.
  • high-quality filters usually need to have large bandwidth or high roll-off or both.
  • the present invention proposes a solution for adjusting the electromechanical coupling coefficient of each bulk acoustic wave resonator in an electronic device by setting an adjustment layer having an electromechanical coupling coefficient different from that of the piezoelectric layer.
  • a bulk acoustic wave resonator including:
  • the area where the acoustic mirror, the bottom electrode, the piezoelectric layer, and the top electrode overlap in the thickness direction of the substrate is the effective area of the resonator; the resonator further includes an adjustment layer disposed on the top electrode and/or the bottom electrode and Between the piezoelectric layers, or arranged in the piezoelectric layers;
  • the electromechanical coupling coefficient of the adjustment layer is different from the electromechanical coupling coefficient of the piezoelectric layer.
  • the outer edge of the adjustment layer is outside the edge of the acoustic mirror, and further outside the edge of the bottom electrode.
  • the doping concentration of the doping elements in the adjustment layer and the piezoelectric layer are different.
  • the adjustment layer is a piezoelectric doped layer.
  • the doping concentration of the piezoelectric doped layer ranges from 5-40% by atom.
  • the doping concentration difference between the adjustment layer and the piezoelectric layer is 8-20% by atomic ratio.
  • the thickness of the adjustment layer is In the range.
  • the doping element includes one or more of the following elements: scandium, yttrium, magnesium, titanium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, Erbium, thulium, ytterbium, lutetium.
  • the piezoelectric layer or adjustment layer material is aluminum nitride, zinc oxide, lithium niobate, or lead zirconate titanate.
  • the doping element of the adjustment layer is scandium, and the material of the piezoelectric layer or the adjustment layer is aluminum nitride.
  • the ratio of the high value to the low value of the electromechanical coupling coefficient of the piezoelectric layer and the adjustment layer is in the range of 1.1-5.
  • a filter including at least one bulk acoustic wave resonator described above.
  • the filter includes at least two bulk acoustic wave resonators described above.
  • the at least two bulk acoustic wave resonators include two resonators, and the adjustment layers of the two resonators have different thicknesses.
  • the at least two bulk acoustic wave resonators include two resonators, and the adjustment layers of the two resonators have different doping concentrations, and further doping concentrations differ by 8-20% by atomic ratio.
  • one electrode of the resonator provided with the adjustment layer has a first thickness, and the thickness of the corresponding electrode of the at least one resonator without the adjustment layer in the filter is greater than the first thickness.
  • the bulk acoustic wave resonator provided with the adjustment layer is a first bulk acoustic wave resonator; the filter further includes at least one second bulk acoustic wave resonator that is not provided with the adjustment layer, and the at least one second bulk acoustic wave resonator
  • the acoustic wave resonator includes at least one third bulk acoustic wave resonator provided with a mass load layer.
  • the adjustment layer of at least one first bulk acoustic wave resonator is arranged between the corresponding top electrode and the piezoelectric layer; and the mass load layer of at least one of the third bulk acoustic wave resonators is arranged on the corresponding top
  • the material and thickness of the adjustment layer between the electrode and the piezoelectric layer are the same.
  • the embodiment of the present invention also relates to an electronic device including the above-mentioned bulk acoustic wave resonator or the above-mentioned filter.
  • the embodiment of the present invention also relates to a method for adjusting the electromechanical coupling coefficient of a bulk acoustic wave resonator.
  • the bulk acoustic wave resonator includes a substrate; an acoustic mirror; a bottom electrode; a top electrode; and a piezoelectric layer. The method includes the steps:
  • An adjustment layer is arranged in the piezoelectric layer or between the piezoelectric layer and the bottom electrode or between the piezoelectric layer and the top electrode, wherein: the electromechanical coupling coefficient of the adjustment layer is different from the electromechanical coupling coefficient of the piezoelectric layer ;
  • the electromechanical coupling coefficient of the adjustment layer and/or the piezoelectric layer is selected to adjust the electromechanical coupling coefficient of the resonator.
  • the electromechanical coupling coefficient of the resonator is adjusted based on the difference in doping concentration between the adjustment layer and the piezoelectric layer, and/or based on the thickness of the adjustment layer.
  • the method further includes the step of: setting a mass load layer on the resonator where the adjustment layer is not provided.
  • the outer edge of the adjustment layer is outside the edge of the acoustic mirror, and further outside the edge of the bottom electrode.
  • Fig. 1A is a schematic top view of a filter according to an exemplary embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view of the filter in FIG. 1A according to an exemplary embodiment of the present invention
  • FIG. 1C is a schematic cross-sectional view of the filter in FIG. 1A according to another exemplary embodiment of the present invention.
  • FIG. 1D is a schematic cross-sectional view of the filter in FIG. 1A according to still another exemplary embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view of a filter according to an exemplary embodiment of the present invention, in which the adjustment layer is disposed in the piezoelectric layer;
  • FIG 3 is a schematic cross-sectional view of a filter according to an exemplary embodiment of the present invention, in which the adjustment layer is disposed between the piezoelectric layer and the bottom electrode;
  • FIG. 4 is a schematic cross-sectional view of a filter according to an exemplary embodiment of the present invention, in which one resonator is provided with a mass load layer;
  • FIG. 5A is a schematic cross-sectional view of a filter according to an exemplary embodiment of the present invention, in which one resonator is provided with a mass load layer and the adjustment layer of the other resonator is of the same material and thickness;
  • FIG. 5B is a top view of the via hole, the top electrode and the adjustment layer in FIG. 5A;
  • Fig. 6 is an abstract circuit diagram of a four-step topology filter according to an exemplary embodiment
  • Figures 7 and 8 exemplarily show that in the filter of Figure 6, with respect to keeping the effective electromechanical coupling coefficients of all resonators in the filter the same, the effective electromechanical coupling coefficients of the resonators in the filter are changed. Results affecting bandwidth and roll-off characteristics;
  • Fig. 9A is an abstract circuit diagram of a ladder topology (common structure) filter in the prior art
  • FIG. 9B is a top view of an actual distribution structure of a resonator corresponding to the circuit shown in FIG. 9A;
  • Figure 9C is a cross-sectional view taken along the broken line A1OA2 in Figure 9B;
  • FIG. 9D is an abstract circuit diagram of a Lattice topology (common structure) filter in the prior art.
  • FIG. 1A is a schematic top view of a filter according to an exemplary embodiment of the present invention
  • FIG. 1B is a schematic cross-sectional view of the filter in FIG. 1A according to an exemplary embodiment of the present invention
  • FIG. 1C is a schematic view of the filter in FIG. 1A according to an exemplary embodiment of the present invention
  • FIG. 1A is a schematic cross-sectional view of the filter in FIG. 1A according to another exemplary embodiment of the present invention
  • FIG. 1D is a schematic cross-sectional view of the filter in FIG. 1A according to still another exemplary embodiment of the present invention.
  • Substrate usually the material can be monocrystalline silicon, gallium arsenide, sapphire, quartz, etc.
  • Acoustic mirror In the above example, it is an air cavity. Bragg reflection layer or other equivalent acoustic reflection structure can also be used.
  • Bottom electrode/top electrode which can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium, or their alloys.
  • Piezoelectric layer film ie piezoelectric layer
  • materials such as aluminum nitride, zinc oxide, PZT, etc., and rare earth element doped materials with a certain atomic ratio containing the above materials can be selected.
  • a doped piezoelectric layer 52-53 is deposited between the top electrode 62-63 of the corresponding resonator and the original piezoelectric layer 40, respectively.
  • Figure 1A shows the additional piezoelectric layers 52-53 used to adjust the electromechanical coupling coefficient, and omit the top electrodes of all resonators, leaving only the bottom electrodes 32-33 of Rs2 and Rs3;
  • Figure 1B is 1A is a cross-sectional view taken along the broken line A1OA2 in FIG. 9B.
  • the doping concentration of the doped piezoelectric layer as the adjustment layer is in the range of 5-40% by atom.
  • the piezoelectric layer and the electromechanical coupling coefficient adjustment layer are both aluminum nitride thin films, and the two layers can be doped, and the doping element is a rare earth element.
  • the doping element includes one or more of the following elements: scandium, yttrium, magnesium, titanium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, Holmium, erbium, thulium, ytterbium, lutetium.
  • the piezoelectric layer in addition to the aluminum nitride piezoelectric layer, may also be a zinc oxide piezoelectric layer, a lithium niobate piezoelectric layer, or a lead zirconate titanate piezoelectric layer.
  • the doping element is scandium
  • the piezoelectric layer or adjustment layer is an aluminum nitride piezoelectric layer.
  • the difference in doping concentration of the piezoelectric layer and the adjustment layer is 8-20% by atom.
  • the edge of the adjustment layer is located outside the edge of the bottom electrode, and further, the edge of the adjustment layer is located outside the edge of the acoustic mirror.
  • adjacent adjustment layers can also be connected. This simplifies the process.
  • adjustment layers of different thicknesses can be used to obtain different electromechanical coupling coefficients.
  • the addition of the adjustment layer will cause the frequency of the resonator to drop significantly. This change may cause the frequency difference between the resonator with the adjustment layer and other resonators to fall outside the allowable range of the index.
  • the frequency compensation can be performed by thickening other resonator electrodes, so that the frequency difference falls within the allowable range of the index again.
  • the electrode thickness of the resonators Rs1, Rs4, Rp1, and Rp2 can be increased, or the electrode thickness of Rs2, Rs3 can be reduced, so that the The frequency difference returns to the allowable range of the indicator.
  • a mass load layer can be provided on other resonators that are not provided with the adjustment layer.
  • Fig. 4 is a schematic cross-sectional view of a filter according to an exemplary embodiment of the present invention, in which one resonator is provided with a mass load layer. The difference between Fig. 4 and Fig. 3 is that a mass load layer 71 is provided to compensate for the frequency difference between the resonators caused by the addition of the adjustment layers 52 and 53.
  • the mass load layer here may be a mass load layer different from the adjustment layer, or a layer of the same material and thickness as the adjustment layer.
  • Fig. 5A is a schematic cross-sectional view of a filter according to an exemplary embodiment of the present invention, in which one resonator is provided with a mass load layer and the adjustment layer of the other resonator is of the same material and thickness, and Fig. 5B is in Fig. 5A The top view of the vias, top electrode, and adjustment layer.
  • the same reference numerals in the drawings as those in other drawings indicate components with the same functions.
  • 51-53 are the same adjustment layer, K1 is a via located on the adjustment layer, and the top electrodes 61 and 62 are kept electrically connected through K1.
  • the adjustment material layer includes a layer 51 as a mass load, and 52 and 53 as an adjustment layer;
  • the via hole K1 is processed by etching on the adjustment layer on the upper edge of the top electrode 61;
  • the advantages of the above process are: on the one hand, it avoids the adverse effects of the adjustment layer processing (such as etching) process on the piezoelectric layer 40 below it; on the other hand, it effectively utilizes the adjustment layer above the top electrode 61 as a mass load. Compensate for frequency.
  • the position of the adjustment layer can also be changed.
  • the adjustment layer may be placed inside the piezoelectric layer 40.
  • the adjustment layer is placed on the upper surface of the bottom electrode.
  • the adjustment layer for adjusting the electromechanical coupling coefficient of the resonator is a doped layer, and the doped layer has a different doping concentration from the piezoelectric layer.
  • the adjustment layer may not be a doped layer, but the piezoelectric layer is a doped layer, or both the piezoelectric layer and the adjustment layer are doped layers, as long as there is a difference in doping concentration between the two.
  • the difference in doping concentration is 8-20% by atomic ratio. When the doping concentration is zero, it means that there is no doping.
  • materials with different electromechanical coupling coefficients can be selected to separately manufacture the piezoelectric layer and the adjustment layer.
  • the ratio of the high value to the low value of the electromechanical coupling coefficient of the piezoelectric layer and the adjustment layer may be in the range of 1.1-5.
  • the electromechanical coupling coefficients of multiple resonators in the filter can be adjusted, for example, by selecting the thickness of the adjustment layer of different resonators, the doping concentration of the adjustment layer and/or the piezoelectric layer of different resonators, and so on.
  • the value of the numerical range in addition to the end value (when the end value is included) or the neighboring end value in the range (when the end value is not included), it can also be, for example, the middle value of the range, etc. .
  • Fig. 6 is an abstract circuit diagram of a four-step topology filter of an exemplary embodiment
  • Figs. 7 and 8 exemplarily show: in the filter of Fig. 6, relative to the retention of all resonators in the filter
  • the effective electromechanical coupling coefficient is the same, and the bandwidth and roll-off characteristics are affected by changing the effective electromechanical coupling coefficient of the resonator in the filter.
  • a bulk acoustic wave resonator including:
  • the area where the acoustic mirror, the bottom electrode, the piezoelectric layer, and the top electrode overlap in the thickness direction of the substrate is the effective area of the resonator; the resonator further includes an adjustment layer disposed on the top electrode and/or the bottom electrode and Between the piezoelectric layers, or arranged in the piezoelectric layers;
  • the electromechanical coupling coefficient of the adjustment layer is different from the electromechanical coupling coefficient of the piezoelectric layer.
  • the electromechanical coupling coefficient of the resonator can be adjusted by making the doping concentration of the doping element in the adjustment layer and the piezoelectric layer different.
  • Different materials can also be used to manufacture the piezoelectric layer and the adjustment layer, so that the ratio of the high value to the low value in the electromechanical coupling coefficient of the piezoelectric layer and the adjustment layer is in the range of 1.1-5.
  • a filter comprising at least one bulk acoustic wave resonator according to 1.
  • An electronic device comprising the bulk acoustic wave resonator according to 1 or the filter according to 2. It should be pointed out that the electronic equipment here includes, but is not limited to, intermediate products such as radio frequency front-ends, filter amplification modules, and terminal products such as mobile phones, WIFI, and drones.
  • a method for adjusting the electromechanical coupling coefficient of a bulk acoustic wave resonator comprising a substrate; an acoustic mirror; a bottom electrode; a top electrode; and a piezoelectric layer, the method comprising the steps:
  • An adjustment layer is arranged in the piezoelectric layer or between the piezoelectric layer and the bottom electrode or between the piezoelectric layer and the top electrode, wherein: the electromechanical coupling coefficient of the adjustment layer is different from the electromechanical coupling coefficient of the piezoelectric layer ;
  • the electromechanical coupling coefficient of the adjustment layer and/or the piezoelectric layer is selected to adjust the electromechanical coupling coefficient of the resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种体声波谐振器,包括:基底(10);声学镜(21、22、23);底电极(31、32、33);顶电极(61、62、63);压电层(40),其中:声学镜(21、22、23)、底电极(31、32、33)、压电层(40)、顶电极(61、62、63)在基底(10)的厚度方向重叠的区域为谐振器的有效区域;所述谐振器还包括调节层(52、53),所述调节层(52、53)设置在顶电极(61、62、63)和/或底电极(31、32、33)与压电层(40)之间,或者设置在所述压电层(40)内;所述调节层(52、53)的机电耦合系数与所述压电层(40)的机电耦合系数不同。还涉及一种体声波谐振器的机电耦合系数调节方法,以及滤波器与电子设备。

Description

具有调节层的体声波谐振器、滤波器和电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器,一种滤波器,一种具有上述部件中的一种的电子设备,以及一种体声波谐振器的机电耦合系数调节方法。
背景技术
薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR,又称为体声波谐振器,也称BAW)作为一种MEMS芯片在通信领域发挥着重要作用,FBAR滤波器具有尺寸小(μm级)、谐振频率高(GHz)、品质因数高(1000)、功率容量大、滚降效应好等优良特性,正在逐步取代传统的声表面波(SAW)滤波器和陶瓷滤波器,在无线通信射频领域发挥巨大作用,其高灵敏度的优势也能应用到生物、物理、医学等传感领域。
薄膜体声波谐振器用于体声波滤波器中。体声波滤波器具有低插入损耗、高矩形系数、高功率容量等优点,因此,被广泛应用在当代无线通讯系统中,是决定射频信号进出通讯系统质量的重要元器件。
图9A所示的是某个梯形(Ladder)拓扑结构(常用结构)滤波器的抽象电路图。如图9A所示,该滤波器包含1个输入端(Input)、1个输出端(Output)、位于输出和输入端之间有4个串联体声波谐振器Rs1-4,在串联体声波谐振器和地(GND)之间还有2个并联体声波谐振器Rp1-2。
图9B是图9A中所示电路对应的一种谐振器的实际分布结构的俯视图。该俯视图中显示了基底10、底电极31-36(虚线部分)、压电薄膜40、顶电极61-66(实线阴影部分)以及输入端Input、输出端Output和两个接地端GND。若沿折线A1OA2将所述滤波器剖开,可得到图9C所示的剖视图。图9B中显示了在图9A中不可见的声学镜空腔21-23。
关于各个组成部分的材料等说明如下:
10:基底,通常材料可选单晶硅,砷化镓,蓝宝石,石英等。
21-23:声学镜,上述实例中为空气腔,也可采用布拉格反射层或其它等效声学反射结构。
31-33/61-63:底电极/顶电极,可采用钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金。
40:压电层薄膜(即压电层),可选氮化铝,氧化锌,PZT等材料,以及包含上述材料的一定原子比的稀土元素掺杂材料。
图9D为现有技术中的格形(Lattice)拓扑结构(常用结构)滤波器的抽象电路图。其中Input1和Input2表示输入端子,Output1和Output2表示输出端子,Rp1和Rp2表示并联谐振器,而Rs1与Rs2表示串联谐振器。
体声波滤波器的性能由构成它的体声波谐振器决定,如:体声波谐振器的谐振频率决定了滤波器的工作频率,有效机电耦合系数
Figure PCTCN2020086563-appb-000001
决定了滤波器的带宽,并和品质因数共同影响滤波器插入损耗和滚降。在频带资源越来越紧俏的时代中,高品质滤波器通常需要具备大带宽或高滚降或二者兼具。传统设计原则认为,带宽主要由谐振器
Figure PCTCN2020086563-appb-000002
决定,而谐振器的
Figure PCTCN2020086563-appb-000003
是由其层叠厚度决定的,通常在一个滤波器芯片中的所有谐振器具有相同的
Figure PCTCN2020086563-appb-000004
因此如何能够打破这一设计规则,实现在一个滤波器中的多个谐振器的
Figure PCTCN2020086563-appb-000005
在一定范围内可调,是实现高性能滤波器设计急需解决的一个重要问题。
通常,对于滤波器为代表的电子器件,需要使其中各个谐振器具有不同的机电耦合系数,从而使电子器件的性能得到优化。
发明内容
本发明提出一种设置具有不同于压电层的机电耦合系数的调节层来对电子器件中各个体声波谐振器的机电耦合系数进行调节的方案。
根据本发明的实施例的一个方面,提出了一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;
压电层,
其中:
声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域;所述谐振器还包括调节层,所述调节层设置在顶电极和/或底电极与压电层之间,或者设置在所述压电层内;
所述调节层的机电耦合系数与所述压电层的机电耦合系数不同。
可选的,在谐振器的俯视图中,所述调节层的外边缘处于声学镜边缘之外,进一步处于底电极的边缘之外。
可选的,所述调节层与所述压电层中掺杂元素的掺杂浓度不同。可选的,所述调节层为压电掺杂层。进一步可选的,所述压电掺杂层的掺杂浓度范围为5-40%原子比。
可选的,所述调节层与所述压电层的掺杂浓度差异为8-20%原子比。
可选的,所述调节层的厚度在
Figure PCTCN2020086563-appb-000006
的范围内。
可选的,所述掺杂元素包括如下元素中的一种或多种:钪、钇、镁、钛、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥。
可选的,所述压电层或调节层材料为氮化铝、氧化锌、铌酸锂或锆钛酸铅。
可选的,所述调节层的掺杂元素为钪,且所述压电层或调节层材料为氮化铝。
可选的,所述压电层与所述调节层两者的机电耦合系数中的高值与低值的比值在1.1-5的范围之内。
根据本发明的实施例的另一方面,提出了一种滤波器,包括至少一个上述的体声波谐振器。
可选的,所述滤波器包括至少两个上述体声波谐振器。
可选的,该至少两个体声波谐振器包括两个谐振器,且所述两个谐振器的调节层的厚度不同。
可选的,该至少两个体声波谐振器包括两个谐振器,且所述两个谐振器的调节层的掺杂浓度不同,进一步的掺杂浓度相差8-20%原子比。
可选的,设置有调节层的谐振器的一个电极具有第一厚度,滤波器中 未设置调节层的至少一个谐振器的对应电极的厚度大于所述第一厚度。
可选的,设置有调节层的体声波谐振器为第一体声波谐振器;所述滤波器还包括未设置所述调节层的至少一个第二体声波谐振器,所述至少一个第二体声波谐振器包括设置有质量负载层的至少一个第三体声波谐振器。进一步的,至少一个第一体声波谐振器的调节层设置在对应的顶电极与压电层之间;且第三体声波谐振器中的至少一个的质量负载层与所述设置在对应的顶电极与压电层之间的调节层的材料与厚度均相同。
本发明的实施例还涉及一种电子设备,包括上述的体声波谐振器,或者上述的滤波器。
本发明的实施例还涉及一种体声波谐振器的机电耦合系数调节方法,所述体声波谐振器包括基底;声学镜;底电极;顶电极;和压电层,所述方法包括步骤:
在压电层中或者在压电层与底电极之间或者在压电层与顶电极之间设置调节层,其中:所述调节层的机电耦合系数与所述压电层的机电耦合系数不同;
选择调节层和/或压电层的机电耦合系数,来调节所述谐振器的机电耦合系数。
可选的,上述方法中,基于调节层与压电层之间的掺杂浓度差,和/或基于调节层的厚度,来调节所述谐振器的机电耦合系数。
可选的,所述方法还包括步骤:在没有设置所述调节层的谐振器上设置质量负载层。
可选的,在上述方法中,在谐振器的俯视图中,所述调节层的外边缘处于声学镜边缘之外,进一步处于底电极的边缘之外。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1A为根据本发明的一个示例性实施例的滤波器的示意性俯视图;
图1B为根据本发明的一个示例性实施例的图1A中的滤波器的剖视示意图;
图1C为根据本发明的另一个示例性实施例的图1A中的滤波器的剖视示意图;
图1D为根据本发明的再一个示例性实施例的图1A中的滤波器的剖视示意图;
图2为根据本发明的一个示例性实施例的滤波器的示意性剖视图,其中调节层设置于压电层中;
图3为根据本发明的一个示例性实施例的滤波器的示意性剖视图,其中调节层设置于压电层与底电极之间;
图4为根据本发明的一个示例性实施例的滤波器的示意性剖视图,其中一个谐振器设置有质量负载层;
图5A为根据本发明的一个示例性实施例的滤波器的示意性剖视图,其中一个谐振器设置有质量负载层与另外的谐振器的调节层为相同的材料与厚度;
图5B为图5A中的过孔、顶电极及调节层的俯视图;
图6为一个示例性实施例的四阶梯形拓扑结构滤波器的抽象电路图;
图7和图8示例性示出了:在图6的滤波器中,相对于保持滤波器中的所有谐振器的有效机电耦合系数相同,通过改变滤波器中的谐振器的有效机电耦合系数来影响带宽与滚降特性的结果;
图9A为现有技术中的一个梯形(Ladder)拓扑结构(常用结构)滤波器的抽象电路图;
图9B为图9A中所示电路对应的一种谐振器的实际分布结构的俯视图;
图9C为沿图9B中的折线A1OA2所得的剖视图;
图9D为现有技术中的格形(Lattice)拓扑结构(常用结构)滤波器的抽象电路图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
图1A为根据本发明的一个示例性实施例的滤波器的示意性俯视图;图1B为根据本发明的一个示例性实施例的图1A中的滤波器的剖视示意图;图1C为根据本发明的另一个示例性实施例的图1A中的滤波器的剖视示意图;图1D为根据本发明的再一个示例性实施例的图1A中的滤波器的剖视示意图。
参见图1A-1D,根据本发明的示例性实施例的滤波器的各个组成部分的材料等说明如下:
10:基底,通常材料可选单晶硅,砷化镓,蓝宝石,石英等。
21-23:声学镜,上述实例中为空气腔,也可采用布拉格反射层或其它等效声学反射结构。
31-33/61-63:底电极/顶电极,可采用钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金。
40:压电层薄膜(即压电层),可选氮化铝,氧化锌,PZT等材料,以及包含上述材料的一定原子比的稀土元素掺杂材料。
如图所示,根据本发明提出的实施方式,对于图9A-9D所述的由体波谐振器构成的滤波器,当需提高两个串联谐振器Rs2和Rs3的机电耦合系数时,可如图1A和1B所示在所述对应的谐振器的顶电极62-63和和原有的压电层40之间各沉积一层掺杂压电层52-53。其中,图1A中显示出了用于调节机电耦合系数的附加压电层52-53,并略去了所有谐振器的顶电极,仅保留了Rs2和Rs3的底电极32-33;图1B是1A沿图9B中A1OA2折线得到的剖视图。
在本发明的一个实施例中,作为调节层的掺杂压电层的掺杂浓度范围为5-40%原子比。
在进一步的实施例中,压电层和机电耦合系数调节层(即调节层)均为氮化铝薄膜,且所述两膜层均可掺杂,掺杂元素为稀土元素。
在本发明的实施例中,掺杂元素包括如下元素中的一种或多种:钪、钇、镁、钛、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥。
在本发明的实施例中,所述压电层除了为氮化铝压电层外,还可为氧化锌压电层、铌酸锂压电层或锆钛酸铅压电层等。
在进一步的实施例中,掺杂元素为钪,压电层或调节层为氮化铝压电层。
在一个实施例中,压电层和调节层的掺杂浓度差异为8-20%原子比。
在一个实施例中,调节层厚度范围
Figure PCTCN2020086563-appb-000007
在本发明的一个实施例中,调节层的边缘位于底电极的边缘之外,进一步的,调节层的边缘位于声学镜的边缘之外。
此外,如图1C所示,相邻的调节层还可采用相连接的方式。这样可简化工艺。
另外,如图1D所示,对于不同的谐振器,可采用不同厚度的调节层,以获得不同的机电耦合系数。
此外,由于质量负载效应,调节层的加入会导致谐振器的频率发生较为显著的下降,这种变化可能会导致具有调节层的谐振器与其他谐振器的频率差异落到指标允许范围之外。在这种情况下,可通过加厚其它谐振器电极的方法来进行频率补偿,从而使所述频率差异重新落入指标允许范围内。例如,对于图1A中的滤波器来说,当加入了调节层52-53之后,谐振器Rs2和Rs3的工作频率会下降,在频率下降较为显著的情况下,会导致Rs2、Rs3的频率与其余谐振器Rs1、Rs4、Rp1和Rp2的频率出现过大差异,这时可通过增大谐振器Rs1、Rs4、Rp1和Rp2的电极厚度,或者减小Rs2、Rs3的电极厚度,从而使所述频率差异回到指标允许范围。
在设置了调节层的同时,可以在其它没有设置调节层的谐振器上设置质量负载层。图4为根据本发明的一个示例性实施例的滤波器的示意性剖视图,其中一个谐振器设置有质量负载层。图4与图3的区别在于设置了质量负载层71,用来补偿调节层52与53的加入所带来的谐振器间的 频率差异。
这里的质量负载层可以是不同于调节层的质量负载层,也可以是与调节层的材料和厚度相同的层。图5A为根据本发明的一个示例性实施例的滤波器的示意性剖视图,其中一个谐振器设置有质量负载层与另外的谐振器的调节层为相同的材料与厚度,图5B为图5A中的过孔、顶电极及调节层的俯视图。附图中与其他附图中的附图标记相同则表示相同功能的部件。
在图5A的实施例中,51-53为同一层调节层,K1为位于所述调节层上的过孔,顶电极61和62通过K1保持电学连接。
图5A的实施例中压电层40上部结构的加工流程简要描述如下:
1)在压电层40上方首先制作顶电极61;
2)在顶电极61和压电层40上表面沉积一定厚度的调节材料层,所述调节材料层包含作为质量负载的层51,以及作为调节层的52和53;
3)在顶电极61边缘上部的调节层上以刻蚀方式加工出过孔K1;
4)在调节层上表面沉积并图形化顶电极62和63。
上述工艺的优点在于:一方面,避免了调节层的加工(如刻蚀)流程对其下方压电层40的不利影响;另一方面,有效利用了顶电极61上方的调节层充当质量负载,对频率进行补偿。
此外,调节层的位置也可以发生变化。如图2所示,可将调节层放置在压电层40的内部。或如图3所示,将调节层放置在底电极上表面。
在本发明附图所示的实施例中,用于调节谐振器的机电耦合系数的调节层为掺杂层,该掺杂层与压电层的掺杂浓度不同。但是,本发明不限于此。例如,调节层也可以不是掺杂层,而压电层为掺杂层,或者压电层与调节层均为掺杂层,只要两者之间存在掺杂浓度之差即可,在具体的实施例中,掺杂浓度差异为8-20%原子比。掺杂浓度为零时表示没有掺杂。
此外,为了调节体声波谐振器的机电耦合系数,可以选择具有不同的机电耦合系数的材料来分别制造压电层与调节层。所述压电层与所述调节层两者的机电耦合系数中的高值与低值的比值可以在1.1-5的范围之内。
可以对滤波器中的多个谐振器的机电耦合系数进行调节,例如通过选 择不同的谐振器的调节层的厚度,不同的谐振器的调节层和/或压电层的掺杂浓度等。
在本发明中,对于数值范围的取值,除了可以为端点值(包括端点值的情况下)或者范围内邻近端点值(不包括端点值的情况下),还可以例如是范围的中值等。
图6为一个示例性实施例的四阶梯形拓扑结构滤波器的抽象电路图;图7和图8示例性示出了:在图6的滤波器中,相对于保持滤波器中的所有谐振器的有效机电耦合系数相同,通过改变滤波器中的谐振器的有效机电耦合系数来影响带宽与滚降特性的结果。
以Band7(频段7)Tx所需性能为目标,优化图6错误!未找到引用源。所示的四阶梯形拓扑结构滤波器。如图7所示,当采用图1B的方案分别控制串联谐振器的有效机电耦合系数为6.5%、6.0%、6.5%、6.5%、且控制并联谐振器的有效机电耦合系数分别为:6.5%、6.1%、5.8%、5.8%时,滤波器的带宽要大于同一滤波器结构中所有谐振器的有效机电耦合系数均相等(6.12%)的情况。
如图8错误!未找到引用源。所示,以Band7(频段7)Rx的频段要求为目标优化谐振器参数时,当采用图1B的方案分别控制串联谐振器的有效机电耦合系数为6.0%、6.5%、6.5%、6.5%、且控制并联谐振器的有效机电耦合系数分别为:6.5%、6.5%、6.5%、6.5%时,滤波器的滚降要优于所有谐振器的有效机电耦合系数均为6.5%的情况,而带宽基本不变。
相应的,本发明提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
声学镜;
底电极;
顶电极;
压电层,
其中:
声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域;所述谐振器还包括调节层,所述调节层设置在顶电极和 /或底电极与压电层之间,或者设置在所述压电层内;
所述调节层的机电耦合系数与所述压电层的机电耦合系数不同。
可以通过使得所述调节层与所述压电层中掺杂元素的掺杂浓度不同来调整谐振器的机电耦合系数。
还可以采用不同的材料来制造压电层与调节层,使得所述压电层与所述调节层两者的机电耦合系数中的高值与低值的比值在1.1-5的范围之内。
2、一种滤波器,包括至少一个根据1所述的体声波谐振器。
3、一种电子设备,包括根据1所述的体声波谐振器,或者根据2所述的滤波器。需要指出的是,这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
4、一种体声波谐振器的机电耦合系数调节方法,所述体声波谐振器包括基底;声学镜;底电极;顶电极;和压电层,所述方法包括步骤:
在压电层中或者在压电层与底电极之间或者在压电层与顶电极之间设置调节层,其中:所述调节层的机电耦合系数与所述压电层的机电耦合系数不同;
选择调节层和/或压电层的机电耦合系数,来调节所述谐振器的机电耦合系数。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (26)

  1. 一种体声波谐振器,包括:
    基底;
    声学镜;
    底电极;
    顶电极;
    压电层,
    其中:
    声学镜、底电极、压电层、顶电极在基底的厚度方向重叠的区域为谐振器的有效区域;所述谐振器还包括调节层,所述调节层设置在顶电极和/或底电极与压电层之间,或者设置在所述压电层内;且
    所述调节层的机电耦合系数与所述压电层的机电耦合系数不同。
  2. 根据权利要求1所述的谐振器,其中:
    在谐振器的俯视图中,所述调节层的外边缘处于声学镜边缘之外。
  3. 根据权利要求2所述的谐振器,其中:
    在谐振器的俯视图中,所述调节层的外边缘处于底电极的边缘之外。
  4. 根据权利要求1-3中任一项所述的谐振器,其中:
    所述调节层与所述压电层中掺杂元素的掺杂浓度不同。
  5. 根据权利要求4所述的谐振器,其中:
    所述调节层为压电掺杂层。
  6. 根据权利要求5所述的谐振器,其中:
    所述压电掺杂层的掺杂浓度范围为5-40%原子比。
  7. 根据权利要求6所述的谐振器,其中:
    所述掺杂元素包括如下元素中的一种或多种:钪、钇、镁、钛、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥。
  8. 根据权利要求4所述的谐振器,其中:
    所述调节层与所述压电层的掺杂浓度差异为8-20%原子比。
  9. 根据权利要求4-8中任一项所述的谐振器,其中:
    所述压电层或调节层材料为氮化铝、氧化锌、铌酸锂或锆钛酸铅。
  10. 根据权利要求9所述的谐振器,其中:
    所述掺杂元素为钪,且所述压电层或调节层材料为氮化铝。
  11. 根据权利要求1-10中任一项所述的谐振器,其中:
    所述压电层与所述调节层两者的机电耦合系数中的高值与低值的比值在1.1-5的范围之内。
  12. 根据权利要求1-11中任一项所述的谐振器,其中:
    所述调节层的厚度在
    Figure PCTCN2020086563-appb-100001
    的范围内。
  13. 一种滤波器,包括至少一个根据权利要求1-12中任一项所述的体声波谐振器。
  14. 根据权利要求13所述的滤波器,其中:
    所述滤波器包括至少两个根据权利要求1-12中任一项所述的体声波谐振器。
  15. 根据权利要求14所述的滤波器,其中:
    该至少两个体声波谐振器包括两个谐振器,且所述两个谐振器的调节层的厚度不同。
  16. 根据权利要求14所述的滤波器,其中:
    该至少两个体声波谐振器包括两个谐振器,且所述两个谐振器的调节层的掺杂浓度不同。
  17. 根据权利要求16所述的滤波器,其中:
    所述两个谐振器的调节层的掺杂浓度相差8-20%原子比。
  18. 根据权利要求13所述的滤波器,其中:
    设置有调节层的谐振器的一个电极具有第一厚度,滤波器中未设置调节层的至少一个谐振器的对应电极的厚度大于所述第一厚度。
  19. 根据权利要求13所述的滤波器,其中:
    根据权利要求1-12中任一项所述的体声波谐振器为第一体声波谐振器;
    所述滤波器还包括未设置所述调节层的至少一个第二体声波谐振器,所述至少一个第二体声波谐振器包括设置有质量负载层的至少一个第三体声波谐振器。
  20. 根据权利要求19所述的滤波器,其中:
    至少一个第一体声波谐振器的调节层设置在对应的顶电极与压电层 之间;且
    第三体声波谐振器中的至少一个的质量负载层与所述设置在对应的顶电极与压电层之间的调节层的材料与厚度均相同。
  21. 一种电子设备,包括根据权利要求1-12中任一项所述的体声波谐振器,或者根据权利要求13-20中任一项所述的滤波器。
  22. 一种体声波谐振器的机电耦合系数调节方法,所述体声波谐振器包括基底;声学镜;底电极;顶电极;和压电层,所述方法包括步骤:
    在压电层中或者在压电层与底电极之间或者在压电层与顶电极之间设置调节层,其中所述调节层的机电耦合系数与所述压电层的机电耦合系数不同;
    选择调节层和/或压电层的机电耦合系数,来调节所述谐振器的机电耦合系数。
  23. 根据权利要求22所述的方法,其中:
    基于调节层与压电层之间的掺杂浓度差,和/或基于调节层的厚度,来调节所述谐振器的机电耦合系数。
  24. 根据权利要求22所述的方法,还包括步骤:
    在没有设置所述调节层的谐振器上设置质量负载层。
  25. 根据权利要求22所述的方法,其中:
    在谐振器的俯视图中,所述调节层的外边缘处于底电极边缘之外。
  26. 根据权利要求25所述的方法,其中:
    在谐振器的俯视图中,所述调节层的外边缘处于声学镜边缘之外。
PCT/CN2020/086563 2019-09-20 2020-04-24 具有调节层的体声波谐振器、滤波器和电子设备 WO2021051812A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20865508.4A EP4033660A4 (en) 2019-09-20 2020-04-24 ACOUSTIC VOLUME RESONATOR WITH ADJUSTMENT LAYER, FILTER AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910890701.X 2019-09-20
CN201910890701.XA CN111010120A (zh) 2019-09-20 2019-09-20 具有调节层的体声波谐振器、滤波器和电子设备

Publications (1)

Publication Number Publication Date
WO2021051812A1 true WO2021051812A1 (zh) 2021-03-25

Family

ID=70111454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086563 WO2021051812A1 (zh) 2019-09-20 2020-04-24 具有调节层的体声波谐振器、滤波器和电子设备

Country Status (3)

Country Link
EP (1) EP4033660A4 (zh)
CN (1) CN111010120A (zh)
WO (1) WO2021051812A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113612464A (zh) * 2021-06-30 2021-11-05 中国电子科技集团公司第十三研究所 阶梯型结构压电滤波器
CN113726307A (zh) * 2021-08-18 2021-11-30 武汉大学 有效机电耦合系数可调的超高频谐振器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010120A (zh) * 2019-09-20 2020-04-14 天津大学 具有调节层的体声波谐振器、滤波器和电子设备
CN113630099A (zh) * 2020-05-07 2021-11-09 诺思(天津)微系统有限责任公司 体声波谐振器及制造方法、体声波谐振器组件、滤波器及电子设备
CN111786645B (zh) * 2020-05-07 2021-04-16 诺思(天津)微系统有限责任公司 体声波谐振器、滤波器、电子设备和调整机电耦合系数的方法
CN112134542B (zh) * 2020-06-01 2022-07-12 诺思(天津)微系统有限责任公司 体声波谐振器、体声波谐振器组件及制造方法、滤波器及电子设备
CN114337572A (zh) * 2020-09-30 2022-04-12 诺思(天津)微系统有限责任公司 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
CN114337571A (zh) * 2020-09-30 2022-04-12 诺思(天津)微系统有限责任公司 体声波谐振器、掺杂浓度确定方法、滤波器及电子设备
CN113364423B (zh) * 2021-05-27 2023-11-10 广州乐仪投资有限公司 压电mems谐振器及其形成方法、电子设备
CN113328714B (zh) * 2021-06-16 2024-03-22 苏州汉天下电子有限公司 压电结构及其制造方法以及包括该压电结构的压电谐振器
CN115412047A (zh) * 2022-09-01 2022-11-29 见闻录(浙江)半导体有限公司 一种体声波谐振器及其制作方法、滤波器以及电子设备
CN117375560A (zh) * 2023-10-09 2024-01-09 武汉敏声新技术有限公司 一种体声波谐振器件及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599244A (zh) * 2003-09-17 2005-03-23 松下电器产业株式会社 压电谐振器、滤波器和双工器
US8610333B2 (en) * 2010-09-24 2013-12-17 Wei Pang Acoustic wave devices
CN103701425A (zh) * 2013-10-25 2014-04-02 诺思(天津)微系统有限公司 滤波器及其制造方法
CN104811157A (zh) * 2014-01-23 2015-07-29 太阳诱电株式会社 压电薄膜谐振器、滤波器和双工器
CN104854793A (zh) * 2012-12-21 2015-08-19 埃普科斯股份有限公司 Baw部件、baw部件的叠层和用于制造baw部件的方法,所述baw部件包括两个不同的堆叠压电材料
CN104883153A (zh) * 2014-02-27 2015-09-02 安华高科技通用Ip(新加坡)公司 具有掺杂压电层的体声波谐振器
CN107592090A (zh) * 2016-07-07 2018-01-16 三星电机株式会社 声波谐振器及其制造方法
CN111010120A (zh) * 2019-09-20 2020-04-14 天津大学 具有调节层的体声波谐振器、滤波器和电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954121B2 (en) * 2003-06-09 2005-10-11 Agilent Technologies, Inc. Method for controlling piezoelectric coupling coefficient in film bulk acoustic resonators and apparatus embodying the method
US9602073B2 (en) * 2013-05-31 2017-03-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator having piezoelectric layer with varying amounts of dopant
JP6535637B2 (ja) * 2016-07-21 2019-06-26 太陽誘電株式会社 圧電薄膜共振器、フィルタ、デュプレクサ、及び圧電薄膜共振器の製造方法
US10727809B2 (en) * 2016-12-15 2020-07-28 Qorvo Us, Inc. Bulk acoustic wave resonator with multilayer piezoelectric structure
CN109831175B (zh) * 2018-12-26 2023-10-20 天津大学 一种薄膜体声波谐振器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599244A (zh) * 2003-09-17 2005-03-23 松下电器产业株式会社 压电谐振器、滤波器和双工器
US8610333B2 (en) * 2010-09-24 2013-12-17 Wei Pang Acoustic wave devices
CN104854793A (zh) * 2012-12-21 2015-08-19 埃普科斯股份有限公司 Baw部件、baw部件的叠层和用于制造baw部件的方法,所述baw部件包括两个不同的堆叠压电材料
CN103701425A (zh) * 2013-10-25 2014-04-02 诺思(天津)微系统有限公司 滤波器及其制造方法
CN104811157A (zh) * 2014-01-23 2015-07-29 太阳诱电株式会社 压电薄膜谐振器、滤波器和双工器
CN104883153A (zh) * 2014-02-27 2015-09-02 安华高科技通用Ip(新加坡)公司 具有掺杂压电层的体声波谐振器
CN107592090A (zh) * 2016-07-07 2018-01-16 三星电机株式会社 声波谐振器及其制造方法
CN111010120A (zh) * 2019-09-20 2020-04-14 天津大学 具有调节层的体声波谐振器、滤波器和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033660A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113612464A (zh) * 2021-06-30 2021-11-05 中国电子科技集团公司第十三研究所 阶梯型结构压电滤波器
CN113612464B (zh) * 2021-06-30 2023-06-09 中国电子科技集团公司第十三研究所 阶梯型结构压电滤波器
CN113726307A (zh) * 2021-08-18 2021-11-30 武汉大学 有效机电耦合系数可调的超高频谐振器
CN113726307B (zh) * 2021-08-18 2024-01-23 武汉敏声新技术有限公司 有效机电耦合系数可调的超高频谐振器

Also Published As

Publication number Publication date
EP4033660A1 (en) 2022-07-27
CN111010120A (zh) 2020-04-14
EP4033660A4 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2021051812A1 (zh) 具有调节层的体声波谐振器、滤波器和电子设备
USRE47989E1 (en) Acoustic wave device
US10727802B2 (en) Method for producing a batch of acoustic wave filters
CN100542022C (zh) 谐振器、滤波器以及谐振器的制造
EP1755216B1 (en) Piezoelectric resonator, piezoelectric filter, and communication apparatus
CN102075161B (zh) 声波器件及其制作方法
EP4087132A1 (en) Bulk acoustic resonator set, filter, electronic device, electromechanical coupling coefficient adjustment method
US20080169885A1 (en) Piezoelectric thin-film resonator, acoustic wave device and method for fabricating the acoustic wave device
KR20080029862A (ko) Hbar 발진기 및 그 제조 방법
KR20030060809A (ko) 압전 공진자, 압전 필터, 듀플렉서, 통신 장치 및 압전공진자의 제조 방법
JP2002198777A (ja) 圧電共振子を含むフィルタ構造および構成
WO2021227941A1 (zh) 体声波谐振器组件及制造方法、滤波器及电子设备
WO2020134803A1 (zh) 电极厚度不对称的体声波谐振器、滤波器和电子设备
DE102018109833A1 (de) SAW-Resonator, HF-Filter, Multiplexer und Verfahren zur Herstellung eines SAW-Resonators
CN111355463A (zh) 基于空腔尺寸调整有效机电耦合系数的装置
US9793874B2 (en) Acoustic resonator with electrical interconnect disposed in underlying dielectric
CN114520640A (zh) 声波谐振器及包括该声波谐振器的滤波器
JP2001177365A (ja) 平衡フィルターの中心周波数の調整方法及び複数の平衡フィルター
CN114257198A (zh) 具有空隙层的体声波谐振器及组件和制造方法、滤波器和电子设备
EP3902138A1 (en) Resonator with effective area reduced based on element doping, filter and electronic device
WO2022062910A1 (zh) 体声波谐振器及组件、机电耦合系数差值调整方法、滤波器、电子设备
WO2022083352A1 (zh) 体声波谐振器及组件、滤波器、电子设备
KR102313290B1 (ko) 박막 벌크 음향 공진기 및 그의 제조 방법
CN111355464A (zh) 基于环形凸起调整有效机电耦合系数的装置
CN111355470A (zh) 基于悬檐尺寸调整有效机电耦合系数的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865508

Country of ref document: EP

Effective date: 20220420

ENP Entry into the national phase

Ref document number: 2020865508

Country of ref document: EP

Effective date: 20220420