WO2021134889A1 - Trench gate mosfet power semiconductor device, polycrystalline silicon-filling method therefor, and manurfacturing method therefor - Google Patents

Trench gate mosfet power semiconductor device, polycrystalline silicon-filling method therefor, and manurfacturing method therefor Download PDF

Info

Publication number
WO2021134889A1
WO2021134889A1 PCT/CN2020/077127 CN2020077127W WO2021134889A1 WO 2021134889 A1 WO2021134889 A1 WO 2021134889A1 CN 2020077127 W CN2020077127 W CN 2020077127W WO 2021134889 A1 WO2021134889 A1 WO 2021134889A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
layer
polysilicon
polysilicon layer
insulating layer
Prior art date
Application number
PCT/CN2020/077127
Other languages
French (fr)
Chinese (zh)
Inventor
张邵华
杨彦涛
隋晓明
郭广兴
Original Assignee
杭州士兰微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州士兰微电子股份有限公司 filed Critical 杭州士兰微电子股份有限公司
Publication of WO2021134889A1 publication Critical patent/WO2021134889A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Abstract

Provided are a trench gate MOSFET power semiconductor device (200), a polycrystalline silicon-filling method therefor, and a manufacturing method therefor. The filling method comprises: forming trenches (220) in an epitaxial layer (202) on a semiconductor substrate (201); forming an insulation layer (221) on a surface of the epitaxial layer (202) and in the trenches (220), the insulation layer (221) surrounding the trenches (220) to form a cavity (251); forming an i-th polycrystalline silicon layer on the surface of the epitaxial layer (202) and in the cavity (251); performing back etching on the i-th polycrystalline silicon layer; forming an (i+1)-th polycrystalline silicon layer on holes or gaps inside the exposed i-th polycrystalline silicon layer; removing the (i+1)-th polycrystalline silicon layer located above the surface of the epitaxial layer (202) and the insulation layer (221) located above the surface of the epitaxial layer (202), wherein the i-th polycrystalline silicon layer to the (i+1)-th polycrystalline silicon layer forms a shielding conductor; forming a plurality of polycrystalline silicon layers in the trenches (220) to eliminate holes or gaps, thereby improving the yield and reliability of the power semiconductor device (200) and extending the service life thereof.

Description

沟槽栅MOSFET功率半导体器件及其多晶硅填充方法和制造方法Trench gate MOSFET power semiconductor device and its polysilicon filling method and manufacturing method
本申请要求了2020年1月2日提交的、申请号为202010007896.1、发明名称为“沟槽栅MOSFET功率半导体器件及其多晶硅填充方法和制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of the Chinese patent application filed on January 2, 2020 with the application number 202010007896.1 and the invention title "Trench-gate MOSFET power semiconductor device and its polysilicon filling method and manufacturing method", and the entire content of it is approved The reference is incorporated in this application.
技术领域Technical field
本发明涉及功率半导体器件制造技术领域,尤其涉及耐压高的沟槽栅MOSFET功率半导体器件及其多晶硅填充方法和制造方法。The invention relates to the technical field of power semiconductor device manufacturing, in particular to a trench gate MOSFET power semiconductor device with high withstand voltage and a polysilicon filling method and manufacturing method thereof.
背景技术Background technique
现有技术的功率半导体器件的示意性结构图如图1所示。作为示例,该功率半导体器件为沟槽栅MOSFET功率半导体器件。A schematic structural diagram of a power semiconductor device in the prior art is shown in FIG. 1. As an example, the power semiconductor device is a trench gate MOSFET power semiconductor device.
如图1所示,沟槽栅MOSFET功率半导体器件100包括位于半导体衬底101上的外延层102中的多个沟槽120。As shown in FIG. 1, a trench gate MOSFET power semiconductor device 100 includes a plurality of trenches 120 in an epitaxial layer 102 on a semiconductor substrate 101.
图2a至2h分别示出图1所示功率半导体器件的制造方法在不同阶段的截面图。2a to 2h respectively show cross-sectional views of the manufacturing method of the power semiconductor device shown in FIG. 1 at different stages.
如图2a所示,在半导体衬底101上的外延层102中形成深度为h1的沟槽120。As shown in FIG. 2a, a trench 120 with a depth h1 is formed in the epitaxial layer 102 on the semiconductor substrate 101.
对于不同耐压等级的沟槽栅MOSFET功率半导体器件,沟槽120的深度不一样。通常耐压越高沟槽120的深度越深。例如,对于耐压120V以上的器件,沟槽120的深度一般在5微米以上。For trench gate MOSFET power semiconductor devices of different withstand voltage levels, the depth of the trench 120 is different. Generally, the higher the withstand voltage, the deeper the depth of the trench 120. For example, for a device with a withstand voltage above 120V, the depth of the trench 120 is generally above 5 microns.
如图2b所示,在外延层102的表面和沟槽形成绝缘层121。As shown in FIG. 2b, an insulating layer 121 is formed on the surface of the epitaxial layer 102 and the trench.
绝缘层121例如由氧化物组成。用于形成绝缘层121的工艺包括热氧化或化学气相沉积CVD,或两种工艺组合。The insulating layer 121 is composed of, for example, oxide. The process for forming the insulating layer 121 includes thermal oxidation or chemical vapor deposition CVD, or a combination of the two processes.
绝缘层121在功率半导体器件中作为屏蔽导体与外延层之间的隔离层。绝缘层121覆盖沟槽120的侧壁和底部,并且在外延层102的表面上方延伸。在沟槽120的内部填充绝缘层121后形成空腔151。The insulating layer 121 serves as an isolation layer between the shielding conductor and the epitaxial layer in the power semiconductor device. The insulating layer 121 covers the sidewalls and bottom of the trench 120 and extends above the surface of the epitaxial layer 102. The cavity 151 is formed after the insulating layer 121 is filled in the trench 120.
对于不同耐压等级的沟槽栅功率半导体器件,绝缘层121的厚度也不一样。通常耐压越高,绝缘层121的厚度越厚。例如,对于耐压120V以上的器件,绝缘层121的厚度在0.6微米以上。For trench gate power semiconductor devices of different withstand voltage levels, the thickness of the insulating layer 121 is different. Generally, the higher the withstand voltage, the thicker the thickness of the insulating layer 121. For example, for a device with a withstand voltage of 120V or more, the thickness of the insulating layer 121 is 0.6 micrometer or more.
如图2c所示,在外延层102的表面和沟槽内的绝缘层121上沉积屏蔽导体122。As shown in FIG. 2c, a shielding conductor 122 is deposited on the surface of the epitaxial layer 102 and the insulating layer 121 in the trench.
屏蔽导体122不仅形成在沟槽120中填充空腔151,而且在外延层102的表面上方延伸。在理想的功率半导体器件中,屏蔽导体122在空腔151中应当填充致密,无空洞或缝隙等缺陷。The shield conductor 122 is not only formed in the trench 120 to fill the cavity 151 but also extends over the surface of the epitaxial layer 102. In an ideal power semiconductor device, the shielding conductor 122 should be densely filled in the cavity 151 without defects such as voids or gaps.
对于耐压120V以下的器件,沟槽120的深度例如小于5微米,绝缘层121的厚度例如小于0.6微米。由于沟槽深度较浅,绝缘层厚度较薄,在不影响参数和性能的前提下,可以通过将沟槽120的开口倒角以扩大形成绝缘层之后的空腔开口宽度从而有利于屏蔽导体122的填充。For devices with a withstand voltage of 120V or less, the depth of the trench 120 is, for example, less than 5 μm, and the thickness of the insulating layer 121 is, for example, less than 0.6 μm. Due to the shallow trench depth and the thin insulating layer thickness, without affecting the parameters and performance, the opening of the trench 120 can be chamfered to enlarge the opening width of the cavity after the insulating layer is formed, thereby facilitating the shielding of the conductor 122 Of filling.
对于耐压120V以上的器件,沟槽120的深度例如大于5微米,绝缘层121的厚度例如大于0.6微米。由于沟槽深度较深,绝缘层厚度较厚,即使将沟槽120的开口倒角以扩大形成绝缘层之后的空腔开口宽度,也仍然会导致屏蔽导体122中存在空洞或缝隙等缺陷。For devices with a withstand voltage of 120V or higher, the depth of the trench 120 is, for example, greater than 5 μm, and the thickness of the insulating layer 121 is, for example, greater than 0.6 μm. Due to the deep trench depth and the thicker insulating layer thickness, even if the opening of the trench 120 is chamfered to enlarge the opening width of the cavity after the insulating layer is formed, defects such as voids or gaps in the shielding conductor 122 will still be caused.
图2d至图2h则示出了图1所示功率半导体器件中栅极电介质125、栅极导体106、体区107、源区108、层间介质层110、接触区111至113、导电通道131至133、源电极141、栅电极142、屏蔽电极143、漏极电极144的形成过程,由于这部分内容为常规工艺,此处不再赘述。2d to 2h show the gate dielectric 125, the gate conductor 106, the body region 107, the source region 108, the interlayer dielectric layer 110, the contact regions 111 to 113, and the conductive channel 131 in the power semiconductor device shown in FIG. The formation process of the source electrode 141, the gate electrode 142, the shield electrode 143, and the drain electrode 144 to 133, since this part of the content is a conventional process, it will not be repeated here.
图3a和3b分别示出图1所示功率半导体器件在形成多晶硅层后的截面图和局部放大图,其中示出了多晶硅层中的空洞或缝隙,在沟槽120中形成绝缘层121,绝缘层121围绕的空腔开口宽度a小于空腔内部宽度b。造成这一现象的原因是采用热氧化方案时,靠近外延层的界面上氧化生长速率略高,厚度会偏厚一些。采用化学气相沉积CVD方案时,沟槽槽口部位的淀积氧化层也会偏厚。对于淀积氧化层后的沟槽,其空腔开口宽度比空腔内宽度小的这类沟槽形貌,在随后进行的屏蔽导体淀积填槽工艺中,由于屏蔽导体化学气相沉积CVD的保型性,在进一步填充屏蔽导体122时,即使在空腔内部还未填满的情形下,屏蔽导体122会封闭空腔开口,从而在屏蔽导体122中出现空洞或缝隙153等缺陷,最终导致功率半导体器件100中漏电、耐压降低,可靠性变差。3a and 3b respectively show a cross-sectional view and a partial enlarged view of the power semiconductor device shown in FIG. 1 after the polysilicon layer is formed, which show the voids or gaps in the polysilicon layer, and an insulating layer 121 is formed in the trench 120 to insulate The opening width a of the cavity surrounded by the layer 121 is smaller than the inner width b of the cavity. The reason for this phenomenon is that when the thermal oxidation scheme is adopted, the oxidation growth rate at the interface close to the epitaxial layer is slightly higher, and the thickness will be thicker. When the chemical vapor deposition CVD scheme is adopted, the deposited oxide layer at the notch of the trench will also be thicker. For the trench after the oxide layer is deposited, the opening width of the cavity is smaller than the width of the cavity. In the subsequent shielding conductor deposition and filling process, due to the shielding conductor chemical vapor deposition CVD Shape retention. When the shielding conductor 122 is further filled, even when the cavity is not filled, the shielding conductor 122 will close the cavity opening, resulting in defects such as voids or gaps 153 in the shielding conductor 122, which will eventually lead to In the power semiconductor device 100, leakage and withstand voltage are reduced, and reliability is deteriorated.
在屏蔽导体中存在的空洞或缝隙缺陷导致功率半导体器件出现击穿或短路等故障,使得功率半导体器件的良率、可靠性和寿命受到不利的影响。The voids or gap defects in the shielded conductor cause breakdowns or short circuits in the power semiconductor device, which adversely affects the yield, reliability, and life of the power semiconductor device.
发明内容Summary of the invention
鉴于上述问题,本发明的目的在于提供一种沟槽栅MOSFET功率半导体器件及其多晶硅填充方法和制造方法,通过对沟槽中存在空洞或缝隙的第i多晶硅层进行回蚀刻,再用第i+1多晶硅层填充空洞或缝隙,从而形成屏蔽导体的方法,解决了在沟槽栅MOSFET功率器件中沟槽的屏蔽导体中存在空洞或缝隙等缺陷的问题。In view of the above problems, the purpose of the present invention is to provide a trench gate MOSFET power semiconductor device and its polysilicon filling method and manufacturing method, by etching back the i-th polysilicon layer with voids or gaps in the trench, and then using the i-th polysilicon layer The +1 polysilicon layer fills the voids or gaps to form a shielded conductor, which solves the problem of defects such as voids or gaps in the shielded conductor of the trench in the trench gate MOSFET power device.
根据本发明的一方面,提供一种用于沟槽栅MOSFET功率半导体器件的多晶硅填充方法,其特征在于,包括:a)在半导体衬底上形成外延层,在所述外延层中形成沟槽;b)在所述外延层表面和沟槽中形成绝缘层,所述绝缘层围绕沟槽形成空腔;c)在所述外延层表面和所述空腔中形成第i多晶硅层,所述第i多晶硅层填充所述空腔,i=1;d)对所述第i多晶硅层进行回 蚀刻,去除所述第i多晶硅层的一部分以暴露出所述第i多晶硅层内部的空洞或缝隙;e)在暴露出的所述第i多晶硅层内部的空洞或缝隙上形成第i+1多晶硅层,所述第i+1多晶硅层填充所述第i多晶硅内部的空洞或缝隙;f)去除位于所述外延层表面上方的所述第i+1多晶硅层和位于所述外延层表面上方的所述绝缘层。According to one aspect of the present invention, there is provided a polysilicon filling method for trench gate MOSFET power semiconductor devices, which is characterized in that it comprises: a) forming an epitaxial layer on a semiconductor substrate, and forming a trench in the epitaxial layer B) forming an insulating layer on the surface of the epitaxial layer and in the trench, the insulating layer surrounds the trench to form a cavity; c) forming an i-th polysilicon layer on the surface of the epitaxial layer and in the cavity, the The i-th polysilicon layer fills the cavity, i=1; d) the i-th polysilicon layer is etched back, and a part of the i-th polysilicon layer is removed to expose the voids or gaps inside the i-th polysilicon layer E) forming an i+1th polysilicon layer on the exposed cavity or gap inside the i-th polysilicon layer, and the i+1th polysilicon layer fills the cavity or gap inside the i-th polysilicon layer; f) removing The (i+1)th polysilicon layer located above the surface of the epitaxial layer and the insulating layer located above the surface of the epitaxial layer.
优选地,还包括:在进行步骤e)之后和步骤f)之前,令i=i+1,重复步骤d)至e)至少一次。Preferably, it further includes: after step e) and before step f), set i=i+1, and repeat steps d) to e) at least once.
优选地,还包括:在进行步骤e)之后和步骤f)之前,判断所述第i+1多晶硅层的空洞或缝隙是否填满,其中,如果所述第i+1多晶硅层的空洞或缝隙未填满,则令i=i+1,重复步骤d)至e)至少一次。Preferably, it further includes: after step e) and before step f), judging whether the void or gap of the i+1th polysilicon layer is filled, wherein if the void or gap of the i+1th polysilicon layer is If it is not filled, set i=i+1, and repeat steps d) to e) at least once.
优选地,所述第一多晶硅层至所述第i+1多晶硅层形成屏蔽导体。Preferably, the first polysilicon layer to the (i+1)th polysilicon layer form a shielding conductor.
优选地,所述沟槽的宽度为1至5微米,所述沟槽的深度为5至12微米。Preferably, the width of the groove is 1 to 5 microns, and the depth of the groove is 5 to 12 microns.
优选地,所述沟槽的宽度为1至3微米,所述沟槽的深度为7至12微米。Preferably, the width of the groove is 1 to 3 microns, and the depth of the groove is 7 to 12 microns.
优选地,所述绝缘层的厚度为0.1至2微米。Preferably, the thickness of the insulating layer is 0.1 to 2 microns.
优选地,所述绝缘层的厚度为0.6至1.5微米。Preferably, the thickness of the insulating layer is 0.6 to 1.5 microns.
优选地,步骤b)中形成的所述绝缘层在所述沟槽开口处的厚度大于所述绝缘层在所述沟槽内部的厚度。Preferably, the thickness of the insulating layer formed in step b) at the opening of the trench is greater than the thickness of the insulating layer inside the trench.
优选地,所述步骤b)中形成的沟槽开口处的所述绝缘层侧壁间的宽度小于所述沟槽内部所述绝缘层侧壁间的最大宽度。Preferably, the width between the sidewalls of the insulating layer at the opening of the trench formed in the step b) is smaller than the maximum width between the sidewalls of the insulating layer inside the trench.
优选地,所述沟槽内部的所述绝缘层侧壁间的最大宽度减去所述沟槽开口处的所述绝缘层侧壁间的宽度大于等于30纳米。Preferably, the maximum width between the sidewalls of the insulating layer inside the trench minus the width between the sidewalls of the insulating layer at the opening of the trench is greater than or equal to 30 nanometers.
优选地,步骤b)中形成的所述空腔的开口宽度小于所述空腔的内部宽度。Preferably, the opening width of the cavity formed in step b) is smaller than the inner width of the cavity.
优选地,步骤b)中形成的所述空腔的内部宽度减去所述空腔的开口宽度的值大于等于30纳米。Preferably, the value of the internal width of the cavity formed in step b) minus the opening width of the cavity is greater than or equal to 30 nanometers.
优选地,对所述第i多晶硅层进行回蚀刻采用干法刻蚀或者湿法刻蚀。Preferably, the etch-back of the i-th polysilicon layer adopts dry etching or wet etching.
优选地,所述对第i多晶硅层进行回蚀刻的刻蚀深度由空洞或缝隙缺陷的位置决定,刻蚀深度范围为0.5至11微米。Preferably, the etching depth for etching back the i-th polysilicon layer is determined by the position of the cavity or the gap defect, and the etching depth ranges from 0.5 to 11 microns.
优选地,步骤d)中对第i多晶硅层进行蚀回刻,暴露第i多晶硅层内的空洞或缝隙的同时,暴露所述外延层表面的绝缘层以及沟槽中的部分绝缘层。Preferably, in step d), the i-th polysilicon layer is etched back to expose the voids or gaps in the i-th polysilicon layer while exposing the insulating layer on the surface of the epitaxial layer and part of the insulating layer in the trench.
优选地,步骤e)中在所述暴露第i多晶硅层内的空洞或缝隙上填充第i+1多晶硅层的同时,在暴露所述外延层表面的绝缘层以及沟槽中的部分绝缘层上填充第i+1多晶硅层。Preferably, in step e), while filling the i+1th polysilicon layer on the cavities or gaps in the exposed i-th polysilicon layer, while exposing the insulating layer on the surface of the epitaxial layer and part of the insulating layer in the trench Fill the i+1th polysilicon layer.
优选地,步骤d)中对第i多晶硅层进行回蚀刻,回蚀刻后的剩余第i多晶硅层呈开口状, 所述剩余第i多晶硅层从开口顶端向下逐渐减小。Preferably, in step d), the i-th polysilicon layer is etched back, and the remaining i-th polysilicon layer after the etch-back is in the shape of an opening, and the remaining i-th polysilicon layer gradually decreases from the top of the opening downwards.
优选地,步骤e)中所述填充的第i+1多晶硅层覆盖回蚀刻后的剩余第i多晶硅层以及回蚀刻后的剩余第i多晶硅层所包围的空洞或缝隙。Preferably, the (i+1)th polysilicon layer filled in step e) covers the remaining i-th polysilicon layer after the etch-back and the voids or gaps surrounded by the remaining i-th polysilicon layer after the etch-back.
优选地,填充的第i+1多晶硅层产生的空洞或缝隙与所述空腔的开口的距离小于第i多晶硅层产生的空洞或缝隙与所述空腔的开口的距离。Preferably, the distance between the cavity or gap generated by the filled (i+1)th polysilicon layer and the opening of the cavity is smaller than the distance between the cavity or gap generated by the (i+1)th polysilicon layer and the opening of the cavity.
根据本发明的另一方面,提供一种沟槽栅MOSFET功率半导体器件的制造方法,包括:a)在半导体衬底上形成外延层,在所述外延层中形成沟槽;b)在所述外延层表面和沟槽中形成绝缘层,所述绝缘层围绕沟槽形成空腔;c)在所述外延层表面和所述空腔中形成第i多晶硅层,所述第i多晶硅层填充所述空腔,i=1;d)对所述第i多晶硅层进行回蚀刻,去除所述第i多晶硅层的一部分以暴露出所述第i多晶硅层内部的空洞或缝隙;e)在暴露出的所述第i多晶硅层内部的空洞或缝隙上形成第i+1多晶硅层,所述第i+1多晶硅层填充所述第i多晶硅层内部的空洞或缝隙;f)去除位于所述外延层表面上方的所述第i+1多晶硅层和位于所述外延层表面上方的所述绝缘层,所述第一多晶硅层至所述第i+1多晶硅层形成屏蔽导体;g)对所述沟槽中的所述绝缘层进行回蚀刻以形成上部空腔,从而暴露所述沟槽和所述屏蔽导体的上部侧壁;h)在所述沟槽和所述屏蔽导体的上部侧壁上形成栅极电介质;i)在所述栅极电介质之间形成栅极导体;j)在所述外延层邻接所述沟槽的区域中形成第二掺杂类型的体区,所述半导体衬底为第一掺杂类型且作为漏区,所述外延层为第一掺杂类型,所述第二掺杂类型与所述第一掺杂类型相反;k)在所述体区中形成所述第一掺杂类型的源区;以及l)形成所述栅极导体、所述屏蔽导体、所述源区和所述漏区的电连接结构。According to another aspect of the present invention, there is provided a method for manufacturing a trench gate MOSFET power semiconductor device, including: a) forming an epitaxial layer on a semiconductor substrate, and forming a trench in the epitaxial layer; b) forming a trench in the epitaxial layer; An insulating layer is formed on the surface of the epitaxial layer and in the trench, and the insulating layer surrounds the trench to form a cavity; c) an i-th polysilicon layer is formed on the surface of the epitaxial layer and in the cavity, and the i-th polysilicon layer is filled with The cavity, i=1; d) etch back the i-th polysilicon layer, and remove a part of the i-th polysilicon layer to expose the voids or gaps inside the i-th polysilicon layer; e) after exposing The i+1th polysilicon layer is formed on the cavity or gap inside the i-th polysilicon layer, and the i+1th polysilicon layer fills the cavity or gap inside the i-th polysilicon layer; f) removing the epitaxial layer The i+1th polysilicon layer above the surface and the insulating layer above the epitaxial layer surface, the first polysilicon layer to the i+1th polysilicon layer form a shielding conductor; g) The insulating layer in the trench is etched back to form an upper cavity, thereby exposing the upper side wall of the trench and the shield conductor; h) on the upper side wall of the trench and the shield conductor Forming a gate dielectric; i) forming a gate conductor between the gate dielectrics; j) forming a body region of the second doping type in the region where the epitaxial layer is adjacent to the trench, and the semiconductor liner The bottom is a first doping type and serves as a drain region, the epitaxial layer is a first doping type, and the second doping type is opposite to the first doping type; k) forming all the layers in the body region The source region of the first doping type; and 1) forming an electrical connection structure of the gate conductor, the shield conductor, the source region, and the drain region.
优选地,还包括:在进行步骤e)之后和步骤f)之前,令i=i+1,重复步骤d)至e)至少一次。Preferably, it further includes: after step e) and before step f), set i=i+1, and repeat steps d) to e) at least once.
优选地,还包括:在进行步骤e)之后和步骤f)之前,判断所述第i+1多晶硅层的空洞或缝隙是否填满,其中,如果所述第i+1多晶硅层的空洞或缝隙未填满,则令i=i+1,重复步骤d)至e)至少一次。Preferably, it further includes: after step e) and before step f), judging whether the void or gap of the i+1th polysilicon layer is filled, wherein if the void or gap of the i+1th polysilicon layer is If it is not filled, set i=i+1, and repeat steps d) to e) at least once.
优选地,所述沟槽的宽度为1至5微米,所述沟槽的深度为5至12微米。Preferably, the width of the groove is 1 to 5 microns, and the depth of the groove is 5 to 12 microns.
优选地,所述沟槽的宽度为1至3微米,所述沟槽的深度为7至12微米。Preferably, the width of the groove is 1 to 3 microns, and the depth of the groove is 7 to 12 microns.
优选地,所述绝缘层的厚度为0.1至2微米。Preferably, the thickness of the insulating layer is 0.1 to 2 microns.
优选地,所述绝缘层的厚度为0.6至1.5微米。Preferably, the thickness of the insulating layer is 0.6 to 1.5 microns.
优选地,所述绝缘层在所述沟槽开口处的厚度大于所述绝缘层在所述沟槽内部的厚度。Preferably, the thickness of the insulating layer at the opening of the trench is greater than the thickness of the insulating layer inside the trench.
优选地,所述沟槽开口处的所述绝缘层侧壁间的宽度小于所述沟槽内部的所述绝缘层侧壁间的最大宽度。Preferably, the width between the sidewalls of the insulating layer at the opening of the trench is smaller than the maximum width between the sidewalls of the insulating layer inside the trench.
优选地,所述沟槽内部的所述绝缘层侧壁间的最大宽度减去所述沟槽开口处的所述绝缘层侧壁间的宽度大于等于30纳米。Preferably, the maximum width between the sidewalls of the insulating layer inside the trench minus the width between the sidewalls of the insulating layer at the opening of the trench is greater than or equal to 30 nanometers.
优选地,所述空腔的开口宽度小于所述空腔的内部宽度。Preferably, the opening width of the cavity is smaller than the inner width of the cavity.
优选地,所述空腔的内部宽度减去所述空腔的开口宽度的值大于等于30纳米。Preferably, the value of the internal width of the cavity minus the opening width of the cavity is greater than or equal to 30 nanometers.
优选地,所述沟槽栅MOSFET功率半导体器件的耐压在120V到300V。Preferably, the withstand voltage of the trench gate MOSFET power semiconductor device is 120V to 300V.
优选地,对第i多晶硅层进行回蚀刻采用干法刻蚀或者湿法刻蚀。Preferably, the etch-back of the i-th polysilicon layer adopts dry etching or wet etching.
优选地,所述对第i多晶硅层进行回蚀刻的刻蚀深度由空洞或缝隙缺陷的位置决定,刻蚀深度范围为0.5至11微米。Preferably, the etching depth for etching back the i-th polysilicon layer is determined by the position of the cavity or the gap defect, and the etching depth ranges from 0.5 to 11 microns.
优选地,步骤d)中对第i多晶硅层进行蚀回刻,暴露第i多晶硅层内的空洞或缝隙的同时,暴露所述外延层表面的绝缘层以及沟槽中的部分绝缘层。Preferably, in step d), the i-th polysilicon layer is etched back to expose the voids or gaps in the i-th polysilicon layer while exposing the insulating layer on the surface of the epitaxial layer and part of the insulating layer in the trench.
优选地,步骤e)中在所述暴露第i多晶硅层内的空洞或缝隙上填充第i+1多晶硅层的同时,在暴露所述外延层的绝缘层以及沟槽中的部分绝缘层上填充第i+1多晶硅层。Preferably, in step e), while filling the i+1th polysilicon layer on the cavities or gaps in the exposed i-th polysilicon layer, the insulating layer exposing the epitaxial layer and the part of the insulating layer in the trench are filled at the same time The i+1th polysilicon layer.
优选地,步骤d)中对第i多晶硅层进行第i次回蚀刻,回蚀刻后的剩余第i多晶硅层呈开口状,所述剩余第i多晶硅层从开口顶端向下逐渐减小。Preferably, in step d), the i-th polysilicon layer is etched back for the i-th time, and the remaining i-th polysilicon layer after the etch-back is in the shape of an opening, and the remaining i-th polysilicon layer gradually decreases from the top of the opening downward.
优选地,步骤e)中所述填充的第i+1多晶硅层覆盖回蚀刻后的剩余第i多晶硅层以及回蚀刻后的剩余第i多晶硅层所包围的空洞或缝隙。Preferably, the (i+1)th polysilicon layer filled in step e) covers the remaining i-th polysilicon layer after the etch-back and the voids or gaps surrounded by the remaining i-th polysilicon layer after the etch-back.
优选地,填充的第i+1多晶硅层产生的空洞或缝隙与所述空腔的开口的距离小于第i多晶硅层产生的空洞或缝隙与所述空腔的开口的距离。Preferably, the distance between the cavity or gap generated by the filled (i+1)th polysilicon layer and the opening of the cavity is smaller than the distance between the cavity or gap generated by the (i+1)th polysilicon layer and the opening of the cavity.
优选地,所述体区的深度不小于所述栅极电介质和栅极导体的深度。Preferably, the depth of the body region is not less than the depth of the gate dielectric and the gate conductor.
根据本发明的再一方面,提供一种沟槽栅MOSFET功率半导体器件,采用上述的制造方法来形成,包括:半导体衬底,所述半导体衬底作为漏区;位于所述半导体衬底上的外延层;位于所述外延层中的沟槽;位于所述沟槽中的绝缘层,所述绝缘层围绕所述沟槽形成的空腔;以及,多晶硅填充所述空腔形成的屏蔽导体;位于所述沟槽中绝缘层上部的栅极电介质和栅极导体,所述栅极电介质位于所述沟槽和所述屏蔽导体的上部侧壁上,所述栅极导体位于所述栅极电介质之间;位于所述外延层邻接所述沟槽的区域中的体区和源区,所述体区和源区的掺杂类型相反;以及所述栅极导体、所述屏蔽导体、所述源区和所述漏区的电连接结构。According to another aspect of the present invention, there is provided a trench gate MOSFET power semiconductor device, which is formed by the above-mentioned manufacturing method, and includes: a semiconductor substrate, the semiconductor substrate serving as a drain region; An epitaxial layer; a trench located in the epitaxial layer; an insulating layer located in the trench, the insulating layer surrounding the cavity formed by the trench; and a shield conductor formed by filling the cavity with polysilicon; The gate dielectric and the gate conductor located on the upper part of the insulating layer in the trench, the gate dielectric is located on the upper sidewalls of the trench and the shield conductor, and the gate conductor is located on the gate dielectric Between; the body region and the source region in the region where the epitaxial layer is adjacent to the trench, the doping types of the body region and the source region are opposite; and the gate conductor, the shielding conductor, the The electrical connection structure of the source region and the drain region.
优选地,所述沟槽的宽度为1至5微米,所述沟槽的深度为5至12微米。Preferably, the width of the groove is 1 to 5 microns, and the depth of the groove is 5 to 12 microns.
优选地,所述沟槽的宽度为1至3微米,所述沟槽的深度为7至12微米。Preferably, the width of the groove is 1 to 3 microns, and the depth of the groove is 7 to 12 microns.
优选地,所述绝缘层的厚度为0.1至2微米。Preferably, the thickness of the insulating layer is 0.1 to 2 microns.
优选地,所述绝缘层的厚度为0.6至1.5微米。Preferably, the thickness of the insulating layer is 0.6 to 1.5 microns.
优选地,所述绝缘层在所述沟槽开口处的厚度大于所述绝缘层在所述沟槽内部的厚度。Preferably, the thickness of the insulating layer at the opening of the trench is greater than the thickness of the insulating layer inside the trench.
优选地,所述沟槽开口处的所述绝缘层侧壁间的宽度小于所述沟槽内部的所述绝缘层侧壁间的最大宽度。Preferably, the width between the sidewalls of the insulating layer at the opening of the trench is smaller than the maximum width between the sidewalls of the insulating layer inside the trench.
优选地,所述沟槽内部的所述绝缘层侧壁间的最大宽度减去所述沟槽开口处的所述绝缘层侧壁间的宽度大于等于30纳米。Preferably, the maximum width between the sidewalls of the insulating layer inside the trench minus the width between the sidewalls of the insulating layer at the opening of the trench is greater than or equal to 30 nanometers.
优选地,所述沟槽栅MOSFET功率半导体器件耐压在120V至300V。Preferably, the withstand voltage of the trench gate MOSFET power semiconductor device is 120V to 300V.
优选地,所述体区的深度不小于所述栅极电介质和栅极导体的深度。Preferably, the depth of the body region is not less than the depth of the gate dielectric and the gate conductor.
优选地,所述电连接结构包括分别与所述栅极导体、所述屏蔽导体、所述源区和所述漏区相连接的多个电极。Preferably, the electrical connection structure includes a plurality of electrodes respectively connected to the gate conductor, the shield conductor, the source region and the drain region.
优选地,所述电连接结构还包括多个导电通道,所述栅极导体、所述屏蔽导体、所述源区经由相应的导电通道连接至相应电极,所述漏区与相应的电极接触。Preferably, the electrical connection structure further includes a plurality of conductive channels, the gate conductor, the shielding conductor, and the source region are connected to the corresponding electrodes via the corresponding conductive channels, and the drain region is in contact with the corresponding electrodes.
根据本发明实施例的沟槽栅MOSFET功率半导体器件制造方法,通过对沟槽中存在空洞或缝隙的第i多晶硅层进行回蚀刻,再用第i+1多晶硅层填充空洞或缝隙,从而形成屏蔽导体的方法,解决了沟槽栅MOSFET功率半导体器件在耐压高,沟槽深度较深、沟槽宽度较窄,绝缘层较厚时,器件在制作屏蔽导体的过程中,由于沟槽宽度窄,被较厚的绝缘层覆盖后,形成的空腔小,最终导致屏蔽导体存在空洞或缝隙缺陷的问题。According to the manufacturing method of the trench gate MOSFET power semiconductor device of the embodiment of the present invention, the i-th polysilicon layer with a cavity or gap in the trench is etched back, and then the i+1-th polysilicon layer is used to fill the cavity or gap, thereby forming a shield The conductor method solves the problem that the trench gate MOSFET power semiconductor device has a high withstand voltage, a deeper trench depth, a narrow trench width, and a thick insulating layer. When the device is making a shielded conductor, the trench width is narrow due to the narrow trench width. After being covered by a thicker insulating layer, the formed cavity is small, which ultimately leads to the problem of voids or gap defects in the shielded conductor.
在优选的实施例中,对第i多晶硅层(i为大于等于1的正整数)进行回蚀刻,回蚀刻后的剩余第i多晶硅层内部形成开口状,剩余第i多晶硅层从开口向下逐渐减小,暴露出第i多晶硅层内的空洞或缝隙,然后对回蚀刻后的第i多晶硅层内的空洞或缝隙填充第i+1多晶硅层;填充的第i+1多晶硅层填满第i多晶硅层内的空洞或缝隙,因此第i多晶硅层的空洞或缝隙得以消除,如填充的第i+1多晶硅层没有空洞或缝隙缺陷,则形成致密屏蔽导体,如填充的第i+1多晶硅层仍然存在空洞或缝隙,重复对第i+1多晶硅层进行回蚀刻,以及对回蚀刻后的第i+1多晶硅层填充,以消除第i+1多晶硅层的空洞或缝隙,第i+1多晶硅层形成的空洞或缝隙相比第i多晶硅层的空洞或缝隙已经向器件槽口方向上移,重复上述步骤,直至屏蔽导体空洞或缝隙缺陷消除或者屏蔽导体中的空洞或缝隙达到了所述功率半导体器件能够接受的范围。In a preferred embodiment, the i-th polysilicon layer (i is a positive integer greater than or equal to 1) is etched back, and the remaining i-th polysilicon layer after the etch-back is formed into an opening, and the remaining i-th polysilicon layer gradually moves downward from the opening Reduce to expose the voids or gaps in the i-th polysilicon layer, and then fill the i+1-th polysilicon layer with the holes or gaps in the i-th polysilicon layer after the etch-back; the filled i+1-th polysilicon layer fills the i-th polysilicon layer The voids or gaps in the polysilicon layer, so the voids or gaps in the i-th polysilicon layer are eliminated. If the filled i+1th polysilicon layer has no voids or gap defects, a dense shielding conductor is formed, such as the filled i+1th polysilicon layer There are still voids or gaps, repeat the etch back to the i+1th polysilicon layer and fill the i+1th polysilicon layer after the etchback to eliminate the voids or gaps in the i+1th polysilicon layer, the i+1th polysilicon layer The voids or gaps formed by the layer have moved up to the device notch direction compared to the voids or gaps of the i-th polysilicon layer. Repeat the above steps until the shielding conductor voids or gap defects are eliminated or the voids or gaps in the shielding conductor reach the stated power The acceptable range of semiconductor devices.
采用本发明技术,可以减少器件屏蔽导体中的空洞或缝隙等缺陷,从而提高功率半导体器件的良率、可靠性和延长寿命。本发明可以适用于耐压120V以下,沟槽的宽度为1至5微米,沟槽的深度为5至12微米,绝缘层的厚度为0.1至2微米的沟槽栅MOSFET功率器件中,亦可适用于耐压120V以上,例如120V至300V,沟槽的宽度为1至3微米,沟槽的深度为7至12微米,绝缘层的厚度为0.6至1.5微米的沟槽栅MOSFET功率器件中。By adopting the technology of the present invention, defects such as voids or gaps in the device shielding conductor can be reduced, thereby improving the yield, reliability and life span of the power semiconductor device. The present invention can be applied to trench gate MOSFET power devices with a withstand voltage of 120V or less, the width of the trench is 1 to 5 microns, the depth of the trench is 5 to 12 microns, and the thickness of the insulating layer is 0.1 to 2 microns. It is suitable for trench gate MOSFET power devices with a withstand voltage of 120V or more, such as 120V to 300V, the width of the trench is 1 to 3 microns, the depth of the trench is 7 to 12 microns, and the thickness of the insulating layer is 0.6 to 1.5 microns.
附图说明Description of the drawings
通过以下参照附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更为清楚,在附图中:Through the following description of the embodiments of the present invention with reference to the accompanying drawings, the above and other objectives, features and advantages of the present invention will be clearer. In the accompanying drawings:
图1示出根据现有技术的功率半导体器件的示意性结构图。Fig. 1 shows a schematic structural diagram of a power semiconductor device according to the prior art.
图2a至2h分别示出图1所示功率半导体器件的制造方法在不同阶段的截面图。2a to 2h respectively show cross-sectional views of the manufacturing method of the power semiconductor device shown in FIG. 1 at different stages.
图3a和3b分别示出图1所示功率半导体器件在形成多晶硅层后的截面图和局部放大图,其中示出了多晶硅层中的空洞或缝隙。3a and 3b respectively show a cross-sectional view and a partial enlarged view of the power semiconductor device shown in FIG. 1 after a polysilicon layer is formed, which show voids or gaps in the polysilicon layer.
图4示出根据本发明第一实施例的功率半导体器件的制造方法的流程图。FIG. 4 shows a flowchart of a method of manufacturing a power semiconductor device according to the first embodiment of the present invention.
图5a至5l分别示出根据本发明第一实施例的功率半导体器件的制造方法在不同阶段的截面图。5a to 5l respectively show cross-sectional views at different stages of the manufacturing method of the power semiconductor device according to the first embodiment of the present invention.
图6a和6b分别示出根据本发明第二实施例的功率半导体器件在形成屏蔽导体后的截面图和局部放大图。6a and 6b respectively show a cross-sectional view and a partially enlarged view of a power semiconductor device according to a second embodiment of the present invention after a shielded conductor is formed.
具体实施方式Detailed ways
以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. In the various drawings, the same elements are denoted by similar reference numerals. For the sake of clarity, the various parts in the drawings are not drawn to scale. In addition, some well-known parts may not be shown. For the sake of brevity, the semiconductor structure obtained after several steps can be described in one figure.
应当理解,在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。It should be understood that when describing the structure of a device, when a layer or a region is referred to as being "on" or "above" another layer or another region, it can mean directly on the other layer or another region, or It also includes other layers or regions between it and another layer or another region. Moreover, if the device is turned over, the layer or area will be "below" or "below" the other layer or area.
如果为了描述直接位于另一层、另一个区域上面的情形,本文将采用“A直接在B上面”或“A在B上面并与之邻接”的表述方式。在本申请中,“A直接位于B中”表示A位于B中,并且A与B邻接,而非A位于B中形成的掺杂区中。In order to describe the situation of being directly on another layer and another area, this article will adopt the expression "A directly on B" or "A on and adjacent to B". In this application, "A is directly located in B" means that A is located in B, and A and B are adjacent to each other, instead of A being located in the doped region formed in B.
在本申请中,术语“半导体结构”指在制造半导体器件的各个步骤中形成的整个半导体结构的统称,包括已经形成的所有层或区域。In the present application, the term "semiconductor structure" refers to a general term for the entire semiconductor structure formed in each step of manufacturing a semiconductor device, including all layers or regions that have been formed.
在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。In the following, many specific details of the present invention are described, such as the structure, material, size, processing technology and technology of the device, in order to understand the present invention more clearly. However, as those skilled in the art can understand, the present invention may not be implemented according to these specific details.
除非在下文中特别指出,半导体器件的各个部分可以由本领域的技术人员公知的材料构成。半导体材料例如包括III-V族半导体,如GaAs、InP、GaN、SiC,以及IV族半导体,如Si、Ge。Unless otherwise specified in the following, each part of the semiconductor device may be composed of materials known to those skilled in the art. The semiconductor material includes, for example, III-V semiconductors such as GaAs, InP, GaN, and SiC, and IV semiconductors such as Si and Ge.
图3a和3b分别示出图1所示功率半导体器件在形成多晶硅层后的截面图和局部放大图, 其中示出了多晶硅层中的空洞或缝隙。3a and 3b respectively show a cross-sectional view and a partial enlarged view of the power semiconductor device shown in FIG. 1 after the polysilicon layer is formed, which show the voids or gaps in the polysilicon layer.
在上述形成功率半导体器件100的方法中,在半导体衬底101上形成外延层102,在外延层102中形成沟槽120、在沟槽120中形成绝缘层121以及绝缘层121围绕的空腔151、以及采用多晶硅层122填充空腔151。在沟槽120中形成绝缘层121围绕的空腔151的开口宽度小于内部宽度。这是因为绝缘层121在沟槽120的侧壁上厚度不均匀造成的。In the above method of forming the power semiconductor device 100, the epitaxial layer 102 is formed on the semiconductor substrate 101, the trench 120 is formed in the epitaxial layer 102, the insulating layer 121 is formed in the trench 120, and the cavity 151 surrounded by the insulating layer 121 is formed. , And the cavity 151 is filled with a polysilicon layer 122. The opening width of the cavity 151 surrounded by the insulating layer 121 formed in the trench 120 is smaller than the inner width. This is caused by the uneven thickness of the insulating layer 121 on the sidewall of the trench 120.
在采用热氧化方案时,靠近外延层102表面的界面上氧化生长速率略高,绝缘层121在沟槽120开口的厚度大于沟槽120内部的厚度。在采用化学气相沉积多晶时,靠近外延层102表面的沉积速率略高,绝缘层121在沟槽120开口的厚度仍然大于沟槽120内部的厚度。When the thermal oxidation scheme is adopted, the oxidation growth rate at the interface close to the surface of the epitaxial layer 102 is slightly higher, and the thickness of the insulating layer 121 at the opening of the trench 120 is greater than the thickness inside the trench 120. When polycrystalline is deposited by chemical vapor deposition, the deposition rate near the surface of the epitaxial layer 102 is slightly higher, and the thickness of the insulating layer 121 at the opening of the trench 120 is still greater than the thickness inside the trench 120.
对于绝缘层121围绕的空腔开口宽度小于空腔内部宽度的情形,如果采用化学气相沉积形成多晶硅层122,则多晶的共形性很容易在多晶硅层中造成有空洞或缝隙152的缺陷。For the case where the opening width of the cavity surrounded by the insulating layer 121 is smaller than the inner width of the cavity, if chemical vapor deposition is used to form the polysilicon layer 122, the conformality of the polycrystal easily causes defects of voids or gaps 152 in the polysilicon layer.
对于耐压120V以下的器件,沟槽120的深度例如小于5微米,绝缘层121的厚度例如小于0.6微米。由于沟槽深度较浅,绝缘层厚度较薄,在不影响参数和性能的前提下,可以通过将沟槽120的开口倒角以扩大形成绝缘层之后的空腔开口宽度从而有利于多晶硅层122的填充。For a device with a withstand voltage of 120V or less, the depth of the trench 120 is, for example, less than 5 μm, and the thickness of the insulating layer 121 is, for example, less than 0.6 μm. Due to the shallow trench depth and the thin insulating layer thickness, without affecting the parameters and performance, the opening of the trench 120 can be chamfered to enlarge the cavity opening width after the insulating layer is formed, which is beneficial to the polysilicon layer 122 Of filling.
对于耐压120V以上的器件,沟槽120的深度例如大于5微米,绝缘层121的厚度例如大于0.6微米。由于沟槽深度较深,绝缘层厚度较厚,即使将沟槽120的开口倒角以扩大形成绝缘层之后的空腔开口宽度,也仍然会导致多晶硅层122中存在空洞或缝隙等缺陷。For devices with a withstand voltage of 120V or higher, the depth of the trench 120 is, for example, greater than 5 μm, and the thickness of the insulating layer 121 is, for example, greater than 0.6 μm. Due to the deep trench depth and the thick insulating layer, even if the opening of the trench 120 is chamfered to enlarge the opening width of the cavity after the insulating layer is formed, defects such as voids or gaps in the polysilicon layer 122 will still be caused.
如图3a和3b所示,在沟槽120中形成绝缘层121,绝缘层121围绕的空腔开口宽度a小于空腔内部宽度b。在进一步形成多晶硅层122时,即使在空腔内部还未填满的情形下,多晶硅层122会封闭空腔开口,使得多晶硅层122的材料不能继续进入空腔内部,从而在多晶硅层122中出现空洞或缝隙152等缺陷,从而在最终的功率半导体器件100中造成漏电、耐压降低,可靠性变差。As shown in FIGS. 3a and 3b, an insulating layer 121 is formed in the trench 120, and the opening width a of the cavity surrounded by the insulating layer 121 is smaller than the inner width b of the cavity. When the polysilicon layer 122 is further formed, even when the cavity is not filled, the polysilicon layer 122 will close the cavity opening, so that the material of the polysilicon layer 122 cannot continue to enter the cavity, thereby appearing in the polysilicon layer 122 Defects such as voids or gaps 152 may cause leakage, reduced withstand voltage, and poor reliability in the final power semiconductor device 100.
在多晶硅层中存在的缺陷导致功率半导体器件出现击穿或短路等故障,使得功率半导体器件的良率、可靠性和寿命受到不利的影响。The defects in the polysilicon layer cause breakdowns or short circuits in the power semiconductor device, which adversely affects the yield, reliability, and life of the power semiconductor device.
图4示出根据本发明第一实施例的功率半导体器件的制造方法的流程图。FIG. 4 shows a flowchart of a method of manufacturing a power semiconductor device according to the first embodiment of the present invention.
图5a至5l分别示出根据本发明第一实施例的功率半导体器件的制造方法在不同阶段的截面图。5a to 5l respectively show cross-sectional views at different stages of the manufacturing method of the power semiconductor device according to the first embodiment of the present invention.
在步骤S01中,在半导体衬底201上的外延层202中形成宽度为w1且深度为h3的沟槽220,如图5a所示。In step S01, a trench 220 with a width w1 and a depth h3 is formed in the epitaxial layer 202 on the semiconductor substrate 201, as shown in FIG. 5a.
半导体衬底201同时作为最终器件的漏区,材料例如为掺杂成N型的单晶硅衬底,在半导体衬底201上还形成有外延层202,沟槽220位于外延层202中。用于形成沟槽220的工艺例如是包括光刻和刻蚀的图案化工艺。例如,采用光刻形成包括沟槽220的开口图案的抗蚀剂掩模, 采用刻蚀选择性地去除外延层202经由开口暴露的部分。The semiconductor substrate 201 also serves as the drain region of the final device. The material is, for example, a single crystal silicon substrate doped into an N-type. An epitaxial layer 202 is also formed on the semiconductor substrate 201, and the trench 220 is located in the epitaxial layer 202. The process for forming the trench 220 is, for example, a patterning process including photolithography and etching. For example, a resist mask including an opening pattern of the trench 220 is formed by photolithography, and a portion of the epitaxial layer 202 exposed through the opening is selectively removed by etching.
对于不同耐压等级的沟槽栅功率半导体器件,沟槽220的深度不一样。通常耐压越高沟槽220的深度越深。例如,对于耐压120V以上的器件,沟槽220的深度一般在5微米以上。在该实施例中,沟槽220的宽度w1例如为1至5微米,深度例如为5至12微米,亦可以沟槽220的宽度w1例如为1至3微米,深度例如为7至12微米。For trench gate power semiconductor devices of different withstand voltage levels, the depth of the trench 220 is different. Generally, the higher the withstand voltage, the deeper the depth of the trench 220. For example, for a device with a withstand voltage above 120V, the depth of the trench 220 is generally above 5 microns. In this embodiment, the width w1 of the trench 220 is, for example, 1 to 5 microns, and the depth is, for example, 5 to 12 microns, or the width w1 of the trench 220 is, for example, 1 to 3 microns, and the depth is, for example, 7 to 12 microns.
在步骤S02中,在外延层202的表面和沟槽220中形成绝缘层221,如图5b所示。In step S02, an insulating layer 221 is formed on the surface of the epitaxial layer 202 and the trench 220, as shown in FIG. 5b.
绝缘层221例如由氧化物组成。用于形成这层绝缘层221的工艺包括热氧化或化学气相沉积CVD,或两种工艺组合。热氧化包括水热氧化HTO或选择性反应氧化SRO(Selective reactive oxidation),化学气相沉积CVD包括低压化学气相沉积LPCVD或次大气压化学气相沉积SACVD。The insulating layer 221 is composed of, for example, oxide. The process for forming this insulating layer 221 includes thermal oxidation or chemical vapor deposition CVD, or a combination of the two processes. Thermal oxidation includes hydrothermal oxidation HTO or selective reactive oxidation (SRO). Chemical vapor deposition CVD includes low pressure chemical vapor deposition LPCVD or sub-atmospheric chemical vapor deposition SACVD.
绝缘层221在功率半导体器件中作为屏蔽导体与外延层202之间的隔离层。绝缘层221覆盖沟槽220的侧壁和底部,并且在外延层202的表面上方延伸,并在沟槽220的内部填充绝缘层221后形成空腔251。The insulating layer 221 serves as an isolation layer between the shielding conductor and the epitaxial layer 202 in the power semiconductor device. The insulating layer 221 covers the sidewalls and bottom of the trench 220 and extends above the surface of the epitaxial layer 202, and forms a cavity 251 after filling the insulating layer 221 inside the trench 220.
对于不同耐压等级的沟槽栅功率半导体器件,绝缘层221的厚度也不一样。通常耐压越高,绝缘层221的厚度要越厚。例如,对于耐压120V以上的器件,绝缘层221的厚度需要0.6微米以上。在该实施例中,绝缘层221的厚度t1为0.1至2微米,亦可以绝缘层221的厚度t1为0.6至1.5微米。绝缘层221围绕的空腔251的开口宽度w2小于内部宽度w3,即w2<w3。For trench gate power semiconductor devices of different withstand voltage levels, the thickness of the insulating layer 221 is different. Generally, the higher the withstand voltage, the thicker the thickness of the insulating layer 221 is. For example, for a device with a withstand voltage of 120V or more, the thickness of the insulating layer 221 needs to be 0.6 micrometers or more. In this embodiment, the thickness t1 of the insulating layer 221 is 0.1 to 2 microns, and the thickness t1 of the insulating layer 221 can also be 0.6 to 1.5 microns. The opening width w2 of the cavity 251 surrounded by the insulating layer 221 is smaller than the inner width w3, that is, w2<w3.
若在绝缘层221围绕的空腔251的内部宽度w3减去空腔251的开口宽度w2的值大于等于30纳米,后续的屏蔽导体中容易出现空洞或缝隙等缺陷。If the value of the inner width w3 of the cavity 251 surrounded by the insulating layer 221 minus the opening width w2 of the cavity 251 is greater than or equal to 30 nanometers, defects such as voids or gaps are likely to occur in the subsequent shielding conductor.
本发明适应的情形为绝缘层221围绕的空腔251的开口宽度w2小于内部宽度w3达到预定差值,但对空腔251的形状并无限制。例如,空腔251的形状例如是开口和底部宽度小、中部宽度大的形状,或者开口宽度小、中部和底部宽度大的形状。空腔251可以是任意形状,甚至可以是不规则形状。The present invention is adapted to the situation that the opening width w2 of the cavity 251 surrounded by the insulating layer 221 is smaller than the inner width w3 to reach a predetermined difference, but there is no restriction on the shape of the cavity 251. For example, the shape of the cavity 251 is a shape with a small opening and a bottom width and a large middle width, or a shape with a small opening width and a large middle and bottom width. The cavity 251 may have any shape, and may even be an irregular shape.
在步骤S03至步骤S05中,在绝缘层221围绕的空腔251中形成第i多晶硅层和第i+1多晶硅层,如图5c至5e所示。In step S03 to step S05, an i-th polysilicon layer and an i+1-th polysilicon layer are formed in the cavity 251 surrounded by the insulating layer 221, as shown in FIGS. 5c to 5e.
屏蔽导体例如由多层原位掺杂的多晶硅层组成,沉积温度例如为500至580度,方块电阻为3至20欧姆,厚度为50至2000纳米。The shielding conductor is composed of, for example, multiple in-situ doped polysilicon layers, the deposition temperature is, for example, 500 to 580 degrees, the sheet resistance is 3 to 20 ohms, and the thickness is 50 to 2000 nanometers.
以下结合图5c至5e对步骤S03的多个子步骤进行详细描述。The multiple sub-steps of step S03 will be described in detail below with reference to FIGS. 5c to 5e.
在步骤S03中,在外延层202的表面和沟槽内的绝缘层221形成第i多晶硅层222,如图5c所示。在该实施例中,i=1,即形成第一多晶硅层222。In step S03, an i-th polysilicon layer 222 is formed on the surface of the epitaxial layer 202 and the insulating layer 221 in the trench, as shown in FIG. 5c. In this embodiment, i=1, that is, the first polysilicon layer 222 is formed.
在该子步骤中,第一多晶硅层222填充绝缘层221围绕的空腔251,并且在外延层202的表面上方延伸。In this sub-step, the first polysilicon layer 222 fills the cavity 251 surrounded by the insulating layer 221 and extends over the surface of the epitaxial layer 202.
在理想的功率半导体器件中,第一多晶硅层222在沟槽220中应当填充致密,无空洞或缝隙等缺陷。In an ideal power semiconductor device, the first polysilicon layer 222 should be densely filled in the trench 220 without defects such as voids or gaps.
对于耐压120V以下的器件,沟槽220的深度例如小于5微米,绝缘层221的厚度例如小于0.6微米。由于沟槽深度较浅,绝缘层厚度较薄,在不影响参数和性能的前提下,可以通过将沟槽220的开口倒角以扩大形成绝缘层之后的空腔开口宽度从而有利于第一多晶硅层222的填充。For devices with a withstand voltage of 120V or less, the depth of the trench 220 is, for example, less than 5 μm, and the thickness of the insulating layer 221 is, for example, less than 0.6 μm. Due to the shallow trench depth and the thinner insulating layer thickness, without affecting the parameters and performance, the opening of the trench 220 can be chamfered to expand the cavity opening width after the insulating layer is formed, which is beneficial to the first Filling of the crystalline silicon layer 222.
对于耐压120V至300V的器件,沟槽220的深度例如大于5微米,绝缘层221的厚度例如大于0.6微米。由于沟槽深度较深,绝缘层厚度较厚,即使将沟槽220的开口倒角以扩大形成绝缘层之后的空腔开口宽度,也仍然会导致第一多晶硅层222中存在空洞或缝隙等缺陷。For devices with a withstand voltage of 120V to 300V, the depth of the trench 220 is, for example, greater than 5 microns, and the thickness of the insulating layer 221 is, for example, greater than 0.6 microns. Due to the deep trench depth and the thick insulating layer, even if the opening of the trench 220 is chamfered to expand the opening width of the cavity after the insulating layer is formed, there will still be voids or gaps in the first polysilicon layer 222 And other defects.
由于绝缘层221围绕的空腔251开口宽度w2小于空腔251内部宽度w3,造成这一现象的原因是采用热氧化方案时,靠近外延层202的界面上氧化生长速率略高,厚度会偏厚一些。采用化学气相沉积CVD方案时,空腔251开口部位的淀积氧化层也会偏厚。对于沉积氧化层后的空腔251开口宽度比空腔251内宽度小的这类沟槽形貌,在随后进行的多晶硅层淀积填槽工艺中,由于多晶硅层化学气相沉积CVD的保型性,在进一步填充第一多晶硅层222时,即使在空腔251内部还未填满的情形下,第一多晶硅层222会封闭空腔251开口,从而在第一多晶硅层222中出现空洞或缝隙252等缺陷。Since the opening width w2 of the cavity 251 surrounded by the insulating layer 221 is smaller than the internal width w3 of the cavity 251, the reason for this phenomenon is that when the thermal oxidation scheme is adopted, the oxidation growth rate at the interface close to the epitaxial layer 202 is slightly higher, and the thickness will be thicker. some. When the chemical vapor deposition CVD scheme is adopted, the deposited oxide layer at the opening of the cavity 251 will also be thicker. For the trench topography of the cavity 251 after the oxide layer is deposited, the opening width is smaller than that in the cavity 251. In the subsequent polysilicon layer deposition and filling process, due to the conformability of the polysilicon layer chemical vapor deposition CVD When the first polysilicon layer 222 is further filled, even when the cavity 251 is not filled, the first polysilicon layer 222 will close the opening of the cavity 251, so that the first polysilicon layer 222 Defects such as voids or gaps 252 are present.
在步骤S04中,如图5d所示,例如采用化学机械平面化(CMP),将第i多晶硅层222位于外延层202表面上方的部分去除,以及例如采用选择性的湿法刻蚀,对第i多晶硅层222进行回刻蚀以暴露第i多晶硅层222的空洞或缝隙等缺陷。In step S04, as shown in FIG. 5d, for example, chemical mechanical planarization (CMP) is used to remove the portion of the i-th polysilicon layer 222 above the surface of the epitaxial layer 202, and for example, selective wet etching is used to perform The i-th polysilicon layer 222 is etched back to expose defects such as voids or gaps in the i-th polysilicon layer 222.
在该子步骤中,第i多晶硅层222例如为第一多晶硅层,去除沟槽内一定深度h4的第一多晶硅层222,直至沟槽内的剩余第一多晶硅层222的空洞或缝隙等缺陷已经去除或暴露成开口状为止,从而在沟槽220中形成剩余第一多晶硅层222以及部分绝缘层221围绕的空腔253。第一多晶硅层222的刻蚀深度主要由缺陷的位置决定,h4范围为2至11微米。剩余第一多晶硅层222围绕的开口状空洞或缝隙从沟槽底部往沟槽顶部方向逐渐变大。In this sub-step, the i-th polysilicon layer 222 is, for example, the first polysilicon layer, and the first polysilicon layer 222 with a certain depth h4 in the trench is removed until the remaining first polysilicon layer 222 in the trench is Defects such as voids or gaps have been removed or exposed to an opening shape, so that a cavity 253 surrounded by the remaining first polysilicon layer 222 and a part of the insulating layer 221 is formed in the trench 220. The etching depth of the first polysilicon layer 222 is mainly determined by the position of the defect, and h4 ranges from 2 to 11 microns. The opening-shaped voids or gaps surrounded by the remaining first polysilicon layer 222 gradually increase from the bottom of the trench to the top of the trench.
在步骤S05中,如图5e所示,在外延层202的表面和空腔253内形成第i+1多晶硅层223。In step S05, as shown in FIG. 5e, an (i+1)th polysilicon layer 223 is formed on the surface of the epitaxial layer 202 and the cavity 253.
在该子步骤中,第i+1多晶硅层例如为第二多晶硅层,第二多晶硅层223填充剩余第一多晶硅层222以及部分绝缘层221围绕的空腔253,并且在外延层202的表面上方延伸。第二多晶硅层223在沟槽220中填满第一多晶硅层222的开口状空洞或缝隙。由于绝缘层221围绕的空腔开口宽度w2小于空腔内部宽度w3,因此,即使在空腔253内部还未填满的情形下,第二多晶硅层223会封闭空腔开口,从而在第二多晶硅层223中出现新的封闭的空洞或缝隙254等缺陷。In this sub-step, the (i+1)th polysilicon layer is, for example, the second polysilicon layer, and the second polysilicon layer 223 fills the cavity 253 surrounded by the remaining first polysilicon layer 222 and part of the insulating layer 221, and The epitaxial layer 202 extends above the surface. The second polysilicon layer 223 fills the opening-shaped voids or gaps of the first polysilicon layer 222 in the trench 220. Since the opening width w2 of the cavity surrounded by the insulating layer 221 is smaller than the inner width w3 of the cavity, even when the cavity 253 is not filled, the second polysilicon layer 223 will close the cavity opening. Defects such as new closed voids or gaps 254 appear in the second polysilicon layer 223.
在步骤S06中,判断第i+1多晶硅层的空洞或缝隙是否填满,若未填满,则执行步骤S08 后返回步骤S04,若已填满,则执行步骤S07。In step S06, it is determined whether the void or gap of the i+1th polysilicon layer is filled, if not, step S08 is executed and then step S04 is returned, and if it is filled, step S07 is executed.
在步骤S07中,由多层多晶硅层形成的屏蔽导体中空洞或缝隙被填满,继续形成器件的其他部分。In step S07, the voids or gaps in the shielding conductor formed by the multi-layer polysilicon layer are filled, and other parts of the device are continued to be formed.
在步骤S08中,令i=i+1,即第i层多晶硅层具体为第二层多晶硅层,重复上述步骤S04至步骤S06。In step S08, let i=i+1, that is, the i-th polysilicon layer is specifically the second polysilicon layer, and the above steps S04 to S06 are repeated.
具体的,如图5f所示,例如采用化学机械平面化(CMP),将第二多晶硅层223位于外延层202表面上方的部分去除,以及例如采用选择性的湿法刻蚀,对第二多晶硅层223进行回刻蚀以暴露空洞或缝隙254缺陷。Specifically, as shown in FIG. 5f, for example, chemical mechanical planarization (CMP) is used to remove the part of the second polysilicon layer 223 above the surface of the epitaxial layer 202, and for example, selective wet etching is used to The second polysilicon layer 223 is etched back to expose the voids or gaps 254 defects.
在该子步骤中,去除沟槽内一定深度h5的第二多晶硅层223,直至沟槽内的剩余第二多晶硅层223的空洞或缝隙等缺陷已经去除或暴露成开口状为止,从而在沟槽220中形成剩余第二多晶硅层223以及部分绝缘层221围绕的空腔255。第二多晶硅层223的刻蚀深度主要由缺陷的位置决定,h5范围为0.5至10微米。优选地,第二多晶硅层223的开口状空洞或缝隙从沟槽底部往沟槽顶部方向逐渐变大。In this sub-step, the second polysilicon layer 223 with a certain depth h5 in the trench is removed until defects such as cavities or gaps in the remaining second polysilicon layer 223 in the trench have been removed or exposed to an opening. Thus, a cavity 255 surrounded by the remaining second polysilicon layer 223 and part of the insulating layer 221 is formed in the trench 220. The etching depth of the second polysilicon layer 223 is mainly determined by the position of the defect, and h5 ranges from 0.5 to 10 microns. Preferably, the opening-shaped cavity or gap of the second polysilicon layer 223 gradually increases from the bottom of the trench to the top of the trench.
如图5g所示,在外延层202的表面和沟槽内形成第三多晶硅层224。As shown in FIG. 5g, a third polysilicon layer 224 is formed on the surface of the epitaxial layer 202 and in the trench.
在该子步骤中,第三多晶硅层224填充剩余第二多晶硅层223以及部分绝缘层221围绕的空腔255,并且在外延层202的表面上方延伸。第三多晶硅层224在沟槽220中填满第二多晶硅层223的开口状空洞或缝隙。进一步地,由于第二多晶硅层223的开口状空洞或缝隙接近绝缘层221围绕的空腔开口,因此,绝缘层221围绕的空腔255开口宽度与绝缘层221围绕的空腔255的内部宽度大致相当,因此,第三多晶硅层224在填满空腔255的内部之后才会封闭开口,因此在第三多晶硅层224中未出现封闭的空洞或缝隙等缺陷。In this sub-step, the third polysilicon layer 224 fills the cavity 255 surrounded by the remaining second polysilicon layer 223 and part of the insulating layer 221, and extends over the surface of the epitaxial layer 202. The third polysilicon layer 224 fills the opening-shaped voids or gaps of the second polysilicon layer 223 in the trench 220. Further, since the opening-shaped cavity or gap of the second polysilicon layer 223 is close to the opening of the cavity surrounded by the insulating layer 221, the width of the opening of the cavity 255 surrounded by the insulating layer 221 is the same as the inside of the cavity 255 surrounded by the insulating layer 221 The width is approximately the same. Therefore, the third polysilicon layer 224 closes the opening after filling the cavity 255. Therefore, there are no defects such as closed voids or gaps in the third polysilicon layer 224.
在步骤S03至步骤S08的上述多个子步骤中,第三多晶硅层224、第二多晶硅层223、第一多晶硅层222彼此连接,形成无空洞或缝隙等缺陷的屏蔽导体。以三次多晶硅沉积形成无空洞或缝隙等缺陷的屏蔽导体为例,第三多晶硅层224、第二多晶硅层223、第一多晶硅层222组成整体的屏蔽导体。In the above multiple sub-steps from step S03 to step S08, the third polysilicon layer 224, the second polysilicon layer 223, and the first polysilicon layer 222 are connected to each other to form a shielding conductor without defects such as voids or gaps. Taking the third polysilicon deposition to form a shielding conductor without defects such as voids or gaps as an example, the third polysilicon layer 224, the second polysilicon layer 223, and the first polysilicon layer 222 form an integral shielding conductor.
如果在多晶硅层222至224中仍然出现空洞或缝隙等缺陷,则可以继续执行附加的多晶硅层的回刻蚀和沉积子步骤以去除缺陷,即,共计i+1个多晶硅层的沉积和前i个填充的多晶硅回刻蚀,其中,i为自然数。在下部层面的第i多晶硅层的回刻蚀中,均暴露下部层面的第i多晶硅层的空洞或缝隙,并且采用上部层面的第i+1多晶硅层填满空洞或缝隙,从而消除下部层面的第i多晶硅层的空洞或缝隙,直至所有多晶硅层中均无空洞或缝隙等缺陷。在通常情况下,在i=1~4的情形下,就可以解决功率半导体器件中沟槽220形成绝缘层后的开口宽度比内部宽度小的情况下屏蔽导体中出现空洞或缝隙等缺陷的填充问题,即如果空洞或者缝隙的位置在沟槽220 上部,或者空洞或者缝隙较小的情况下,仅需要i=1,共计2个多晶硅层的沉积和前1个填充的多晶硅层回刻蚀。If defects such as voids or gaps still occur in the polysilicon layers 222 to 224, then additional etch-back and deposition sub-steps of the polysilicon layer can be continued to remove the defects, that is, the deposition of a total of i+1 polysilicon layers and the previous i The filled polysilicon is etched back, where i is a natural number. In the etch-back of the i-th polysilicon layer on the lower level, all the cavities or gaps in the i-th polysilicon layer on the lower level are exposed, and the i+1th polysilicon layer on the upper level is used to fill the cavities or gaps, thereby eliminating the cavities or gaps on the lower level. The voids or gaps in the i-th polysilicon layer until there are no defects such as voids or gaps in all the polysilicon layers. Under normal circumstances, when i=1 to 4, it can solve the problem of filling defects such as voids or gaps in the shielding conductor when the opening width of the trench 220 after the insulating layer is formed in the power semiconductor device is smaller than the internal width. The problem is that if the position of the cavity or the gap is in the upper part of the trench 220, or when the cavity or gap is small, only i=1 is required, a total of 2 polysilicon layers are deposited and the first filled polysilicon layer is etched back.
在步骤S07中以及之后,还包括其他形成功率半导体器件的步骤。进一步地,例如采用化学机械平面化(CMP),将第三多晶硅层224和绝缘层221位于外延层202表面上方的部分去除,如图5h所示。In and after step S07, other steps of forming a power semiconductor device are also included. Further, for example, chemical mechanical planarization (CMP) is used to remove the part of the third polysilicon layer 224 and the insulating layer 221 above the surface of the epitaxial layer 202, as shown in FIG. 5h.
在该步骤中,第三多晶硅层224和绝缘层221位于沟槽220中的部分保留,并且顶端与外延层202的表面齐平。In this step, the part of the third polysilicon layer 224 and the insulating layer 221 in the trench 220 remains, and the top end is flush with the surface of the epitaxial layer 202.
进一步地,例如采用选择性的湿法刻蚀,对沟槽220中的绝缘层221进行回蚀刻以形成上部空腔,如图5i所示。Further, for example, selective wet etching is used to etch back the insulating layer 221 in the trench 220 to form an upper cavity, as shown in FIG. 5i.
在该步骤中,绝缘层221位于沟槽220上部的部分去除,即图中所示的刻蚀深度h6,形成上部空腔256。沟槽220上部的侧壁以及屏蔽导体的上部侧壁暴露于上部空腔256中。绝缘层221的刻蚀深度h6,根据产品阈值和电容等参数需求,范围为0.4至2微米。In this step, the portion of the insulating layer 221 located in the upper part of the trench 220 is removed, that is, the etching depth h6 shown in the figure, and the upper cavity 256 is formed. The upper sidewall of the trench 220 and the upper sidewall of the shield conductor are exposed in the upper cavity 256. The etching depth h6 of the insulating layer 221 ranges from 0.4 to 2 microns according to product threshold and capacitance requirements.
进一步地,在沟槽220的上部空腔256中形成栅极电介质225和栅极导体206,如图5j所示。Further, a gate dielectric 225 and a gate conductor 206 are formed in the upper cavity 256 of the trench 220, as shown in FIG. 5j.
在该步骤中,在外延层202的表面、沟槽220的上部侧壁、屏蔽导体的上部侧壁例如采用热氧化生长氧化层,以形成栅极电介质225。接着沉积栅极导体206。栅极导体206不仅填充沟槽220上部空腔256,而且在外延层202的表面上方延伸。例如,采用化学机械平面化,去除栅极导体206和栅极电介质225位于外延层202的表面上方的部分,使外延层202的表面重新暴露,栅极导体206和栅极电介质225的顶端与外延层202的表面齐平。In this step, an oxide layer is grown on the surface of the epitaxial layer 202, the upper sidewall of the trench 220, and the upper sidewall of the shielding conductor, for example, using thermal oxidation to form the gate dielectric 225. Next, the gate conductor 206 is deposited. The gate conductor 206 not only fills the upper cavity 256 of the trench 220 but also extends over the surface of the epitaxial layer 202. For example, chemical mechanical planarization is used to remove the part of the gate conductor 206 and the gate dielectric 225 above the surface of the epitaxial layer 202, so that the surface of the epitaxial layer 202 is exposed again, and the top of the gate conductor 206 and the gate dielectric 225 are connected to the epitaxial layer 202. The surface of layer 202 is flush.
进一步地,在外延层202中形成P型的体区207,以及在体区207中形成N型的源区208,如图5k所示。Further, a P-type body region 207 is formed in the epitaxial layer 202, and an N-type source region 208 is formed in the body region 207, as shown in FIG. 5k.
用于形成体区207和源区208的工艺例如是多次离子注入。通过选择合适的掺杂剂形成不同类型的掺杂区,然后进行热退火以激活杂质。在离子注入中,采用屏蔽导体和栅极导体206作为硬掩模,可以限定体区207和源区208的横向位置,从而可以省去光致抗蚀剂掩模。The process for forming the body region 207 and the source region 208 is, for example, multiple ion implantation. Different types of doped regions are formed by selecting appropriate dopants, and then thermal annealing is performed to activate the impurities. In ion implantation, the shield conductor and the gate conductor 206 are used as hard masks, and the lateral positions of the body region 207 and the source region 208 can be defined, so that the photoresist mask can be omitted.
进一步地,形成栅极导体206、屏蔽导体、源区208和漏区的电连接结构,从而形成功率半导体器件200,如图5l所示。Further, an electrical connection structure of the gate conductor 206, the shielding conductor, the source region 208 and the drain region is formed, thereby forming a power semiconductor device 200, as shown in FIG. 51.
在该步骤中,在源区208的下方形成与之邻接的接触区211,在栅极导体206中形成接触区212,在屏蔽导体中形成接触区213。层间介质层210位于外延层202的表面上。进一步,形成贯穿层间介质层210的导电通道231至233。导电通道231向下延伸贯穿源区208到达接触区211,导电通道232向下延伸进入栅极导体206中到达接触区212,导电通道233向下延伸进入屏蔽导体中到达接触区213。进一步,在层间介质层210的表面分别与导电通道231至233相对 应的位置分别形成源电极241、栅电极242和屏蔽电极243,从而分别提供到达源区208、栅极导体206和屏蔽导体的电连接路径,从而完成功率半导体器件200的正面结构。In this step, a contact region 211 adjacent to the source region 208 is formed, a contact region 212 is formed in the gate conductor 206, and a contact region 213 is formed in the shield conductor. The interlayer dielectric layer 210 is located on the surface of the epitaxial layer 202. Further, conductive channels 231 to 233 penetrating through the interlayer dielectric layer 210 are formed. The conductive channel 231 extends downward through the source region 208 to reach the contact region 211, the conductive channel 232 extends downward into the gate conductor 206 to reach the contact region 212, and the conductive channel 233 extends downward into the shield conductor to reach the contact region 213. Further, a source electrode 241, a gate electrode 242, and a shield electrode 243 are respectively formed on the surface of the interlayer dielectric layer 210 at positions corresponding to the conductive channels 231 to 233, so as to provide access to the source region 208, the gate conductor 206, and the shield conductor respectively. The electrical connection path to complete the front structure of the power semiconductor device 200.
在功率半导体器件200的正面结构完成后,还需在功率半导体器件200的背面形成与漏区接触的漏极244,由于半导体衬底201作为漏区,因此漏极244与半导体衬底201直接接触,无需导电通道。After the front structure of the power semiconductor device 200 is completed, a drain 244 contacting the drain region needs to be formed on the back of the power semiconductor device 200. Since the semiconductor substrate 201 serves as the drain region, the drain 244 is in direct contact with the semiconductor substrate 201 , No need for conductive channels.
经过背面减薄、在正面和背面分别形成源电极241、栅电极242、屏蔽电极243和漏电极244、划片等一系列后道工艺完成功率半导体器件的完整结构。The complete structure of the power semiconductor device is completed through a series of subsequent processes such as thinning the back surface, forming the source electrode 241, the gate electrode 242, the shield electrode 243 and the drain electrode 244 on the front and the back respectively, and dicing.
在根据本发明实施例的功率半导体器件200中,体区207的至少一部分与沟槽220的上部相邻。栅极电介质225的第一部分位于沟槽220的上部侧壁上,第二部分位于栅极导体206和屏蔽导体之间,绝缘层221位于沟槽220的下部侧壁上,栅极电介质225的第一部分与绝缘层221邻接。栅极导体206位于沟槽220的上部,并且与外延层202中的体区207之间由栅极电介质225彼此隔开。屏蔽导体包括多个多晶硅层222至224,从沟槽220的上部延伸至下部,并且与栅极导体206之间由栅极电介质125的第二部分彼此隔开,与外延层202之间由绝缘层221彼此隔开。In the power semiconductor device 200 according to the embodiment of the present invention, at least a part of the body region 207 is adjacent to the upper portion of the trench 220. The first part of the gate dielectric 225 is located on the upper sidewall of the trench 220, the second part is located between the gate conductor 206 and the shielding conductor, the insulating layer 221 is located on the lower sidewall of the trench 220, and the second part of the gate dielectric 225 A part is adjacent to the insulating layer 221. The gate conductor 206 is located in the upper part of the trench 220 and is separated from the body region 207 in the epitaxial layer 202 by the gate dielectric 225. The shielding conductor includes a plurality of polysilicon layers 222 to 224, extending from the upper part to the lower part of the trench 220, and is separated from the gate conductor 206 by the second part of the gate dielectric 125, and is insulated from the epitaxial layer 202. The layers 221 are separated from each other.
图6a和6b分别示出根据本发明第二实施例的功率半导体器件在形成屏蔽导体后的截面图和局部放大图。6a and 6b respectively show a cross-sectional view and a partially enlarged view of a power semiconductor device according to a second embodiment of the present invention after a shielded conductor is formed.
如图6a和6b所示,在沟槽220中形成绝缘层221,绝缘层221围绕的空腔开口宽度a小于空腔内部宽度b。在进一步形成多次回刻的方式依次形成多晶硅层222至224时,采用回刻蚀暴露前一次多晶硅层的空洞或缝隙等缺陷,然后采用后一多晶硅层填满空洞或缝隙以去除缺陷,从而形成无空洞或缝隙等缺陷的屏蔽导体,因而在最终的功率半导体器件200中防止漏电、提高耐压,改善可靠性。在屏蔽导体中消除空洞或缝隙缺陷,防止功率半导体器件出现击穿或短路等故障,使得功率半导体器件的良率、可靠性和寿命得到显著的提高。As shown in FIGS. 6a and 6b, an insulating layer 221 is formed in the trench 220, and the opening width a of the cavity surrounded by the insulating layer 221 is smaller than the inner width b of the cavity. When the polysilicon layers 222 to 224 are successively formed by further forming multiple etchbacks, etchback is used to expose defects such as voids or gaps in the previous polysilicon layer, and then the latter polysilicon layer is used to fill the voids or gaps to remove the defects, thereby forming The shielded conductor without defects such as voids or gaps prevents leakage, improves withstand voltage, and improves reliability in the final power semiconductor device 200. Elimination of voids or gap defects in the shielded conductor to prevent breakdowns or short circuits of power semiconductor devices, so that the yield, reliability and life of the power semiconductor devices are significantly improved.
在上述的实施例中,描述了分裂栅型功率半导体器件的屏蔽导体由多个多晶硅层形成。然而,本发明不限于此,而是可以应用于任何类型的沟槽型功率半导体器件中。例如,在沟槽型功率半导体器件中,多个多晶硅层和绝缘层分别形成栅极导体和栅极电介质,在形成多个多晶硅层之后,还包括:在外延层邻接沟槽的区域中形成第二掺杂类型的体区;在体区中形成第一掺杂类型的源区,第二掺杂类型与第一掺杂类型相反;以及形成栅极导体和源区的电连接结构。栅极导体从沟槽的上部延伸至沟槽的下部,并且与体区之间由栅极电介质彼此隔开。In the above-mentioned embodiment, it is described that the shield conductor of the split-gate power semiconductor device is formed of a plurality of polysilicon layers. However, the present invention is not limited to this, but can be applied to any type of trench-type power semiconductor device. For example, in a trench-type power semiconductor device, multiple polysilicon layers and insulating layers form gate conductors and gate dielectrics, respectively. After forming multiple polysilicon layers, it further includes: forming a second layer in the region where the epitaxial layer is adjacent to the trench. A body region of two doping types; forming a source region of the first doping type in the body region, and the second doping type is opposite to the first doping type; and forming an electrical connection structure between the gate conductor and the source region. The gate conductor extends from the upper part of the trench to the lower part of the trench, and is separated from the body region by a gate dielectric.
在上述的实施例中,描述了功率半导体器件中的屏蔽导体由多个掺杂多晶硅层组成。然而,本发明不限于此,而是可以应用于使用任何导体作为栅极导体或屏蔽导体的沟槽型功率半导体器件中,其中,由于绝缘层在沟槽的侧壁上的厚度不均匀,导致由绝缘层围绕的空腔的开口宽 度比内部宽度小。In the above-mentioned embodiment, it is described that the shield conductor in the power semiconductor device is composed of a plurality of doped polysilicon layers. However, the present invention is not limited to this, but can be applied to trench-type power semiconductor devices that use any conductor as a gate conductor or shield conductor, where the thickness of the insulating layer on the sidewall of the trench is uneven, resulting in The opening width of the cavity surrounded by the insulating layer is smaller than the inner width.
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply one of these entities or operations. There is any such actual relationship or order between. Moreover, the terms "include", "include" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes those that are not explicitly listed Other elements of, or also include elements inherent to this process, method, article or equipment. If there are no more restrictions, the element defined by the sentence "including a..." does not exclude the existence of other identical elements in the process, method, article, or equipment that includes the element.
依照本发明的实施例如上文,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。According to the embodiments of the present invention as described above, these embodiments do not describe all the details in detail, nor do they limit the present invention to only specific embodiments. Obviously, many modifications and changes can be made based on the above description. This specification selects and specifically describes these embodiments in order to better explain the principles and practical applications of the present invention, so that those skilled in the art can make good use of the present invention and make modifications based on the present invention. The present invention is only limited by the claims and their full scope and equivalents.

Claims (53)

  1. 一种用于沟槽栅MOSFET功率半导体器件的多晶硅填充方法,其特征在于,包括:A polysilicon filling method for trench gate MOSFET power semiconductor devices, which is characterized in that it comprises:
    a)在半导体衬底上形成外延层,在所述外延层中形成沟槽;a) forming an epitaxial layer on the semiconductor substrate, and forming a trench in the epitaxial layer;
    b)在所述外延层表面和沟槽中形成绝缘层,所述绝缘层围绕沟槽形成空腔;b) An insulating layer is formed on the surface of the epitaxial layer and in the trench, and the insulating layer surrounds the trench to form a cavity;
    c)在所述外延层表面和所述空腔中形成第i多晶硅层,所述第i多晶硅层填充所述空腔,i=1;c) forming an i-th polysilicon layer on the surface of the epitaxial layer and the cavity, and the i-th polysilicon layer fills the cavity, i=1;
    d)对所述第i多晶硅层进行回蚀刻,去除所述第i多晶硅层的一部分以暴露出所述第i多晶硅层内部的空洞或缝隙;d) performing an etch back on the i-th polysilicon layer to remove a part of the i-th polysilicon layer to expose the voids or gaps inside the i-th polysilicon layer;
    e)在暴露出的所述第i多晶硅层内部的空洞或缝隙上形成第i+1多晶硅层,所述第i+1多晶硅层填充所述第i多晶硅内部的空洞或缝隙;e) forming an i+1th polysilicon layer on the exposed cavity or gap inside the i-th polysilicon layer, and the i+1th polysilicon layer fills the cavity or gap inside the i-th polysilicon layer;
    f)去除位于所述外延层表面上方的所述第i+1多晶硅层和位于所述外延层表面上方的所述绝缘层。f) removing the (i+1)th polysilicon layer located above the surface of the epitaxial layer and the insulating layer located above the surface of the epitaxial layer.
  2. 根据权利要求1所述的多晶硅填充方法,还包括:The polysilicon filling method according to claim 1, further comprising:
    在进行步骤e)之后和步骤f)之前,令i=i+1,重复步骤d)至e)至少一次。After performing step e) and before step f), set i=i+1, and repeat steps d) to e) at least once.
  3. 根据权利要求1所述的多晶硅填充方法,还包括:The polysilicon filling method according to claim 1, further comprising:
    在进行步骤e)之后和步骤f)之前,判断所述第i+1多晶硅层的空洞或缝隙是否填满,After performing step e) and before step f), determine whether the void or gap of the i+1th polysilicon layer is filled,
    其中,如果所述第i+1多晶硅层的空洞或缝隙未填满,则令i=i+1,重复步骤d)至e)至少一次。Wherein, if the void or gap of the i+1th polysilicon layer is not filled, set i=i+1, and repeat steps d) to e) at least once.
  4. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,所述第一多晶硅层至所述第i+1多晶硅层形成屏蔽导体。The polysilicon filling method according to any one of claims 1 to 3, wherein the first polysilicon layer to the (i+1)th polysilicon layer form a shield conductor.
  5. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,所述沟槽的宽度为1至5微米,所述沟槽的深度为5至12微米。The polysilicon filling method according to any one of claims 1 to 3, wherein the width of the trench is 1 to 5 microns, and the depth of the trench is 5 to 12 microns.
  6. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,所述沟槽的宽度为1至3微米,所述沟槽的深度为7至12微米。The polysilicon filling method according to any one of claims 1 to 3, wherein the width of the trench is 1 to 3 microns, and the depth of the trench is 7 to 12 microns.
  7. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,所述绝缘层的厚度为0.1至2微米。The polysilicon filling method according to any one of claims 1 to 3, wherein the thickness of the insulating layer is 0.1 to 2 microns.
  8. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,所述绝缘层的厚度为0.6至1.5微米。The polysilicon filling method according to any one of claims 1 to 3, wherein the thickness of the insulating layer is 0.6 to 1.5 microns.
  9. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,步骤b)中形成的所述绝缘层在所述沟槽开口处的厚度大于所述绝缘层在所述沟槽内部的厚度。The polysilicon filling method according to any one of claims 1 to 3, wherein the thickness of the insulating layer formed in step b) at the opening of the trench is greater than the thickness of the insulating layer inside the trench thickness.
  10. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,所述步骤b)中形成的沟槽开口处的所述绝缘层侧壁间的宽度小于所述沟槽内部所述绝缘层侧壁间的最大宽度。The polysilicon filling method according to any one of claims 1 to 3, wherein the width between the sidewalls of the insulating layer at the opening of the trench formed in step b) is smaller than that of the insulating layer inside the trench. The maximum width between the sidewalls of the layer.
  11. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,所述沟槽内部的所述绝缘层侧壁间的最大宽度减去所述沟槽开口处的所述绝缘层侧壁间的宽度大于等于30纳米。The polysilicon filling method according to any one of claims 1 to 3, wherein the maximum width between the sidewalls of the insulating layer inside the trench minus the sidewalls of the insulating layer at the opening of the trench The width of the space is greater than or equal to 30 nanometers.
  12. 根据权利要求1所述的多晶硅填充方法,其中,步骤b)中形成的所述空腔的开口宽度小于所述空腔的内部宽度。The polysilicon filling method according to claim 1, wherein the opening width of the cavity formed in step b) is smaller than the inner width of the cavity.
  13. 根据权利要求12所述的多晶硅填充方法,其中,步骤b)中形成的所述空腔的内部宽度减去所述空腔的开口宽度的值大于等于30纳米。12. The polysilicon filling method according to claim 12, wherein the value of the inner width of the cavity formed in step b) minus the opening width of the cavity is greater than or equal to 30 nanometers.
  14. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,对所述第i多晶硅层进行回蚀刻采用干法刻蚀或者湿法刻蚀。The polysilicon filling method according to any one of claims 1 to 3, wherein the etch-back of the i-th polysilicon layer is performed by dry etching or wet etching.
  15. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,所述对第i多晶硅层进行回蚀刻的刻蚀深度由空洞或缝隙缺陷的位置决定,刻蚀深度范围为0.5至11微米。The polysilicon filling method according to any one of claims 1 to 3, wherein the etching depth of the ith polysilicon layer is etched back by the position of the cavity or the gap defect, and the etching depth ranges from 0.5 to 11. Micrometers.
  16. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,步骤d)中对第i多晶硅层进行蚀回刻,暴露第i多晶硅层内的空洞或缝隙的同时,暴露所述外延层表面的绝缘层以及沟槽中的部分绝缘层。The polysilicon filling method according to any one of claims 1 to 3, wherein in step d), the i-th polysilicon layer is etched back, exposing the cavities or gaps in the i-th polysilicon layer while exposing the epitaxial layer The insulating layer on the surface of the layer and part of the insulating layer in the trench.
  17. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,步骤e)中在所述暴露第i多晶硅层内的空洞或缝隙上填充第i+1多晶硅层的同时,在暴露所述外延层表面的绝缘层以及沟槽中的部分绝缘层上填充第i+1多晶硅层。The polysilicon filling method according to any one of claims 1 to 3, wherein, in step e), the i+1th polysilicon layer is filled in the cavities or gaps in the exposed i-th polysilicon layer while exposing the i+1th polysilicon layer. The insulating layer on the surface of the epitaxial layer and part of the insulating layer in the trench are filled with an i+1th polysilicon layer.
  18. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,步骤d)中对第i多晶硅层进行回蚀刻,回蚀刻后的剩余第i多晶硅层呈开口状,所述剩余第i多晶硅层从开口顶端向下逐渐减小。The polysilicon filling method according to any one of claims 1 to 3, wherein in step d), the i-th polysilicon layer is etched back, and the remaining i-th polysilicon layer after the etch-back is open, and the remaining i-th polysilicon layer is open. The polysilicon layer gradually decreases from the top of the opening downward.
  19. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,步骤e)中所述填充的第i+1多晶硅层覆盖回蚀刻后的剩余第i多晶硅层以及回蚀刻后的剩余第i多晶硅层所包围的空洞或缝隙。The polysilicon filling method according to any one of claims 1 to 3, wherein the i+1th polysilicon layer filled in step e) covers the remaining i-th polysilicon layer after etching back and the remaining first polysilicon layer after etching back i A void or gap surrounded by a polysilicon layer.
  20. 根据权利要求1至3中任一项所述的多晶硅填充方法,其中,填充的第i+1多晶硅层产生的空洞或缝隙与所述空腔的开口的距离小于第i多晶硅层产生的空洞或缝隙与所述空腔的开口的距离。The polysilicon filling method according to any one of claims 1 to 3, wherein the distance between the void or gap generated by the filled (i+1)th polysilicon layer and the opening of the cavity is smaller than the void or gap generated by the (i+1)th polysilicon layer. The distance between the gap and the opening of the cavity.
  21. 一种沟槽栅MOSFET功率半导体器件的制造方法,包括:A manufacturing method of trench gate MOSFET power semiconductor device includes:
    a)在半导体衬底上形成外延层,在所述外延层中形成沟槽;a) forming an epitaxial layer on the semiconductor substrate, and forming a trench in the epitaxial layer;
    b)在所述外延层表面和沟槽中形成绝缘层,所述绝缘层围绕沟槽形成空腔;b) An insulating layer is formed on the surface of the epitaxial layer and in the trench, and the insulating layer surrounds the trench to form a cavity;
    c)在所述外延层表面和所述空腔中形成第i多晶硅层,所述第i多晶硅层填充所述空腔,i=1;c) forming an i-th polysilicon layer on the surface of the epitaxial layer and the cavity, and the i-th polysilicon layer fills the cavity, i=1;
    d)对所述第i多晶硅层进行回蚀刻,去除所述第i多晶硅层的一部分以暴露出所述第i多晶硅层内部的空洞或缝隙;d) performing an etch back on the i-th polysilicon layer to remove a part of the i-th polysilicon layer to expose the voids or gaps inside the i-th polysilicon layer;
    e)在暴露出的所述第i多晶硅层内部的空洞或缝隙上形成第i+1多晶硅层,所述第i+1多晶硅层填充所述第i多晶硅层内部的空洞或缝隙;e) forming an i+1th polysilicon layer on the exposed cavity or gap inside the i-th polysilicon layer, and the i+1th polysilicon layer fills the cavity or gap inside the i-th polysilicon layer;
    f)去除位于所述外延层表面上方的所述第i+1多晶硅层和位于所述外延层表面上方的所述绝缘层,所述第一多晶硅层至所述第i+1多晶硅层形成屏蔽导体;f) removing the i+1th polysilicon layer above the surface of the epitaxial layer and the insulating layer above the surface of the epitaxial layer, from the first polysilicon layer to the i+1th polysilicon layer Form a shielded conductor;
    g)对所述沟槽中的所述绝缘层进行回蚀刻以形成上部空腔,从而暴露所述沟槽和所述屏蔽导体的上部侧壁;g) etching back the insulating layer in the trench to form an upper cavity, thereby exposing the upper sidewall of the trench and the shield conductor;
    h)在所述沟槽和所述屏蔽导体的上部侧壁上形成栅极电介质;h) forming a gate dielectric on the upper sidewall of the trench and the shield conductor;
    i)在所述栅极电介质之间形成栅极导体;i) forming a gate conductor between the gate dielectrics;
    j)在所述外延层邻接所述沟槽的区域中形成第二掺杂类型的体区,所述半导体衬底为第一掺杂类型且作为漏区,所述外延层为第一掺杂类型,所述第二掺杂类型与所述第一掺杂类型相反;j) A body region of the second doping type is formed in the region where the epitaxial layer is adjacent to the trench, the semiconductor substrate is of the first doping type and used as a drain region, and the epitaxial layer is of the first doping Type, the second doping type is opposite to the first doping type;
    k)在所述体区中形成所述第一掺杂类型的源区;以及k) forming a source region of the first doping type in the body region; and
    l)形成所述栅极导体、所述屏蔽导体、所述源区和所述漏区的电连接结构。1) forming an electrical connection structure of the gate conductor, the shielding conductor, the source region and the drain region.
  22. 根据权利要求21所述的制造方法,还包括:The manufacturing method according to claim 21, further comprising:
    在进行步骤e)之后和步骤f)之前,令i=i+1,重复步骤d)至e)至少一次。After performing step e) and before step f), set i=i+1, and repeat steps d) to e) at least once.
  23. 根据权利要求21所述的制造方法,还包括:The manufacturing method according to claim 21, further comprising:
    在进行步骤e)之后和步骤f)之前,判断所述第i+1多晶硅层的空洞或缝隙是否填满,After performing step e) and before step f), determine whether the void or gap of the i+1th polysilicon layer is filled,
    其中,如果所述第i+1多晶硅层的空洞或缝隙未填满,则令i=i+1,重复步骤d)至e)至少一次。Wherein, if the void or gap of the i+1th polysilicon layer is not filled, set i=i+1, and repeat steps d) to e) at least once.
  24. 根据权利要求21至23中任一项所述的制造方法,其中,所述沟槽的宽度为1至5微米,所述沟槽的深度为5至12微米。The manufacturing method according to any one of claims 21 to 23, wherein the width of the trench is 1 to 5 microns, and the depth of the trench is 5 to 12 microns.
  25. 根据权利要求21至23中任一项所述的制造方法,其中,所述沟槽的宽度为1至3微米,所述沟槽的深度为7至12微米。The manufacturing method according to any one of claims 21 to 23, wherein the width of the trench is 1 to 3 microns, and the depth of the trench is 7 to 12 microns.
  26. 根据权利要求21至23中任一项所述的制造方法,其中,所述绝缘层的厚度为0.1至2微米。The manufacturing method according to any one of claims 21 to 23, wherein the thickness of the insulating layer is 0.1 to 2 microns.
  27. 根据权利要求21至23中任一项所述的制造方法,其中,所述绝缘层的厚度为0.6至1.5微米。The manufacturing method according to any one of claims 21 to 23, wherein the thickness of the insulating layer is 0.6 to 1.5 micrometers.
  28. 根据权利要求21至23中任一项所述的制造方法,其中,所述绝缘层在所述沟槽开口处的厚度大于所述绝缘层在所述沟槽内部的厚度。The manufacturing method according to any one of claims 21 to 23, wherein the thickness of the insulating layer at the opening of the trench is greater than the thickness of the insulating layer inside the trench.
  29. 根据权利要求21至23中任一项所述的制造方法,其中,所述沟槽开口处的所述绝缘层侧壁间的宽度小于所述沟槽内部的所述绝缘层侧壁间的最大宽度。The manufacturing method according to any one of claims 21 to 23, wherein the width between the sidewalls of the insulating layer at the opening of the trench is smaller than the maximum width between the sidewalls of the insulating layer inside the trench. width.
  30. 根据权利要求21至23中任一项所述的制造方法,其中,所述沟槽内部的所述绝缘层侧壁间的最大宽度减去所述沟槽开口处的所述绝缘层侧壁间的宽度大于等于30纳米。The manufacturing method according to any one of claims 21 to 23, wherein the maximum width between the sidewalls of the insulating layer inside the trench minus the gap between the sidewalls of the insulating layer at the opening of the trench The width is greater than or equal to 30 nanometers.
  31. 根据权利要求21至23中任一项所述的制造方法,其中,所述空腔的开口宽度小于所述空腔的内部宽度。The manufacturing method according to any one of claims 21 to 23, wherein the opening width of the cavity is smaller than the inner width of the cavity.
  32. 根据权利要求21至23中任一项所述的制造方法,其中,所述空腔的内部宽度减去所述空腔的开口宽度的值大于等于30纳米。The manufacturing method according to any one of claims 21 to 23, wherein the value of the internal width of the cavity minus the opening width of the cavity is greater than or equal to 30 nanometers.
  33. 根据权利要求21至23中任一项所述的制造方法,其中,所述沟槽栅MOSFET功率半导体器件的耐压在120V到300V。The manufacturing method according to any one of claims 21 to 23, wherein the withstand voltage of the trench gate MOSFET power semiconductor device is 120V to 300V.
  34. 根据权利要求21至23中任一项所述的制造方法,其中,对第i多晶硅层进行回蚀刻采用干法刻蚀或者湿法刻蚀。22. The manufacturing method according to any one of claims 21 to 23, wherein the etch-back of the i-th polysilicon layer adopts dry etching or wet etching.
  35. 根据权利要求21至23中任一项所述的制造方法,其中,所述对第i多晶硅层进行回蚀刻的刻蚀深度由空洞或缝隙缺陷的位置决定,刻蚀深度范围为0.5至11微米。22. The manufacturing method according to any one of claims 21 to 23, wherein the etching depth of the i-th polysilicon layer is etched back by the position of the cavity or the gap defect, and the etching depth ranges from 0.5 to 11 microns .
  36. 根据权利要求21至23中任一项所述的制造方法,其中步骤d)中对第i多晶硅层进行蚀回刻,暴露第i多晶硅层内的空洞或缝隙的同时,暴露所述外延层表面的绝缘层以及沟槽中的部分绝缘层。The manufacturing method according to any one of claims 21 to 23, wherein in step d) the ith polysilicon layer is etched back to expose the voids or gaps in the ith polysilicon layer while exposing the surface of the epitaxial layer The insulating layer and part of the insulating layer in the trench.
  37. 根据权利要求21至23中任一项所述的制造方法,其中步骤e)中在所述暴露第i多晶硅层内的空洞或缝隙上填充第i+1多晶硅层的同时,在暴露所述外延层的绝缘层以及沟槽中的部分绝缘层上填充第i+1多晶硅层。22. The manufacturing method according to any one of claims 21 to 23, wherein in step e), the cavities or gaps in the i-th polysilicon layer are exposed while filling the (i+1)th polysilicon layer while exposing the epitaxial layer. The insulating layer of the layer and part of the insulating layer in the trench are filled with an i+1th polysilicon layer.
  38. 根据权利要求21至23中任一项所述的制造方法,其中步骤d)中对第i多晶硅层进行第i次回蚀刻,回蚀刻后的剩余第i多晶硅层呈开口状,所述剩余第i多晶硅层从开口顶端向下逐渐减小。The manufacturing method according to any one of claims 21 to 23, wherein in step d), the i-th polysilicon layer is etched back for the i-th time, and the remaining i-th polysilicon layer after the etch-back is open, and the remaining i-th polysilicon layer is open. The polysilicon layer gradually decreases from the top of the opening downward.
  39. 根据权利要求21至23中任一项所述的制造方法,其中步骤e)中所述填充的第i+1多晶硅层覆盖回蚀刻后的剩余第i多晶硅层以及回蚀刻后的剩余第i多晶硅层所包围的空洞或缝隙。The manufacturing method according to any one of claims 21 to 23, wherein the i+1th polysilicon layer filled in step e) covers the remaining i-th polysilicon layer after etch-back and the remaining i-th polysilicon layer after etch-back A void or gap surrounded by a layer.
  40. 根据权利要求21至23中任一项所述的制造方法,其中填充的第i+1多晶硅层产生的空洞或缝隙与所述空腔的开口的距离小于第i多晶硅层产生的空洞或缝隙与所述空腔的开口的距离。The manufacturing method according to any one of claims 21 to 23, wherein the distance between the void or gap generated by the filled (i+1)th polysilicon layer and the opening of the cavity is less than the distance between the void or gap generated by the (i+1)th polysilicon layer and the opening of the cavity. The distance of the opening of the cavity.
  41. 根据权利要求21所述的制造方法,其中,所述体区的深度不小于所述栅极电介质和栅极导体的深度。The manufacturing method according to claim 21, wherein the depth of the body region is not less than the depth of the gate dielectric and the gate conductor.
  42. 一种沟槽栅MOSFET功率半导体器件,采用权利要求21至41中任一项所述的制造方法来形成,包括:A trench gate MOSFET power semiconductor device formed by the manufacturing method of any one of claims 21 to 41, comprising:
    半导体衬底,所述半导体衬底作为漏区;A semiconductor substrate, the semiconductor substrate serving as a drain region;
    位于所述半导体衬底上的外延层;An epitaxial layer on the semiconductor substrate;
    位于所述外延层中的沟槽;A trench located in the epitaxial layer;
    位于所述沟槽中的绝缘层,所述绝缘层围绕所述沟槽形成的空腔;以及,An insulating layer located in the trench, the insulating layer surrounding the cavity formed by the trench; and,
    多晶硅填充所述空腔形成的屏蔽导体;A shielding conductor formed by filling the cavity with polysilicon;
    位于所述沟槽中绝缘层上部的栅极电介质和栅极导体,所述栅极电介质位于所述沟槽和所述屏蔽导体的上部侧壁上,所述栅极导体位于所述栅极电介质之间;The gate dielectric and the gate conductor located on the upper part of the insulating layer in the trench, the gate dielectric is located on the upper sidewalls of the trench and the shield conductor, and the gate conductor is located on the gate dielectric between;
    位于所述外延层邻接所述沟槽的区域中的体区和源区,所述体区和源区的掺杂类型相反;以及The body region and the source region in the region where the epitaxial layer is adjacent to the trench, and the doping types of the body region and the source region are opposite; and
    所述栅极导体、所述屏蔽导体、所述源区和所述漏区的电连接结构。The electrical connection structure of the gate conductor, the shielding conductor, the source region and the drain region.
  43. 根据权利要求42所述的沟槽栅MOSFET功率半导体器件,其中,所述沟槽的宽度为1至5微米,所述沟槽的深度为5至12微米。The trench gate MOSFET power semiconductor device according to claim 42, wherein the width of the trench is 1 to 5 microns, and the depth of the trench is 5 to 12 microns.
  44. 根据权利要求42所述的沟槽栅MOSFET功率半导体器件,其中,所述沟槽的宽度为1至3微米,所述沟槽的深度为7至12微米。The trench gate MOSFET power semiconductor device of claim 42, wherein the width of the trench is 1 to 3 microns, and the depth of the trench is 7 to 12 microns.
  45. 根据权利要求42所述的沟槽栅MOSFET功率半导体器件,其中,所述绝缘层的厚度为0.1至2微米。The trench gate MOSFET power semiconductor device of claim 42, wherein the thickness of the insulating layer is 0.1 to 2 microns.
  46. 根据权利要求42所述的沟槽栅MOSFET功率半导体器件,其中,所述绝缘层的厚度为0.6至1.5微米。The trench gate MOSFET power semiconductor device of claim 42, wherein the thickness of the insulating layer is 0.6 to 1.5 micrometers.
  47. 根据权利要求42所述的沟槽栅MOSFET功率半导体器件,其中,所述绝缘层在所述沟槽开口处的厚度大于所述绝缘层在所述沟槽内部的厚度。The trench gate MOSFET power semiconductor device according to claim 42, wherein the thickness of the insulating layer at the opening of the trench is greater than the thickness of the insulating layer inside the trench.
  48. 根据权利要求47所述的沟槽栅MOSFET功率半导体器件,其中,所述沟槽开口处的所述绝缘层侧壁间的宽度小于所述沟槽内部的所述绝缘层侧壁间的最大宽度。The trench gate MOSFET power semiconductor device according to claim 47, wherein the width between the sidewalls of the insulating layer at the opening of the trench is smaller than the maximum width between the sidewalls of the insulating layer inside the trench .
  49. 根据权利要求48所述的沟槽栅MOSFET功率半导体器件,其中,所述沟槽内部的所述绝缘层侧壁间的最大宽度减去所述沟槽开口处的所述绝缘层侧壁间的宽度大于等于30纳米。The trench gate MOSFET power semiconductor device according to claim 48, wherein the maximum width between the sidewalls of the insulating layer inside the trench minus the width between the sidewalls of the insulating layer at the opening of the trench The width is greater than or equal to 30 nanometers.
  50. 根据权利要求42所述的沟槽栅MOSFET功率半导体器件,其中,所述沟槽栅MOSFET功率半导体器件耐压在120V至300V。The trench gate MOSFET power semiconductor device of claim 42, wherein the trench gate MOSFET power semiconductor device has a withstand voltage of 120V to 300V.
  51. 根据权利要求42所述的沟槽栅MOSFET功率半导体器件,其中,所述体区的深度不小于所述栅极电介质和栅极导体的深度。The trench gate MOSFET power semiconductor device of claim 42, wherein the depth of the body region is not less than the depth of the gate dielectric and the gate conductor.
  52. 根据权利要求42所述的沟槽栅MOSFET功率半导体器件,其中,所述电连接结构包括分别与所述栅极导体、所述屏蔽导体、所述源区和所述漏区相连接的多个电极。The trench gate MOSFET power semiconductor device according to claim 42, wherein the electrical connection structure includes a plurality of connections respectively connected to the gate conductor, the shield conductor, the source region, and the drain region. electrode.
  53. 根据权利要求52所述的沟槽栅MOSFET功率半导体器件,其中,所述电连接结构还包括多个导电通道,所述栅极导体、所述屏蔽导体、所述源区经由相应的导电通道连接至相应 电极,所述漏区与相应的电极接触。The trench gate MOSFET power semiconductor device of claim 52, wherein the electrical connection structure further comprises a plurality of conductive channels, and the gate conductor, the shield conductor, and the source region are connected via corresponding conductive channels To the corresponding electrode, the drain region is in contact with the corresponding electrode.
PCT/CN2020/077127 2020-01-02 2020-02-28 Trench gate mosfet power semiconductor device, polycrystalline silicon-filling method therefor, and manurfacturing method therefor WO2021134889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010007896.1 2020-01-02
CN202010007896.1A CN111403282B (en) 2020-01-02 2020-01-02 Trench gate MOSFET power semiconductor device and polysilicon filling method and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2021134889A1 true WO2021134889A1 (en) 2021-07-08

Family

ID=71430316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077127 WO2021134889A1 (en) 2020-01-02 2020-02-28 Trench gate mosfet power semiconductor device, polycrystalline silicon-filling method therefor, and manurfacturing method therefor

Country Status (2)

Country Link
CN (1) CN111403282B (en)
WO (1) WO2021134889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023812A (en) * 2021-10-20 2022-02-08 上海华虹宏力半导体制造有限公司 Shielded gate trench type MOSFET device and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020127640A1 (en) * 2020-07-10 2022-01-13 X-FAB Global Services GmbH Semiconductor component for power electronics applications and method for operating a power module
CN114078774A (en) 2020-08-13 2022-02-22 长鑫存储技术有限公司 Semiconductor device and method for manufacturing the same
CN112820645B (en) * 2020-12-31 2022-07-05 北京燕东微电子科技有限公司 Power semiconductor device and preparation method thereof
CN114361106A (en) * 2022-01-14 2022-04-15 长鑫存储技术有限公司 Memory device, semiconductor structure and preparation method thereof
CN116344622A (en) * 2023-05-25 2023-06-27 成都吉莱芯科技有限公司 SGT MOSFET device with low output capacitance and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100044785A1 (en) * 2008-01-15 2010-02-25 Murphy James J High aspect ratio trench structures with void-free fill material
CN103035501A (en) * 2012-09-19 2013-04-10 上海华虹Nec电子有限公司 Preparation method for polycrystalline silicon groove grid and capable of avoiding holes
CN107017167A (en) * 2017-03-01 2017-08-04 上海华虹宏力半导体制造有限公司 The manufacture method of trench-gate device with shield grid
CN107910266A (en) * 2017-11-17 2018-04-13 杭州士兰集成电路有限公司 Power semiconductor and its manufacture method
CN110600371A (en) * 2019-08-23 2019-12-20 中芯集成电路制造(绍兴)有限公司 Polycrystalline silicon filling method, semiconductor device manufacturing method and semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124195B (en) * 2013-04-28 2016-12-28 中芯国际集成电路制造(上海)有限公司 The forming method of groove isolation construction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100044785A1 (en) * 2008-01-15 2010-02-25 Murphy James J High aspect ratio trench structures with void-free fill material
CN103035501A (en) * 2012-09-19 2013-04-10 上海华虹Nec电子有限公司 Preparation method for polycrystalline silicon groove grid and capable of avoiding holes
CN107017167A (en) * 2017-03-01 2017-08-04 上海华虹宏力半导体制造有限公司 The manufacture method of trench-gate device with shield grid
CN107910266A (en) * 2017-11-17 2018-04-13 杭州士兰集成电路有限公司 Power semiconductor and its manufacture method
CN110600371A (en) * 2019-08-23 2019-12-20 中芯集成电路制造(绍兴)有限公司 Polycrystalline silicon filling method, semiconductor device manufacturing method and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023812A (en) * 2021-10-20 2022-02-08 上海华虹宏力半导体制造有限公司 Shielded gate trench type MOSFET device and manufacturing method thereof
CN114023812B (en) * 2021-10-20 2023-08-22 上海华虹宏力半导体制造有限公司 Shielded gate trench type MOSFET device and manufacturing method thereof

Also Published As

Publication number Publication date
CN111403282B (en) 2022-01-04
CN111403282A (en) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021134889A1 (en) Trench gate mosfet power semiconductor device, polycrystalline silicon-filling method therefor, and manurfacturing method therefor
US9799671B2 (en) Three-dimensional integration schemes for reducing fluorine-induced electrical shorts
KR100338766B1 (en) Method of Elevated Salicide Source/Drain Region Using method of Forming T-Shape Isolation Layer and Semiconductor Device using thereof
TWI683439B (en) Semiconductor devices in semiconductor substrate and fabrication method thereof
US9627526B2 (en) Assymetric poly gate for optimum termination design in trench power MOSFETs
CN111883592B (en) Shielding gate trench power device and manufacturing method thereof
JP2018129378A (en) Semiconductor device and method of manufacturing the same, and semiconductor wafer structure
TWI761800B (en) Trench type MOSFET device manufacturing method
CN111244096B (en) 3D NAND memory device and method of manufacturing the same
JPH0823092A (en) Semiconductor device and production process thereof
US20230020711A1 (en) Semiconductor structure and method for manufacturing same
TW202042292A (en) Semiconductor device and method for making the same
CN111192925B (en) Trench gate MOSFET power semiconductor device and polysilicon filling method and manufacturing method thereof
CN111180340B (en) Trench gate MOSFET power semiconductor device and polysilicon filling method and manufacturing method thereof
TWI812995B (en) Sic mosfet device and manufacturing method thereof
JP2012199468A (en) Method of manufacturing semiconductor device
CN114678275A (en) Split gate MOSFET and method of manufacturing the same
CN109767986B (en) Semiconductor device and method for manufacturing the same
KR100373709B1 (en) Semiconductor devices and manufacturing method thereof
US20240128370A1 (en) Method for manufacturing trench mosfet
US20230268432A1 (en) Manufacturing method of a semiconductor device
KR102444384B1 (en) Trench power MOSFET and manufacturing method thereof
CN111710608B (en) Trench MOSFET and method of manufacturing the same
US20230420558A1 (en) Semiconductor device and manufacturing method thereof
JPH05226466A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909763

Country of ref document: EP

Kind code of ref document: A1