WO2021134784A1 - 光学系统、摄像模组及电子装置 - Google Patents

光学系统、摄像模组及电子装置 Download PDF

Info

Publication number
WO2021134784A1
WO2021134784A1 PCT/CN2020/070265 CN2020070265W WO2021134784A1 WO 2021134784 A1 WO2021134784 A1 WO 2021134784A1 CN 2020070265 W CN2020070265 W CN 2020070265W WO 2021134784 A1 WO2021134784 A1 WO 2021134784A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
optical axis
object side
optical
Prior art date
Application number
PCT/CN2020/070265
Other languages
English (en)
French (fr)
Inventor
张文燕
杨健
李明
邹海荣
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to PCT/CN2020/070265 priority Critical patent/WO2021134784A1/zh
Publication of WO2021134784A1 publication Critical patent/WO2021134784A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Definitions

  • the invention relates to the field of optical imaging, in particular to an optical system, a camera module and an electronic device.
  • an optical system a camera module, and an electronic device are provided.
  • An optical system from the object side to the image side, includes:
  • a first lens with positive refractive power, the object side of the first lens is convex at the optical axis;
  • a second lens with refractive power wherein the image side surface of the second lens is concave at the optical axis;
  • the third lens with refractive power is the third lens with refractive power
  • the fourth lens with refractive power is the fourth lens with refractive power
  • optical system satisfies the relationship:
  • M is the magnification of the optical system.
  • a camera module includes a photosensitive element and the above-mentioned optical system, and the photosensitive element is arranged on the image side of the fourth lens.
  • An electronic device includes a housing and the above-mentioned camera module, and the camera module is arranged on the housing.
  • FIG. 1 is a schematic diagram of the optical system provided by the first embodiment of the application.
  • FIG. 2 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical system in the first embodiment;
  • FIG. 3 is a schematic diagram of the optical system provided by the second embodiment of the application.
  • FIG. 5 is a schematic diagram of the optical system provided by the third embodiment of the application.
  • Fig. 6 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system in the third embodiment;
  • FIG. 7 is a schematic diagram of an optical system provided by a fourth embodiment of this application.
  • FIG. 9 is a schematic diagram of an optical system provided by a fifth embodiment of this application.
  • FIG. 10 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system in the fifth embodiment;
  • FIG. 11 is a schematic diagram of an optical system provided by a sixth embodiment of this application.
  • Fig. 12 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system in the sixth embodiment;
  • FIG. 13 is a schematic diagram of an optical system provided by a seventh embodiment of this application.
  • 15 is a schematic diagram of an optical system provided by an eighth embodiment of this application.
  • 16 is a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system in the eighth embodiment;
  • FIG. 17 is a schematic diagram of a camera module provided by an embodiment of the application.
  • FIG. 18 is a schematic diagram of an electronic device provided by an embodiment of the application.
  • the optical system 10 includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a second lens with a positive refractive power from the object side to the image side.
  • the lenses and the diaphragm STO in the optical system 10 are arranged coaxially, that is, the optical axis of each lens and the center of the diaphragm STO are located on the same straight line. This straight line may be called the optical axis of the optical system 10, and may also be called the first light. axis.
  • the projection of the stop STO on the first optical axis does not overlap with the projections of the third lens L3 and the fourth lens L4 on the first optical axis, respectively.
  • the projection of the stop STO on the first optical axis overlaps with the projection of any lens in the optical system 10 on the first optical axis.
  • the projection of the stop STO and any lens in the optical system 10 on the first optical axis may not overlap.
  • the stop STO may also be arranged on the object side of the first lens L1 or between any two lenses in the optical system 10.
  • the relative positions of the lenses in the optical system 10 are fixed.
  • each of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 includes only one lens.
  • the first lens L1 may also include two or more lenses, the object side of the lens closest to the object side is the object side of the first lens L1, and the object side of the lens closest to the image side is the first lens.
  • the second lens L2, the third lens L3, and the fourth lens L4 in some embodiments are not limited to the case where only one lens is included.
  • the first lens L1 includes an object side surface S1 and an image side surface S2
  • the second lens L2 includes an object side surface S3 and an image side surface S4
  • the third lens L3 includes an object side surface S5 and an image side surface S6
  • the fourth lens L4 includes an object side surface S7 and an image side surface. S8.
  • the optical system 10 has an imaging surface S11.
  • the imaging surface S11 is located on the image side of the fourth lens L4.
  • the incident light can be imaged on the imaging surface S11 after being adjusted by the lenses of the optical system 10.
  • the surface S11 can be regarded as the photosensitive surface of the photosensitive element.
  • the optical system 10 also has an object surface at the same time, and the object on the object surface can form a clear image on the imaging surface S11 of the optical system 10.
  • the object side surface S1 of the first lens L1 is convex at the optical axis
  • the image side surface S4 of the second lens L2 is concave at the optical axis, and since the first lens L1 provides positive refractive power for the optical system 10
  • the above arrangement is beneficial to the application of the optical system 10 in macro photography and the realization of a miniaturized design.
  • the object side and the image side of each lens of the first lens L1 to the fourth lens L4 are aspherical, and the aspherical surface configuration can effectively help the optical system 10 to eliminate aberrations and solve the problem of distortion of the field of view. At the same time, it is also conducive to the miniaturization design of the optical system 10, so that the optical system 10 can have excellent optical effects while maintaining the miniaturization design.
  • the object side surface of any one of the first lens L1 to the fourth lens L4 can be spherical or aspherical; the image side surface of any one of the first lens L1 to the fourth lens L4 can be The spherical surface may also be an aspherical surface. Through the cooperation of the spherical surface and the aspherical surface, the optical system 10 can also have an excellent macro shooting effect, while improving the flexibility of lens design and assembly.
  • the calculation of the aspheric surface can refer to the aspheric formula:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the apex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric apex
  • k is the conic constant
  • Ai is the aspheric surface formula The coefficient corresponding to the higher-order item of the i-th term.
  • the surface when the object side or image side of a certain lens is aspherical, the surface can be a convex surface or a concave surface as a whole; or the surface can also be designed to have inflection points. Structure, the shape of the surface from the center to the edge will change at this time, for example, the surface is convex at the center and concave at the edge.
  • one side of the lens is convex at the optical axis (the central area of the side) (the central area of the side), it can be understood that the area of the side of the lens near the optical axis is convex, so It can also be considered that the side surface is convex at the paraxial position; when describing a side surface of the lens as a concave surface at the circumference, it can be understood that the side surface near the maximum effective semi-aperture is a concave surface.
  • the shape of the side from the center (optical axis) to the edge direction can be a pure convex surface; or a convex shape from the center first Transition to a concave shape, and then become convex when approaching the maximum effective half-aperture.
  • This is only an example to illustrate the relationship between the optical axis and the circumference.
  • the multiple shapes and structures (concave-convex relationship) on the side are not fully reflected, but other situations can be derived from the above examples, and should also be regarded as The content recorded in this application.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the material of the first lens L1 is glass
  • the material of the second lens L2, the third lens L3, and the fourth lens L4 are all plastic. Is made of glass, so these glass lenses located on the object side have a good resistance to extreme environments, and are not easily affected by the object’s environment and aging. Therefore, when the optical system 10 is exposed to high temperatures and other extreme environments, This structure can effectively avoid the deterioration of the image quality and the service life of the optical system 10.
  • the plastic lens can reduce the weight of the optical system 10 and the production cost, while the glass lens can withstand higher temperatures and has excellent optical performance.
  • the material configuration of each lens in the optical system 10 is not limited to the foregoing embodiment, and the material of any lens may be plastic or glass.
  • the optical system 10 includes an infrared cut filter L5, and the infrared cut filter L5 includes an object side surface S9 and an image side surface S10.
  • the infrared cut filter L5 is used to filter out infrared light and prevent the infrared light from reaching the imaging surface S11, thereby preventing the infrared light from interfering with normal imaging.
  • the infrared cut filter L5 can be assembled with each lens as a part of the optical system 10, or, when the optical system 10 and the photosensitive element are assembled into a camera module, they can also be installed together between the optical system 10 and the photosensitive element. between.
  • the infrared cut filter L5 may also be arranged on the object side of the first lens L1.
  • the infrared cut filter L5 may not be provided, but a filter coating is provided on any one of the first lens L1 to the fourth lens L4 to achieve the effect of filtering infrared light.
  • the optical system 10 may also include elements such as a stop STO, an infrared cut filter L5, a protective glass, a photosensitive element, and a mirror for changing the incident light path.
  • elements such as a stop STO, an infrared cut filter L5, a protective glass, a photosensitive element, and a mirror for changing the incident light path.
  • M in some embodiments may be 1.38, 1.40, 1.42, 1.44, 1.45, 1.47, or 1.48.
  • the optical system 10 has a suitable magnification, which can clearly express the details of the shooting subject, and promote the optical system 10 to have an excellent macro shooting effect.
  • M>0.27 the overall resolution of the optical system 10 will be reduced, and the photographed objects will become blurry, unable to present a clear photographic effect; when M ⁇ 0.14, the photographic object distance of the optical system 10 will be too large and difficult. Achieve excellent imaging results in macro shooting.
  • the optical system 10 satisfies the following relationship: 0.3 ⁇ Fno/TTL ⁇ 0.6; where Fno is the aperture number of the optical system 10; TTL is the object side of the first lens L1 to the imaging surface S11 of the optical system 10 The distance on the optical axis, the unit of TTL is mm.
  • Fno/TTL in some embodiments may be 0.46 (1/mm), 0.47 (1/mm), 0.48 (1/mm), 0.49 (1/mm), or 0.50 (1/mm).
  • the optical system will not only give consideration to the miniaturization of the whole system, but will also cause insufficient light transmission of the system, which will result in a decrease in the clarity of the captured picture.
  • Fno/TTL ⁇ 0.3 the optical system 10 can make it difficult to make the system size small, and it is difficult to realize a miniaturized design while taking into account the appropriate amount of light passing.
  • the optical system 10 satisfies the following relationship: 1.1 ⁇ TTL/Imgh ⁇ 1.6; where TTL is the distance from the object side of the first lens L1 to the imaging surface S11 of the optical system 10 on the optical axis, and Imgh is the optical axis.
  • the TTL/Imgh in some embodiments may be 1.38, 1.40, 1.41, 1.43, 1.45, 1.46, or 1.48.
  • the optical system 10 can take into account the effects of miniaturization and high-definition shooting.
  • the optical system 10 has a suitable image height and high-definition imaging effect, and at the same time, the lens volume is too large to meet the requirements of miniaturization; when TTL/Imgh ⁇ 1.1, the image height is different.
  • the length of the lens will be compressed, resulting in a decrease in the overall resolution of the lens, making it impossible to achieve a clear shooting effect.
  • the optical system 10 satisfies the following relationship: 1.0 ⁇ TTL/f ⁇ 1.5; where TTL is the distance from the object side of the first lens L1 to the imaging surface S11 of the optical system 10 on the optical axis, and f is the optical axis.
  • the TTL/f in some embodiments may be 1.31, 1.33, 1.35, 1.37, 1.38, or 1.39.
  • the focal length of the optical system 10 is longer than that of a general macro lens, but at the same time it can still meet the miniaturization design, so that the light can be better concentrated on the imaging surface S11.
  • the optical length of the optical system 10 is too short, which will increase the sensitivity of the system, and is not conducive to the convergence of light on the imaging surface S11.
  • TTL/f ⁇ 1.5 the optical system 10 will inevitably shorten the focal length while satisfying the miniaturization design, making it difficult to achieve macro photography.
  • the optical system 10 satisfies the following relationship: 1.5 ⁇ tan(FOV)/f ⁇ 2.5; where FOV is the maximum angle of view of the optical system 10, f is the effective focal length of the optical system 10, and the unit of f is mm.
  • the tan(FOV)/f in some embodiments may be 0.19 (1/mm) or 0.20 (1/mm).
  • the optical system 10 has a longer focal length than a common macro lens to achieve a macro shooting effect.
  • the optical system 10 satisfies the following relationship: 0.5 ⁇ f1/f ⁇ 1.6; where f1 is the effective focal length of the first lens L1, and f is the effective focal length of the optical system 10.
  • f1/f may be 0.52, 0.55, 0.58, 0.60, 0.70, 0.90, 1.20, 1.40, 1.45, or 1.50.
  • the positive refractive power of the first lens L1 can be prevented from becoming too small, thereby contributing to the reduction of the total length of the optical system 10; in addition, the height of the light incident on the second lens L2 can be suppressed. , Even when the incident light is bright, it is easy to correct spherical aberration and axial chromatic aberration.
  • the above relationship is higher than the lower limit, it is possible to prevent the refractive power of the first lens L1 from becoming extremely large, and to suppress high-order spherical aberration and coma aberration generated by the first lens L1.
  • the optical system 10 satisfies the following relationship: 0.1 ⁇ FBL/TTL ⁇ 0.25; where FBL is the shortest distance from the image side surface of the fourth lens L4 to the imaging surface S11 of the optical system 10 in the direction parallel to the optical axis TTL is the distance from the object side of the first lens L1 to the imaging surface S11 of the optical system 10 on the optical axis.
  • FBL/TTL in some embodiments may be 0.24 or 0.25.
  • the optical system 10 can ensure that there is enough focusing space during the installation process of the module while taking into account the miniaturization design, thereby improving the assembly yield of the module.
  • the optical system The focal depth of the system 10 is widened to obtain more depth information of the object.
  • the optical system 10 satisfies the following relationship: 0.1 ⁇ R5/R6 ⁇ 1.5; where R5 is the radius of curvature of the object side surface of the third lens L3 at the optical axis, and R6 is the image side surface of the third lens L3.
  • R5/R6 in some embodiments may be 0.24, 0.26, 0.30, 0.40, 0.60, 0.80, 0.90, 1.00, 1.05, or 1.10.
  • the radius of curvature of the object side surface of the third lens L3 at the optical axis and the radius of curvature of the image side surface at the optical axis can be reasonably configured, so that the incident angle of the light can be reasonably increased to meet the requirements of the optical system 10 High requirements, while reducing system sensitivity and improving assembly stability.
  • the optical system 10 satisfies the following relationship: -3 ⁇ (R1+R2)/f1 ⁇ 12; where R1 is the radius of curvature of the object side surface of the first lens L1 at the optical axis, and R2 is the first lens The radius of the curvature surface of the image side of L1 on the optical axis, and f1 is the effective focal length of the first lens L1.
  • (R1+R2)/f1 in some embodiments may be -2.70, -2.50, -2.30, -2.00, -1.00, 2.00, 2.50, 3.00, 5.00, 8.00, 9.00, 10.00 or 10.20.
  • the first lens L1 can meet the requirement of a large aperture, which is beneficial for the optical system 10 to obtain more optical information in the object space.
  • the sensitivity of the optical system 10 is increased, which is not conducive to processing; when (R1+R2)/f1 ⁇ -3, it is not conducive to the optical information of the optical system 10 in the object space. Obtained, the imaging effect cannot meet the design expectations.
  • the stop STO is disposed between the third lens L3 and the fourth lens L4, and the optical system 10 satisfies the following relationship: 0.1 ⁇ FDL/TTL ⁇ 0.7; where FDL is the object side of the first lens L1 The distance to the stop STO on the optical axis, TTL is the distance from the object side of the first lens L1 to the imaging surface S11 of the optical system 10 on the optical axis. FDL/TTL in some embodiments may be 0.33, 0.35, 0.40, 0.45, 0.48, or 0.50.
  • the aperture STO is arranged between the third lens L3 and the fourth lens L4.
  • the angle of the light incident on the imaging surface S11 can be increased, so that the light adjusted by the optical system 10 can well match the photosensitive element , And can effectively reduce the effective aperture of the third lens L3, reduce the system sensitivity, and improve the assembly yield.
  • FDL/TTL>0.7 the angle of light incident on the imaging surface S11 will be too large, which cannot match the photosensitive element well; when FDL/TTL ⁇ 0.1, it will cause the angle of light incident on the imaging surface S11 to be too large. Small, it cannot match the photosensitive element well.
  • it will increase the effective aperture of the third lens L3, increase the sensitivity of the system, and reduce the assembly yield.
  • the optical system 10 includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with positive refractive power from the object side to the image side.
  • 2 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the first embodiment.
  • the astigmatism diagram and the distortion diagram are graphs at a wavelength of 555 nm.
  • the ordinate of the astigmatism map and the distortion map can be understood as half of the diagonal length of the effective pixel area on the imaging surface S11 of the optical system 10, and the unit of the ordinate is mm.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is convex at the optical axis; and the circumference is concave.
  • the object side surface S3 of the second lens L2 is a concave surface at the optical axis and a concave surface at the circumference;
  • the image side surface S4 is a concave surface at the optical axis and a concave surface at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and concave at the circumference; the image side S6 is concave at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and convex at the circumference; the image side S8 is concave at the optical axis and concave at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the use of plastic lenses can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10.
  • An infrared cut filter L5 for filtering infrared light is also provided on the image side of the fourth lens L4.
  • the infrared cut filter L5 is a part of the optical system 10, for example, the infrared cut filter L5 is assembled on the lens barrel together with each lens.
  • the infrared cut filter L5 may also be installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • the optical system 10 satisfies the following relationships:
  • M 0.21; where M is the magnification of the optical system 10.
  • Fno/TTL 0.48 (1/mm); where Fno is the aperture number of the optical system 10; TTL is the distance from the object side of the first lens L1 to the imaging surface S11 of the optical system 10 on the optical axis, and the unit of TTL is mm.
  • TTL/Imgh 1.43; where TTL is the distance from the object side of the first lens L1 to the imaging surface S11 of the optical system 10 on the optical axis, and Imgh is the diagonal length of the effective pixel area on the imaging surface S11 of the optical system 10 .
  • the optical system 10 can take into account the effects of miniaturization and high-definition shooting.
  • TTL/f 1.35; where TTL is the distance from the object side of the first lens L1 to the imaging surface S11 of the optical system 10 on the optical axis, and f is the effective focal length of the optical system 10.
  • TTL is the distance from the object side of the first lens L1 to the imaging surface S11 of the optical system 10 on the optical axis
  • f is the effective focal length of the optical system 10.
  • the optical system 10 has a longer focal length than a common macro lens to achieve a macro shooting effect.
  • f1/f 0.62; where f1 is the effective focal length of the first lens L1, and f is the effective focal length of the optical system 10.
  • FBL/TTL 0.24; where FBL is the shortest distance from the image side surface of the fourth lens L4 to the imaging surface S11 of the optical system 10 in the direction parallel to the optical axis, and TTL is the distance from the object side surface of the first lens L1 to the optical system 10 The distance of the imaging surface S11 on the optical axis.
  • the optical system 10 can ensure that there is enough focusing space during the installation process of the module while taking into account the miniaturization design, thereby improving the assembly yield of the module.
  • the optical system The focal depth of the system 10 is widened to obtain more depth information of the object.
  • R5/R6 0.25; where R5 is the radius of curvature of the object side surface of the third lens L3 at the optical axis, and R6 is the radius of curvature of the image side surface of the third lens L3 at the optical axis.
  • R1+R2/f1 -2.65; where R1 is the radius of curvature of the object side of the first lens L1 at the optical axis, R2 is the radius of curvature of the image side of the first lens L1 at the optical axis, f1 is The effective focal length of the first lens L1.
  • the first lens L1 can meet the requirement of a large aperture, which is beneficial for the optical system 10 to obtain more optical information in the object space.
  • FDL/TTL 0.38; where FDL is the distance from the object side of the first lens L1 to the optical axis of the stop STO, and TTL is the distance from the object side of the first lens L1 to the imaging surface S11 of the optical system 10 on the optical axis distance.
  • the aperture STO is arranged between the third lens L3 and the fourth lens L4.
  • the optical system 10 can not only meet the miniaturization design, but also have excellent macro shooting effects, and can clearly show the details of the subject at the macro. .
  • the lens parameters of the optical system 10 are given in Tables 1 and 2.
  • K in Table 2 is a conic constant
  • Ai is a coefficient corresponding to the i-th higher order term in the aspherical surface type formula.
  • the elements from the object surface to the image surface (imaging surface S11) are arranged in the order of the elements in Table 1 from top to bottom. Among them, the object on the object surface can be clearly formed on the imaging surface S11 of the optical system 10 Of imaging.
  • the surface numbers 1 and 2 respectively represent the object side S1 and the image side S2 of the first lens L1, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the Y radius in Table 1 is the radius of curvature of the object side or image side of the corresponding surface number at the paraxial (or understood as on the optical axis).
  • the first value in the "thickness" parameter column of the lens is the thickness of the lens on the optical axis, and the second value is the distance from the image side of the lens to the object side of the latter lens on the optical axis.
  • the value of the aperture STO in the "thickness" parameter column is the distance between the aperture STO and the apex of the object side of the latter lens (the fourth lens L4 in this embodiment) (the apex refers to the intersection of the lens and the optical axis) on the optical axis Distance, we default the direction from the object side of the first lens L1 to the image side of the last lens is the positive direction of the optical axis.
  • the value is negative, it means that the stop STO is set on the right side of the vertex of the object side of the lens (or understand It is located on the image side of the vertex), when the "thickness" parameter of the aperture STO is a positive value, the aperture STO is on the left side of the vertex of the object side of the lens (or understood to be located on the object side of the vertex).
  • the projection of the stop STO on the first optical axis and the projection of the first lens L1 on the first optical axis partially overlap.
  • the optical axes of the lenses in the embodiments of the present application are on the same straight line, and the straight line serves as the optical axis of the optical system 10.
  • the "thickness" parameter value in the surface number 9 is the distance on the optical axis from the image side surface S8 of the fourth lens L4 to the object side surface S9 of the infrared cut filter L5.
  • the "thickness” parameter value corresponding to the surface number 11 of the infrared cut filter L5 is the distance from the image side surface S10 of the infrared cut filter L5 to the image surface (imaging surface S11) of the optical system 10 on the optical axis.
  • the refractive index, Abbe number, and focal length of each lens are values at a wavelength of 555nm.
  • the calculation of the relational expression and the lens structure of each embodiment are based on the lens parameters (such as Table 1, Table 2, Table 3, Table 4, etc.).
  • the optical system 10 includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with positive refractive power from the object side to the image side.
  • 4 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the second embodiment.
  • the astigmatism diagram and the distortion diagram are graphs at a wavelength of 555 nm.
  • the ordinate of the astigmatism map and the distortion map is half of the diagonal length of the effective pixel area on the imaging surface S11 of the optical system 10, and the unit of the ordinate is mm.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is convex at the optical axis; and the circumference is convex.
  • the object side surface S3 of the second lens L2 is concave at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is a convex surface at the optical axis and a convex surface at the circumference;
  • the image side surface S6 is a concave surface at the optical axis and a concave surface at the circumference.
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and concave at the circumference; the image side S8 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the use of plastic lenses can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10.
  • An infrared cut filter L5 for filtering infrared light is also provided on the image side of the fourth lens L4.
  • the infrared cut filter L5 is a part of the optical system 10, for example, the infrared cut filter L5 is assembled on the lens barrel together with each lens.
  • the infrared cut filter L5 may also be installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 3 and Table 4, and the definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a lens with a negative refractive power from the object side to the image side.
  • FIG. 6 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the third embodiment.
  • the astigmatism diagram and the distortion diagram are graphs at a wavelength of 555 nm.
  • the ordinate of the astigmatism map and the distortion map is half of the diagonal length of the effective pixel area on the imaging surface S11 of the optical system 10, and the unit of the ordinate is mm.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is convex at the optical axis and convex at the circumference.
  • the object side surface S3 of the second lens L2 is concave at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is a convex surface at the optical axis and a convex surface at the circumference;
  • the image side surface S6 is a concave surface at the optical axis and a concave surface at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and concave at the circumference; the image side S8 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the use of plastic lenses can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10.
  • An infrared cut filter L5 for filtering infrared light is also provided on the image side of the fourth lens L4.
  • the infrared cut filter L5 is a part of the optical system 10, for example, the infrared cut filter L5 is assembled on the lens barrel together with each lens.
  • the infrared cut filter L5 may also be installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 5 and Table 6, wherein the definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a lens with a positive refractive power from the object side to the image side.
  • FIG. 8 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the fourth embodiment.
  • the astigmatism diagram and the distortion diagram are graphs at a wavelength of 555 nm.
  • the ordinate of the astigmatism map and the distortion map is half of the diagonal length of the effective pixel area on the imaging surface S11 of the optical system 10, and the unit of the ordinate is mm.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is concave at the optical axis and concave at the circumference.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and convex at the circumference; the image side S6 is concave at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and concave at the circumference; the image side S8 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the use of plastic lenses can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10.
  • An infrared cut filter L5 for filtering infrared light is also provided on the image side of the fourth lens L4.
  • the infrared cut filter L5 is a part of the optical system 10, for example, the infrared cut filter L5 is assembled on the lens barrel together with each lens.
  • the infrared cut filter L5 may also be installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 7 and Table 8. The definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a lens with a positive refractive power, from the object side to the image side.
  • FIG. 10 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the fifth embodiment.
  • the astigmatism diagram and the distortion diagram are graphs at a wavelength of 555 nm.
  • the ordinate of the astigmatism map and the distortion map is half of the diagonal length of the effective pixel area on the imaging surface S11 of the optical system 10, and the unit of the ordinate is mm.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is convex at the optical axis; and the circumference is concave.
  • the object side surface S3 of the second lens L2 is concave at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is a convex surface at the optical axis and a convex surface at the circumference;
  • the image side surface S6 is a concave surface at the optical axis and a concave surface at the circumference.
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and concave at the circumference; the image side S8 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the use of plastic lenses can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10.
  • An infrared cut filter L5 for filtering infrared light is also provided on the image side of the fourth lens L4.
  • the infrared cut filter L5 is a part of the optical system 10, for example, the infrared cut filter L5 is assembled on the lens barrel together with each lens.
  • the infrared cut filter L5 may also be installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 9 and Table 10. The definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a second lens with negative refractive power from the object side to the image side.
  • FIG. 12 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the sixth embodiment.
  • the astigmatism diagram and the distortion diagram are graphs at a wavelength of 555 nm.
  • the ordinate of the astigmatism map and the distortion map is half of the diagonal length of the effective pixel area on the imaging surface S11 of the optical system 10, and the unit of the ordinate is mm.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is concave at the optical axis and concave at the circumference.
  • the object side surface S3 of the second lens L2 is a concave surface at the optical axis and a concave surface at the circumference;
  • the image side surface S4 is a concave surface at the optical axis and a concave surface at the circumference.
  • the object side surface S5 of the third lens L3 is concave at the optical axis and concave at the circumference; the image side S6 is convex at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and convex at the circumference; the image side S8 is concave at the optical axis and concave at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the use of plastic lenses can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10.
  • An infrared cut filter L5 for filtering infrared light is also provided on the image side of the fourth lens L4.
  • the infrared cut filter L5 is a part of the optical system 10, for example, the infrared cut filter L5 is assembled on the lens barrel together with each lens.
  • the infrared cut filter L5 may also be installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 11 and Table 12. The definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a first lens L1 with positive refractive power, a second lens L2 with positive refractive power, and a lens with positive refractive power from the object side to the image side.
  • 14 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the seventh embodiment.
  • the astigmatism diagram and the distortion diagram are graphs at a wavelength of 555 nm.
  • the ordinate of the astigmatism map and the distortion map is half of the diagonal length of the effective pixel area on the imaging surface S11 of the optical system 10, and the unit of the ordinate is mm.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is concave at the optical axis and concave at the circumference.
  • the object side surface S3 of the second lens L2 is convex at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is convex at the optical axis and convex at the circumference; the image side S6 is concave at the optical axis and convex at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and concave at the circumference; the image side S8 is concave at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the use of plastic lenses can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10.
  • An infrared cut filter L5 for filtering infrared light is also provided on the image side of the fourth lens L4.
  • the infrared cut filter L5 is a part of the optical system 10, for example, the infrared cut filter L5 is assembled on the lens barrel together with each lens.
  • the infrared cut filter L5 may also be installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 13 and Table 14. The definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 includes a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, and a lens with a positive refractive power from the object side to the image side.
  • FIG. 16 includes a longitudinal spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 10 in the eighth embodiment.
  • the astigmatism diagram and the distortion diagram are graphs at a wavelength of 555 nm.
  • the ordinate of the astigmatism map and the distortion map is half of the diagonal length of the effective pixel area on the imaging surface S11 of the optical system 10, and the unit of the ordinate is mm.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference; the image side S2 is convex at the optical axis; and the circumference is convex.
  • the object side surface S3 of the second lens L2 is concave at the optical axis and convex at the circumference; the image side S4 is concave at the optical axis and concave at the circumference.
  • the object side surface S5 of the third lens L3 is a convex surface at the optical axis and a convex surface at the circumference;
  • the image side surface S6 is a concave surface at the optical axis and a concave surface at the circumference.
  • the object side surface S7 of the fourth lens L4 is concave at the optical axis and concave at the circumference; the image side S8 is convex at the optical axis and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all aspherical.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the use of plastic lenses can reduce the manufacturing cost of the optical system 10 and at the same time reduce the weight of the optical system 10.
  • An infrared cut filter L5 for filtering infrared light is also provided on the image side of the fourth lens L4.
  • the infrared cut filter L5 is a part of the optical system 10, for example, the infrared cut filter L5 is assembled on the lens barrel together with each lens.
  • the infrared cut filter L5 may also be installed between the optical system 10 and the photosensitive element when the optical system 10 and the photosensitive element are assembled into a camera module.
  • lens parameters of the optical system 10 are given in Table 15 and Table 16. The definition of each parameter can be obtained in the first embodiment, and will not be repeated here.
  • the optical system 10 and the photosensitive element 210 are assembled to form the camera module 20.
  • an infrared lens is arranged between the fourth lens L4 and the photosensitive element 210 in this embodiment. Cut-off filter L5.
  • the photosensitive element 210 may be a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
  • the distance between the photosensitive element 210 and each lens in the optical system 10 is relatively fixed, that is, the distance between the photosensitive element 210 and any lens in the object side remains unchanged, and the camera module 20 is a fixed focus module.
  • a driving mechanism such as a voice coil motor can be provided to enable the photosensitive element 210 to move relative to each lens in the optical system 10, thereby achieving a focusing effect.
  • a driving mechanism can also be provided to drive part of the lenses in the optical system 10 to move, so as to achieve an optical zoom effect.
  • the electronic device 30 includes a housing 310, and the camera module 20 is mounted on the housing 310.
  • the housing 310 may be a circuit board, a middle frame, or other components.
  • the electronic device 30 can be, but is not limited to, a smart phone, a smart watch, an e-book reader, a vehicle-mounted camera device, a monitoring device, a medical device (such as an endoscope), a tablet computer, a biometric device (such as a fingerprint recognition device or a pupil recognition device) Etc.), PDA (Personal Digital Assistant), drone, etc.
  • the electronic device 30 is a smart phone.
  • the smart phone includes a middle frame and a circuit board.
  • the circuit board is disposed in the middle frame.
  • the camera module 20 is installed in the middle frame of the smart phone.
  • the circuit board is electrically connected.
  • the camera module 20 can be used as a front camera module or a rear camera module of a smart phone. By adopting the aforementioned camera module 20, the electronic device 30 will have an excellent macro shooting effect.
  • the "electronic device” used in the embodiments of the present invention may include, but is not limited to, being set to be connected via a wired line (such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular networks, wireless local area networks (WLAN), such as handheld digital video broadcasting (digital video) Broadcasting handheld, DVB-H) network digital TV network, satellite network, amplitude modulation-frequency modulation (AM-FM) broadcast transmitter, and/or another communication terminal) wireless interface to receive/transmit communication signals installation.
  • a wired line such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network
  • WLAN wireless local area networks
  • WLAN such as handheld digital video broadcasting (digital video) Broadcasting handheld, DVB-H) network digital TV network, satellite network, amplitude modulation-frequency modul
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, and/or a “mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the “above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(10),由物侧至像侧依次包括:具有正屈折力的第一透镜(L1),第一透镜(L1)的物侧面(S1)于光轴处为凸面;具有屈折力的第二透镜(L2),第二透镜(L2)的像侧面(S4)于光轴处为凹面;具有屈折力的第三透镜(L3)及第四透镜(L4);光学系统(10)满足关系:0.14<M<0.27;M为光学系统(10)的放大率。

Description

光学系统、摄像模组及电子装置 技术领域
本发明涉及光学成像领域,特别是涉及一种光学系统、摄像模组及电子装置。
背景技术
随着手机、平板电脑、无人机、计算机等电子产品在生活中的广泛应用,电子产品的拍摄效果的改进逐渐成为用户关注的重点之一。其中不同拍摄条件下是否能拍摄出画质清晰的图片也是现代人选择何种电子产品的关键因素。特别地,在微距拍摄时,一般的摄像镜头难以对微距下的被摄物体实现清晰成像,从而导致成像画面模糊,难以将被摄物的主体细节良好地呈现出来。
发明内容
根据本申请的各种实施例,提供一种光学系统、摄像模组及电子装置。
一种光学系统,由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面于光轴处为凸面;
具有屈折力的第二透镜,所述第二透镜的像侧面于光轴处为凹面;
具有屈折力的第三透镜;
具有屈折力的第四透镜;
所述光学系统满足关系:
0.14<M<0.27;
其中,M为所述光学系统的放大率。
一种摄像模组,包括感光元件及上述的光学系统,所述感光元件设置于所述第四透镜的像侧。
一种电子装置,包括壳体及上述的摄像模组,所述摄像模组设置于所述壳体。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例提供的光学系统的示意图;
图2为第一实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图3为本申请第二实施例提供的光学系统的示意图;
图4为第二实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图5为本申请第三实施例提供的光学系统的示意图;
图6为第三实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图7为本申请第四实施例提供的光学系统的示意图;
图8为第四实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图9为本申请第五实施例提供的光学系统的示意图;
图10为第五实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图11为本申请第六实施例提供的光学系统的示意图;
图12为第六实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图13为本申请第七实施例提供的光学系统的示意图;
图14为第七实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图15为本申请第八实施例提供的光学系统的示意图;
图16为第八实施例中光学系统的纵向球差图(mm)、像散图(mm)和畸变图(%);
图17为本申请一实施例提供的摄像模组的示意图;
图18为本申请一实施例提供的电子装置的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参考图1,在本申请的一个实施例中,光学系统10由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO及具有负屈折力的第四透镜L4。光学系统10中各透镜及光阑STO同轴设置,即各透镜的光轴和光阑STO的中心均位于同一直线上,该直线可称为光学系统10的光轴,也可称为第一光轴。在该实施例中,光阑STO于第一光轴上的投影分别与第三透镜L3和第四透镜L4于第一光轴上的投影不重叠。一些实施例中,光阑STO于第一光轴上的投影与光学系统10中的任一透镜于第一光轴上的投影重叠。当然,在一些实施例中,光阑STO与光学系统10中任意透镜于第一光轴上的投影也可不重叠。在一些实施例中,光阑STO也可以设置于第一透镜L1的物侧,或光学系统10中任意两片透镜之间。
在该实施例中,光学系统10中各透镜的相对位置固定。
在该实施例中,第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4分别只包含一片透镜。在另一些实施例中,第一透镜L1也可以包含两片或多片透镜,最靠近物侧的透镜的物侧面为第一透镜L1的物侧面,最靠近像侧的透镜的物侧面为第一透镜L1的像侧面。相应地,一些实施例中的第二透镜L2、第三透镜L3及第四透镜L4并不限于只包含一片透镜的情况。
第一透镜L1包括物侧面S1和像侧面S2,第二透镜L2包括物侧面S3和像侧面S4,第三透镜L3包括物侧面S5和像侧面S6,第四透镜L4包括物侧面S7和像侧面S8,另外,光学系统10还有一成像面S11,成像面S11位于第四透镜L4的像侧,入射光线在经过光学系统10的各透镜调节后能够成像于成像面S11上,为方便理解,成像面S11可视为感光元件的感光表面。光学系统10同时还具备一物面,位于该物面上的被摄物体能够于光学系统10的成像面S11上形成清晰的成像。
在该实施例中,第一透镜L1的物侧面S1于光轴处为凸面,第二透镜L2的像侧面S4于光轴处为凹面,且由于第一透镜L1为光学系统10提供正屈折力的关系,上述设置有利于光学系统10应用于微距拍摄及实现小型化设计。
在一些实施例中,第一透镜L1至第四透镜L4中各透镜的物侧面及像侧面均为非球面,非球面的面型设置能够有效帮助光学系统10消除像差,解决视界歪曲的问题,同时还有利于光学系统10的小型化设计,使光学系统10能够在保持小型化设计的前提下同时具备优良的光学效果。当然,在另一些实施例中,第一透镜L1至第四透镜L4中任意一个的物侧面可以是球面,也可以是非球面;第一透镜L1至第四透镜L4中任意一个的像侧面可以是球面,也可以是非球面,通过球面与非球面的配合也可是光学系统10具有优良的微距拍摄效果,同时提高镜片设计及组装的灵活性。
非球面的面型计算可参考非球面公式:
Figure PCTCN2020070265-appb-000001
其中,Z是非球面上相应点到与表面顶点相切的平面的距离,r是非球面上相应点到光轴的距离, c是非球面顶点的曲率,k是圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
另一方面,在一些实施例中,当某个透镜的物侧面或像侧面为非球面时,该面可以是整体凸面或整体呈现凹面的结构;或者该面也可设计成存在反曲点的结构,此时该面由中心至边缘的面型将发生改变,例如该面于中心处呈凸面而于边缘处呈凹面。需要注意的是,当本申请的实施例在描述透镜的一个侧面于光轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该侧面于光轴附近的区域为凸面,因此也可认为该侧面于近轴处为凸面;当描述透镜的一个侧面于圆周处为凹面时,可理解为该侧面在靠近最大有效半孔径处的区域为凹面。举例而言,当该侧面于光轴处为凸面,且于圆周处也为凸面时,该侧面由中心(光轴)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半孔径处时变为凸面。此处仅为说明光轴处与圆周处的关系而做出的示例,侧面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出,也应视为是本申请所记载的内容。
在一些实施例中,第一透镜L1、第二透镜L2及第三透镜L3及第四透镜L4的材质均为塑料。在另一些实施例中,第一透镜L1的材质为玻璃,而第二透镜L2、第三透镜L3、第四透镜L4的材质均为塑料,此时,由于光学系统10中位于物方的透镜的材质为玻璃,因此这些位于物方的玻璃透镜对极端环境具有很好耐受效果,不易受物方环境的影响而出现老化等情况,从而当光学系统10处于暴晒高温等极端环境下时,这种结构能够有效避免光学系统10出现成像质量下降及使用寿命减少的情况。塑料材质的透镜能够减少光学系统10的重量并降低生成成本,而玻璃材质的透镜能够耐受较高的温度且具有优良的光学性能。当然,光学系统10中各透镜的材质配置并不限于上述实施例,任一透镜的材质可以为塑料也可以为玻璃。
在一些实施例中,光学系统10包括红外截止滤光片L5,红外截止滤光片L5包括物侧面S9和像侧面S10。红外截止滤光片L5用于滤除红外光,防止红外光到达成像面S11,从而防止红外光干扰正常成像。红外截止滤光片L5可与各透镜一同装配以作为光学系统10中的一部分,或者,也可以在光学系统10与感光元件装配成摄像模组时,一并安装至光学系统10与感光元件之间。在一些实施例中,红外截止滤光片L5也可设置在第一透镜L1的物侧。另外,在一些实施例中也可不设置红外截止滤光片L5,而是通过在第一透镜L1至第四透镜L4中的任一透镜上设置滤光涂层以实现滤除红外光的作用。
在一些实施例中,光学系统10除了包括具有屈折力的透镜外,还可包括光阑STO、红外截止滤光片L5、保护玻璃、感光元件、用于改变入射光路的反射镜等元件。
在一些实施例中,光学系统10满足以下关系:0.14<M<0.27;其中,M为光学系统10的放大率。具体地,M=Imgh/YSO,其中Imgh为光学系统10的成像面S11上有效像素区域的对角线长度,也可将Imgh理解为成像面S11上的像高;而YSO为光学系统10在成像面S11上成清晰像时的最大物面高度。一些实施例中的M可以为1.38、1.40、1.42、1.44、1.45、1.47或1.48。满足上述条件式的关系时,光学系统10拥有合适的放大倍率,能够将拍摄主题的细节清晰地表现出来,促使光学系统10拥有优良的微距拍摄效果。相反地,当M>0.27时,光学系统10的整体解像力会降低,拍摄出来的物体变得模糊,无法呈现清晰的摄像效果;当M<0.14时,光学系统10的拍摄物距过大,难以在微距拍摄时实现优良的成像效果。
在一些实施例中,光学系统10满足以下关系:0.3<Fno/TTL<0.6;其中,Fno为光学系统10的光圈数;TTL为第一透镜L1的物侧面至光学系统10的成像面S11于光轴上的距离,TTL的单位为mm。一些实施例中的Fno/TTL可以为0.46(1/mm)、0.47(1/mm)、0.48(1/mm)、0.49(1/mm)或0.50(1/mm)。满足上述关系时,可兼顾光学系统10的通光量及尺寸要求,在为光学系统10提供足够的通光量以满足高画质高清晰度的拍摄需求的同时,还能使光学系统10实现小型化设计。而当Fno/TTL>0.6时,光学系在统兼顾小型化的同时会造成系统的通光量不足,导致拍摄出的画面清晰度下降。当Fno/TTL<0.3时,光学系统10在兼顾合适的通光量的同时会导致系统尺寸难以做小,难以实现小型化设计。
在一些实施例中,光学系统10满足以下关系:1.1<TTL/Imgh<1.6;其中,TTL为第一透镜L1的物侧面至光学系统10的成像面S11于光轴上的距离,Imgh为光学系统10的成像面S11上有效像素区域的对角线长度。一些实施例中的TTL/Imgh可以为1.38、1.40、1.41、1.43、1.45、1.46或1.48。 满足上述关系时,光学系统10可兼顾小型化及高清晰拍摄的效果。当TTL/Imgh>1.6时,光学系统10在具有合适的像高及高清晰成像效果的同时会导致镜头体积过大,无法满足小型化设计要求;当TTL/Imgh<1.1时,在像高不变的情况下,镜头长度会被压缩从而导致镜头整体解析力下降,无法实现清晰的拍摄效果。
在一些实施例中,光学系统10满足以下关系:1.0<TTL/f<1.5;其中,TTL为第一透镜L1的物侧面至光学系统10的成像面S11于光轴上的距离,f为光学系统10的有效焦距。一些实施例中的TTL/f可以为1.31、1.33、1.35、1.37、1.38或1.39。满足上述关系时,光学系统10相较一般的微距镜头的焦距更长,但同时依然能够满足小型化设计,使光线更好地汇聚于成像面S11上。当TTL/f≤1.0时,光学系统10的光学长度太短,这会造成系统的敏感度加大,同时不利于光线在成像面S11上的汇聚。当TTL/f≥1.5时,光学系统10在满足小型化设计的同时会不可避免地缩短焦长,导致难以实现微距拍摄。
在一些实施例中,光学系统10满足以下关系:1.5<tan(FOV)/f<2.5;其中,FOV为光学系统10的最大视场角,f为光学系统10的有效焦距,f的单位为mm。一些实施例中的tan(FOV)/f可以为0.19(1/mm)或0.20(1/mm)。满足上述关系时,光学系统10相较普通的微距透镜具有更长的焦距来实现微距拍摄效果。当tan(FOV)/f>2.5时,将不利于光学系统10在微距拍摄时获得高清晰的拍摄效果;当tan(FOV)/f<1.5时,整个光学系统10的解像力会下降,导致被摄物体的细节部分很难被清晰地拍摄,从而难以实现高清晰的拍摄效果。
在一些实施例中,光学系统10满足以下关系:0.5<f1/f<1.6;其中,f1为第一透镜L1的有效焦距,f为光学系统10的有效焦距。一些实施例中的f1/f可以为0.52、0.55、0.58、0.60、0.70、0.90、1.20、1.40、1.45或1.50。满足上述关系时,第一透镜L1的焦距与光学系统10的焦距形成合适的匹配,从而能够缩短光学系统10的尺寸并有效校正系统像差。当上述关系低于上限时,能够防止第一透镜L1的正屈折力变得过小,从而有利于实现光学系统10的全长的缩短;另外还能够抑制入射到第二透镜L2的光线的高度,即使在入射光线明亮的情况下,也易于校正球面像差、轴上色像差。另一方面,当上述关系高于下限,能够防止第一透镜L1的屈折力极端变大,抑制第一透镜L1产生的高次的球面像差、慧形像差。当f1/f≤0.5时,会造成系统敏感度加大,加工工艺困难,并且由第一透镜L1产生的像差修正难度加大,难以满足拍摄需求。f1/f≥1.6时,第一透镜L1与光学系统10焦距配比不合适,难以校正由第一透镜L1所产生的像差。
在一些实施例中,光学系统10满足以下关系:0.1<FBL/TTL≤0.25;其中,FBL为第四透镜L4的像侧面到光学系统10的成像面S11于平行光轴方向上的最短的距离,TTL为第一透镜L1的物侧面至光学系统10的成像面S11于光轴上的距离。一些实施例中的FBL/TTL可以为0.24或0.25。满足上述关系时,光学系统10在兼顾小型化设计的同时还可确保在模组的安装过程中有足够的对焦空间,从而提升模组的组装良率,另外,满足上述关系时还能使光学系统10的焦深变宽以获取物方更多的深度信息。
在一些实施例中,光学系统10满足以下关系:0.1<R5/R6<1.5;其中,R5为第三透镜L3的物侧面于光轴处的曲率半径,R6为第三透镜L3的像侧面于光轴处的曲率半径。一些实施例中的R5/R6可以为0.24、0.26、0.30、0.40、0.60、0.80、0.90、1.00、1.05或1.10。满足上述关系时,第三透镜L3的物侧面于光轴处的曲率半径和像侧面于光轴处的曲率半径能够得到合理配置,从而可合理增大光线的入射角以满足光学系统10对像高的要求,同时还能降低系统敏感性,提高组装稳定性。
在一些实施例中,光学系统10满足以下关系:-3<(R1+R2)/f1<12;其中,R1为第一透镜L1的物侧面于光轴处的曲率半径,R2为第一透镜L1的像侧于光轴处的曲率面半径,f1为第一透镜L1的有效焦距。一些实施例中的(R1+R2)/f1可以为-2.70、-2.50、-2.30、-2.00、-1.00、2.00、2.50、3.00、5.00、8.00、9.00、10.00或10.20。满足上述关系时,第一透镜L1能够满足大口径的要求,有利于光学系统10获取更多的物空间的光信息。当(R1+R2)/f1≥12时,会增大光学系统10的敏感度,不利于加工;当(R1+R2)/f1≤-3时,不利于光学系统10对物空间光信息的获取,成像效果无法达到设计预想要求。
在一些实施例中,光阑STO设置于第三透镜L3与第四透镜L4之间,且光学系统10满足以下关系:0.1<FDL/TTL<0.7;其中,FDL为第一透镜L1的物侧面到光阑STO于光轴上的距离,TTL为第一透镜L1的物侧面至光学系统10的成像面S11于光轴上的距离。一些实施例中的FDL/TTL可以为0.33、0.35、0.40、0.45、0.48或0.50。光阑STO设置在第三透镜L3与第四透镜L4之间,当满足上述关系时,可增大光线入射到成像面S11的角度,使经光学系统10调节的光线能够很好地匹配感光元件,并且可以有效缩小第三透镜L3的有效口径,降低系统敏感度,提高组装良率。当FDL/TTL>0.7时,会导致光线入射到成像面S11的角度过大,不能很好地与感光元件匹配;当FDL/TTL<0.1时,则会导致光线入射到成像面S11的角度过小,同样不能很好地与感光元件匹配,同时还会增大第三透镜L3的有效口径,增加系统敏感性,降低组装良率。
接下来以更为具体详细的实施例来对本申请的光学系统10进行说明:
第一实施例
参考图1和图2,在第一实施例中,光学系统10由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO以及具有负屈折力的第四透镜L4。图2包括第一实施例中光学系统10的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为555nm波长下的曲线图。
其中,像散图和畸变图的纵坐标可理解为光学系统10的成像面S11上有效像素区域的对角线长度的一半,纵坐标的单位为mm。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凸面;于圆周处为凹面。
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凹面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凹面;像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凸面;像侧面S8于光轴处为凹面,于圆周处为凹面。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量。
第四透镜L4的像侧还设置有用于滤除红外光的红外截止滤光片L5。在一些实施例中,红外截止滤光片L5为光学系统10的一部分,例如红外截止滤光片L5与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片L5也可在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
在第一实施例中,光学系统10满足以下各关系:
M=0.21;其中,M为光学系统10的放大率。满足上述透镜的屈折力及面型关系时,有利于光学系统10实现微距拍摄,且当满足上述条件式的关系时,光学系统10拥有合适的放大倍率,能够将拍摄主题的细节清晰地表现出来,促使光学系统10拥有优良的微距拍摄效果。
Fno/TTL=0.48(1/mm);其中,Fno为光学系统10的光圈数;TTL为第一透镜L1的物侧面至光学系统10的成像面S11于光轴上的距离,TTL的单位为mm。满足上述关系时,可兼顾光学系统10的通光量及尺寸要求,在为光学系统10提供足够的通光量以满足高画质高清晰度的拍摄需求的同时,还能使光学系统10实现小型化设计。
TTL/Imgh=1.43;其中,TTL为第一透镜L1的物侧面至光学系统10的成像面S11于光轴上的距离, Imgh为光学系统10的成像面S11上有效像素区域的对角线长度。满足上述关系时,光学系统10可兼顾小型化及高清晰拍摄的效果。
TTL/f=1.35;其中,TTL为第一透镜L1的物侧面至光学系统10的成像面S11于光轴上的距离,f为光学系统10的有效焦距。满足上述关系时,光学系统10相较一般的微距镜头的焦距更长,但同时依然能够满足小型化设计,使光线更好地汇聚于成像面S11上。
tan(FOV)/f=0.19(1/mm);其中,FOV为光学系统10的最大视场角,f为光学系统10的有效焦距,f的单位为mm。满足上述关系时,光学系统10相较普通的微距透镜具有更长的焦距来实现微距拍摄效果。
f1/f=0.62;其中,f1为第一透镜L1的有效焦距,f为光学系统10的有效焦距。满足上述关系时,第一透镜L1的焦距与光学系统10的焦距形成合适的匹配,从而能够缩短光学系统10的尺寸并有效校正系统像差。
FBL/TTL=0.24;其中,FBL为第四透镜L4的像侧面到光学系统10的成像面S11于平行光轴方向上的最短的距离,TTL为第一透镜L1的物侧面至光学系统10的成像面S11于光轴上的距离。满足上述关系时,光学系统10在兼顾小型化设计的同时还可确保在模组的安装过程中有足够的对焦空间,从而提升模组的组装良率,另外,满足上述关系时还能使光学系统10的焦深变宽以获取物方更多的深度信息。
R5/R6=0.25;其中,R5为第三透镜L3的物侧面于光轴处的曲率半径,R6为第三透镜L3的像侧面于光轴处的曲率半径。满足上述关系时,第三透镜L3的物侧面于光轴处的曲率半径和像侧面于光轴处的曲率半径能够得到合理配置,从而可合理增大光线的入射角以满足光学系统10对像高的要求,同时还能降低系统敏感性,提高组装稳定性。
(R1+R2)/f1=-2.65;其中,R1为第一透镜L1的物侧面于光轴处的曲率半径,R2为第一透镜L1的像侧于光轴处的曲率面半径,f1为第一透镜L1的有效焦距。满足上述关系时,第一透镜L1能够满足大口径的要求,有利于光学系统10获取更多的物空间的光信息。
FDL/TTL=0.38;其中,FDL为第一透镜L1的物侧面到光阑STO于光轴上的距离,TTL为第一透镜L1的物侧面至光学系统10的成像面S11于光轴上的距离。光阑STO设置在第三透镜L3与第四透镜L4之间,当满足上述关系时,可增大光线入射到成像面S11的角度,使经光学系统10调节的光线能够很好地匹配感光元件,并且可以有效缩小第三透镜L3的有效口径,降低系统敏感度,提高组装良率。
满足上述各项面型、屈折力及关系式的关系时,光学系统10能够在满足微型化设计的同时还拥有优良的微距拍摄效果,能够将微距处被摄物体的细节清晰地呈现出来。
另外,光学系统10的各透镜参数由表1和表2给出,表2中的K为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。由物面至像面(成像面S11)的各元件依次按照表1从上至下的各元件的顺序排列,其中,位于物面的被摄物能够于光学系统10的成像面S11上形成清晰的成像。面序号1和2分别表示第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。表1中的Y半径为相应面序号的物侧面或像侧面于近轴处(或理解为于光轴上)的曲率半径。透镜于“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一透镜的物侧面于光轴上的距离。光阑STO于“厚度”参数列中的数值为光阑STO至后一透镜(该实施例中为第四透镜L4)的物侧面顶点(顶点指透镜与光轴的交点)于光轴上的距离,我们默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑STO设置于透镜的物侧面顶点的右侧(或理解为位于该顶点的像侧),当光阑STO的“厚度”参数为正值时,光阑STO在透镜物侧面顶点的左侧(或理解为位于该顶点的物侧)。该实施例中,光阑STO于第一光轴上的投影与第一透镜L1于第一光轴上的投影存在部分重叠。本申请实施例中的各透镜的光轴处于同一直线上,该直线作为光学系统10的光轴。面序号9中的“厚度”参数值为第四透镜L4的像侧面S8至红外截止滤光片L5的物侧面S9于光轴上的距离。红外截止滤光片L5于面序号11所对应的“厚度”参数数值为红外截止滤光片L5的像侧面S10至光学系统10的像面(成像面S11)于光轴上的距离。
在第一实施例中,光学系统10的有效焦距f=3.85mm,光圈数FNO=2.48,最大视场角(对角线视 角)FOV=35.60°,光学总长TTL=5.21mm,光学总长TTL为第一透镜L1的物侧面S1至光学系统10的成像面S11于光轴上的距离。
另外,在以下各实施例(第一实施例、第二实施例、第三实施例、第四实施例、第五实施例、第六实施例、第七实施例及第八实施例)中,各透镜的折射率、阿贝数和焦距均为555nm波长下的数值。另外,各实施例的关系式计算和透镜结构以透镜参数(如表1、表2、表3、表4等)为准。
表1
Figure PCTCN2020070265-appb-000002
表2
Figure PCTCN2020070265-appb-000003
Figure PCTCN2020070265-appb-000004
第二实施例
参考图3和图4,在第二实施例中,光学系统10由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO以及具有负屈折力的第四透镜L4。图4包括第二实施例中光学系统10的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为555nm波长下的曲线图。
其中,像散图和畸变图的纵坐标为光学系统10的成像面S11上有效像素区域的对角线长度的一半,纵坐标的单位为mm。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凸面;于圆周处为凸面。
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4的物侧面S7于光轴处为凸面,于圆周处为凹面;像侧面S8于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量。
第四透镜L4的像侧还设置有用于滤除红外光的红外截止滤光片L5。在一些实施例中,红外截止滤光片L5为光学系统10的一部分,例如红外截止滤光片L5与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片L5也可在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
另外,光学系统10的各透镜参数由表3和表4给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表3
Figure PCTCN2020070265-appb-000005
Figure PCTCN2020070265-appb-000006
表4
Figure PCTCN2020070265-appb-000007
由以上数据可得:
Figure PCTCN2020070265-appb-000008
第三实施例
参考图5和图6,在第三实施例中,光学系统10由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、光阑STO以及具有负屈折力的第四透镜L4。图6包括第三实施例中光学系统10的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为555nm波长下的曲线图。
其中,像散图和畸变图的纵坐标为光学系统10的成像面S11上有效像素区域的对角线长度的一半,纵坐标的单位为mm。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凸面;于圆周 处为凸面。
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凹面;像侧面S8于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量。
第四透镜L4的像侧还设置有用于滤除红外光的红外截止滤光片L5。在一些实施例中,红外截止滤光片L5为光学系统10的一部分,例如红外截止滤光片L5与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片L5也可在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
另外,光学系统10的各透镜参数由表5和表6给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表5
Figure PCTCN2020070265-appb-000009
表6
Figure PCTCN2020070265-appb-000010
Figure PCTCN2020070265-appb-000011
由以上数据可得:
Figure PCTCN2020070265-appb-000012
第四实施例
参考图7和图8,在第四实施例中,光学系统10由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO以及具有负屈折力的第四透镜L4。图8包括第四实施例中光学系统10的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为555nm波长下的曲线图。
其中,像散图和畸变图的纵坐标为光学系统10的成像面S11上有效像素区域的对角线长度的一半,纵坐标的单位为mm。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凹面;于圆周处为凹面。
第二透镜L2的物侧面S3于光轴处为凸面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凹面;像侧面S8于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量。
第四透镜L4的像侧还设置有用于滤除红外光的红外截止滤光片L5。在一些实施例中,红外截止滤光片L5为光学系统10的一部分,例如红外截止滤光片L5与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片L5也可在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
另外,光学系统10的各透镜参数由表7和表8给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表7
Figure PCTCN2020070265-appb-000013
表8
Figure PCTCN2020070265-appb-000014
Figure PCTCN2020070265-appb-000015
由以上数据可得:
Figure PCTCN2020070265-appb-000016
第五实施例
参考图9和图10,在第五实施例中,光学系统10由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO以及具有正屈折力的第四透镜L4。图10包括第五实施例中光学系统10的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为555nm波长下的曲线图。
其中,像散图和畸变图的纵坐标为光学系统10的成像面S11上有效像素区域的对角线长度的一半,纵坐标的单位为mm。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凸面;于圆周处为凹面。
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4的物侧面S7于光轴处为凸面,于圆周处为凹面;像侧面S8于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量。
第四透镜L4的像侧还设置有用于滤除红外光的红外截止滤光片L5。在一些实施例中,红外截止滤光片L5为光学系统10的一部分,例如红外截止滤光片L5与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片L5也可在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
另外,光学系统10的各透镜参数由表9和表10给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表9
Figure PCTCN2020070265-appb-000017
Figure PCTCN2020070265-appb-000018
表10
Figure PCTCN2020070265-appb-000019
由以上数据可得:
Figure PCTCN2020070265-appb-000020
Figure PCTCN2020070265-appb-000021
第六实施例
参考图11和图12,在第六实施例中,光学系统10由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、光阑STO以及具有负屈折力的第四透镜L4。图12包括第六实施例中光学系统10的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为555nm波长下的曲线图。
其中,像散图和畸变图的纵坐标为光学系统10的成像面S11上有效像素区域的对角线长度的一半,纵坐标的单位为mm。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凹面;于圆周处为凹面。
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凹面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凹面,于圆周处为凹面;像侧面S6于光轴处为凸面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凸面,于圆周处为凸面;像侧面S8于光轴处为凹面,于圆周处为凹面。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量。
第四透镜L4的像侧还设置有用于滤除红外光的红外截止滤光片L5。在一些实施例中,红外截止滤光片L5为光学系统10的一部分,例如红外截止滤光片L5与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片L5也可在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
另外,光学系统10的各透镜参数由表11和表12给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表11
Figure PCTCN2020070265-appb-000022
Figure PCTCN2020070265-appb-000023
表12
Figure PCTCN2020070265-appb-000024
由以上数据可得:
Figure PCTCN2020070265-appb-000025
第七实施例
参考图13和图14,在第七实施例中,光学系统10由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO以及具有负屈折力的第四透镜L4。图14包括第七实施例中光学系统10的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为555nm波长下的曲线图。
其中,像散图和畸变图的纵坐标为光学系统10的成像面S11上有效像素区域的对角线长度的一半,纵坐标的单位为mm。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凹面;于圆周处为凹面。
第二透镜L2的物侧面S3于光轴处为凸面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;像侧面S6于光轴处为凹面,于圆周处为凸面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凹面;像侧面S8于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的材质均为塑料。塑料透镜的采用能够降低光学系统10的制造成本,同时降低光学系统10的重量。
第四透镜L4的像侧还设置有用于滤除红外光的红外截止滤光片L5。在一些实施例中,红外截止滤光片L5为光学系统10的一部分,例如红外截止滤光片L5与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片L5也可在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
另外,光学系统10的各透镜参数由表13和表14给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表13
Figure PCTCN2020070265-appb-000026
表14
Figure PCTCN2020070265-appb-000027
Figure PCTCN2020070265-appb-000028
由以上数据可得:
Figure PCTCN2020070265-appb-000029
第八实施例
参考图15和图16,在第八实施例中,光学系统10由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO以及具有负屈折力的第四透镜L4。图16包括第八实施例中光学系统10的纵向球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为555nm波长下的曲线图。
其中,像散图和畸变图的纵坐标为光学系统10的成像面S11上有效像素区域的对角线长度的一半,纵坐标的单位为mm。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;像侧面S2于光轴处为凸面;于圆周处为凸面。
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凸面;像侧面S4于光轴处为凹面,于圆周处为凹面。
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4的物侧面S7于光轴处为凹面,于圆周处为凹面;像侧面S8于光轴处为凸面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的物侧面和像侧面均为非球面。通过配合光学系统10中各透镜的非球面面型,从而能够有效解决光学系统10视界歪曲的问题,也能够使透镜在较小、较薄的情况下实现优良的光学效果,进而使光学系统10具有更小的体积,有利于光学系统10实现小型化设计。
第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4的材质均为塑料。塑料透镜的采用能够降 低光学系统10的制造成本,同时降低光学系统10的重量。
第四透镜L4的像侧还设置有用于滤除红外光的红外截止滤光片L5。在一些实施例中,红外截止滤光片L5为光学系统10的一部分,例如红外截止滤光片L5与各透镜一同组装至镜筒上。在另一些实施例中,红外截止滤光片L5也可在光学系统10与感光元件装配成摄像模组时一并安装至光学系统10与感光元件之间。
另外,光学系统10的各透镜参数由表15和表16给出,其中各参数的定义可由第一实施例中得出,此处不加以赘述。
表15
Figure PCTCN2020070265-appb-000030
表16
Figure PCTCN2020070265-appb-000031
Figure PCTCN2020070265-appb-000032
由以上数据可得:
Figure PCTCN2020070265-appb-000033
参考图17,在本申请提供的一个实施例中,光学系统10与感光元件210组装以形成摄像模组20,此时,该实施例中的第四透镜L4与感光元件210之间设置有红外截止滤光片L5。感光元件210可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。通过采用上述光学系统10,摄像模组20能够应用于微距拍摄,且在微距拍摄时能够将拍摄主题的细节清晰地表现出来,从而具有优良的微距拍摄效果。
在一些实施例中,感光元件210与光学系统10中的各透镜的距离相对固定,即感光元件210与物方任意一个透镜的距离都保持不变,此时摄像模组20为定焦模组。在另一些实施例中,可通过设置音圈马达等驱动机构以使感光元件210能够相对光学系统10中的各透镜相对移动,从而实现对焦效果。在一些实施例中,也可通过设置驱动机构以驱动光学系统10中的部分透镜移动,从而实现光学变焦效果。
参考图18,本申请的一些实施例还提供了一种电子装置30,摄像模组20应用于电子装置30。具体地,电子装置30包括壳体310,摄像模组20安装于壳体310,壳体310可以是电路板、中框等部件。电子装置30可以是但不限于智能手机、智能手表、电子书阅读器、车载摄像设备、监控设备、医疗设备(如内窥镜)、平板电脑、生物识别设备(如指纹识别设备或瞳孔识别设备等)、PDA(Personal Digital Assistant,个人数字助理)、无人机等。具体地,在一些实施例中,电子装置30为智能手机,智能手机包括中框和电路板,电路板设置于中框,摄像模组20安装于智能手机的中框,且其中的感光元件与电路板电性连接。摄像模组20可作为智能手机的前置摄像模组或者后置摄像模组。通过采用上述摄像模组20,电子装置30将具备优良的微距拍摄效果。
本发明实施例中所使用到的“电子装置”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定 的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种光学系统,由物侧至像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面于光轴处为凸面;
    具有屈折力的第二透镜,所述第二透镜的像侧面于光轴处为凹面;
    具有屈折力的第三透镜;
    具有屈折力的第四透镜;
    所述光学系统满足关系:
    0.14<M<0.27;
    其中,M为所述光学系统的放大率。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.3<Fno/TTL<0.6;
    其中,Fno为所述光学系统的光圈数;TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,TTL的单位为mm。
  3. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    1.1<TTL/Imgh<1.6;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,Imgh为所述光学系统的成像面上有效像素区域的对角线长度。
  4. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    1.0<TTL/f<1.5;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,f为所述光学系统的有效焦距。
  5. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    1.5<tan(FOV)/f<2.5;
    其中,FOV为所述光学系统的最大视场角,f为所述光学系统的有效焦距,f的单位为mm。
  6. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.5<f1/f<1.6;
    其中,f1为所述第一透镜的有效焦距,f为所述光学系统的有效焦距。
  7. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.1<FBL/TTL≤0.25;
    其中,FBL为所述第四透镜的像侧面到所述光学系统的成像面于平行光轴方向上的最短的距离,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.1<R5/R6<1.5;
    其中,R5为所述第三透镜的物侧面于光轴处的曲率半径,R6为所述第三透镜的像侧面于光轴处的曲率半径。
  9. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    -3<(R1+R2)/f1<12;
    其中,R1为所述第一透镜的物侧面于光轴处的曲率半径,R2为所述第一透镜的像侧于光轴处的曲率面半径,f1为所述第一透镜的有效焦距。
  10. 根据权利要求1所述的光学系统,其特征在于,包括光阑,所述光阑设置于所述第三透镜与所述第四透镜之间。
  11. 根据权利要求10所述的光学系统,其特征在于,满足以下关系:
    0.1<FDL/TTL<0.7;
    其中,FDL为所述第一透镜的物侧面到所述光阑于光轴上的距离,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离。
  12. 根据权利要求1至11任意一项所述的光学系统,其特征在于,所述光学系统的各透镜的物侧面及像侧面中至少一个面为非球面。
  13. 根据权利要求1至11任意一项所述的光学系统,其特征在于,所述光学系统中各透镜的材质均为塑料。
  14. 根据权利要求1至11任意一项所述的光学系统,其特征在于,所述光学系统中各透镜的材质均为玻璃。
  15. 根据权利要求1至11任意一项所述的光学系统,其特征在于,所述光学系统中各透镜的相对位置固定。
  16. 根据权利要求1至11任意一项所述的光学系统,其特征在于,包括红外截止滤光片,所述红外截止滤光片设置于所述第四透镜的像侧。
  17. 一种摄像模组,包括感光元件及权利要求1至16任意一项所述的光学系统,所述感光元件设置于所述第四透镜的像侧。
  18. 根据权利要求17所述的摄像模组,其特征在于,所述感光元件与所述光学系统中各透镜的距离相对固定。
  19. 一种电子装置,包括壳体及权利要求17或18所述的摄像模组,所述摄像模组设置于所述壳体。
PCT/CN2020/070265 2020-01-03 2020-01-03 光学系统、摄像模组及电子装置 WO2021134784A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070265 WO2021134784A1 (zh) 2020-01-03 2020-01-03 光学系统、摄像模组及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070265 WO2021134784A1 (zh) 2020-01-03 2020-01-03 光学系统、摄像模组及电子装置

Publications (1)

Publication Number Publication Date
WO2021134784A1 true WO2021134784A1 (zh) 2021-07-08

Family

ID=76686288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070265 WO2021134784A1 (zh) 2020-01-03 2020-01-03 光学系统、摄像模组及电子装置

Country Status (1)

Country Link
WO (1) WO2021134784A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1766692A (zh) * 2004-10-28 2006-05-03 索尼株式会社 图像拾取透镜
CN1877387A (zh) * 2005-06-02 2006-12-13 佳能株式会社 变焦透镜及包含变焦透镜的摄像设备
CN101276040A (zh) * 2007-03-30 2008-10-01 富士能株式会社 摄像透镜及摄像装置
CN201255784Y (zh) * 2007-09-10 2009-06-10 富士能株式会社 摄像透镜及相机模组以及摄像设备
US20150358516A1 (en) * 2013-01-30 2015-12-10 Sony Corporation Imaging apparatus and electronic device
CN205485019U (zh) * 2016-03-03 2016-08-17 中山联合光电科技股份有限公司 一种光学系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1766692A (zh) * 2004-10-28 2006-05-03 索尼株式会社 图像拾取透镜
CN1877387A (zh) * 2005-06-02 2006-12-13 佳能株式会社 变焦透镜及包含变焦透镜的摄像设备
CN101276040A (zh) * 2007-03-30 2008-10-01 富士能株式会社 摄像透镜及摄像装置
CN201255784Y (zh) * 2007-09-10 2009-06-10 富士能株式会社 摄像透镜及相机模组以及摄像设备
US20150358516A1 (en) * 2013-01-30 2015-12-10 Sony Corporation Imaging apparatus and electronic device
CN205485019U (zh) * 2016-03-03 2016-08-17 中山联合光电科技股份有限公司 一种光学系统

Similar Documents

Publication Publication Date Title
WO2021179207A1 (zh) 光学系统、摄像模组及电子装置
US11953756B2 (en) Optical system, image capturing module and electronic device
WO2021109127A1 (zh) 光学系统、摄像模组及电子装置
WO2020073978A1 (zh) 光学透镜组、取像模组和电子装置
WO2021184165A1 (zh) 光学系统、摄像模组及电子装置
WO2021217664A1 (zh) 光学成像系统、取像模组和电子装置
WO2021102943A1 (zh) 光学系统、摄像模组及电子装置
WO2020073983A1 (zh) 光学摄像镜头组、取像模组及电子装置
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
WO2020258269A1 (zh) 成像镜头、摄像模组及电子装置
WO2021138754A1 (zh) 光学系统、摄像模组及电子装置
EP4170407A1 (en) Seven-lens imaging objective
WO2022105926A1 (zh) 光学镜头及成像设备
WO2021203277A1 (zh) 光学系统、取像模组及电子设备
WO2022165840A1 (zh) 光学系统、摄像模组及电子设备
WO2022120515A1 (zh) 光学系统、摄像模组及电子设备
WO2021174408A1 (zh) 广角镜头、取像装置及电子装置
CN110554477A (zh) 成像装置及电子装置
WO2021164013A1 (zh) 光学系统、摄像模组、电子装置及汽车
WO2022236663A1 (zh) 光学变焦系统、变焦模组及电子设备
WO2022198561A1 (zh) 光学系统、取像模组及电子设备
WO2022109820A1 (zh) 光学系统、摄像模组及电子设备
WO2022160119A1 (zh) 光学系统、摄像模组及电子设备
WO2021134784A1 (zh) 光学系统、摄像模组及电子装置
WO2022120678A1 (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909371

Country of ref document: EP

Kind code of ref document: A1