WO2021077714A1 - 体声波谐振器及其频率调整方法、滤波器、电子设备 - Google Patents

体声波谐振器及其频率调整方法、滤波器、电子设备 Download PDF

Info

Publication number
WO2021077714A1
WO2021077714A1 PCT/CN2020/088664 CN2020088664W WO2021077714A1 WO 2021077714 A1 WO2021077714 A1 WO 2021077714A1 CN 2020088664 W CN2020088664 W CN 2020088664W WO 2021077714 A1 WO2021077714 A1 WO 2021077714A1
Authority
WO
WIPO (PCT)
Prior art keywords
top electrode
acoustic wave
bulk acoustic
wave resonator
frequency
Prior art date
Application number
PCT/CN2020/088664
Other languages
English (en)
French (fr)
Inventor
庞慰
徐洋
郝龙
杨清瑞
张孟伦
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2021077714A1 publication Critical patent/WO2021077714A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator

Definitions

  • the embodiments of the present invention relate to the semiconductor field, and in particular to a bulk acoustic wave resonator, a filter having the resonator, and an electronic device having the resonator or the filter, and a bulk acoustic wave resonator. Frequency adjustment method.
  • Bulk acoustic wave resonators are widely used in various electronic components in the modern communication field, such as filters, duplexers, and so on. Such electronic devices usually have strict or even harsh requirements on the operating frequency of each bulk wave resonator. In the case of identical design dimensions, it is difficult for the resonator actually processed on a wafer to ensure that its resonant frequency reaches the target operating frequency.
  • the electrode/piezoelectric layer thickness and electrode piezoelectricity of every two resonators in the wafer There will be a certain range of differences in the size and shape of the layers. From the above facts, it can be known that the bulk wave resonator initially obtained from the previous MEMS process usually has a part of the frequency that falls outside the allowable range of the index.
  • the current commonly used frequency trimming method is to use ion beams to bombard the top electrode or other process layers on the upper surface of the top electrode to remove part of the electrode or process layer material After the material is removed, as the mass load of the resonator becomes smaller, its resonant frequency will increase, so as to achieve the effect of frequency trimming.
  • the present invention proposes a frequency adjustment scheme.
  • a bulk acoustic wave resonator which includes a top electrode with a gap layer, the top electrode includes a first top electrode and a second top electrode, and the first top electrode is attached to In the piezoelectric layer, the gap layer is formed between the first top electrode and the second top electrode in the thickness direction of the resonator, wherein: the second top electrode is provided with a plurality of A frequency trimming channel, the frequency trimming channel penetrates the second top electrode and communicates with the gap layer.
  • a method for adjusting the frequency of a bulk acoustic wave resonator which includes the step of bombarding the surface of the top electrode with an ion beam, wherein the ion beam passing through the frequency adjustment channel causes the first A pit corresponding to the frequency adjustment channel is formed on the upper surface of a top electrode;
  • the method includes the step of bombarding the surface of the top electrode with an ion beam, wherein the ion beam passing through the frequency adjustment channel causes the upper surface of the first passivation layer to form a pit corresponding to the frequency adjustment channel.
  • the embodiments of the present invention also relate to a filter having the above-mentioned resonator, and an electronic device having the above-mentioned resonator or filter.
  • Fig. 1 is a top view of a bulk acoustic wave resonator according to an embodiment of the present invention
  • Fig. 1A is a cross-sectional view of a bulk acoustic wave resonator according to an embodiment of the present invention, taken along A-A;
  • Fig. 1B is a diagram of a frequency adjustment channel array of a bulk acoustic wave resonator according to an embodiment of the present invention
  • 1C is a schematic diagram of the structure after the ion beam bombards the first top electrode through the frequency adjustment channel according to an embodiment of the present invention
  • FIG. 2A is a schematic diagram of the structure of the first top electrode and the second top electrode after passivation according to an embodiment of the present invention
  • FIG. 2B is a schematic diagram of the structure in FIG. 2A after being bombarded by an ion beam;
  • 3A and 3B are schematic diagrams of the structure of a bulk acoustic wave resonator without a frequency adjustment channel.
  • Fig. 1 is a schematic top view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the reference signs are as follows:
  • Substrate, optional materials are silicon (high-resistance silicon), gallium arsenide, sapphire, quartz, etc.
  • the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium, or a combination of the above metals or their alloys.
  • Piezoelectric layer optional aluminum nitride (AlN), zinc oxide (ZnO), lead zirconate titanate (PZT), lithium niobate (LiNbO 3 ), quartz (Quartz), potassium niobate (KNbO 3 ) or Materials such as lithium tantalate (LiTaO 3 ) may also contain rare earth element doped materials with a certain atomic ratio of the material.
  • the first top electrode, the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys, etc.
  • Electrode pin the same material as the first top electrode.
  • 60 An air gap located in the top electrode, between the first top electrode 50 and the second top electrode 70.
  • the second top electrode, the material selection range is the same as that of the first top electrode 50, but the specific material is not necessarily the same as the first top electrode 50.
  • the air gap constitutes the void layer.
  • the void layer may be a vacuum gap layer, or a void layer filled with another gas medium, in addition to the air gap layer.
  • the frequency of the resonator with the structure shown in FIG. 3B (the top electrode does not contain an air gap) is trimmed in the same way, a significant effect can be obtained.
  • the exemplary bulk acoustic wave resonator shown in FIGS. 1 and 1A includes a top electrode having a gap layer 60.
  • the top electrode further includes a first top electrode 50 and a second top electrode 70, wherein the second top electrode 70 is Multiple frequency trimming channels 80 are provided in the effective area.
  • the ion beam can pass through the second top electrode 70 and bombard the first top electrode 50, thereby effectively realizing frequency trimming .
  • the ion beam can form an array of pits with additional acoustic significance on the first top electrode 50 to suppress the parasitic mode; Seek a balance between top electrode resistance and frequency trimming efficiency.
  • a plurality of frequency shaping channels 80 are arranged in a predetermined pattern. As shown in FIG. 1B, the predetermined pattern is an array pattern.
  • the frequency shaping channel 80 may be embodied as a through hole.
  • the predetermined pattern is a divergent pattern. That is, a number of through holes 80 on the second top electrode 70 are regularly arranged in an array, and the ratio of the total area occupied by the through holes 80 to the remaining effective area of the second top electrode 70 is within a predetermined range.
  • the sensitivity of the trimming frequency can be adjusted by adjusting the total area of the through hole 80. In principle, the larger the total area, the higher the sensitivity. However, if the duty cycle is too low, it is not conducive to frequency repair. If the duty cycle is too high, the electrode resistance will increase.
  • the area ratio of the frequency shaping channel to the effective area of the resonator may be further considered. In an optional embodiment, the ratio range of the multiple frequency shaping channels to the effective area of the resonator is It is 10%-90%, and further, in the range of 30%-75%.
  • first top electrode 50 and the second top electrode 70 directly exposing the first top electrode 50 and the second top electrode 70 to the air will cause oxidation and increase the resistance.
  • ion beam bombardment will increase the first top electrode 50.
  • the surface roughness accelerates the oxidation of the electrode.
  • passivation layers 51 and 52 may be deposited on the upper surfaces of the first top electrode 50 and the second top electrode 70, respectively, as shown in FIG. That is, the passivation layer 51 may be deposited on the upper surface of the first top electrode 50.
  • a passivation layer 52 may also be deposited on the upper surface of the second top electrode 70, and the frequency adjustment channel 80 penetrates the passivation layer 52.
  • the ion beam passes through the passivation layer 52 from the through hole 80 and the second top electrode 70 bombards the passivation layer 51 on the surface of the first top electrode 50 , The ion beam bombards the passivation layer 51 to form pits, and the first bottom electrode 50 located below 51 is not affected by the ion beam.
  • the first top electrode 50 is formed with a number of pits corresponding to the frequency adjustment channel.
  • the ion beam can pass through the second top electrode 70 through the through hole array, bombard the surface of the first top electrode 50, and form an array of pits thereon, thereby removing 50 parts of the material. To achieve the purpose of increasing the frequency.
  • the frequency shaping channel at the second top electrode 70 can also serve as a release channel for making the air gap 60 of the top electrode.
  • the second top electrode or the second passivation layer provided on the second top electrode can be thinned.
  • the mentioned numerical range can also be the median value between the endpoint values or other values, all of which fall within the protection scope of the present invention.
  • a bulk acoustic wave resonator comprising a top electrode with a gap layer, the top electrode comprising a first top electrode and a second top electrode, the first top electrode is attached to the piezoelectric layer, and the resonator The gap layer is formed between the first top electrode and the second top electrode in the thickness direction of, wherein:
  • the second top electrode is provided with a plurality of frequency trimming channels in the effective area of the resonator, and the frequency trimming channels penetrate the second top electrode and communicate with the gap layer.
  • the plurality of frequency shaping channels are arranged in a predetermined pattern.
  • the predetermined pattern is an array pattern.
  • the predetermined pattern is a divergent pattern or a concentric ring pattern.
  • the ratio of the multiple frequency trimming channels to the area of the effective area of the resonator ranges from 10% to 90%, and further, ranges from 30% to 75%.
  • a filter comprising the bulk acoustic wave resonator according to any one of claims 1-9.
  • An electronic device comprising the bulk acoustic wave resonator according to any one of 1-9 or the filter according to claim 10.
  • a method for adjusting the frequency of a bulk acoustic wave resonator wherein:
  • the bulk acoustic wave resonator is the bulk acoustic wave resonator according to any one of 1-6, and the method includes the step of bombarding the surface of the top electrode with an ion beam, wherein the ion beam passing through the frequency adjustment channel causes the A pit corresponding to the frequency adjustment channel is formed on the upper surface of the first top electrode; or
  • the bulk acoustic wave resonator is the bulk acoustic wave resonator according to 8, and the method includes the step of bombarding the surface of the top electrode with an ion beam, wherein the ion beam passing through the frequency adjustment channel makes the first passivation layer A pit corresponding to the frequency adjustment channel is formed on its upper surface.
  • the ion beam is used to directly bombard the upper surface of the second top electrode to reduce the thickness of the second top electrode.
  • the ion beam is used to bombard the passivation layer on the upper surface of the second top electrode to reduce the thickness of the passivation layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

本发明公开了一种体声波谐振器,包括具有间隙层的顶电极,所述顶电极包括第一顶电极和第二顶电极,所述第一顶电极贴附于所述压电层,在谐振器的厚度方向上所述间隙层形成在第一顶电极与第二顶电极之间,其中:所述第二顶电极在谐振器的有效区域内设置有多个频率修整通道,所述频率修整通道贯穿所述第二顶电极而与间隙层相通。本发明还公开了一种上述体声波谐振器的频率修整方法,所述方法包括:利用离子束通过所述频率调整通道轰击所述第一顶电极的上表面以在其上形成凹坑;或者利用离子束通过所述频率调整通道轰击所述第一钝化层以在其上形成凹坑。本发明还公开了一种滤波器和电子设备。

Description

体声波谐振器及其频率调整方法、滤波器、电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器、一种具有该谐振器的滤波器,以及一种具有该谐振器或者该滤波器的电子设备,一种体声波谐振器的频率调整方法。
背景技术
体声波谐振器广泛应用于现代通讯领域的各类电子元器件中,如滤波器,双工器等等。该类电子器件对其中每个体波谐振器的工作频率通常有严格甚至苛刻的要求。而在设计尺寸完全相同的情况下,一片晶圆上实际加工出来的谐振器很难保证其谐振频率达到指标工作频率,片内的每两个谐振器的电极/压电层厚度、电极压电层的大小和形状均会存在一定范围内的差异。由所述事实可知,由前期MEMS工序初步得到的体波谐振器通常会有一部分频率会落到指标允许范围之外。如果简单地抛弃这部分谐振器,则会导致降低产能,变相提高成本。因此通常采取一定的工艺方法,对不符合频率要求的谐振器进行修整,使休整后的频率落入指标要求范围。
对于频率低于指标要求的传统结构谐振器(电极无空气间隙),目前常用的频率修整方法是使用离子束轰击顶电极或位于顶电极上表面其它的工艺层,来去除一部分电极或工艺层材料,去除材料后由于谐振器的质量负载变小,其谐振频率会升高,从而达到频率修整的效果。
但是,所述传统修频方法并不普遍适用于各种谐振器结构。
发明内容
针对顶电极含有空气间隙的体波谐振器,本发明提出一种频率调整方案。
根据本发明的实施例的一个方面,提出一种体声波谐振器,包括具有间隙层的顶电极,所述顶电极包括第一顶电极和第二顶电极,所述第一顶电极贴附于所述压电层,在谐振器的厚度方向上所述间隙层形成在第一顶 电极与第二顶电极之间,其中:所述第二顶电极在谐振器的有效区域内设置有多个频率修整通道,所述频率修整通道贯穿所述第二顶电极而与间隙层相通。
根据本发明的实施例的另一方面,提出了一种体声波谐振器的频率调整方法,包括步骤:利用离子束轰击顶电极表面,其中,通过所述频率调整通道的离子束使得所述第一顶电极的上表面形成与所述频率调整通道相对应的凹坑;或者
包括步骤:利用离子束轰击顶电极表面,其中,通过所述频率调整通道的离子束使得所述第一钝化层的上表面形成与所述频率调整通道相对应的凹坑。
本发明的实施例也涉及一种具有上述谐振器的滤波器,以及具有上述谐振器或者滤波器的电子设备。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为根据本发明的一个实施例的体声波谐振器的俯视图;
图1A为根据本发明的一个实施例的体声波谐振器的A-A剖视图;
图1B为根据本发明的一个实施例的体声波谐振器的频率调整通道阵列图;
图1C为根据本发明的一个实施例,离子束通过频率调整通道轰击第一顶电极后的结构示意图;
图2A为根据本发明的一个实施例,第一顶电极和第二顶电极钝化后的结构示意图;
图2B为图2A中结构经离子束轰击后的结构示意图;
图3A和图3B为不具有频率调整通道的体声波谐振器的结构示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
图1为根据本发明的一个示例性实施例的体声波谐振器的俯视示意图。在图1中,各附图标记如下:
10:基底,可选材料为硅(高阻硅)、砷化镓、蓝宝石、石英等。
20:声学镜,在图2A-2B中为空腔20,也可采用布拉格反射层及其他等效形式。
30:底电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
36(31):电极引脚。
40:压电层,可选氮化铝(AlN)、氧化锌(ZnO)、锆钛酸铅(PZT)、铌酸锂(LiNbO 3)、石英(Quartz)、铌酸钾(KNbO 3)或钽酸锂(LiTaO 3)等材料,也可包含所述材料的一定原子比的稀土元素掺杂材料。
50:第一顶电极,材料可选钼、钌、金、铝、镁、钨、铜,钛、铱、锇、铬或以上金属的复合或其合金等。
56:电极引脚,材料与第一顶电极相同。
60:位于顶电极中的空气间隙,处于第一顶电极50和第二顶电极70之间。
70:第二顶电极,材料选择范围同第一顶电极50,但具体材料不一定与第一顶电极50相同。
80:频率调整通道。
需要说明的是,空气间隙构成空隙层,但是本发明中,空隙层除了可以为空气间隙层之外,还可以是真空间隙层,也可以是填充了其他气体介质的空隙层。
因为如图3A所示,当顶电极中具有空气间隙时,离子束会轰击到第 2顶电极70上并以移除所述电极部分材料,但实验结果和理论分析均表明,由于空气间隙60的隔离作用,第二顶电极70质量的改变无法有效调整谐振器的频率,即70的厚度对谐振器谐振频率影响的灵敏度非常低。
而用同样的方法对具有图3B中所示结构的谐振器(顶电极不含空气间隙)进行修频时则可以获得显著的效果。
因此需要一种特定结构以实现简单精确或有效的频率调整。
如图1、1A所示的示例性的体声波谐振器包括具有间隙层60的顶电极,顶电极进一步包括第一顶电极50和第二顶电极70,其中,所述第二顶电极70在有效区域内设置有多个频率修整通道80。
对于顶电极含空气间隙的谐振器,通过在第二顶电极70形成通孔结构80,可使离子束穿过第二顶电极70并轰击到第一顶电极50上,从而有效的实现频率修整。
同时,通过设计第二顶电极上的通孔阵列图案,一方面可以使离子束在第一顶电极50上形成具有额外声学意义的凹坑阵列,用于抑制寄生模式;另一方面还可在顶电极电阻和修频效率之间寻求平衡。
在可选的实施例中,多个频率修整通道80呈预定图案布置。如在图1B中所示,所述预定图案为阵列图案。
频率修整通道80可以具体化为通孔。
而如图1中所示,所述预定图案为发散状图案。即第二顶电极70上的若干通孔80一定规律排成阵列,通孔80占据的总面积与第二顶电极70剩余的有效面积比值在预定范围内。
可以通过调整通孔80的总面积以调整修整频率的灵敏度,原则上总面积越大,灵敏度越高。但是占空比过低不利于修频,占空比过高电极电阻会变大。在本发明的进一步的实施例中,可以进一步考虑频率修整通道占谐振器的有效区域的面积比,在可选的实施例中,所述多个频率修整通道占谐振器有效区域面积的比例范围是10%-90%,进一步的,在30%-75%的范围内。
在可选的实施例中,也可直接将第一顶电极50和第二顶电极70暴露在空气中会导致其氧化,并使其电阻变大,此外离子束轰击会增加第一顶 电极50的表面粗糙度,加速电极氧化。为了防止电极氧化,可如图2A所示在第一顶电极50和第二顶电极70的上表面分别沉积钝化层51和52,同时使通孔80穿过钝化层52。即,第一顶电极50上表面可沉积有钝化层51。
另外,第二顶电极70上表面也可沉积有钝化层52,且所述频率调整通道80贯穿所述钝化层52。
可选地,如图2B所示,进行离子束修频时,离子束从通孔80穿过钝化层52和第二顶电极70轰击在位于第一顶电极50表面的钝化层51上,离子束轰击在钝化层51形成凹坑,而位于51下方的第一底电极50则不受离子束影响。
同时,也可如图1C所示,第一顶电极50形成有与所述频率调整通道相对应的若干凹坑。具体地,当利用离子束进行修频时,离子束可由通孔阵列穿过第二顶电极70,轰击到第一顶电极50表面,并在其上形成凹坑阵列,从而去除50部分材料,达到提升频率的目的。
如图1所示,位于第二顶电极70的频率修整通道还可以充当释放通道,用于制作顶电极的空气间隙60。
需要指出的是,离子束轰击时,可以使得第二顶电极或设置于第二顶电极上的第二钝化层减薄。
在本发明中,提到的数值范围除了可以为端点值之外,还可以为端点值之间的中值或者其他值,均在本发明的保护范围之内。
基于以上,本发明提出了如下技术方案:
1、一种体声波谐振器,包括具有间隙层的顶电极,所述顶电极包括第一顶电极和第二顶电极,所述第一顶电极贴附于所述压电层,在谐振器的厚度方向上所述间隙层形成在第一顶电极与第二顶电极之间,其中:
所述第二顶电极在谐振器的有效区域内设置有多个频率修整通道,所述频率修整通道贯穿所述第二顶电极而与间隙层相通。
2、根据1所述的体声波谐振器,其中,
所述多个频率修整通道呈预定图案布置。
3、根据2所述的体声波谐振器,其中,
所述预定图案为阵列图案。
4、根据2所述的体声波谐振器,其中,
所述预定图案为发散状图案,或者同心环形图案。
5、根据1所述的体声波谐振器,其中,
所述多个频率修整通道占谐振器有效区域面积的比例范围是10%-90%,进一步的,在30%-75%的范围内。
6、根据1所述的体声波谐振器,其中,所述第二顶电极上表面沉积有第二钝化层,且所述频率调整通道贯穿所述第二钝化层。
7、根据1-6中任一项所述的体声波谐振器,其中,所述第一顶电极的上表面形成有与所述频率调整通道相对应的若干凹坑。
8、根据1-6中任一项所述的体声波谐振器,其中,所述第一顶电极上表面沉积有第一钝化层。
9、根据8所述的体声波谐振器,其中,所述第一钝化层形成有与所述频率调整通道相对应的若干凹坑。
10、一种包括权利要求1-9中任一项所述的体声波谐振器的滤波器。
11、一种包括根据1-9中任一项所述的体声波谐振器或权利要求10所述的滤波器的电子设备。
12、一种体声波谐振器的频率调整方法,其中:
所述体声波谐振器为根据1-6中任一项所述的体声波谐振器,所述方法包括步骤:利用离子束轰击顶电极表面,其中,通过所述频率调整通道的离子束使得所述第一顶电极的上表面形成与所述频率调整通道相对应的凹坑;或者
所述体声波谐振器为根据8所述的体声波谐振器,所述方法包括步骤:利用离子束轰击顶电极表面,其中,通过所述频率调整通道的离子束使得所述第一钝化层的上表面形成与所述频率调整通道相对应的凹坑。
13、根据12所述的方法,还包括步骤:
利用离子束直接轰击第二顶电极的上表面,以减小第二顶电极的厚度。
13、根据12所述的方法,其中所述第二顶电极的上表面还设置有钝化层,所述方法还包括步骤:
利用离子束轰击第二顶电极的上表面的钝化层,以减小所述钝化层的厚度。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (14)

  1. 一种体声波谐振器,包括具有间隙层的顶电极,所述顶电极包括第一顶电极和第二顶电极,所述第一顶电极贴附于所述压电层,在谐振器的厚度方向上所述间隙层形成在第一顶电极与第二顶电极之间,其中:
    所述第二顶电极在谐振器的有效区域内设置有多个频率修整通道,所述频率修整通道贯穿所述第二顶电极而与间隙层相通。
  2. 根据权利要求1所述的体声波谐振器,其中,
    所述多个频率修整通道呈预定图案布置。
  3. 根据权利要求2所述的体声波谐振器,其中,
    所述预定图案为阵列图案。
  4. 根据权利要求2所述的体声波谐振器,其中,
    所述预定图案为发散状图案,或者同心环形图案。
  5. 根据权利要求1所述的体声波谐振器,其中,
    所述多个频率修整通道占谐振器有效区域面积的比例范围是10%-90%,进一步的,在30%-75%的范围内。
  6. 根据权利要求1所述的体声波谐振器,其中,所述第二顶电极上表面沉积有第二钝化层,且所述频率调整通道贯穿所述第二钝化层。
  7. 根据权利要求1-6中任一项所述的体声波谐振器,其中,所述第一顶电极的上表面形成有与所述频率调整通道相对应的若干凹坑。
  8. 根据权利要求1-6中任一项所述的体声波谐振器,其中,所述第一顶电极上表面沉积有第一钝化层。
  9. 根据权利要求8所述的体声波谐振器,其中,所述第一钝化层形成有与所述频率调整通道相对应的若干凹坑。
  10. 一种包括权利要求1-9中任一项所述的体声波谐振器的滤波器。
  11. 一种包括根据权利要求1-9中任一项所述的体声波谐振器或权利要求10所述的滤波器的电子设备。
  12. 一种体声波谐振器的频率调整方法,其中:
    所述体声波谐振器为根据权利要求1-6中任一项所述的体声波谐振器,所述方法包括步骤:利用离子束轰击顶电极表面,其中,通过所述频率调整通道的离子束使得所述第一顶电极的上表面形成与所述频率调整 通道相对应的凹坑;或者
    所述体声波谐振器为根据权利要求8所述的体声波谐振器,所述方法包括步骤:利用离子束轰击顶电极表面,其中,通过所述频率调整通道的离子束使得所述第一钝化层的上表面形成与所述频率调整通道相对应的凹坑。
  13. 根据权利要求12所述的方法,还包括步骤:
    利用离子束直接轰击第二顶电极的上表面,以减小第二顶电极的厚度。
  14. 根据权利要求12所述的方法,其中所述第二顶电极的上表面还设置有钝化层,所述方法还包括步骤:
    利用离子束轰击第二顶电极的上表面的钝化层,以减小所述钝化层的厚度。
PCT/CN2020/088664 2019-10-26 2020-05-06 体声波谐振器及其频率调整方法、滤波器、电子设备 WO2021077714A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911027012.2A CN111010134B (zh) 2019-10-26 2019-10-26 体声波谐振器及其频率调整方法、滤波器、电子设备
CN201911027012.2 2019-10-26

Publications (1)

Publication Number Publication Date
WO2021077714A1 true WO2021077714A1 (zh) 2021-04-29

Family

ID=70111614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088664 WO2021077714A1 (zh) 2019-10-26 2020-05-06 体声波谐振器及其频率调整方法、滤波器、电子设备

Country Status (2)

Country Link
CN (1) CN111010134B (zh)
WO (1) WO2021077714A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010134B (zh) * 2019-10-26 2021-06-01 诺思(天津)微系统有限责任公司 体声波谐振器及其频率调整方法、滤波器、电子设备
CN111934641B (zh) * 2020-07-08 2021-06-01 诺思(天津)微系统有限责任公司 体声波谐振器及其频率调整方法、滤波器、电子设备
CN111934643B (zh) * 2020-07-13 2021-06-01 诺思(天津)微系统有限责任公司 压电层双侧设置质量负载的体声波谐振器、滤波器及电子设备
CN112087216B (zh) * 2020-08-03 2022-02-22 诺思(天津)微系统有限责任公司 具有声学孔的体声波谐振器及组件、滤波器及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739191A (zh) * 2011-03-29 2012-10-17 安华高科技无线Ip(新加坡)私人有限公司 包括桥部的堆叠式声学谐振器
CN103795369A (zh) * 2012-10-26 2014-05-14 安华高科技通用Ip(新加坡)公司 具有低微调敏感度的温度补偿谐振器装置及制造所述装置的方法
CN205249154U (zh) * 2015-12-16 2016-05-18 王天乐 一种薄膜体声波谐振器及一种滤波器、振荡器、无线收发器
JP2018125696A (ja) * 2017-01-31 2018-08-09 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびマルチプレクサ
JP2018207376A (ja) * 2017-06-07 2018-12-27 太陽誘電株式会社 弾性波デバイス
CN110190826A (zh) * 2019-05-31 2019-08-30 厦门市三安集成电路有限公司 谐振薄膜层、谐振器和滤波器
CN111010134A (zh) * 2019-10-26 2020-04-14 诺思(天津)微系统有限责任公司 体声波谐振器及其频率调整方法、滤波器、电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035358A (ja) * 2006-07-31 2008-02-14 Hitachi Media Electoronics Co Ltd 薄膜圧電バルク波共振器及びそれを用いた高周波フィルタ
CN204481097U (zh) * 2015-01-29 2015-07-15 河南易炫电子科技有限公司 一种用于无线通信的具有桥接器的耦合谐振滤波器
US9948272B2 (en) * 2015-09-10 2018-04-17 Qorvo Us, Inc. Air gap in BAW top metal stack for reduced resistive and acoustic loss
CN110266285B (zh) * 2019-05-31 2021-04-02 武汉大学 一种微机械谐振器、其制备及频率微调校正方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102739191A (zh) * 2011-03-29 2012-10-17 安华高科技无线Ip(新加坡)私人有限公司 包括桥部的堆叠式声学谐振器
CN103795369A (zh) * 2012-10-26 2014-05-14 安华高科技通用Ip(新加坡)公司 具有低微调敏感度的温度补偿谐振器装置及制造所述装置的方法
CN205249154U (zh) * 2015-12-16 2016-05-18 王天乐 一种薄膜体声波谐振器及一种滤波器、振荡器、无线收发器
JP2018125696A (ja) * 2017-01-31 2018-08-09 太陽誘電株式会社 圧電薄膜共振器、フィルタおよびマルチプレクサ
JP2018207376A (ja) * 2017-06-07 2018-12-27 太陽誘電株式会社 弾性波デバイス
CN110190826A (zh) * 2019-05-31 2019-08-30 厦门市三安集成电路有限公司 谐振薄膜层、谐振器和滤波器
CN111010134A (zh) * 2019-10-26 2020-04-14 诺思(天津)微系统有限责任公司 体声波谐振器及其频率调整方法、滤波器、电子设备

Also Published As

Publication number Publication date
CN111010134B (zh) 2021-06-01
CN111010134A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2021077714A1 (zh) 体声波谐振器及其频率调整方法、滤波器、电子设备
KR100698985B1 (ko) 필터 및 필터의 제조 방법
CN107317560B (zh) 一种温度补偿表面声波器件及其制备方法
US7854049B2 (en) Method of manufacturing a piezoelectric thin film device
CN102075161B (zh) 声波器件及其制作方法
KR100662865B1 (ko) 박막 벌크 음향 공진기 및 그 제조방법
US20070200458A1 (en) Piezoelectric thin film device
WO2021135012A1 (zh) 体声波谐振器及其封装方法、滤波器、电子设备
US20120074811A1 (en) Acoustic wave devices
WO2021135010A1 (zh) 体声波谐振器组、滤波器、电子设备、机电耦合系数调整方法
JP2011120241A (ja) Fbarタイプのバルク波の音響共振器を製作する方法
KR20170122539A (ko) 체적 음향 공진기 및 이의 제조 방법
US20100146755A1 (en) Method of manufacturing an acoustic mirror for a piezoelectric resonator and method of manufacturing a piezoelectric resonator
US20070200459A1 (en) Piezoelectric thin film device
JP4327009B2 (ja) 基板からフローティングされたエアギャップを有する薄膜のバルク音響共振器及びその製造方法
KR102588798B1 (ko) 음향파 필터 장치 및 그 제조방법
CN115250099A (zh) 调整谐振频率的方法、谐振器、滤波器及半导体器件
WO2024087400A1 (zh) 一种体声波滤波器及其制作方法
KR20180023787A (ko) 체적 음향 공진기 및 이를 구비하는 필터
JP2011176644A (ja) 弾性波デバイス
JP2009207075A (ja) 共振子フィルタの製造方法
KR102117460B1 (ko) 체적 음향 공진기 및 이의 제조방법
JP2009290591A (ja) Bawフィルタ
JP2009290364A (ja) Baw共振装置およびその製造方法
KR20200126647A (ko) 프론트 엔드 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879832

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20879832

Country of ref document: EP

Kind code of ref document: A1