WO2021174408A1 - 广角镜头、取像装置及电子装置 - Google Patents

广角镜头、取像装置及电子装置 Download PDF

Info

Publication number
WO2021174408A1
WO2021174408A1 PCT/CN2020/077551 CN2020077551W WO2021174408A1 WO 2021174408 A1 WO2021174408 A1 WO 2021174408A1 CN 2020077551 W CN2020077551 W CN 2020077551W WO 2021174408 A1 WO2021174408 A1 WO 2021174408A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wide
angle lens
optical axis
angle
Prior art date
Application number
PCT/CN2020/077551
Other languages
English (en)
French (fr)
Inventor
谢晗
刘彬彬
李明
邹海荣
Original Assignee
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西晶超光学有限公司 filed Critical 江西晶超光学有限公司
Priority to US17/629,403 priority Critical patent/US20220326481A1/en
Priority to PCT/CN2020/077551 priority patent/WO2021174408A1/zh
Publication of WO2021174408A1 publication Critical patent/WO2021174408A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application relates to the field of optical imaging technology, in particular to a wide-angle lens, imaging device and electronic device.
  • the wide-angle lens has a larger shooting field of view, and can shoot large scenes or panoramic photos within a limited distance range, which can better meet the needs of users.
  • the traditional wide-angle lens often has a larger head, which is difficult to meet the development trend of light, thin and miniaturized electronic products.
  • the pixels of the chip The size is getting smaller and smaller, and the requirements for the imaging quality of the matching lens are getting higher and higher.
  • a wide-angle lens is provided.
  • a wide-angle lens which includes in order from the object side to the image side along the optical axis:
  • a second lens with positive refractive power the object side of the second lens is convex at the optical axis, and the image side is convex at the optical axis;
  • a fourth lens with positive refractive power the image side surface of the fourth lens is convex at the optical axis;
  • a fifth lens with negative refractive power the object side surface of the fifth lens is convex at the optical axis, the image side surface is concave at the optical axis, and at least one of the object side surface and the image side surface includes at least one recurve Point; and,
  • a diaphragm, the diaphragm is arranged between the first lens and the second lens; one of the first lens to the fifth lens is a glass lens;
  • the wide-angle lens satisfies the following relationship:
  • sd1 represents the maximum effective half-aperture of the object side of the first lens
  • ImgH is half of the diagonal length of the effective pixel area on the imaging surface of the wide-angle lens.
  • An image capturing device includes the wide-angle lens described in the above embodiment; and a photosensitive element, the photosensitive element being arranged on the image side of the wide-angle lens.
  • An electronic device includes a housing and the imaging device described in the above embodiments, and the imaging device is installed on the housing.
  • FIG. 1 shows a schematic structural diagram of a wide-angle lens of Embodiment 1 of the present application
  • FIG. 3 shows a schematic structural diagram of a wide-angle lens according to Embodiment 2 of the present application
  • FIG. 5 shows a schematic structural diagram of a wide-angle lens according to Embodiment 3 of the present application.
  • FIG. 6 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the wide-angle lens of Embodiment 3 respectively;
  • FIG. 7 shows a schematic structural diagram of a wide-angle lens according to Embodiment 4 of the present application.
  • FIG. 8 shows the longitudinal spherical aberration curve, the astigmatism curve and the distortion curve of the wide-angle lens of Embodiment 4 respectively;
  • FIG. 9 shows a schematic structural diagram of a wide-angle lens according to Embodiment 5 of the present application.
  • FIG. 10 respectively shows a longitudinal spherical aberration curve, an astigmatism curve, and a distortion curve of the wide-angle lens of Embodiment 5;
  • FIG. 11 shows a schematic structural diagram of a wide-angle lens according to Embodiment 6 of the present application.
  • FIG. 12 respectively shows a longitudinal spherical aberration curve, an astigmatism curve, and a distortion curve of the wide-angle lens of Embodiment 6;
  • FIG. 13 shows a schematic structural diagram of a wide-angle lens according to Embodiment 7 of the present application.
  • FIG. 14 respectively shows a longitudinal spherical aberration curve, an astigmatism curve, and a distortion curve of the wide-angle lens of Embodiment 7;
  • FIG. 15 shows a schematic diagram of an image capturing device according to an embodiment of the present application.
  • FIG. 16 shows a schematic diagram of an electronic device using an image capturing device according to an embodiment of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the aperture of the first lens is usually relatively large, which is difficult to meet the application requirements of thin and light electronic products; in addition, the edge shape of the first lens of this type of wide-angle lens is curved The degree is large, so the mass production molding process of the lens is not high.
  • Figure 1 Please refer to Figure 1, Figure 3, Figure 5, Figure 7, Figure 9, Figure 11, and Figure 13.
  • the five lenses are arranged in order from the object side to the image side along the optical axis, and a diaphragm is arranged between the first lens and the second lens to effectively limit the size of the light beam and further improve the imaging quality.
  • the first lens has a negative refractive power, and the image side surface is concave at the optical axis, so that light incident at a large angle can also be focused to the imaging surface of the wide-angle lens, and the viewing angle and imaging quality of the lens are ensured.
  • the second lens has positive refractive power, and its object side is convex at the optical axis, and the image side is convex at the optical axis, so as to help focus the light passing through the diaphragm, correct the aberration and field curvature of the lens, and improve The imaging quality of the lens.
  • the third lens has a refractive power, which is beneficial for cooperating with the second lens to correct lens chromatic aberration.
  • the fourth lens has a positive refractive power, and the image side surface of the fourth lens is convex at the optical axis, which facilitates the cooperation with the second lens and the third lens to further correct the chromatic aberration of the lens and improve the image quality.
  • the fifth lens has negative refractive power
  • the object side surface is convex at the optical axis
  • the image side surface is concave at the optical axis
  • at least one of the object side surface and the image side surface includes at least one inflection point.
  • One of the first to fifth lenses is a glass lens. Since glass with a higher refractive index can optimize the optical transfer function of the lens, the use of glass lenses can improve the imaging resolution of wide-angle lenses. At the same time, glass lenses are more stable than plastic lenses in the problem of temperature drift, so it is beneficial to reduce the lens environment Sensitivity. It should be noted that due to the high cost of preparing glass lenses, only one of the first to fifth lenses can be selected as a glass lens, so that a balance can be achieved between improving the image quality of the lens and controlling the cost of the lens. .
  • the wide-angle lens satisfies the following relationship: sd1/ImgH ⁇ 0.36, where sd1 represents the maximum effective half-aperture of the object side of the first lens, and ImgH is half of the diagonal length of the effective pixel area on the imaging surface of the wide-angle lens.
  • sd1/ImgH can be 0.2, 0.22, 0.24, 0.26, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, or 0.35.
  • the lens can have a larger field of view while fully compressing the outer diameter of the first lens, thereby optimizing the optical effective aperture of the first lens, reducing the size of the lens head, and improving It satisfies the application requirements of thin and light electronic devices such as mobile phones and tablets.
  • sd1/ImgH is greater than or equal to 0.36, it is easy to make the effective aperture of the first lens larger, resulting in a larger outer diameter of the first lens, which is not conducive to the realization of a small lens head.
  • the diaphragm may include an aperture diaphragm and a field diaphragm.
  • the diaphragm is an aperture diaphragm.
  • the aperture stop can be located on the surface of the lens (for example, the object side and the image side) and form an functional relationship with the lens, for example, by coating a light-blocking coating on the surface of the lens to form an aperture stop on the surface; or by clamping
  • the holder fixedly clamps the surface of the lens, and the holder structure on the surface can limit the width of the imaging beam of the object point on the axis, thereby forming an aperture stop on the surface.
  • the light emitted or reflected by the subject enters the wide-angle lens from the object side direction, passes through the first lens, the second lens, the third lens, the fourth lens and the fifth lens in sequence, and finally converges to Imaging surface.
  • the above-mentioned wide-angle lens while ensuring a larger field of view, optimizes the aperture, curvature and shape of the first lens to fully compress the aperture of the first lens, thereby reducing the size of the head of the wide-angle lens and making it better It satisfies the application requirements of light and thin electronic equipment; at the same time, by reasonably distributing the optical power, surface shape and distance between each lens, the aberration of the wide-angle lens can be reduced, and the imaging quality of the wide-angle lens can be ensured; in addition, By setting one of the first lens to the fifth lens as a glass lens, it is helpful to further improve the resolution of the wide-angle lens, and the temperature drift of the glass lens under different temperature changes is small, which is beneficial to reduce the wide-angle lens Environmental sensitivity.
  • the wide-angle lens satisfies the following relationship: n>1.7; where n represents the refractive index of the glass lens.
  • n can be 1.705, 1.71, 1.72, 1.73, 1.75, 1.77, 1.79, 1.81, 1.82, 1.83, or 1.85.
  • the optical transfer function of the wide-angle lens can be optimized by the glass lens with a higher refractive index, thereby further improving the imaging resolution of the lens.
  • the wide-angle lens satisfies the following relationship: -160 ⁇ f1/sd1 ⁇ -3; where f1 represents the effective focal length of the first lens.
  • f1/sd1 can be -159.1, -16, -15, -10, -9, -7, -5, -4.8, -4.6, -4.4, -4.2, -4, -3.8, -3.6, or -3.2.
  • the first lens can provide negative refractive power for the lens, which is conducive to the large-angle incident light entering the lens and increasing the lens
  • the effective aperture of the first lens on the object side to fully compress the outer diameter of the first lens
  • f1/sd1 is less than or equal to -160
  • the first lens cannot provide sufficient negative refractive power for the lens, which makes it difficult to ensure the wide-angle shooting effect.
  • f1/sd1 is greater than or equal to -3, it is easy to cause the first lens
  • the effective aperture of the lens is relatively large, which is not conducive to the realization of the small head of the lens.
  • the wide-angle lens satisfies the following relationship: 80° ⁇ FOV ⁇ 120°; where FOV represents the diagonal field angle of the wide-angle lens.
  • FOV can be 80°, 85°, 90°, 95°, 100°, 103°, 106°, 109°, 112°, 113°, 114°, 116°, or 118°.
  • the wide-angle lens satisfies 100° ⁇ FOV ⁇ 110°.
  • the wide-angle lens satisfies the following relationship:
  • can be 0.371, 0.372, 0.4, 0.6, 0.7, 0.71, 0.72, 0.73, 0.75, 0.9, 0.95, 1.0, 1.1, or 1.2.
  • the thickness of the fourth lens can be increased within a reasonable range, so that the surface shape of the fourth lens is smoother, which facilitates lens processing and also helps reduce lens ghosting.
  • the wide-angle lens satisfies the following relationship: CT2>0.55mm; where CT2 represents the thickness of the second lens on the optical axis.
  • CT2 can be 0.555mm, 0.65mm, 0.7mm, 0.71mm, 0.73mm, 0.75mm, 0.77mm, 0.79mm, 0.81mm, 0.85mm, 0.89mm, 0.93mm, or 0.95mm.
  • CT2 it is beneficial to improve the positive refractive power of the second lens, and by adjusting the curvature radius and shape of the object side of the second lens, the light can be better injected into the wide-angle lens; at the same time, it is also beneficial to shorten the lens.
  • good image quality is ensured.
  • CT2 is less than or equal to 0.55mm, the wide-angle lens cannot provide sufficient positive refractive power, which is not conducive to the focusing of light incident at a large angle, and it is difficult to ensure the image quality.
  • the wide-angle lens satisfies the following relationship: 0.69 ⁇ f12/f ⁇ 1.2; where f12 represents the combined focal length of the first lens and the second lens, and f represents the effective focal length of the wide-angle lens.
  • f12/f can be 0.691, 0.693, 0.8, 0.83, 0.86, 0.89, 0.92, 0.95, 0.98, 1.1, 1.15, or 1.18.
  • f12/f When f12/f is less than or equal to 0.69, the effective focal length of the lens is longer, which is not conducive to the miniaturization of the lens; when f12/f is greater than or equal to 1.2, it is not conducive to provide enough positive power for the lens to enter the lens. The light is focused on imaging, and the imaging quality cannot be guaranteed.
  • the wide-angle lens satisfies the following relationship: TTL/ImgH ⁇ 1.85; where TTL represents the distance from the object side of the first lens to the imaging surface of the wide-angle lens on the optical axis.
  • TTL/ImgH can be 1.55, 1.56, 1.57, 1.6, 1.63, 1.66, 1.7, 1.75, 1.77, 1.79, 1.82, 1.84, or 1.845.
  • the wide-angle lens satisfies the following relationship: 0.9 ⁇ ET5/CT5 ⁇ 2.3; where CT5 represents the thickness of the fifth lens on the optical axis, and ET5 represents the thickness of the fifth lens at the maximum effective aperture.
  • ET5/CT5 can be 0.93, 1.0, 1.2, 1.4, 1.5, 1.7, 1.75, 1.8, 2.0, 2.3, 2.6, 2.1, or 2.2.
  • the wide-angle lens satisfies 1.8 ⁇ ET5/CT5 ⁇ 2.3.
  • the fifth lens can provide negative refractive power for the lens, so that the thickness at the effective aperture of the fifth lens can be increased reasonably, so as to better correct the aberrations of the peripheral field of view and improve the peripheral field of view.
  • the image quality can also reduce the ghosting caused by the reflection of the edge of the lens.
  • the thickness at the effective aperture of the fifth lens cannot be too thick or too thin, that is, the above ratio cannot exceed the upper limit or lower than the lower limit, otherwise the overall thickness difference of the fifth lens will be too large, which is not conducive to lens molding.
  • the wide-angle lens satisfies the following relationship: -11.1 ⁇ f5/R52 ⁇ -2; where f5 represents the effective focal length of the fifth lens, and R52 represents the radius of curvature of the image side surface of the fifth lens at the optical axis.
  • f5/R52 can be -11.05, -10, -9, -7, -6.5, -6, -5.5, -5, -4.5, -4, -3.5, -3, -2.5, or -2.1.
  • the fifth lens can provide negative refractive power for the lens, and by properly configuring the convex surface of the fifth lens on the image side, it is helpful to further correct the curvature of field, and at the same time, it can also reduce the optical back of the wide-angle lens.
  • the focus is controlled within a reasonable range, so that the lens has telecentric characteristics.
  • f5/R52 is greater than or equal to -2
  • the image side surface of the fifth lens will fluctuate too much, which is not conducive to lens processing; and when f5/R52 is less than or equal to -11.1, the fifth lens cannot provide enough for the lens.
  • Negative optical power is not conducive to correcting the curvature of the lens, and it is also difficult to ensure the back focal length of the lens.
  • the lens materials other than the glass lens are all plastic.
  • the plastic lens can reduce the weight of the wide-angle lens and reduce the production cost.
  • the wide-angle lens further includes an infrared filter.
  • the infrared filter is set on the image side of the fifth lens to filter incident light, specifically to isolate infrared light and prevent infrared light from being absorbed by the photosensitive element, thereby preventing infrared light from affecting the color and clarity of normal images, and improving The imaging quality of a wide-angle lens.
  • the wide-angle lens of the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned five lenses.
  • FNO can be 2.0
  • the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means the lens surface At least the paraxial area is concave.
  • the paraxial area here refers to the area near the optical axis. The surface of each lens closest to the object is called the object side, and the surface of each lens closest to the imaging surface is called the image side.
  • FIG. 1 shows a schematic diagram of the structure of the wide-angle lens 100 of Embodiment 1.
  • the wide-angle lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side S1 and the image side S2 are aspherical, wherein the object side S1 is concave at the optical axis, convex at the circumference, and the image side S2 is concave at the optical axis. It is concave at the circumference.
  • the second lens L2 has a positive refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is convex at the optical axis and convex at the circumference, and the image side S4 is convex at the optical axis.
  • the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and concave at the circumference, and the image side S6 is concave at the optical axis.
  • the circumference is concave.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis and at the circumference. The place is convex.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • the material of the first lens L1 is set to glass, and the use of glass lenses can make the wide-angle lens 100 have a small temperature drift under different temperature changes, so that it has better temperature tolerance characteristics; and the wide-angle lens 100 has better optics
  • the transfer function helps to improve the imaging resolution of the wide-angle lens 100.
  • a stop STO is also provided between the first lens L1 and the second lens L2 to limit the size of the incident light beam and further improve the imaging quality of the wide-angle lens 100.
  • the wide-angle lens 100 further includes a filter 110 disposed on the image side of the fifth lens and having an object side surface S11 and an image side surface S12. The light from the object OBJ sequentially passes through the surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the wide-angle lens 100 to avoid image color distortion.
  • the material of the filter 110 is glass.
  • the filter 110 may be a part of the wide-angle lens 100 and be assembled with each lens, or it may be installed when the wide-angle lens 100 is assembled with the photosensitive element.
  • Table 1 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (i.e. dispersion coefficient) and effective focal length of the lens of the wide-angle lens 100 of Example 1.
  • the radius of curvature, thickness, lens The units of the effective focal length are all millimeters (mm).
  • the surface of the lens closest to the object is called the object side, and the surface of the lens closest to the imaging surface is called the image side.
  • the first value in the "thickness" parameter column of lens L1 is the thickness of the lens on the optical axis
  • the second value is the next lens from the image side to the image side of the lens.
  • the distance of the object side on the optical axis; the value of the stop ST0 in the "thickness" parameter column is the distance from the stop ST0 to the apex of the object side of the latter lens (the apex refers to the intersection of the lens and the optical axis) on the optical axis ,
  • the direction from the object side of the first lens L1 to the image side of the last lens is the positive direction of the optical axis.
  • the thickness of the stop STO is positive, the stop is on the left side of the vertex of the object side of the lens.
  • the aspheric surface type of each lens is defined by the following formula:
  • x is the distance vector height of the aspheric surface from the apex of the aspheric surface when the height is h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 2 below shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for the lens aspheric surfaces S1-S10 in Example 1.
  • the half of the diagonal length ImgH of the effective pixel area on the imaging surface S13 of the wide-angle lens 100 of this embodiment is 2.28 mm. According to the data in Table 1 and Table 2, it can be seen that the wide-angle lens 100 in Embodiment 1 satisfies:
  • sd1/ImgH 0.339, where sd1 represents the maximum effective half-aperture of the object side S1 of the first lens L1, and ImgH is half of the diagonal length of the effective pixel area on the imaging surface S13 of the wide-angle lens 100;
  • n 1.811, where n represents the refractive index of the glass lens.
  • the refractive index of the glass lens is the refractive index of the first lens L1;
  • f1/sd1 -4.09, where f1 represents the effective focal length of the first lens L1;
  • FOV 106.4°, where FOV represents the diagonal field angle of the wide-angle lens 100;
  • 0.988, where CT4 represents the thickness of the fourth lens L4 on the optical axis, and R42 represents the radius of curvature of the image side surface S8 of the fourth lens L4 on the optical axis;
  • CT2 0.718mm, where CT2 represents the thickness of the second lens L2 on the optical axis;
  • f12/f 1.157, where f12 represents the combined focal length of the first lens L1 and the second lens L2, and f represents the effective focal length of the wide-angle lens 100;
  • TTL/ImgH 1.842, where TTL represents the distance from the object side S1 of the first lens L1 to the imaging surface S13 of the wide-angle lens 100 on the optical axis;
  • CT5 represents the thickness of the fifth lens L5 on the optical axis
  • ET5 represents the thickness of the fifth lens L5 at the maximum effective aperture
  • f5/R52 -3.858, where f5 represents the effective focal length of the fifth lens L5, and R52 represents the radius of curvature of the image side surface S10 of the fifth lens L5 at the optical axis.
  • the longitudinal spherical aberration curve shows the deviation of the focal point of light with wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm after passing through the wide-angle lens 100;
  • the astigmatism graph shows the meridian image of light with a wavelength of 555nm after passing through the wide-angle lens 100 Surface curvature and sagittal image surface curvature;
  • the distortion curve diagram shows the distortion rate of light with a wavelength of 555nm after passing through the wide-angle lens 100 at different image heights.
  • FIG. 3 shows a schematic structural diagram of a wide-angle lens 100 according to Embodiment 2 of the present application.
  • the wide-angle lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side S1 and the image side S2 are aspherical, wherein the object side S1 is concave at the optical axis, convex at the circumference, and the image side S2 is concave at the optical axis. It is concave at the circumference.
  • the second lens L2 has a positive refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is convex at the optical axis and convex at the circumference, and the image side S4 is convex at the optical axis.
  • the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and concave at the circumference, and the image side S6 is concave at the optical axis.
  • the circumference is concave.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis and at the circumference. The place is convex.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • the material of the third lens L3 is set to glass, and the use of glass lenses can make the wide-angle lens 100 have a small temperature drift under different temperature changes, so that it has better temperature tolerance characteristics; and the wide-angle lens 100 has better optics
  • the transfer function helps to improve the imaging resolution of the wide-angle lens 100.
  • a stop STO is also provided between the first lens L1 and the second lens L2 to limit the size of the incident light beam and further improve the imaging quality of the wide-angle lens 100.
  • the wide-angle lens 100 further includes a filter 110 disposed on the image side of the fifth lens and having an object side surface S11 and an image side surface S12. The light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the wide-angle lens 100 to avoid image color distortion.
  • Table 3 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the wide-angle lens 100 of Example 2, where the radius of curvature, thickness, The unit of the effective focal length of each lens is millimeter (mm).
  • Table 4 shows the coefficients of the higher order term that can be used for the lens aspheric surface S1-S10 in Example 2, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 5 shows Example 2 The relevant parameter values of the wide-angle lens 100 are given in.
  • FIG. 4 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the wide-angle lens 100 of Embodiment 2.
  • the reference wavelength of the wide-angle lens 100 is 555 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm after passing through the wide-angle lens 100;
  • the astigmatism graph shows the meridian image of light with a wavelength of 555nm after passing through the wide-angle lens 100 Surface curvature and sagittal image surface curvature;
  • the distortion curve diagram shows the distortion rate of light with a wavelength of 555nm after passing through the wide-angle lens 100 at different image heights. It can be seen from FIG. 4 that the wide-angle lens 100 provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of a wide-angle lens 100 according to Embodiment 3 of the present application.
  • the wide-angle lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side S1 and the image side S2 are aspherical, wherein the object side S1 is convex at the optical axis, convex at the circumference, and the image side S2 is concave at the optical axis. It is concave at the circumference.
  • the second lens L2 has a positive refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is convex at the optical axis and convex at the circumference, and the image side S4 is convex at the optical axis.
  • the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and concave at the circumference, and the image side S6 is concave at the optical axis.
  • the circumference is concave.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis and at the circumference. The place is concave.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • the material of the first lens L1 is set to glass, and the use of glass lenses can make the wide-angle lens 100 have a small temperature drift under different temperature changes, so that it has better temperature tolerance characteristics; and the wide-angle lens 100 has better optics
  • the transfer function helps to improve the imaging resolution of the wide-angle lens 100.
  • a stop STO is also provided between the first lens L1 and the second lens L2 to limit the size of the incident light beam and further improve the imaging quality of the wide-angle lens 100.
  • the wide-angle lens 100 further includes a filter 110 disposed on the image side of the fifth lens and having an object side surface S11 and an image side surface S12. The light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the wide-angle lens 100 to avoid image color distortion.
  • Table 6 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and effective focal length of each lens of the wide-angle lens 100 of Example 3.
  • the radius of curvature, thickness, The unit of the effective focal length of each lens is millimeter (mm).
  • Table 7 shows the coefficients of higher-order terms that can be used for the lens aspheric surface S1-S10 in Example 3, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 8 shows Example 3 The relevant parameter values of the wide-angle lens 100 are given in.
  • the reference wavelength of the wide-angle lens 100 is 555 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm after passing through the wide-angle lens 100;
  • the astigmatism graph shows the meridian image of light with a wavelength of 555nm after passing through the wide-angle lens 100 Surface curvature and sagittal image surface curvature;
  • the distortion curve diagram shows the distortion rate of light with a wavelength of 555nm after passing through the wide-angle lens 100 at different image heights. It can be seen from FIG. 6 that the wide-angle lens 100 provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of a wide-angle lens 100 according to Embodiment 4 of the present application.
  • the wide-angle lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side S1 and the image side S2 are aspherical, wherein the object side S1 is convex at the optical axis, convex at the circumference, and the image side S2 is concave at the optical axis. It is concave at the circumference.
  • the second lens L2 has a positive refractive power.
  • the object side S3 and the image side S4 are both aspherical.
  • the object side S3 is convex at the optical axis and concave at the circumference.
  • the image side S4 is convex at the optical axis.
  • the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and concave at the circumference, and the image side S6 is concave at the optical axis.
  • the circumference is concave.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis and at the circumference. The place is convex.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • the material of the second lens L2 is set to glass, and the use of glass lenses can make the wide-angle lens 100 have a small temperature drift under different temperature changes, thereby having better temperature tolerance characteristics; and making the wide-angle lens 100 have better optics
  • the transfer function helps to improve the imaging resolution of the wide-angle lens 100.
  • a stop STO is also provided between the first lens L1 and the second lens L2 to limit the size of the incident light beam and further improve the imaging quality of the wide-angle lens 100.
  • the wide-angle lens 100 further includes a filter 110 disposed on the image side of the fifth lens and having an object side surface S11 and an image side surface S12. The light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the wide-angle lens 100 to avoid image color distortion.
  • Table 9 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the wide-angle lens 100 of Example 4, where the radius of curvature, thickness, The unit of the effective focal length of each lens is millimeter (mm).
  • Table 10 shows the coefficients of the higher order terms that can be used for the lens aspheric surface S1-S10 in Example 4, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 11 shows Example 4 The relevant parameter values of the wide-angle lens 100 are given in.
  • FIG. 8 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the wide-angle lens 100 of Embodiment 4, respectively.
  • the reference wavelength of the wide-angle lens 100 is 555 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm after passing through the wide-angle lens 100;
  • the astigmatism graph shows the meridian image of light with a wavelength of 555nm after passing through the wide-angle lens 100 Surface curvature and sagittal image surface curvature;
  • the distortion curve diagram shows the distortion rate of light with a wavelength of 555nm after passing through the wide-angle lens 100 at different image heights. According to FIG. 8, it can be seen that the wide-angle lens 100 provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of a wide-angle lens 100 according to Embodiment 5 of the present application.
  • the wide-angle lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side S1 and the image side S2 are aspherical, wherein the object side S1 is convex at the optical axis, convex at the circumference, and the image side S2 is concave at the optical axis. It is concave at the circumference.
  • the second lens L2 has a positive refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is convex at the optical axis and convex at the circumference, and the image side S4 is convex at the optical axis.
  • the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and concave at the circumference, and the image side S6 is concave at the optical axis.
  • the circumference is concave.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis and at the circumference. The place is convex.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • the material of the first lens L1 is set to glass, and the use of glass lenses can make the wide-angle lens 100 have a small temperature drift under different temperature changes, so that it has better temperature tolerance characteristics; and the wide-angle lens 100 has better optics
  • the transfer function helps to improve the imaging resolution of the wide-angle lens 100.
  • a stop STO is also provided between the first lens L1 and the second lens L2 to limit the size of the incident light beam and further improve the imaging quality of the wide-angle lens 100.
  • the wide-angle lens 100 further includes a filter 110 disposed on the image side of the fifth lens and having an object side surface S11 and an image side surface S12. The light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the wide-angle lens 100 to avoid image color distortion.
  • Table 12 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the wide-angle lens 100 of Example 5, where the radius of curvature, thickness, The unit of the effective focal length of each lens is millimeter (mm).
  • Table 13 shows the coefficients of the higher order terms that can be used for the lens aspheric surface S1-S10 in Example 5, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 14 shows Example 5 The relevant parameter values of the wide-angle lens 100 are given in.
  • FIG. 10 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the wide-angle lens 100 of Embodiment 5, and the reference wavelength of the wide-angle lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 486.13nm, 587.56nm and 656.27nm after passing through the wide-angle lens 100;
  • the astigmatism graph shows the meridian image of light with a wavelength of 587.56nm after passing through the wide-angle lens 100 Surface curvature and sagittal image surface curvature;
  • the distortion curve diagram shows the distortion rate of light with a wavelength of 587.56nm after passing through the wide-angle lens 100 at different image heights. It can be seen from FIG. 10 that the wide-angle lens 100 provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of a wide-angle lens 100 according to Embodiment 6 of the present application.
  • the wide-angle lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side S1 and the image side S2 are aspherical, wherein the object side S1 is convex at the optical axis, convex at the circumference, and the image side S2 is concave at the optical axis. It is concave at the circumference.
  • the second lens L2 has a positive refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is convex at the optical axis and convex at the circumference, and the image side S4 is convex at the optical axis.
  • the circumference is convex.
  • the third lens L3 has negative refractive power.
  • the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and convex at the circumference.
  • the image side S6 is concave at the optical axis.
  • the circumference is concave.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and concave at the circumference.
  • the image side S8 is convex at the optical axis and at the circumference. The place is convex.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • the material of the first lens L1 is set to glass, and the use of glass lenses can make the wide-angle lens 100 have a small temperature drift under different temperature changes, so that it has better temperature tolerance characteristics; and the wide-angle lens 100 has better optics
  • the transfer function helps to improve the imaging resolution of the wide-angle lens 100.
  • a stop STO is also provided between the first lens L1 and the second lens L2 to limit the size of the incident light beam and further improve the imaging quality of the wide-angle lens 100.
  • the wide-angle lens 100 further includes a filter 110 disposed on the image side of the fifth lens and having an object side surface S11 and an image side surface S12. The light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the wide-angle lens 100 to avoid image color distortion.
  • Table 15 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the wide-angle lens 100 of Example 6, where the radius of curvature, thickness, The unit of the effective focal length of each lens is millimeter (mm).
  • Table 16 shows the coefficients of the higher order term that can be used for the lens aspheric surface S1-S10 in Example 6, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 17 shows Example 6 The relevant parameter values of the wide-angle lens 100 are given in.
  • FIG. 12 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the wide-angle lens 100 of Embodiment 6, respectively, and the reference wavelength of the wide-angle lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 486.13nm, 587.56nm and 656.27nm after passing through the wide-angle lens 100;
  • the astigmatism graph shows the meridian image of light with a wavelength of 587.56nm after passing through the wide-angle lens 100 Surface curvature and sagittal image surface curvature;
  • the distortion curve diagram shows the distortion rate of light with a wavelength of 587.56nm after passing through the wide-angle lens 100 at different image heights.
  • FIG. 12 it can be seen that the wide-angle lens 100 provided in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 shows a schematic structural diagram of a wide-angle lens 100 according to Embodiment 7 of the present application.
  • the wide-angle lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side S1 and the image side S2 are aspherical, wherein the object side S1 is concave at the optical axis, convex at the circumference, and the image side S2 is concave at the optical axis. It is concave at the circumference.
  • the second lens L2 has a positive refractive power.
  • the object side surface S3 and the image side surface S4 are both aspherical.
  • the object side surface S3 is convex at the optical axis and convex at the circumference, and the image side S4 is convex at the optical axis.
  • the circumference is convex.
  • the third lens L3 has a negative refractive power.
  • the object side surface S5 and the image side surface S6 are both aspherical.
  • the object side surface S5 is convex at the optical axis and concave at the circumference, and the image side S6 is concave at the optical axis.
  • the circumference is concave.
  • the fourth lens L4 has a positive refractive power.
  • the object side surface S7 and the image side surface S8 are both aspherical.
  • the object side surface S7 is concave at the optical axis and convex at the circumference.
  • the image side S8 is convex at the optical axis and at the circumference. The place is convex.
  • the fifth lens L5 has negative refractive power.
  • the object side surface S9 and the image side surface S10 are both aspherical.
  • the object side surface S9 is convex at the optical axis and concave at the circumference, and the image side S10 is concave at the optical axis. Convex at the circumference.
  • the material of the first lens L1 is set to glass, and the use of glass lenses can make the wide-angle lens 100 have a small temperature drift under different temperature changes, so that it has better temperature tolerance characteristics; and the wide-angle lens 100 has better optics
  • the transfer function helps to improve the imaging resolution of the wide-angle lens 100.
  • a stop STO is also provided between the first lens L1 and the second lens L2 to limit the size of the incident light beam and further improve the imaging quality of the wide-angle lens 100.
  • the wide-angle lens 100 further includes a filter 110 disposed on the image side of the fifth lens and having an object side surface S11 and an image side surface S12. The light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the wide-angle lens 100 to avoid image color distortion.
  • Table 18 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the wide-angle lens 100 of Example 7, where the radius of curvature, thickness, The unit of the effective focal length of each lens is millimeter (mm).
  • Table 19 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S1-S10 in Example 7, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 20 shows Example 7 The relevant parameter values of the wide-angle lens 100 are given in.
  • FIG. 14 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the wide-angle lens 100 of Embodiment 7, respectively, and the reference wavelength of the wide-angle lens 100 is 555 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm after passing through the wide-angle lens 100;
  • the astigmatism graph shows the meridian image of light with a wavelength of 555nm after passing through the wide-angle lens 100 Surface curvature and sagittal image surface curvature;
  • the distortion curve diagram shows the distortion rate of light with a wavelength of 555nm after passing through the wide-angle lens 100 at different image heights. It can be seen from FIG. 14 that the wide-angle lens 100 provided in Embodiment 7 can achieve good imaging quality.
  • the present application also provides an imaging device 200, which includes the wide-angle lens 100 as described above; Surface S13 coincides.
  • the photosensitive element 210 may adopt a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device) image sensor.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the above-mentioned imaging device 200 can use the aforementioned wide-angle lens 100 to capture images with small aberrations and high resolution while having a wide angle of view.
  • the imaging device 200 also has the characteristics of a small head, which is convenient to adapt to Such as thin and light electronic equipment and other devices with limited size. Specifically, it can be used as a mobile phone camera, a car camera, a surveillance camera or an endoscope, etc.
  • the present application also provides an electronic device 300, which includes a housing 310 and the imaging device 200 as described above, and the imaging device 200 is installed on the housing 310. Specifically, the imaging device 200 is disposed in the housing 310 and exposed from the housing 310 to acquire images.
  • the housing 310 can provide the imaging device 200 with protection from dust, water, and drop.
  • the corresponding hole of the imaging device 200 allows light to penetrate into or out of the housing from the hole.
  • the above-mentioned electronic device 300 has the characteristics of light and thin structure.
  • the image capturing device 200 as described above can be used to capture images with a wide viewing angle and good imaging quality, which can meet the shooting needs of cameras for mobile phones, vehicles, surveillance, medical equipment, etc. .
  • the "electronic device” used may also include, but is not limited to, a device configured to be connected via a wired line and/or receive or send a communication signal via a wireless interface.
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, memo pad, and/or global positioning system (GPS) receiver; and conventional laptop and/or handheld receiver Or other electronic devices including radio telephone transceivers.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种广角镜头(100),沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜(L1),其像侧面于光轴处为凹面;具有正光焦度的第二透镜(L2),其物侧面于光轴处为凸面;具有光焦度的第三透镜(L3);具有正光焦度的第四透镜(L4),其像侧面于光轴处为凸面;具有负光焦度的第五透镜(L5),其物侧面于光轴处为凸面,像侧面于光轴处为凹面,且其物侧面和像侧面中至少一个表面包含至少一个反曲点;光阑(STO),设于第一透镜和第二透镜之间;第一透镜(L1)至第五透镜(L5)中有一枚透镜为玻璃透镜,广角镜头(100)满足下列关系式:sd1/ImgH<0.36,其中,sd1表示第一透镜(L1)物侧面的最大有效半口径,ImgH表示广角镜头(100)的成像面上有效像素区域对角线长度的一半。

Description

广角镜头、取像装置及电子装置 技术领域
本申请涉及光学成像技术领域,特别是涉及一种广角镜头、取像装置及电子装置。
背景技术
近年来,随着科技的发展,具有摄像功能的便携式电子产品得到人们更多的青睐。其中,广角镜头具有更大的拍摄视野,可以在有限距离范围内拍摄出大场面或全景照片,更能满足用户的需求。
然而,传统的广角镜头为了保证成像质量的同时具有较大的视角范围,其头部往往做的比较大,难以满足电子产品轻薄小型化的发展趋势;同时随着CMOS芯片技术的发展,芯片的像素尺寸越来越小,对相配套的镜头的成像质量要求也越来越高。
发明内容
根据本申请的各种实施例,提供一种广角镜头。
一种广角镜头,所述广角镜头沿着光轴由物侧至像侧依序包括:
具有负光焦度的第一透镜,所述第一透镜的像侧面于光轴处为凹面;
具有正光焦度的第二透镜,所述第二透镜的物侧面于光轴处为凸面,像侧面于光轴处为凸面;
具有光焦度的第三透镜;
具有正光焦度的第四透镜,所述第四透镜的像侧面于光轴处为凸面;
具有负光焦度的第五透镜,所述第五透镜的物侧面于光轴处为凸面,像侧面于光轴处为凹面,且其物侧面和像侧面中至少一个表面包含至少一个反曲点;以及,
光阑,所述光阑设于所述第一透镜和所述第二透镜之间;所述第一透镜至所述第五透镜中有一枚透镜为玻璃透镜;
所述广角镜头满足下列关系式:
sd1/ImgH<0.36;
其中,sd1表示所述第一透镜物侧面的最大有效半口径,ImgH为所述广角镜头的成像面上有效像素区域对角线长度的一半。
一种取像装置,包括上述实施例所述的广角镜头;以及感光元件,所述感光元件设于所述广角镜头的像侧。
一种电子装置,包括壳体以及上述实施例所述的取像装置,所述取像装置安装在所述壳体上。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了本申请实施例1的广角镜头的结构示意图;
图2分别示出了实施例1的广角镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图3示出了本申请实施例2的广角镜头的结构示意图;
图4分别示出了实施例2的广角镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图5示出了本申请实施例3的广角镜头的结构示意图;
图6分别示出了实施例3的广角镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图7示出了本申请实施例4的广角镜头的结构示意图;
图8分别示出了实施例4的广角镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图9示出了本申请实施例5的广角镜头的结构示意图;
图10分别示出了实施例5的广角镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图11示出了本申请实施例6的广角镜头的结构示意图;
图12分别示出了实施例6的广角镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图13示出了本申请实施例7的广角镜头的结构示意图;
图14分别示出了实施例7的广角镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图15示出了本申请一实施例的取像装置的示意图;
图16示出了本申请一实施例应用取像装置的电子装置的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实 施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
为了便于说明,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
传统的广角镜头,为了保证广视角及成像质量,其第一片透镜的口径通常比较大,难以满足轻薄型电子产品的应用需求;除此之外,这类广角镜头的第一片透镜的边缘形状弯曲程度较大,因此透镜的量产成型工艺不高。
针对以上方案所存在的缺陷,均是发明人在经过实践并仔细研究后得到的结果,因此,上述问题的发现过程以及下文中本申请实施例针对上述问题所提出的解决方案,都应是发明人在本申请过程中对本申请做出的贡献。
请一并参阅图1、图3、图5、图7、图9、图11和图13,本申请实施例的广角镜头包括五片具有光焦度的透镜,即第一透镜、第二透镜、第三透镜、第四透镜和第五透镜。该五片透镜沿着光轴从物侧至像侧依序排列,第一透镜和第二透镜之间设置有光阑,以有效限制光束大小,进一步提高成像质量。
第一透镜具有负光焦度,且其像侧面于光轴处为凹面,从而有利于使大角度入射的光线也能聚焦至广角镜头的成像面,保证镜头视角和成像质量。
第二透镜具有正光焦度,且其物侧面于光轴处为凸面,像侧面于光轴处为凸面,从而为有利于对通过光阑的光线聚焦,修正镜头的像差和场曲,提升镜头的成像质量。
第三透镜具有光焦度,有利于与第二透镜配合修正镜头色差。
第四透镜具有正光焦度,且第四透镜的像侧面于光轴处为凸面,从而 有利于与第二镜头和第三镜头配合进一步修正镜头色差,提升成像质量。
第五透镜具有负光焦度,且其物侧面于光轴处为凸面,像侧面于光轴处为凹面,其物侧面和像侧面中至少一个表面包含至少一个反曲点。通过设置反曲点可以有效地压制离轴视场的光线入射至感光元件上的角度,同时可进一步修正离轴视场的像差,提高成像质量。
第一透镜至第五透镜中有一枚透镜为玻璃透镜。由于折射率较高的玻璃可以优化镜头的光学传递函数,因此选用玻璃透镜可以提高广角镜头的成像分辨率,同时玻璃透镜在温度漂移问题中比塑料镜片表现的更稳定,因此有利于降低镜头的环境敏感度。需要注意的是,由于玻璃透镜的制备成本较高,因此在第一透镜至第五透镜中只选用一枚透镜为玻璃透镜即可,如此可以在提升镜头成像质量与控制镜头成本之间取得平衡。
具体的,广角镜头满足下列关系式:sd1/ImgH<0.36,其中,sd1表示第一透镜物侧面的最大有效半口径,ImgH为广角镜头的成像面上有效像素区域对角线长度的一半。sd1/ImgH可以是0.2、0.22、0.24、0.26、0.28、0.29、0.3、0.31、0.32、0.33、0.34或0.35。在满足上述关系式的条件下,可使镜头具备较大视场角的同时,充分压缩第一透镜的外径,从而优化第一透镜的光学有效口径,减小镜头的头部尺寸,以更好地满足手机、平板等轻薄型电子设备的应用需求。而当sd1/ImgH大于等于0.36时,容易使得第一透镜的有效口径较大,从而导致第一透镜的外径较大,不利于镜头小头部的实现。
另外,光阑可以包括孔径光阑和视场光阑。优选的,光阑为孔径光阑。孔径光阑可位于透镜的表面上(例如物侧面和像侧面),并与透镜形成作用关系,例如,通过在透镜的表面涂覆阻光涂层以在该表面形成孔径光阑;或通过夹持件固定夹持透镜的表面,位于该表面的夹持件结构能够限制轴上物点成像光束的宽度,从而在该表面上形成孔径光阑。
当上述广角镜头用于成像时,被摄物体发出或者反射的光线从物侧方向进入广角镜头,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,最终汇聚到成像面上。
上述广角镜头,在保证较大视场角的同时,对第一透镜的口径、曲率以及形状进行优化,以充分压缩第一透镜的口径,从而减小了广角镜头的头部尺寸,使其能够更好地满足轻薄型电子设备的应用需求;同时通过合理分配各透镜的光焦度、面型以及各透镜间的间距,可以减小所述广角镜头的像差,保证所述广角镜头的成像质量;另外,通过将第一透镜至第五透镜中的一枚透镜设置为玻璃透镜,有利于进一步提高广角镜头的分辨率,且玻璃材质的镜片在不同温度变化环境下的温漂变化小,有利于降低广角镜头的环境敏感度。
在示例性实施方式中,广角镜头满足下列关系式:n>1.7;其中,n表示玻璃透镜的折射率。n可以是1.705、1.71、1.72、1.73、1.75、1.77、1.79、1.81、1.82、1.83或1.85。通过控制玻璃透镜的折射率满足上述关 系,可以借助具有较高折射率的玻璃透镜优化广角镜头的光学传递函数,从而进一步升镜头的成像分辨率。
在示例性实施方式中,广角镜头满足下列关系式:-160<f1/sd1<-3;其中,f1表示第一透镜的有效焦距。f1/sd1可以是-159.1、-16、-15、-10、-9、-7、-5、-4.8、-4.6、-4.4、-4.2、-4、-3.8、-3.6或-3.2。通过控制第一透镜的有效焦距和第一透镜物侧面的最大有效半口径满足上述关系,可使第一透镜为镜头提供负光焦度,从而有利于大角度入射的光线进入镜头,增大镜头的视场角;同时,通过合理配置第一透镜物侧面的有效口径以充分压缩第一透镜的外径,有利于镜头模组前端的小型化,使镜头具有小头部的结构特点。而当f1/sd1小于等于-160时,第一透镜无法为镜头提供足够的负光焦度,从而较难保证广视角的拍摄效果,而当f1/sd1大于等于-3时,容易导致第一透镜的有效口径较大,不利于镜头小头部的实现。
在示例性实施方式中,广角镜头满足下列关系式:80°≤FOV<120°;其中,FOV表示广角镜头的对角线方向视场角。FOV可以是80°、85°、90°、95°、100°、103°、106°、109°、112°、113°、114°、116°或118°。优选的,广角镜头满足100°≤FOV≤110°。通过控制广角镜头的对角线方向视场角满足上述关系,有利于扩大镜头的拍摄范围,提升用户的拍摄体验。
在示例性实施方式中,广角镜头满足下列关系式:|CT4/R42|>0.37;其中,CT4表示第四透镜在光轴上的厚度,R42表示第四透镜像侧面于光轴处的曲率半径。|CT4/R42|可以是0.371、0.372、0.4、0.6、0.7、0.71、0.72、0.73、0.75、0.9、0.95、1.0、1.1或1.2。在满足上述关系的条件下,可以在合理的范围内增加第四透镜的厚度,使第四透镜的表面形状更为平缓,从而方便透镜加工,同时也有利于减弱镜头鬼影。
在示例性实施方式中,广角镜头满足下列关系式:CT2>0.55mm;其中,CT2表示第二透镜在光轴上的厚度。CT2可以是0.555mm、0.65mm、0.7mm、0.71mm、0.73mm、0.75mm、0.77mm、0.79mm、0.81mm、0.85mm、0.89mm、0.93mm或0.95mm。在满足上述关系的条件下,有利于提高第二透镜的正光焦度,并通过调整第二透镜物侧面的曲率半径和形状,使光线更好地射入进广角镜头;同时也有利于在缩短镜头总长的同时,保证良好的成像质量。而当CT2小于等于0.55mm时,无法为广角镜头提供足够的正光焦度,不利于大角度入射的光线聚焦,较难保证成像质量。
在示例性实施方式中,广角镜头满足下列关系式:0.69<f12/f<1.2;其中,f12表示第一透镜和第二透镜的组合焦距,f表示广角镜头的有效焦距。f12/f可以是0.691、0.693、0.8、0.83、0.86、0.89、0.92、0.95、0.98、1.1、1.15或1.18。在满足上述关系的条件下,有利于修正广角镜头的像差和场曲,从而使镜头具备较佳的拍摄性能。而当f12/f小于等于0.69时,镜头的有效焦距较长而不利于镜头的小型化;而当f12/f大于等 于1.2时,不利于为镜头提供足够的正光焦度以使射入进镜头的光线聚焦成像,进而无法保证成像质量。
在示例性实施方式中,广角镜头满足下列关系式:TTL/ImgH<1.85;其中,TTL表示第一透镜的物侧面至广角镜头的成像面在光轴上的距离。TTL/ImgH可以是1.55、1.56、1.57、1.6、1.63、1.66、1.7、1.75、1.77、1.79、1.82、1.84或1.845。通过控制镜头总长与广角镜头的成像面上的半像高满足上述关系,有利于在保证像质的情况下压缩广角镜头的总长,实现镜头的小型化。
在示例性实施方式中,广角镜头满足下列关系式:0.9<ET5/CT5<2.3;其中,CT5表示第五透镜在光轴上的厚度,ET5表示第五透镜最大有效口径处的厚度。ET5/CT5可以是0.93、1.0、1.2、1.4、1.5、1.7、1.75、1.8、2.0、2.3、2.6、2.1或2.2。进一步的,广角镜头满足1.8<ET5/CT5<2.3。在满足上述关系的条件下,可使第五透镜为镜头提供负光焦度,从而可以合理增加第五透镜有效口径处的厚度,以更好地校正周边视场的像差,提升周边视场的成像质量,同时还可以减弱因透镜边缘反射导致的鬼影。但需要注意的是,第五透镜有效口径处的厚度不能过厚或过薄,即上述比值不能超过上限或低于下限,否则会导致第五透镜的整体厚薄差异过大,不利于透镜成型。
在示例性实施方式中,广角镜头满足下列关系式:-11.1<f5/R52<-2;其中,f5表示第五透镜的有效焦距,R52表示第五透镜像侧面于光轴处的曲率半径。f5/R52可以是-11.05、-10、-9、-7、-6.5、-6、-5.5、-5、-4.5、-4、-3.5、-3、-2.5或-2.1。在满足上述关系的条件下,可使第五透镜为镜头提供负光焦度,并通过合理配置第五透镜像侧面的凸面面型,有利于进一步修正场曲,同时还可以将广角镜头的光学后焦控制在合理范围内,使镜头具有远心特性。而当f5/R52大于等于-2时,会使第五透镜像侧面的面型起伏过大,不利于透镜加工;而当f5/R52小于等于-11.1时,第五透镜无法为镜头提供足够的负光焦度,从而不利于修正镜头场曲,也较难保证镜头的后焦距。
在示例性实施方式中,除玻璃透镜外的透镜材质均为塑料。塑料材质的透镜能够减少广角镜头的重量并降低生产成本。
在示例性实施方式中,广角镜头还包括红外滤光片。红外滤光片设于第五透镜的像侧,用于过滤入射光线,具体用于隔绝红外光,防止红外光被感光元件吸收,从而防止红外光对正常影像的色彩与清晰度造成影响,提高广角镜头的成像品质。
本申请的上述实施方式的广角镜头可采用多片镜片,例如上文所述的五片。通过合理分配各透镜焦距、光焦度、面型、厚度以及各透镜之间的轴上间距等,可以保证上述广角镜头具备较大视场角的同时,头部较小、重量较轻且具备较高的成像质量,并且还具备较大的光圈(FNO可以为2.0),从而可以更好地满足如手机、平板等轻量化电子设备的应用需求。 然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成广角镜头的透镜数量,来获得本说明书中描述的各个结果和优点。
下面参照附图进一步描述可适用于上述实施方式的广角镜头的具体实施例。在下述实施例中,若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。此处近轴区域是指光轴附近的区域。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
实施例1
以下参照图1至图2描述本申请实施例1的广角镜头100。
图1示出了实施例1的广角镜头100的结构示意图。如图1所示,广角镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凹面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处凹面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
将第一透镜L1至第五透镜L5的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使广角镜头100具备小型化特性。
第一透镜L1的材质设置为玻璃,使用玻璃材质的透镜可使广角镜头100在不同温度变化环境下,温漂变化小,从而具备较好的温度耐受特性;以及使广角镜头100具备较优的光学传递函数,有利于提升广角镜头100的成像分辨率。
第一透镜L1和第二透镜L2之间还设置有光阑STO,以限制入射光束的大小,进一步提升广角镜头100的成像质量。广角镜头100还包括设于第五透镜像侧且具有物侧面S11和像侧面S12的滤光片110。来自物体OBJ 的光依序穿过各表面S1至S12并最终成像在成像面S13上。进一步的,滤光片110为红外滤光片,用以滤除入射至广角镜头100的外界光线中的红外光线,避免成像色彩失真。具体的,滤光片110的材质为玻璃。滤光片110可以属于广角镜头100的一部分,与各透镜一同装配,或者也可在广角镜头100与感光元件装配时一同安装。
表1示出了实施例1的广角镜头100的透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的有效焦距,其中,曲率半径、厚度、透镜的有效焦距的单位均为毫米(mm)。透镜中最靠近物体的表面称为物侧面,透镜中最靠近成像面的表面称为像侧面。另外,以透镜L1为例,透镜L1的“厚度”参数列中的第一个数值为该透镜在光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面在光轴上的距离;光阑ST0于“厚度”参数列中的数值为光阑ST0至后一透镜的物侧面顶点(顶点指透镜与光轴的交点)于光轴上的距离,我们默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑ST0设置于该透镜的物侧面顶点的右侧,若光阑STO厚度为正值时,光阑在该透镜物侧面顶点的左侧。
表1
Figure PCTCN2020077551-appb-000001
各透镜的非球面面型由以下公式限定:
Figure PCTCN2020077551-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了 可用于实施例1中透镜非球面S1-S10的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2020077551-appb-000003
本实施例广角镜头100的成像面S13上有效像素区域对角长度的一半ImgH为2.28mm,结合表1和表2中的数据可知,实施例1中的广角镜头100满足:
sd1/ImgH=0.339,其中,sd1表示第一透镜L1物侧面S1的最大有效半口径,ImgH为广角镜头100的成像面S13上有效像素区域对角线长度的一半;
n=1.811,其中,n表示玻璃透镜的折射率,例如本实施例中由于第一透镜L1的材质为玻璃,因此该玻璃透镜的折射率即为第一透镜L1的折射率;
f1/sd1=-4.09,其中,f1表示第一透镜L1的有效焦距;
FOV=106.4°,其中,FOV表示广角镜头100的对角线方向视场角;
|CT4/R42|=0.988,其中,CT4表示第四透镜L4在光轴上的厚度,R42表示第四透镜L4像侧面S8于光轴处的曲率半径;
CT2=0.718mm,其中,CT2表示第二透镜L2在光轴上的厚度;
f12/f=1.157,其中,f12表示第一透镜L1和第二透镜L2的组合焦距, f表示广角镜头100的有效焦距;
TTL/ImgH=1.842,其中,TTL表示第一透镜L1的物侧面S1至广角镜头100的成像面S13在光轴上的距离;
ET5/CT5=2.03,其中,CT5表示第五透镜L5在光轴上的厚度,ET5表示第五透镜L5最大有效口径处的厚度;
f5/R52=-3.858,其中,f5表示第五透镜L5的有效焦距,R52表示第五透镜L5像侧面S10于光轴处的曲率半径。
图2分别示出了实施例1的广角镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,广角镜头100的参考波长为555nm。其中纵向球差曲线图示出了波长为470nm、510nm、555nm、610nm以及650nm的光线经由广角镜头100后的会聚焦点偏离;像散曲线图示出了波长为555nm的光线经由广角镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为555nm的光线经由广角镜头100后不同像高情况下的畸变率。根据图2可知,实施例1给出的广角镜头100能够实现良好的成像品质。
实施例2
以下参照图3至图4描述本申请实施例2的广角镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了本申请实施例2的广角镜头100的结构示意图。
如图3所示,广角镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凹面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处凹面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
将第一透镜L1至第五透镜L5的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使广角镜头100具备小型化特性。
第三透镜L3的材质设置为玻璃,使用玻璃材质的透镜可使广角镜头 100在不同温度变化环境下,温漂变化小,从而具备较好的温度耐受特性;以及使广角镜头100具备较优的光学传递函数,有利于提升广角镜头100的成像分辨率。
第一透镜L1和第二透镜L2之间还设置有光阑STO,以限制入射光束的大小,进一步提升广角镜头100的成像质量。广角镜头100还包括设于第五透镜像侧且具有物侧面S11和像侧面S12的滤光片110。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。进一步的,滤光片110为红外滤光片,用以滤除入射至广角镜头100的外界光线中的红外光线,避免成像色彩失真。
表3示出了实施例2的广角镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表4示出了可用于实施例2中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表5示出了实施例2中给出的广角镜头100的相关参数数值。
表3
Figure PCTCN2020077551-appb-000004
表4
Figure PCTCN2020077551-appb-000005
Figure PCTCN2020077551-appb-000006
表5
Figure PCTCN2020077551-appb-000007
图4分别示出了实施例2的广角镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,广角镜头100的参考波长为555nm。其中纵向球差曲线图示出了波长为470nm、510nm、555nm、610nm以及650nm的光线经由广角镜头100后的会聚焦点偏离;像散曲线图示出了波长为555nm的光线经由广角镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为555nm的光线经由广角镜头100后不同像高情况下的畸变率。根据图4可知,实施例2给出的广角镜头100能够实现良好的成像品质。
实施例3
以下参照图5至图6描述本申请实施例3的广角镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图5示出了本申请实施例3的广角镜头100的结构示意图。
如图5所示,广角镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为非球面,其 中物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处凹面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处凹面,像侧面S8于光轴处为凸面,于圆周处为凹面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
将第一透镜L1至第五透镜L5的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使广角镜头100具备小型化特性。
第一透镜L1的材质设置为玻璃,使用玻璃材质的透镜可使广角镜头100在不同温度变化环境下,温漂变化小,从而具备较好的温度耐受特性;以及使广角镜头100具备较优的光学传递函数,有利于提升广角镜头100的成像分辨率。
第一透镜L1和第二透镜L2之间还设置有光阑STO,以限制入射光束的大小,进一步提升广角镜头100的成像质量。广角镜头100还包括设于第五透镜像侧且具有物侧面S11和像侧面S12的滤光片110。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。进一步的,滤光片110为红外滤光片,用以滤除入射至广角镜头100的外界光线中的红外光线,避免成像色彩失真。
表6示出了实施例3的广角镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表7示出了可用于实施例3中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表8示出了实施例3中给出的广角镜头100的相关参数数值。
表6
Figure PCTCN2020077551-appb-000008
Figure PCTCN2020077551-appb-000009
表7
Figure PCTCN2020077551-appb-000010
表8
Figure PCTCN2020077551-appb-000011
Figure PCTCN2020077551-appb-000012
图6分别示出了实施例3的广角镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,广角镜头100的参考波长为555nm。其中纵向球差曲线图示出了波长为470nm、510nm、555nm、610nm以及650nm的光线经由广角镜头100后的会聚焦点偏离;像散曲线图示出了波长为555nm的光线经由广角镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为555nm的光线经由广角镜头100后不同像高情况下的畸变率。根据图6可知,实施例3给出的广角镜头100能够实现良好的成像品质。
实施例4
以下参照图7至图8描述本申请实施例4的广角镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图7示出了本申请实施例4的广角镜头100的结构示意图。
如图7所示,广角镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凸面,于圆周处为凹面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处凹面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
将第一透镜L1至第五透镜L5的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使广角镜头100具备小型化特性。
第二透镜L2的材质设置为玻璃,使用玻璃材质的透镜可使广角镜头100在不同温度变化环境下,温漂变化小,从而具备较好的温度耐受特性; 以及使广角镜头100具备较优的光学传递函数,有利于提升广角镜头100的成像分辨率。
第一透镜L1和第二透镜L2之间还设置有光阑STO,以限制入射光束的大小,进一步提升广角镜头100的成像质量。广角镜头100还包括设于第五透镜像侧且具有物侧面S11和像侧面S12的滤光片110。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。进一步的,滤光片110为红外滤光片,用以滤除入射至广角镜头100的外界光线中的红外光线,避免成像色彩失真。
表9示出了实施例4的广角镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表10示出了可用于实施例4中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表11示出了实施例4中给出的广角镜头100的相关参数数值。
表9
Figure PCTCN2020077551-appb-000013
表10
Figure PCTCN2020077551-appb-000014
Figure PCTCN2020077551-appb-000015
表11
Figure PCTCN2020077551-appb-000016
图8分别示出了实施例4的广角镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,广角镜头100的参考波长为555nm。其中纵向球差曲线图示出了波长为470nm、510nm、555nm、610nm以及650nm的光线经由广角镜头100后的会聚焦点偏离;像散曲线图示出了波长为555nm的光线经由广角镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为555nm的光线经由广角镜头100后不同像高情况下的畸变率。根据图8可知,实施例4给出的广角镜头100能够实现良好的成像品质。
实施例5
以下参照图9至图10描述本申请实施例5的广角镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图9示出了本申请实施例5的广角镜头100的结构示意图。
如图9所示,广角镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹 面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处凹面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
将第一透镜L1至第五透镜L5的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使广角镜头100具备小型化特性。
第一透镜L1的材质设置为玻璃,使用玻璃材质的透镜可使广角镜头100在不同温度变化环境下,温漂变化小,从而具备较好的温度耐受特性;以及使广角镜头100具备较优的光学传递函数,有利于提升广角镜头100的成像分辨率。
第一透镜L1和第二透镜L2之间还设置有光阑STO,以限制入射光束的大小,进一步提升广角镜头100的成像质量。广角镜头100还包括设于第五透镜像侧且具有物侧面S11和像侧面S12的滤光片110。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。进一步的,滤光片110为红外滤光片,用以滤除入射至广角镜头100的外界光线中的红外光线,避免成像色彩失真。
表12示出了实施例5的广角镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表13示出了可用于实施例5中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表14示出了实施例5中给出的广角镜头100的相关参数数值。
表12
Figure PCTCN2020077551-appb-000017
Figure PCTCN2020077551-appb-000018
表13
Figure PCTCN2020077551-appb-000019
表14
Figure PCTCN2020077551-appb-000020
Figure PCTCN2020077551-appb-000021
图10分别示出了实施例5的广角镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,广角镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为486.13nm、587.56nm以及656.27nm的光线经由广角镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由广角镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由广角镜头100后不同像高情况下的畸变率。根据图10可知,实施例5给出的广角镜头100能够实现良好的成像品质。
实施例6
以下参照图11至图12描述本申请实施例6的广角镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图11示出了本申请实施例6的广角镜头100的结构示意图。
如图11所示,广角镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凸面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处凸面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处凹面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
将第一透镜L1至第五透镜L5的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平 的情况下实现优良的光学成像效果,进而使广角镜头100具备小型化特性。
第一透镜L1的材质设置为玻璃,使用玻璃材质的透镜可使广角镜头100在不同温度变化环境下,温漂变化小,从而具备较好的温度耐受特性;以及使广角镜头100具备较优的光学传递函数,有利于提升广角镜头100的成像分辨率。
第一透镜L1和第二透镜L2之间还设置有光阑STO,以限制入射光束的大小,进一步提升广角镜头100的成像质量。广角镜头100还包括设于第五透镜像侧且具有物侧面S11和像侧面S12的滤光片110。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。进一步的,滤光片110为红外滤光片,用以滤除入射至广角镜头100的外界光线中的红外光线,避免成像色彩失真。
表15示出了实施例6的广角镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表16示出了可用于实施例6中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表17示出了实施例6中给出的广角镜头100的相关参数数值。
表15
Figure PCTCN2020077551-appb-000022
表16
Figure PCTCN2020077551-appb-000023
Figure PCTCN2020077551-appb-000024
表17
Figure PCTCN2020077551-appb-000025
图12分别示出了实施例6的广角镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,广角镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为486.13nm、587.56nm以及656.27nm的光线经由广角镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由广角镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由广角镜头100后不同像高情况下的畸变率。根据图12可知,实施例6给出的广角镜头100能够实现良好的成像品质。
实施例7
以下参照图13至图14描述本申请实施例7的广角镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图13示出了本申请实施例7的广角镜头100的结构示意图。
如图11所示,广角镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为非球面,其中物侧面S1于光轴处为凹面,于圆周处为凸面,像侧面S2于光轴处为凹面,于圆周处为凹面。
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为非球面,其中物侧面S3于光轴处为凸面,于圆周处为凸面,像侧面S4于光轴处为凸面,于圆周处为凸面。
第三透镜L3具有负光焦度,其物侧面S5和像侧面S6均为非球面,其中物侧面S5于光轴处为凸面,于圆周处凹面,像侧面S6于光轴处为凹面,于圆周处为凹面。
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,于圆周处凸面,像侧面S8于光轴处为凸面,于圆周处为凸面。
第五透镜L5具有负光焦度,其物侧面S9和像侧面S10均为非球面,其中物侧面S9于光轴处为凸面,于圆周处为凹面,像侧面S10于光轴处为凹面,于圆周处为凸面。
将第一透镜L1至第五透镜L5的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使广角镜头100具备小型化特性。
第一透镜L1的材质设置为玻璃,使用玻璃材质的透镜可使广角镜头100在不同温度变化环境下,温漂变化小,从而具备较好的温度耐受特性;以及使广角镜头100具备较优的光学传递函数,有利于提升广角镜头100的成像分辨率。
第一透镜L1和第二透镜L2之间还设置有光阑STO,以限制入射光束的大小,进一步提升广角镜头100的成像质量。广角镜头100还包括设于第五透镜像侧且具有物侧面S11和像侧面S12的滤光片110。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。进一步的,滤光片110为红外滤光片,用以滤除入射至广角镜头100的外界光线中的红外光线,避免成像色彩失真。
表18示出了实施例7的广角镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表19示出了可用于实施例7中透镜非球面S1-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表20示出了实施例7中给出的广角镜 头100的相关参数数值。
表18
Figure PCTCN2020077551-appb-000026
表19
Figure PCTCN2020077551-appb-000027
表20
Figure PCTCN2020077551-appb-000028
图14分别示出了实施例7的广角镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,广角镜头100的参考波长为555nm。其中纵向球差曲线图示出了波长为470nm、510nm、555nm、610nm以及650nm的光线经由广角镜头100后的会聚焦点偏离;像散曲线图示出了波长为555nm的光线经由广角镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为555nm的光线经由广角镜头100后不同像高情况下的畸变率。根据图14可知,实施例7给出的广角镜头100能够实现良好的成像品质。
如图15所示,本申请还提供一种取像装置200,包括如前文所述的广角镜头100;以及感光元件210,感光元件210设于广角镜头100的像侧,感光元件210的感光表面与成像面S13重合。具体的,感光元件210可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器。
上述取像装置200利用前述广角镜头100能够在具备较广视角的情况下,拍摄得到像差小且分辨率较高的图像,同时该取像装置200还具有小头部的特点,方便适配至如轻薄型电子设备等尺寸受限的装置。具体可作为手机摄像头、车载摄像头、监控摄像头或内窥镜等。
如图16所示,本申请还提供一种电子装置300,包括壳体310以及如前文所述的取像装置200,取像装置200安装在壳体310上。具体的,取像装置200设置在壳体310内并从壳体310暴露以获取图像,壳体310可以给取像装置200提供防尘、防水防摔等保护,壳体310上开设有与取像装置200对应的孔,以使光线从孔中穿入或穿出壳体。
上述电子装置300,具有轻薄化的结构特点,利用如前文所述的取像装置200可以拍摄得到视角广、成像质量佳的图像,满足如手机、车载、监控、医疗等设备的相机的拍摄需求。
另一些实施方式中,所使用到的“电子装置”还可包括,但不限于被设置成经由有线线路连接和/或经由无线接口接收或发送通信信号的装置。 被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种广角镜头,其特征在于,所述广角镜头沿着光轴由物侧至像侧依序包括:
    具有负光焦度的第一透镜,所述第一透镜的像侧面于光轴处为凹面;
    具有正光焦度的第二透镜,所述第二透镜的物侧面于光轴处为凸面,像侧面于光轴处为凸面;
    具有光焦度的第三透镜;
    具有正光焦度的第四透镜,所述第四透镜的像侧面于光轴处为凸面;
    具有负光焦度的第五透镜,所述第五透镜的物侧面于光轴处为凸面,像侧面于光轴处为凹面,且其物侧面和像侧面中至少一个表面包含至少一个反曲点;以及,
    光阑,所述光阑设于所述第一透镜和所述第二透镜之间;
    所述第一透镜至所述第五透镜中有一枚透镜为玻璃透镜,所述广角镜头满足下列关系式:
    sd1/ImgH<0.36;
    其中,sd1表示所述第一透镜物侧面的最大有效半口径,ImgH为所述广角镜头的成像面上有效像素区域对角线长度的一半。
  2. 根据权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    n>1.7;
    其中,n表示所述玻璃透镜的折射率。
  3. 根据权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    -160<f1/sd1<-3;
    其中,f1表示所述第一透镜的有效焦距。
  4. 根据权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    80°≤FOV<120°;
    其中,FOV表示所述广角镜头的对角线方向视场角。
  5. 根据权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    |CT4/R42|>0.37;
    其中,CT4表示所述第四透镜在光轴上的厚度,R42表示所述第四透镜像侧面于光轴处的曲率半径。
  6. 根据权利要求1所述的广角镜头,其特征在于,所述广角镜头满足 下列关系式:
    CT2>0.55mm;
    其中,CT2表示所述第二透镜在光轴上的厚度。
  7. 根据权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    0.69<f12/f<1.2;
    其中,f12表示所述第一透镜和所述第二透镜的组合焦距,f表示所述广角镜头的有效焦距。
  8. 根据权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    TTL/ImgH<1.85;
    其中,TTL表示所述第一透镜的物侧面至所述广角镜头的成像面在光轴上的距离。
  9. 根据权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    0.9<ET5/CT5<2.3;
    其中,CT5表示所述第五透镜在光轴上的厚度,ET5表示所述第五透镜最大有效口径处的厚度。
  10. 根据权利要求1所述的广角镜头,其特征在于,所述广角镜头满足下列关系式:
    -11.1<f5/R52<-2;
    其中,f5表示所述第五透镜的有效焦距,R52表示所述第五透镜像侧面于光轴处的曲率半径。
  11. 一种取像装置,其特征在于,包括如权利要求1-10任一项所述的广角镜头以及感光元件,所述感光元件设于所述广角镜头的像侧。
  12. 一种电子装置,其特征在于,包括壳体以及如权利要求11所述的取像装置,所述取像装置安装在所述壳体上。
PCT/CN2020/077551 2020-03-03 2020-03-03 广角镜头、取像装置及电子装置 WO2021174408A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/629,403 US20220326481A1 (en) 2020-03-03 2020-03-03 Wide-angle lens, image capturing device, and electronic device
PCT/CN2020/077551 WO2021174408A1 (zh) 2020-03-03 2020-03-03 广角镜头、取像装置及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077551 WO2021174408A1 (zh) 2020-03-03 2020-03-03 广角镜头、取像装置及电子装置

Publications (1)

Publication Number Publication Date
WO2021174408A1 true WO2021174408A1 (zh) 2021-09-10

Family

ID=77614465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077551 WO2021174408A1 (zh) 2020-03-03 2020-03-03 广角镜头、取像装置及电子装置

Country Status (2)

Country Link
US (1) US20220326481A1 (zh)
WO (1) WO2021174408A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104166220A (zh) * 2014-07-15 2014-11-26 浙江舜宇光学有限公司 3d交互式镜头
CN105607223A (zh) * 2014-11-18 2016-05-25 三星电机株式会社 镜头模块
CN107272165A (zh) * 2017-08-15 2017-10-20 浙江舜宇光学有限公司 摄像透镜组
CN208488590U (zh) * 2017-06-02 2019-02-12 康达智株式会社 摄像镜头
TWI662315B (zh) * 2018-12-17 2019-06-11 Zhong Yang Technology Co., Ltd 光學成像透鏡組、成像裝置及電子裝置
KR20190080527A (ko) * 2017-12-28 2019-07-08 오필름코리아(주) 촬상 광학계

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104166220A (zh) * 2014-07-15 2014-11-26 浙江舜宇光学有限公司 3d交互式镜头
CN105607223A (zh) * 2014-11-18 2016-05-25 三星电机株式会社 镜头模块
CN208488590U (zh) * 2017-06-02 2019-02-12 康达智株式会社 摄像镜头
CN107272165A (zh) * 2017-08-15 2017-10-20 浙江舜宇光学有限公司 摄像透镜组
KR20190080527A (ko) * 2017-12-28 2019-07-08 오필름코리아(주) 촬상 광학계
TWI662315B (zh) * 2018-12-17 2019-06-11 Zhong Yang Technology Co., Ltd 光學成像透鏡組、成像裝置及電子裝置

Also Published As

Publication number Publication date
US20220326481A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2021233052A1 (zh) 光学镜头及成像设备
WO2018192126A1 (zh) 摄像镜头
WO2012002167A1 (ja) 撮影レンズ及び撮影装置
WO2022143647A1 (zh) 光学镜头及成像设备
WO2021184165A1 (zh) 光学系统、摄像模组及电子装置
CN110471167B (zh) 摄像光学镜头
WO2021109127A1 (zh) 光学系统、摄像模组及电子装置
CN113805310B (zh) 光学系统、取像模组及电子设备
US20090103190A1 (en) Image lens and image device
WO2022199465A1 (zh) 光学镜头及成像设备
US20220137365A1 (en) Camera lens group
WO2022105926A1 (zh) 光学镜头及成像设备
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
US20210333514A1 (en) Camera lens assembly
CN111830685B (zh) 光学系统、摄像模组和电子设备
US7529041B2 (en) Optical lens system for taking image
WO2021184167A1 (zh) 透镜系统、成像模组及电子装置
CN113534408B (zh) 光学系统、摄像模组及电子设备
WO2021087661A1 (zh) 光学透镜组、取像装置及电子装置
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
US20220342186A1 (en) Optical Imaging Lens Group
WO2022041054A1 (zh) 光学系统、摄像模组和电子设备
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
WO2021174408A1 (zh) 广角镜头、取像装置及电子装置
WO2021217663A1 (zh) 光学系统、镜头模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923533

Country of ref document: EP

Kind code of ref document: A1