WO2021134698A1 - 一种探测参考信号srs周期的配置方法及装置 - Google Patents

一种探测参考信号srs周期的配置方法及装置 Download PDF

Info

Publication number
WO2021134698A1
WO2021134698A1 PCT/CN2019/130938 CN2019130938W WO2021134698A1 WO 2021134698 A1 WO2021134698 A1 WO 2021134698A1 CN 2019130938 W CN2019130938 W CN 2019130938W WO 2021134698 A1 WO2021134698 A1 WO 2021134698A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
rrc connected
period
connected users
time period
Prior art date
Application number
PCT/CN2019/130938
Other languages
English (en)
French (fr)
Inventor
李静
吴利华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/130938 priority Critical patent/WO2021134698A1/zh
Priority to CN201980099979.3A priority patent/CN114342532A/zh
Priority to EP19958390.7A priority patent/EP4075902A4/en
Publication of WO2021134698A1 publication Critical patent/WO2021134698A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/83Admission control; Resource allocation based on usage prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of wireless communication technologies, and in particular to a method and device for configuring the SRS period of a sounding reference signal.
  • a sounding reference signal is an uplink reference signal sent by a terminal device to a network device, used to estimate uplink channel performance, and provide a reference for uplink resource scheduling and downlink beamforming.
  • SRS signals can be sent periodically, and the configuration of the SRS period is closely related to the number of users in a cell.
  • a shorter SRS period can be configured to ensure the downlink beamforming (BF) performance of users as much as possible.
  • BF downlink beamforming
  • a longer SRS period can be configured to ensure the basic SRS of users. Measure performance to prevent some users from dropping calls due to not being allocated SRS resources.
  • RRC Radio Resource Control
  • the SRS period is adjusted in real time according to the number of users in the cell, the number of users fluctuates greatly in a short period of time or the user number statistics are not timely and accurate, etc., which will cause the SRS period to be adjusted too frequently, resulting in huge signaling overhead.
  • the embodiments of the present application provide a method and device for configuring a sounding reference signal SRS period, which are used to effectively configure the SRS period and reduce signaling overhead.
  • an embodiment of the present application provides a method for configuring a sounding reference signal SRS period.
  • the method may be executed by a communication device, such as a network device or a chip in a network device.
  • the method includes: the communication device acquires at least one of the first cell The number of RRC connected users of the radio resource control of the neighboring cell in the first time period, based on the number of RRC connected users of at least one neighboring cell of the first cell in the first time period, predict the number of RRC connected users of the first cell in the second time period According to the predicted number of RRC connected users of the first cell in the second time period, the SRS period is configured for the terminal equipment that accesses the first cell in the second time period.
  • the communication device can predict the number of RRC connected users in the first cell in the second time period based on the number of RRC connected users in at least one neighboring cell of the first cell in the first time period before the second time period arrives, and then is The terminal device that accesses the first cell in the second time period configures the SRS period. It can be seen that the communication device can pre-configure the available SRS period in the second time period for the first cell, and there is no need to reconfigure in the second time period, thereby avoiding the problem of too frequent SRS period adjustment and effectively reducing the signaling of SRS period configuration. Overhead. At the same time, the configured SRS period can be adapted to the access condition of the first cell in the second time period.
  • the number of RRC connected users of the neighboring cell in the first time period includes that the neighboring cell is in the first time period.
  • the predicted number of RRC connected users of the first cell in the second time period may be the sum of the number of RRC connected users of at least one neighboring cell of the first cell at the first time in the first time period, where the The sum of the number of RRC connected users of the at least one neighboring cell at the first moment is greater than or equal to the sum of the number of RRC connected users of the at least one neighboring cell at other moments in the first time period.
  • the predicted number of RRC connected users of the first cell in the second time period is the maximum number of RRC connected users of at least one neighboring cell of the first cell that can be reached in the first time period. value.
  • the number of users in the first cell in the second time period can be predicted based on the maximum value of the sum of the number of RRC connected users in at least one neighboring cell of the first cell in the first time period before the second time period. Therefore, the maximum number of RRC connected users that may access the first cell in the second time period can be obtained, and the SRS period in the second time period can be configured according to the maximum number of RRC connected users, which can effectively avoid when a large number of terminal devices are in the second time period.
  • some terminal devices have a call drop problem because they cannot allocate SRS resources.
  • the communication device may predict the number of RRC connected users in the first cell in the second time period and the mapping relationship between the number of RRC connected users and the SRS period to be in the second time period.
  • the terminal equipment that accesses the first cell within the time period sets the SRS period.
  • the mapping relationship between the number of RRC connected users and the SRS period may be pre-defined or pre-configured in the communication device. In addition, the mapping relationship may also be adjusted by the communication device as needed.
  • the communication device may count the number of RRC connected users in the first cell in real time, and send (for example, may periodically send) the counted first cell to at least one neighboring cell of the first cell.
  • the number of RRC connected users in the cell, and the number of RRC connected users in the first cell counted in real time is used to configure the SRS period for each neighboring cell.
  • each neighboring cell that can support the first cell can also configure the SRS period in the same or similar manner as the first cell, thereby effectively reducing the signaling overhead for configuring the SRS period.
  • the embodiments of the present application provide another method for configuring the sounding reference signal SRS period.
  • the method can be executed by a communication device, such as a network device or a chip in a network device.
  • the method includes: the communication device obtains the RRC of the first cell Historical statistical data of the number of connected users in a change period, where the change period includes multiple time periods, and the historical statistical data includes the number of RRC connected users of the first cell in each period of the change period; The number of RRC connected users in the period when a cell is at the same position as the third period in a change cycle, predict the number of RRC connected users in the first cell in the third period; the communication device predicts the RRC connected users in the third period of the first cell based on the predicted RRC in the third period The number of connected users, configure the SRS period for the terminal equipment that accesses the first cell in the third time period.
  • the communication device can predict the number of RRC connected users in the first cell in the third time period according to the historical change rule of the number of RRC connected users in the first cell before the arrival of the third time period.
  • the terminal equipment of the first cell configures the SRS period.
  • the communication device can pre-configure the available SRS period in the third time period for the first cell without reconfiguration in the third time period, thereby avoiding the problem of too frequent adjustment of the SRS period and effectively reducing the signaling overhead of the SRS period configuration.
  • the configured SRS period can be adapted to the access condition of the first cell in the third time period.
  • the communication device acquiring historical statistical data of the number of RRC connected users of the first cell within a change period may include: the communication device acquiring the first cell within a set time range in the past According to the number of RRC connected users of the first cell in the past set duration range, the change period is determined, and the set duration range includes multiple change periods; for each period in a change period, The communication device determines the number of RRC connected users of the first cell in the period in the historical statistical data according to the number of RRC connected users of the period in the multiple change cycles included in the set time range.
  • the historical statistical data of the number of RRC connected users in the first cell within a change period can reflect the changing law of the number of RRC connected users in the first cell, thereby predicting the number of RRC connected users in the first cell in the third period. Numbers provide guidance.
  • the number of RRC connected users of the first cell in the period in the historical statistical data may be the number of RRC connected users in the first cell in the set time range.
  • the average value of the number of RRC connected users in the period; or, the number of RRC connected users in the first cell in the period in the historical statistical data is the period in the multiple change cycles included in the first cell within the set time period.
  • the value of the number of RRC connected users after data filtering; or, the communication device may also determine the history based on the cumulative distribution curve of the number of RRC connected users in the period of the multiple change cycles included in the set time range of the first cell The number of RRC connected users of the first cell in the period in the statistical data.
  • the communication device can use a variety of possible methods to determine the specific value of the number of RRC connected users corresponding to each period of the change cycle of the number of RRC connected users in the first cell in the historical statistical data, thereby effectively improving the SRS cycle The flexibility of the configuration method.
  • an embodiment of the present application provides a communication device, which has the function of a communication device in any possible design of the first aspect or the first aspect, or has the second aspect or the second aspect.
  • the device may be a network device, such as a base station, or a device included in the network device, such as a chip.
  • the functions of the above-mentioned communication device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support the device to perform the corresponding function of the communication device in the first aspect or any one of the designs in the first aspect. , Or perform the corresponding function of the communication device in the above-mentioned second aspect or any one of the second aspects of the design.
  • the transceiver module is used to support communication between the device and other communication devices. For example, when the device is a network device, it can receive the number of RRC connected users of at least one neighboring cell of the first cell in the first time period from other network devices.
  • the communication device may also include a storage module, which is coupled with the processing module, which stores program instructions and data necessary for the device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
  • the structure of the device includes a processor and may also include a memory.
  • the processor is coupled with the memory, and can be used to execute computer program instructions stored in the memory, so that the device executes the method in any possible design of the first aspect or the first aspect, or executes the second aspect or the second aspect. Any of the possible design methods.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in a network device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or an instruction is executed by the processor , So that the chip system implements the method in any possible design of the first aspect or the first aspect, or implements the method in any possible design of the second aspect or the second aspect.
  • the chip system further includes an interface circuit for receiving and transmitting code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • an embodiment of the present application provides a readable storage medium on which a computer program or instruction is stored.
  • the computer program or instruction When the computer program or instruction is executed, the computer is caused to execute any of the first aspect or the first aspect.
  • the embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes the method in the first aspect or any one of the possible designs in the first aspect, Or implement the above-mentioned second aspect or any one of the possible design methods of the second aspect.
  • an embodiment of the present application provides a communication system, which includes the communication device and at least one terminal device.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic flowchart of a method for configuring a sounding reference signal SRS period according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a high-speed scene provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of changes in the number of RRC connected users in the first cell in a high-speed scenario according to an embodiment of the application;
  • FIG. 5 is a schematic diagram of predicting the number of RRC connected users in the first cell in a high-speed scenario according to an embodiment of the application;
  • FIG. 6 is a schematic flowchart of another method for configuring a sounding reference signal SRS period according to an embodiment of the application
  • FIG. 7 is a schematic diagram of historical statistical data of the number of RRC connected users of the first cell in a change period provided by an embodiment of the application;
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WIMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • FIG. 1 is a schematic diagram of a network architecture of a communication system to which an embodiment of this application is applicable.
  • the communication system 100 includes a network device 110 and at least one terminal device (the terminal device 120, the terminal device 130, the terminal device 140, the terminal device 150, and the terminal device 160 as shown in FIG. 1).
  • the network device 110 may communicate with at least one terminal device (such as the terminal device 120) through uplink (UL) and downlink (DL).
  • UL uplink
  • DL downlink
  • the network device 110 is a device that provides wireless communication functions for terminal devices.
  • the network device can be a node in a radio access network, can also be called a base station, or a radio access network (RAN) node (Or equipment).
  • the network device can be used to convert received air frames and Internet Protocol (IP) packets into each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • Network equipment includes but is not limited to: next-generation base stations (gnodeB, gNB) in 5G, 6G and even 7G, evolved node B (evolved node B, eNB), radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transmitter station, BTS), transmission and receiving point (TRP), home base station (for example, home evolved nodeB, Or home node B, HNB), baseband unit (baseBand unit, BBU), baseband pool BBU pool, WiFi access point (AP), transmitting point (TP), mobile switching center, cloud access network
  • CU next-generation base stations
  • DU distributed unit
  • CloudRAN cloud radio access network
  • the eNB may correspond, a corresponding access network device 5G 5G in the system, e.g. gNB.
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems, such as 6G or 7G systems. Therefore, the network equipment in FIG. 1 can also correspond to the network equipment in the future mobile communication system.
  • Terminal equipment also called UE is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed on In the air (for example, airplanes, balloons, satellites, etc.).
  • the terminal device can communicate with the core network via the radio access network RAN, and exchange voice and/or data with the RAN.
  • the terminal can be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, and an industrial control (industrial control).
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • Wireless terminals wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, smart cities
  • the terminal device may sometimes be referred to as user equipment (UE), mobile station, and remote station, etc.
  • UE user equipment
  • the embodiments of the present application do not limit the specific technology, device form, and name adopted by the terminal device.
  • the terminal device can be used in but not limited to 5G, 6G or even 7G communication systems.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device in the embodiments of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit that is built into a vehicle as one or more components or units, and the vehicle passes through the built-in vehicle-mounted module, vehicle-mounted Modules, on-board components, on-board chips, or on-board units can implement the method of the present application.
  • each network device may provide services for multiple terminal devices.
  • the embodiment of the present application does not limit the number of access network devices and terminal devices in the communication system.
  • the access network device in Fig. 1 and each of the terminal devices or all of the terminal devices in the multiple terminal devices can implement the technical solutions provided in the embodiments of the present application.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application. "At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • FIG. 2 is a schematic flowchart of a method for configuring a sounding reference signal SRS period according to an embodiment of this application. The method includes the following steps:
  • Step S201 The communication device obtains the number of RRC connected users in at least one neighboring cell of the first cell in the first time period.
  • the communication device may be the network device in the communication system shown in FIG. 1 or the chip in the network device, and the communication device may include one or more cells under the coverage.
  • the first cell refers to one of the cells covered by the communication device. At least one neighboring cell of the first cell may include a cell covered by the communication device, or may include a cell covered by other communication devices (such as other network equipment), which is not limited by this application.
  • the communication device can directly obtain the number of RRC connected users of the neighboring cell in the first time period, for example, from the memory Read directly. If a neighboring cell and the first cell are under the coverage of different communication devices, the communication device can obtain the neighboring cell’s information in the first time period from another communication device that governs the neighboring cell through the interface between the communication devices. Number of RRC connected users.
  • the first time period may include multiple moments. For each neighboring cell in at least one neighboring cell of the first cell, the number of RRC connected users of the neighboring cell in the first time period includes the number of RRC connected users of the neighboring cell in the first time period. The number of RRC connected users at each moment.
  • Step S202 The communication device predicts the number of RRC connected users in the first cell in a second time period based on the number of RRC connected users in at least one neighboring cell of the first cell in the first time period, the second time period being after the first time period.
  • the communication device can predict the number of RRC connected users in the first cell in the second time period before the second time period arrives, where the predicted number of RRC connected users in the first cell in the second time period is used to configure the first time period.
  • the SRS period of the first cell in the second period that is, the period in which a terminal device that accesses the first cell in the second period sends an SRS signal.
  • the communication device can predict the number of RRC connected users in the first cell in the second time period in the following manner:
  • the communication device For each time in the first time period, the communication device sums the number of RRC connected users of at least one neighboring cell of the first cell at that time to obtain a summation value, and further, corresponds to each time included in the first time period The maximum value of the summation value of is used as the predicted number of RRC connected users in the first cell in the second time period.
  • the predicted number of RRC connected users in the first cell in the second time period Is the sum of the number of RRC connected users corresponding to at least one neighboring cell of the first cell at the first moment, that is, the maximum value of the sum of the number of RRC connected users of at least one neighboring cell of the first cell. It can be understood that the sum of the number of RRC connected users corresponding to the at least one neighboring cell at the first moment is greater than or equal to the sum of the number of RRC connected users corresponding to the at least one neighboring cell at other moments in the first time period.
  • the first time period is located before the second time period, and the first time period may or may not be adjacent to the second time period.
  • the relationship between the first time period and the second time period may be configured by the communication device, or may be predefined or pre-configured, which is not limited in this application.
  • the duration of the first time period and the second time period may be the same or different, which is not limited by this application.
  • Step S203 The communication device configures an SRS period for the terminal equipment that accesses the first cell in the second time period according to the predicted number of RRC connected users of the first cell in the second time period.
  • the communication device is the terminal that accesses the first cell in the second time period.
  • the device configures the SRS period.
  • the mapping relationship between the number of RRC connected users and the SRS period may be configured by the communication device, or may be pre-defined or pre-configured, and may also be adjusted by the communication device in a timely manner as required, which is not limited in this application.
  • the communication device can predict the number of RRC connected users in the first cell in the second time period based on the number of RRC connected users in at least one neighboring cell of the first cell in the first time period before the arrival of the second time period, and then The terminal device that accesses the first cell in the second time period configures the SRS period. It can be seen that the communication device can pre-configure the available SRS period in the second time period for the first cell, and there is no need to reconfigure in the second time period, thereby avoiding the problem of too frequent SRS period adjustment and effectively reducing the signaling of SRS period configuration. Overhead. At the same time, the configured SRS period can be adapted to the access condition of the first cell in the second time period.
  • the communication device may periodically configure the SRS period of the first cell with the duration of the second period as the period, that is, the communication device may configure the SRS for the first cell every time the duration of the second period has elapsed. Period.
  • the above steps S201 to S203 can be repeatedly executed in the unit of the duration of the second time period, and executed once every time the duration of the second time period passes. In this way, the SRS period of the first cell can be adjusted in time to meet the communication requirements of the terminal device.
  • the technical solutions provided in the embodiments of the present application can also be applied in high-speed scenarios, such as the high-speed rail scenario shown in FIG. 3.
  • terminal devices have the characteristics of high-speed movement, fast switching in and out of cells, and batch switching in and out of cells. Due to the high-speed movement of terminal equipment, the number of RRC connected users in a cell may also change rapidly. If the SRS period is configured based on the number of RRC users counted in real time, it is possible that due to the signaling delay, the configuration speed of the SRS period cannot keep up with the moving speed of the terminal device, which makes the SRS period configuration inaccurate and requires repeated repetitions. Match.
  • the number of users in the first cell in the second time period can be predicted based on the sum of the maximum number of RRC connected users in at least one neighboring cell of the first cell in the first time period before the second time period. Therefore, the maximum number of RRC connected users that may access the first cell in the second period can be obtained, and the SRS period in the second period can be configured according to the maximum number of RRC connected users, which can effectively avoid when a large number of terminal devices are in the second period.
  • some terminal equipment may have a call drop problem due to not being allocated SRS resources.
  • the first cell is deployed along the high-speed rail line, and the number of RRC connected users shows a change pattern as shown in Figure 4. That is, when a high-speed train passes by, a large number of terminal devices quickly cut into the cell. The number of RRC connected users in a cell quickly reaches a peak. After the high-speed train passes, the number of RRC connected users in the first cell quickly returns to a low level and remains basically stable.
  • the communication device can set the duration of the second period as a high-speed train passing through the first cell based on the cell attributes of the first cell, the train schedule, and the number of passengers on the train.
  • the required average time, the duration of the first period is set to be less than the minimum departure interval between two adjacent high-speed trains in the first cell.
  • the communication device may also periodically configure the SRS period of the first cell in the unit of the duration of the second period. Specifically: the communication device may determine a period of time before the second period as the first period before the arrival of each second period. Calculate the maximum value of the sum of the number of RRC connected users in each neighboring cell of the first cell in the first time period. For example, the duration of the second period may be 15s, and the first period may be 15s, 10s, or 5s before the second period. Whenever a second period is about to arrive, the communication device can obtain each neighboring cell of the first cell. The number of RRC connected users in the first 15s, 10s, or 5s before the second time period.
  • the communication device determines the maximum value of the sum of the number of RRC connected users in each neighboring cell of the first cell in the first time period as the predicted number of RRC connected users in the first cell in the second time period. Furthermore, the communication device may configure an SRS period for the terminal equipment that accesses the first cell in the second time period according to the predicted number of RRC connected users in the first cell in the second time period.
  • the first cell and the neighboring cells of the first cell are geographically close, and a train passing through the neighboring cells of the first cell may also pass through the first cell, that is, in the high-speed rail scenario, when the first cell
  • the number of RRC connected users in the neighboring cell of the first cell may be quickly transferred to the first cell, and cause the number of RRC connected users in the first cell to increase sharply.
  • the number of RRC connected users in the first cell in the second time period is predicted, and the number of RRC connected users in the first cell is predicted based on the predicted first time period.
  • the number of RRC connected users in the first cell in the second period is configured in advance with the SRS period in the first cell in the second period, which can effectively avoid the untimely configuration of the SRS period because the adjustment speed of the SRS period cannot keep up with the moving speed of the train. The problem of too much reconfiguration signaling overhead, so as to meet the mobility requirements of terminal equipment.
  • the communication device can also count the number of RRC connected users in the first cell in real time, and periodically send the statistical first cell to at least one neighboring cell of the first cell.
  • the number of RRC connected users of the cell, and the counted number of RRC connected users of the first cell can be used to configure the SRS period in the neighboring cell.
  • each neighboring cell of the first cell can also count the number of RRC connected users in its own cell in real time, and periodically send it to the first cell, so that the communication device can use the RRC connected users counted by the neighboring cell Number, step S201 to step S203 are executed to configure the SRS period for the first cell.
  • the period for each neighboring cell of the first cell to send the statistics of the number of RRC connected users to the first cell may be the same or different from the duration of the first period and the duration of the second period, which is not limited by this application.
  • FIG. 6 is a schematic flowchart of another method for configuring a sounding reference signal SRS period according to an embodiment of this application.
  • the method includes the following steps:
  • Step S601 The communication device obtains historical statistical data of the number of RRC connected users of the first cell in a change period, the change period includes multiple periods, and the historical statistical data includes the RRC of the first cell in each period of the change period. Number of connected users.
  • the number of RRC connected users of the first cell may have a periodic change rule, and the historical statistical data of the number of RRC connected users of the first cell in a change period may be used to reflect the RRC of the first cell
  • the change rule of the number of connected users, and the change period may be understood as a period in which the number of RRC connected users in the first cell periodically changes.
  • the historical statistical data of the number of RRC connected users in the first cell within a change period can be obtained in the following manner:
  • the communication device may obtain the number of RRC connected users of the first cell within a set time period in the past.
  • the setting time range can be set to be longer, for example, it can be set to the past 1 month, 2 months or even half a year. It should be understood that the set duration range may be configured by the communication device, or may also be predefined or configured, which is not limited by this application.
  • the communication device may determine a change period of the number of RRC connected users according to the number of RRC connected users of the first cell in the past set time range, and the set time range includes multiple change periods.
  • This step can also be understood as determining the period of the periodic change of the number of RRC connected users in the first cell.
  • the change period may be 1 day, 2 days, 3 days, 1 week, 2 weeks, and so on. If the change period is 1 week, it can indicate that the change of the number of RRC connected users in the first cell in each week is the same or similar.
  • the communication device may determine that the first cell is in the historical statistical data according to the number of RRC connected users in the period in the multiple change periods included in the set time range of the first cell.
  • the number of RRC connected users in this period may be determined.
  • the communication device may determine the average value of the number of RRC connected users in the period of the multiple change periods included in the set time range of the first cell as historical statistical data.
  • the number of RRC connected users in the first cell in this period of time; or, in another possible design, the communication device may also determine the number of RRC connected users in the first cell in the period of time among the multiple change periods included in the set time range.
  • the communication device is also based on the first The cumulative distribution curve (CDF curve) of the number of RRC connected users in the period in the multiple change cycles included in the set time range of the cell, and determine the number of RRC connected users in the first cell in the period in the historical statistical data,
  • CDF curve can be drawn according to the number of RRC connected users in the period in the multiple change periods included in the set time range of the first cell, and then the value corresponding to the x% point in the CDF curve can be taken as historical statistics The number of RRC connected users in the first cell during the period in the data.
  • the communication device may divide a change period of the number of RRC connected users in the first cell into multiple time periods, and one time period can be understood as the first time period.
  • the statistical granularity in time of the statistical data of the number of RRC connected users in a cell that is, the statistical data of the number of RRC connected users in a first cell corresponding to a period of time.
  • a change period can be 1 week and a period of 15 minutes.
  • the communication device can divide a change period into multiple periods according to the time granularity of every 15 minutes, and determine the number of connected users in the first cell corresponding to each period one by one. Statistics.
  • the communication device can obtain the number of RRC connected users of the first cell in each period of a change period, and thus obtain historical statistical data of the number of RRC connected users of the first cell in a change period, that is, the RRC connection of the first cell
  • the changing law of the number of users may also be in the form of a function curve as shown in FIG. 7, or may be in the form of a data table or other graphs, which is not limited by this application.
  • Step S602 The communication device predicts the number of RRC connected users in the first cell in the third period according to the number of RRC connected users in the period when the first cell is in the same position as the third period in the change period.
  • Step S603 The communication device configures an SRS period for the terminal equipment that accesses the first cell in the third time period according to the predicted number of RRC connected users of the first cell in the third time period.
  • the communication device needs to configure the SRS period of the first cell in the third period. If the change period of the number of RRC connected users in the first cell is 1 week, one period is 15 minutes, and the third period is the morning of a certain Monday. From 10:00 to 10:15, the communication device can, before the arrival of the third time period, according to the historical statistical data of the number of RRC connected users in the first cell in a change period, the historical statistical data of 10 am on Monday.
  • the number of RRC connected users in the first cell corresponding to the points from 00 to 10:15 is determined as the number of RRC connected users in the first cell in the predicted third time period, and then based on the predicted number of RRC connected users in the first cell in the third time period For the number of RRC connected users, configure the SRS period for the terminal equipment that accesses the first cell in the third time period.
  • the communication device can predict the number of RRC connected users in the first cell in the third time period according to the historical change rule of the number of RRC connected users in the first cell before the arrival of the third time period.
  • the terminal equipment entering the first cell configures the SRS period. It can be seen that the communication device can pre-configure the available SRS period in the third time period for the first cell, and there is no need to reconfigure in the third time period, thereby avoiding the problem of too frequent SRS period adjustment and effectively reducing the signaling of SRS period configuration. Overhead.
  • the configured SRS period can be adapted to the access condition of the first cell in the third time period.
  • the two methods for configuring the SRS period provided in the embodiments of the present application can be understood as two methods for configuring the SRS period.
  • the communication device can determine the application scenario in which the first cell is located according to the cell attributes of the first cell. Furthermore, the method of configuring the SRS period for the first cell is selected.
  • the communication device can use the method of configuring the SRS period described in the first embodiment; if the first cell is deployed in large public places (such as stadiums, campuses, teachers, stations, traffic lights, etc.), so considering that there may be a large number of users collectively cut in and out in a short time in the first cell, but they will not move at high speed.
  • the communication device may use the method of configuring the SRS period described in the second embodiment.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device 800 includes a transceiver module 810 and a processing module 820.
  • the communication device can be used to implement the functions of the communication device in any of the foregoing method embodiments.
  • the communication device may be a network device or a chip included in the network device.
  • the transceiver module 810 is configured to obtain the number of radio resource control RRC connected users of at least one neighboring cell of the first cell in the first time period; processing The module 820 is used to predict the number of RRC connected users in the first cell in a second time period based on the number of RRC connected users in at least one neighboring cell of the first cell in the first time period, the second time period being after the first time period, According to the predicted number of RRC connected users of the first cell in the second period, the SRS period is configured for the terminal equipment that accesses the first cell in the second period.
  • the number of radio resource control RRC connected users of each neighboring cell in the first time period includes the number of RRC connected users of the neighboring cell at each time in the first time period; the predicted first cell is in The number of RRC connected users in the second time period is: the sum of the number of RRC connected users of at least one neighboring cell of the first cell at the first time in the first time period, and the number of RRC connected users of the at least one neighboring cell at the first time The sum is greater than or equal to the sum of the number of RRC connected users of the at least one neighboring cell at other moments in the first time period.
  • the processing module 820 is specifically configured to: according to the predicted number of RRC connected users of the first cell in the second period, and the mapping relationship between the number of RRC connected users and the SRS period, The terminal equipment that accesses the first cell within the time period sets the SRS period.
  • the processing module 820 is further configured to count the number of RRC connected users of the first cell in real time; the transceiver module 810 is also configured to periodically send the statistical first cell to at least one neighboring cell of the first cell.
  • the number of RRC connected users in the cell, and the number of RRC connected users in the first cell counted in real time is used to configure the SRS period for each neighboring cell.
  • processing module 820 involved in the communication device may be implemented by a processor or processor-related circuit components
  • transceiver module 810 may be implemented by a transceiver or transceiver-related circuit components.
  • the operation and/or function of each module in the communication device is to realize the corresponding process of the method shown in Fig. 2 respectively, and for the sake of brevity, it will not be repeated here.
  • FIG. 9 is a schematic diagram of another structure of a communication device provided in an embodiment of the application.
  • the communication device may be specifically a type of network equipment, such as a base station, for implementing the functions of the network equipment in any of the foregoing method embodiments.
  • the network equipment includes: one or more radio frequency units, such as a remote radio unit (RRU) 901 and one or more baseband units (BBU) (also known as digital units, digital units, DU) )902.
  • the RRU 901 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 9011 and a radio frequency unit 9012.
  • the RRU 901 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the part 902 of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 901 and the BBU 902 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 902 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 902 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 902 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access indication (such as an LTE network), or they may support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 902 may also include memories 9021 and 910022, and the memory 10021 is used to store necessary instructions and data.
  • the processor 9022 is used to control the base station to perform necessary actions, for example, to control the base station to perform the sending operation in the foregoing method embodiment.
  • the memory 9021 and the processor 9022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • An embodiment of the present application further provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller).
  • the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • each step in the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any of the above-mentioned method embodiments In the method.
  • the embodiments of the present application also provide a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication system, which includes a network device and at least one terminal device.
  • processors mentioned in the embodiments of this application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种探测参考信号SRS周期的配置方法及装置,其中方法包括:通信装置获取第一小区的至少一个邻区在第一时段内的无线资源控制RRC连接用户数,根据第一小区的至少一个邻区在第一时段内的RRC连接用户数,预测第一小区在第二时段内的RRC连接用户数,根据预测的第一小区在第二时段内的RRC连接用户数,为在第二时段内接入第一小区的终端设备配置SRS周期。如此,通信装置可预先为第一小区配置第二时段内可用的SRS周期,从而可避免SRS周期调整过于频繁的问题,有效降低SRS周期配置的信令开销。

Description

一种探测参考信号SRS周期的配置方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种探测参考信号SRS周期的配置方法及装置。
背景技术
探测参考信号(sounding reference signal,SRS)是终端设备发送给网络设备的上行参考信号,用于估计上行信道性能,为上行资源调度以及下行波束赋形提供参考。
现有技术中,SRS信号可以周期性发送,SRS周期的配置与小区用户数密切相关。小区用户数较少时,配置较短的SRS周期,可以尽可能保障用户下行的波束赋形(beamforming,BF)性能,小区用户数较多时,配置较长的SRS周期,可以保障用户基本的SRS测量性能,避免部分用户因分配不到SRS资源而产生掉话。然而,SRS周期的调整需要通过无线资源控制(radio resource control,RRC)信令对用户的SRS资源进行重配。若根据小区用户数实时地调整SRS周期,在用户数短时间内波动较大或是用户数统计不及时不准确等场景下,会导致SRS周期调整过于频繁,产生巨大的信令开销。
发明内容
本申请实施例提供一种探测参考信号SRS周期的配置方法及装置,用以有效地配置SRS周期,减小信令开销。
第一方面,本申请实施例提供一种探测参考信号SRS周期的配置方法,该方法可由通信装置执行,例如网络设备或网络设备中的芯片,该方法包括:通信装置获取第一小区的至少一个邻区在第一时段内的无线资源控制RRC连接用户数,根据第一小区的至少一个邻区在第一时段内的RRC连接用户数,预测第一小区在第二时段内的RRC连接用户数,根据预测的第一小区在第二时段内的RRC连接用户数,为在第二时段内接入第一小区的终端设备配置SRS周期。
采用上述设计,通信装置可在第二时段到来前,根据第一时段内第一小区的至少一个邻区的RRC连接用户数,来预测第二时段内第一小区的RRC连接用户数,进而为在第二时段内接入第一小区的终端设备配置SRS周期。由此可知,通信装置可预先为第一小区配置第二时段内可用的SRS周期,在第二时段内无需重新配置,从而可避免SRS周期调整过于频繁的问题,有效降低SRS周期配置的信令开销。同时,又可使配置的SRS周期符合第一小区在第二时段内的接入情况。
在第一方面的一种可能的设计中,针对第一小区的至少一个邻区中的每个邻区,该邻区在第一时段内的RRC连接用户数包括该邻区在第一时段内的各个时刻的RRC连接用户数。如此,所述预测的第一小区在第二时段内的RRC连接用户数可以为,第一小区的至少一个邻区在第一时段内的第一时刻的RRC连接用户数之和,其中,该至少一个邻区在第一时刻的RRC连接用户数之和大于或等于该至少一个邻区在第一时段内的其他时刻的RRC连接用户数之和。或者,也可以理解为,所述预测的第一小区在第二时段内的RRC连接用户数为,第一小区的至少一个邻区的RRC连接用户数之和在第一时段内可达到的 最大值。
采用上述设计,由于可根据在第二时段之前的第一时段内,第一小区的至少一个邻区的RRC连接用户数之和的最大值,来预测第二时段内第一小区的用户数,因此可得到在第二时段内可能接入第一小区的最大RRC连接用户数,根据该最大的RRC连接用户数来配置第二时段内的SRS周期,可有效避免当大量终端设备在第二时段内批量接入第一小区时,部分终端设备因分配不到SRS资源而产生掉话的问题。
在第一方面的一种可能的设计中,通信装置可根据预测的第一小区在第二时段内的RRC连接用户数,以及RRC连接用户数与SRS周期之间的映射关系,为在第二时段内接入第一小区的终端设备设置SRS周期。其中,所述RRC连接用户数与SRS周期之间的映射关系可以是预定义的,也可以是预先配置在通信装置中的,此外,该映射关系也可以由通信装置根据需要适时调整。
在第一方面的一种可能的设计中,通信装置可实时统计第一小区的RRC连接用户数,并向第一小区的至少一个邻区发送(例如,可以周期性地发送)统计的第一小区的RRC连接用户数,实时统计的第一小区的RRC连接用户数用于每个邻区配置SRS周期。如此,可支持第一小区的各个邻区也能够采用与第一小区相同或类似的方式来配置SRS周期,从而有效减小配置SRS周期的信令开销。
第二方面,本申请实施例提供另一种探测参考信号SRS周期的配置方法,该方法可由通信装置执行,例如网络设备或网络设备中的芯片,该方法包括:通信装置获取第一小区的RRC连接用户数在一个变化周期内的历史统计数据,所述变化周期包括多个时段,所述历史统计数据包括第一小区在该变化周期内的每个时段的RRC连接用户数;通信装置根据第一小区在一个变化周期中与第三时段处于相同位置的时段的RRC连接用户数,预测第一小区在第三时段的RRC连接用户数;通信装置根据预测的第一小区在第三时段的RRC连接用户数,为在第三时段内接入第一小区的终端设备配置SRS周期。
采用上述设计,通信装置可在第三时段到来前,根据第一小区的RRC连接用户数的历史变化规律来预测第三时段内第一小区的RRC连接用户数,从而为第三时段内接入第一小区的终端设备配置SRS周期。如此,通信装置可预先为第一小区配置第三时段内可用的SRS周期,在第三时段内无需重新配置,从而可避免SRS周期调整过于频繁的问题,有效降低SRS周期配置的信令开销。同时,又可使配置的SRS周期符合第一小区在第三时段内的接入情况。
在第二方面的一种可能的设计中,该通信装置获取第一小区的RRC连接用户数在一个变化周期内的历史统计数据可包括:通信装置获取第一小区在过去的设定时长范围内的RRC连接用户数,根据该第一小区在过去的设定时长范围内的RRC连接用户数,确定变化周期,该设定时长范围包括多个变化周期;针对一个变化周期中的每个时段,通信装置根据第一小区在该设定时长范围内包括的多个变化周期中的该时段的RRC连接用户数,确定历史统计数据中第一小区在该时段的RRC连接用户数。如此,可使得第一小区的RRC连接用户数在一个变化周期内的历史统计数据能够反映第一小区的RRC连接用户数的变化规律,从而为预测第一小区在第三时段内的RRC连接用户数提供指导。
在第二方面的一种可能的设计中,所述历史统计数据中第一小区在该时段的RRC连接用户数可以为该第一小区在设定时长范围内包括的多个变化周期中的该时段的RRC连接用户数的平均值;或者,所述历史统计数据中第一小区在该时段的RRC连接用户数为 该第一小区在设定时长范围内包括的多个变化周期中的该时段的RRC连接用户数经过数据滤波的值;或者,通信装置还可根据第一小区在设定时长范围内包括的多个变化周期中的该时段的RRC连接用户数的累积分布曲线,来确定历史统计数据中第一小区在该时段的RRC连接用户数。
采用上述设计,通信装置可采用多种可能的方式来确定历史统计数据中第一小区在一个RRC连接用户数的变化周期的各个时段对应的RRC连接用户数的具体数值,从而可有效提高SRS周期配置方法的灵活性。
第三方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或第一方面的任一种可能的设计中通信装置的功能,或者具有实现上述第二方面或第二方面的任一种可能的设计中通信装置的动能。该装置可以为网络设备,例如基站,也可以为网络设备中包含的装置,例如芯片。上述通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该装置执行上述第一方面或第一方面的任一种设计中通信装置相应的功能,或者执行上述第二方面或第二方面的任一种设计中通信装置相应的功能。收发模块用于支持该装置与其他通信装置之间的通信,例如该装置为网络设备时,可从其他网络设备接收第一小区的至少一个邻区在第一时段内的RRC连接用户数。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第一方面或第一方面的任一种可能的设计中的方法,或者执行上述第二方面或第二方面的任一种可能的设计中的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为终端设备时,该通信接口可以是收发器或输入/输出接口;当该装置为网络设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第四方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的设计中的方法、或实现上述第二方面或第二方面的任一种可能的设计中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于接收代码指令并传输至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第五方面,本申请实施例提供一种可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法、或执行上述第二方面或第二方面的任一种可能的设计中的方法。
第六方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法、或执行上述第二方面或第二方面的任一种可能的设计中的方法。
第七方面,本申请实施例提供一种通信系统,该通信系统包括所述通信设备和至少一个终端设备。
附图说明
图1为本申请实施例适用的一种通信系统的网络架构示意图;
图2为本申请实施例提供的一种探测参考信号SRS周期的配置方法的流程示意图;
图3为本申请实施例提供的一种高速场景的示意图;
图4为本申请实施例提供的高速场景下第一小区中的RRC连接用户数的变化情况示意图;
图5为本申请实施例提供的高速场景下预测第一小区中的RRC连接用户数的示意图;
图6为本申请实施例提供的另一种探测参考信号SRS周期的配置方法的流程示意图;
图7为本申请实施例提供的第一小区的RRC连接用户数在一个变化周期中的历史统计数据的示意图;
图8为本申请实施例提供的一种通信装置的结构示意图;
图9为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),或者应用于未来的通信系统或其它类似的通信系统等。
请参考图1,为本申请实施例适用的一种通信系统的网络架构示意图。该通信系统100包括网络设备110和至少一个终端设备(如图1中所示的终端设备120、终端设备130、终端设备140、终端设备150和终端设备160)。网络设备110可通过上行链路(uplink,UL)和下行链路(downlink,DL)与至少一个终端设备(如终端设备120)进行通信。
网络设备110是一种为终端设备提供无线通信功能的设备,网络设备可以为无线接入 网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。网络设备包括但不限于:5G、6G甚至7G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、传输接收点(transmitting and receiving point,TRP)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、基带池BBU pool、WiFi接入点(access point,AP)、发射点(transmitting point,TP)、移动交换中心、云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)等。
应理解,网络设备在不同的系统中对应不同的设备,例如在第四代移动通信技术(the4 th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,如6G或者7G系统,因此图1中的网络设备也可以对应未来的移动通信系统中的网络设备。
终端设备(也可以称为UE)是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以经无线接入网RAN与核心网进行通信,与RAN交换语音和/或数据。终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端设备有时也可以称为用户设备(user equipment,UE)、移动台和远方站等,本申请的实施例对终端设备所采用的具体技术、设备形态以及名称不做限定。该终端设备可以用于但不限于5G、6G甚至7G的通信系统。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
本申请实施例中的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
应理解,该通信系统100中也可以存在多个网络设备,每个网络设备可以为多个终端设备提供服务,本申请实施例对通信系统中接入网设备和终端设备的数量不作限定。图1中的接入网设备,以及多个终端设备中的部分终端设备或全部终端设备中的每个终端设备 都可以实施本申请实施例所提供的技术方案。
还应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
实施例一
请参考图2,为本申请实施例提供的一种探测参考信号SRS周期的配置方法的流程示意图,该方法包括如下步骤:
步骤S201、通信装置获取第一小区的至少一个邻区在第一时段内的RRC连接用户数。
本申请实施例中,通信装置可以为图1中所示的通信系统中的网络设备或网络设备中的芯片,该通信装置的覆盖下可包括一个或多个小区。第一小区是指该通信装置所覆盖的其中一个小区。该第一小区的至少一个邻区可以包括该通信装置覆盖下的小区,也可以包括其他通信装置(如其他网络设备)覆盖下的小区,本申请并不限定。
若上述至少一个邻区中的某一邻区与第一小区均在该通信装置的覆盖下,那么该通信装置可以直接获取该邻区在第一时段内的RRC连接用户数,例如从内存中直接读取。若某一邻区与第一小区在不同通信装置的覆盖下,那么该通信装置可通过通信装置之间的接口从管辖该邻区的另一通信装置处获取该邻区在第一时段内的RRC连接用户数。
所述第一时段可包括多个时刻,针对第一小区的至少一个邻区中的每个邻区,该邻区在第一时段内的RRC连接用户数包括该邻区在第一时段内的各个时刻的RRC连接用户数。
步骤S202、通信装置根据第一小区的至少一个邻区在第一时段内的RRC连接用户数,预测第一小区在第二时段内的RRC连接用户数,该第二时段在第一时段之后。
本申请实施例中,通信装置可在第二时段到来前,预测第二时段内第一小区的RRC连接用户数,其中预测的第二时段内第一小区的RRC连接用户数,用于配置第二时段内第一小区的SRS周期,即在第二时段内接入第一小区的终端设备发送SRS信号的周期。
具体的,通信装置可通过如下方式预测第二时段内第一小区的RRC连接用户数:
针对第一时段内的每个时刻,通信装置将第一小区的至少一个邻区在该时刻的RRC连接用户数进行求和,得到求和值,进而,将第一时段中包括的各个时刻对应的求和值中的最大值,作为预测的第二时段内第一小区的RRC连接用户数。
也就是说,假设在第一时段中,第一小区的至少一个邻区的RRC连接用户数之和在第一时刻达到最大值,那么预测的第一小区在第二时段内的RRC连接用户数为,第一小区的至少一个邻区在第一时刻对应的RRC连接用户数之和,即第一小区的至少一个邻区 的RRC连接用户数之和的最大值。可以理解,该至少一个邻区在第一时刻对应的RRC连接用户数之和大于或等于该至少一个邻区在第一时段内的其他时刻对应的RRC连接用户数之和。
应理解,本申请实施例中,第一时段位于第二时段之前,第一时段可以与第二时段相邻,也可以不相邻。第一时段与第二时段的关系可以由通信装置配置,也可以是预定义或预配置的,本申请并不限定。此外,第一时段与第二时段的时长可以相同或不同,本申请也不限定。
步骤S203、通信装置根据预测的第一小区在第二时段内的RRC连接用户数,为在第二时段内接入第一小区的终端设备配置SRS周期。
具体的,该通信装置根据预测的第一小区在第二时段内的RRC连接用户数,以及RRC连接用户数与SRS周期之间的映射关系,为在第二时段内接入第一小区的终端设备配置SRS周期。该RRC连接用户数与SRS周期之间的映射关系可以是通信装置配置的,也可以是预定义或预配置的,还可由通信装置根据需要适时调整,本申请并不限定。
采用上述技术方案,通信装置可在第二时段到来前,根据第一时段内第一小区的至少一个邻区的RRC连接用户数,预测第二时段内第一小区的RRC连接用户数,进而为在第二时段内接入第一小区的终端设备配置SRS周期。由此可知,通信装置可预先为第一小区配置第二时段内可用的SRS周期,在第二时段内无需重新配置,从而可避免SRS周期调整过于频繁的问题,有效降低SRS周期配置的信令开销。同时,又可使配置的SRS周期符合第一小区在第二时段内的接入情况。
进一步地,本申请实施例中,通信装置可以第二时段的时长为周期,周期性地配置第一小区的SRS周期,即通信装置可每经过一个第二时段的时长为第一小区配置一次SRS周期,相应地,上述步骤S201至步骤S203可以第二时段的时长为单位重复地执行,每经过一次第二时段的时长就执行一次。如此,可使得第一小区的SRS周期可以被及时调整,以满足终端设备的通信需求。
本申请实施例提供的技术方案还可应用于高速场景下,例如图3所示的高铁场景。高速场景下,终端设备具有高速移动、快速切入切出小区、以及批量切入切出小区等特征。由于终端设备的高速移动,小区内的RRC连接用户数也有可能快速变化。若根据实时统计的RRC用户数配置SRS周期,则有可能因信令时延的存在,SRS周期的配置速度跟不上终端设备的移动速度,而使得SRS周期配置不准确,需要进行反复的重配。而本申请实施例中,由于可根据在第二时段之前的第一时段内,第一小区的至少一个邻区的最大RRC连接用户数之和,来预测第二时段内第一小区的用户数,因此可得到在第二时段内可能接入第一小区的最大RRC连接用户数,根据该最大的RRC连接用户数来配置第二时段内的SRS周期,可有效避免当大量终端设备在第二时段内批量接入第一小区时,部分终端设备因分配不到SRS资源而产生掉话的问题。
举例来说,如图3所示,第一小区部署在高铁沿线,其RRC连接用户数呈现出如图4所示的变化规律,即当高速列车经过时,大量终端设备快速地切入小区,第一小区内的RRC连接用户数快速达到峰值,在高速列车经过后,第一小区内的RRC连接用户数又快速地恢复到较低水平,且保持基本稳定。
采用本申请实施例提供的技术方案,通信装置可根据第一小区的小区属性、列车时刻表、以及列车载客量等信息,将第二时段的时长设置为一辆高速列车经过第一小区所需的 平均时间,将第一时段的时长设置为小于第一小区中时间相邻的两辆高速列车之间的最小发车间隔。
通信装置还可以第二时段的时长为单位周期性的配置第一小区的SRS周期,具体的:通信装置可在每个第二时段到来前,将第二时段之前的一段时间确定为第一时段,计算第一时段内第一小区的各个邻区的RRC连接用户数的之和的最大值。例如,第二时段的时长可以为15s,第一时段可以为第二时段之前的15s、10s或5s的时间,每当一个第二时段将要到来时,通信装置可获取第一小区的各个邻区在第二时段之前的前15s、10s或5s的时间中RRC连接用户数。随后,通信装置将该第一时段内第一小区的各个邻区的RRC连接用户数的之和的最大值,确定为预测的第二时段内第一小区的RRC连接用户数。进而,通信装置可根据该预测的第二时段内第一小区的RRC连接用户数,为第二时段内接入第一小区的终端设备配置SRS周期。
如图5所示,第一小区与第一小区的各个邻区在地理位置上距离较近,经过第一小区的邻区的列车也有可能经过第一小区,即高铁场景下,当第一小区的邻区有列车经过时,第一小区的邻区的RRC连接用户数可能会快速地传递到第一小区,并导致第一小区中的RRC连接用户数激增。如此,通过计算在第二时段之前的第一时段中第一小区的至少一个邻区的RRC连接用户数之和,预测第二时段中第一小区的RRC连接用户数,并根据该预测的第二时段中第一小区的RRC连接用户数提前配置第二时段中第一小区的SRS周期,可有效避免因SRS周期的调整速度跟不上列车的移动速度,而导致SRS周期的配置不及时以及重配置信令开销太大的问题,从而满足终端设备的移动性需求。
在一种可能的设计中,本申请实施例中,该通信装置还可实时统计第一小区中的RRC连接用户数,并向第一小区的至少一个邻区周期性地发送该统计的第一小区的RRC连接用户数,统计的该第一小区的RRC连接用户数可用于邻区配置SRS周期。相应的,在步骤S201中,第一小区的各个邻区也可实时统计自己小区中的RRC连接用户数,并周期性地发送给第一小区,以便于通信装置利用邻区统计的RRC连接用户数,执行步骤S201至步骤S203,为第一小区配置SRS周期。应理解,第一小区的各个邻区向第一小区发送统计的RRC连接用户数的周期与第一时段的时长、第二时段的时长可以相同或不同,本申请并不限定。
实施例二
请参考图6,为本申请实施例提供的另一种探测参考信号SRS周期的配置方法的流程示意图,该方法包括如下步骤:
步骤S601、通信装置获取第一小区的RRC连接用户数在一个变化周期内的历史统计数据,该变化周期包括多个时段,该历史统计数据包括第一小区在变化周期内的每个时段的RRC连接用户数。
本申请实施例中,第一小区的RRC连接用户数可具有周期性的变化规律,所述第一小区的RRC连接用户数在一个变化周期内的历史统计数据可用于反映该第一小区的RRC连接用户数的变化规律,所述变化周期可以理解为第一小区的RRC连接用户数周期性变化的周期。
具体的,该第一小区的RRC连接用户数在一个变化周期内的历史统计数据可通过如下方式得到:
首先,通信装置可获取第一小区在过去的设定时长范围内的RRC连接用户数。为了获得足够的历史数据来提炼第一小区的RRC连接用户数的变化规律,该设定时长范围可设置的较长,例如可设置为过去的1个月、2个月甚至半年等。应理解,该设定时长范围可由通信装置配置,或者也可以是预定义或与配置的,本申请并不限定。
随后,通信装置可根据第一小区在过去的设定时长范围内的RRC连接用户数,确定RRC连接用户数的变化周期,所述设定时长范围包括多个变化周期。该步骤也可以理解为,确定第一小区的RRC连接用户数周期性变化的周期,例如,该变化周期可以为1天、2天、3天、1周、2周等。若变化周期为1周,则可表示第一小区的RRC连接用户数在各周的变化情况是相同或类似的。
进而,针对一个变化周期中的每个时段,通信装置可根据第一小区在设定时长范围内包括的多个变化周期中的该时段的RRC连接用户数,确定历史统计数据中第一小区在该时段的RRC连接用户数。例如,在一种可能的实现方式中,通信装置可将第一小区在所述设定时长范围内包括的多个变化周期中的该时段的RRC连接用户数的平均值,确定为历史统计数据中第一小区在该时段的RRC连接用户数;或者,在另一种可能的设计中,通信装置也可对第一小区在所述设定时长范围内包括的多个变化周期中的该时段的RRC连接用户数进行数据滤波(如ALPHA滤波法),得到历史统计数据中第一小区在该时段的RRC连接用户数;再或者,在另一种可能的设计中,通信装置还根据第一小区在所述设定时长范围内包括的多个变化周期中该时段的RRC连接用户数的累积分布曲线(CDF曲线),确定历史统计数据中该第一小区在该时段的RRC连接用户数,例如可根据第一小区在所述设定时长范围内包括的多个变化周期中该时段的RRC连接用户数绘制CDF曲线,冉从将取该CDF曲线中x%点对应的值,作为历史统计数据中第一小区在该时段的RRC连接用户数。
为了精确地体现第一小区的RRC连接用户数的变化规律,本申请实施例中,通信装置可将第一小区的RRC连接用户数的一个变化周期划分为多个时段,一个时段可以理解为第一小区的RRC连接用户数的统计数据在时间上的统计粒度,即一个时段对应一个第一小区的RRC连接用户数的统计数据。例如一个变化周期可以为1周,一个时段为15分钟,通信装置可将一个变化周期按照每15分钟的时间粒度划分为多个时段,并逐一确定每个时段对应的第一小区的连接用户数的统计数据。
如此,通信装置可得到一个变化周期中的各个时段的第一小区的RRC连接用户数,从而得到第一小区的RRC连接用户数在一个变化周期内的历史统计数据,即第一小区的RRC连接用户数的变化规律。该第一小区的RRC连接用户数的变化规律也可以表现为如图7所示的函数曲线的形式,也可以为数据表格或者其他的图表的形式,本申请并不限定。
步骤S602、通信装置根据第一小区在变化周期中与第三时段处于相同位置的时段的RRC连接用户数,预测第一小区在第三时段的RRC连接用户数。
步骤S603、通信装置根据预测的第一小区在第三时段的RRC连接用户数,为在第三时段内接入第一小区的终端设备配置SRS周期。
举例来说,通信装置要配置第三时段内第一小区的SRS周期,若第一小区的RRC连接用户数的变化周期为1周,一个时段为15分钟,第三时段为某个周一的上午10:00分至10:15分,那么通信装置可在第三时段到来前,根据第一小区的RRC连接用户数在一个变化周期中的历史统计数据,将该历史统计数据中周一的上午10:00分至10:15分对应的第 一小区的RRC连接用户数,确定为预测的第三时段中的第一小区的RRC连接用户数,进而根据该预测的第三时段中的第一小区的RRC连接用户数,为在第三时段内接入第一小区的终端设备配置SRS周期。
采用上述技术方案,通信装置可在第三时段到来前,根据第一小区的RRC连接用户数的历史变化规律来预测第三时段内第一小区的RRC连接用户数,从而为第三时段内接入第一小区的终端设备配置SRS周期。由此可知,通信装置可预先为第一小区配置第三时段内可用的SRS周期,在第三时段内无需重新配置,从而可避免SRS周期调整过于频繁的问题,有效降低SRS周期配置的信令开销。同时,又可使配置的SRS周期符合第一小区在第三时段内的接入情况。
需要说明的是,本申请实施例提供的两种配置SRS周期的方法可以理解为两种配置SRS周期的方式,通信装置可根据第一小区的小区属性,确定第一小区所处的应用场景,进而选择为第一小区配置SRS周期的方式。例如,若第一小区部署在高铁沿线,那么考虑到第一小区中终端设备可能高速移动并批量地切入切出,那么通信装置可采用实施例一中所述的配置的SRS周期的方法;若第一小区部署在大型公共场所中(例如体育场、校园、教师、车站、红绿灯等场景),那么考虑到第一小区中可能存在着短时间内大量用户集体切入切出,但不会高速移动,通信装置可采用实施例二中所述的配置的SRS周期的方法。应理解,上述两个实施例中所描述的技术特征也可以相互结合使用,本申请并不限定。
本申请实施例还提供一种通信装置,请参阅图8,为本申请实施例提供的一种通信装置的结构示意图,该通信装置800包括:收发模块810和处理模块820。该通信装置可用于实现上述任一方法实施例中涉及通信装置的功能。例如,该通信装置可以是网络设备或网络设备中包括的芯片。
当该通信装置作为网络设备,执行图2中所示的方法实施例时,收发模块810,用于获取第一小区的至少一个邻区在第一时段内的无线资源控制RRC连接用户数;处理模块820,用于根据第一小区的至少一个邻区在第一时段内的RRC连接用户数,预测第一小区在第二时段内的RRC连接用户数,该第二时段在第一时段之后,根据预测的第一小区在第二时段内的RRC连接用户数,为在第二时段内接入第一小区的终端设备配置SRS周期。
在一种可能的设计中,每个邻区在第一时段内的无线资源控制RRC连接用户数包括该邻区在第一时段内的每个时刻的RRC连接用户数;预测的第一小区在第二时段内的RRC连接用户数为:第一小区的至少一个邻区在第一时段内的第一时刻的RRC连接用户数之和,该至少一个邻区在第一时刻的RRC连接用户数之和大于或等于该至少一个邻区在第一时段内的其他时刻的RRC连接用户数之和。
在一种可能的设计中,处理模块820具体用于,根据预测的第一小区在第二时段内的RRC连接用户数,以及RRC连接用户数与SRS周期之间的映射关系,为在第二时段内接入第一小区的终端设备设置SRS周期。
在一种可能的设计中,处理模块820还用于,可实时统计第一小区的RRC连接用户数;收发模块810还用于周期性地向第一小区的至少一个邻区发送统计的第一小区的RRC连接用户数,实时统计的第一小区的RRC连接用户数用于每个邻区配置SRS周期。
应理解,该通信装置中涉及的处理模块820可以由处理器或处理器相关电路组件实现,收发模块810可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作 和/或功能分别为了实现图2中所示方法的相应流程,为了简洁,在此不再赘述。
请参阅图9,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置可具体为一种网络设备,例如基站,用于实现上述任一方法实施例中涉及网络设备的功能。
该网络设备包括:一个或多个射频单元,如远端射频单元(remote radio unit,RRU)901和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)902。所述RRU 901可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线9011和射频单元9012。所述RRU 901部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 902部分主要用于进行基带处理,对基站进行控制等。所述RRU 901与BBU 902可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 902为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)902可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 902可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 902还可以包括存储器9021和910022,所述存储器10021用于存储必要的指令和数据。所述处理器9022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中发送操作。所述存储器9021和处理器9022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机 可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括网络设备和至少一个终端设备。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (17)

  1. 一种探测参考信号SRS周期的配置方法,其特征在于,所述方法包括:
    通信装置获取第一小区的至少一个邻区在第一时段内的无线资源控制RRC连接用户数;
    所述通信装置根据所述第一小区的至少一个邻区在所述第一时段内的RRC连接用户数,预测所述第一小区在第二时段内的RRC连接用户数;
    所述通信装置根据预测的所述第一小区在所述第二时段内的RRC连接用户数,为在所述第二时段内接入所述第一小区的终端设备配置SRS周期。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个邻区中的每个邻区在所述第一时段内的无线资源控制RRC连接用户数包括所述邻区在所述第一时段内的各个时刻的RRC连接用户数;
    所述预测的所述第一小区在所述第二时段内的RRC连接用户数为:所述至少一个邻区在所述第一时段内的第一时刻的RRC连接用户数之和,所述至少一个邻区在所述第一时刻的RRC连接用户数之和大于或等于所述至少一个邻区在所述第一时段内的其他时刻的RRC连接用户数之和。
  3. 根据权利要求1或2所述的方法,其特征在于,所述通信装置为在所述第二时段内接入所述第一小区的终端设备设置SRS周期,包括:
    所述通信装置根据预测的所述第一小区在所述第二时段内的RRC连接用户数,以及RRC连接用户数与SRS周期之间的映射关系,为在所述第二时段内接入所述第一小区的终端设备配置SRS周期。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述通信装置实时统计所述第一小区的RRC连接用户数;
    所述通信装置周期性地向所述至少一个邻区发送统计的所述第一小区的RRC连接用户数,实时统计的所述第一小区的RRC连接用户数用于所述邻区配置SRS周期。
  5. 一种探测参考信号SRS周期的配置方法,其特征在于,所述方法包括:
    通信装置获取第一小区的无线资源控制RRC连接用户数在一个变化周期内的历史统计数据,所述变化周期包括多个时段,所述历史统计数据包括所述第一小区在所述变化周期内的每个时段的RRC连接用户数;
    所述通信装置根据所述第一小区在所述变化周期中与第三时段处于相同位置的时段的RRC连接用户数,预测所述第一小区在所述第三时段的RRC连接用户数;
    所述通信装置根据预测的所述第一小区在所述第三时段的RRC连接用户数,为在所述第三时段内接入所述第一小区的终端设备配置SRS周期。
  6. 根据权利要求5所述的方法,其特征在于,所述通信装置获取第一小区的RRC连接用户数在一个变化周期内的历史统计数据,包括:
    所述通信装置获取所述第一小区在过去的设定时长范围内的RRC连接用户数;
    所述通信装置根据所述第一小区在过去的设定时长范围内的RRC连接用户数,确定所述变化周期,所述设定时长范围包括多个所述变化周期;
    针对所述变化周期中的每个时段,所述通信装置根据所述第一小区在所述设定时长范围内包括的多个变化周期中的所述时段的RRC连接用户数,确定所述历史统计数据中所 述第一小区在所述时段的RRC连接用户数。
  7. 根据权利要求6所述的方法,其特征在于,所述历史统计数据中所述第一小区在所述时段的RRC连接用户数为所述第一小区在所述设定时长范围内包括的多个变化周期中的所述时段的RRC连接用户数的平均值;或者,
    所述历史统计数据中所述第一小区在所述时段的RRC连接用户数为所述第一小区在所述设定时长范围内包括的多个变化周期中的所述时段的RRC连接用户数经过数据滤波的值;或者,所述通信装置确定所述历史统计数据中所述第一小区在所述时段的RRC连接用户数,包括:
    所述通信装置根据所述第一小区在所述设定时长范围内包括的多个变化周期中的所述时段的RRC连接用户数的累积分布曲线,确定所述历史统计数据中所述第一小区在所述时段的RRC连接用户数。
  8. 一种通信装置,其特征在于,所述装置包括:
    收发模块,用于获取第一小区的至少一个邻区在第一时段内的无线资源控制RRC连接用户数;
    处理模块,用于根据所述第一小区的至少一个邻区在所述第一时段内的RRC连接用户数,预测所述第一小区在第二时段内的RRC连接用户数;
    所述处理模块还用于,根据预测的所述第一小区在所述第二时段内的RRC连接用户数,为在所述第二时段内接入所述第一小区的终端设备配置SRS周期。
  9. 根据权利要求8所述的装置,其特征在于,所述至少一个邻区中的每个邻区在所述第一时段内的无线资源控制RRC连接用户数包括所述邻区在所述第一时段内的各个时刻的RRC连接用户数;
    所述预测的所述第一小区在所述第二时段内的RRC连接用户数为:所述至少一个邻区在所述第一时段内的第一时刻的RRC连接用户数之和,所述至少一个邻区在所述第一时刻的RRC连接用户数之和大于或等于所述至少一个邻区在所述第一时段内的其他时刻的RRC连接用户数之和。
  10. 根据权利要求8或9所述的装置,其特征在于,所述处理模块具体用于:
    根据预测的所述第一小区在所述第二时段内的RRC连接用户数,以及RRC连接用户数与SRS周期之间的映射关系,为在所述第二时段内接入所述第一小区的终端设备配置SRS周期。
  11. 根据权利要求8至10中任一项所述的装置,其特征在于,所述处理模块还用于,实时统计所述第一小区的RRC连接用户数;
    所述收发模块,还用于周期性地向所述至少一个邻区发送统计的所述第一小区的RRC连接用户数,实时统计的所述第一小区的RRC连接用户数用于所述邻区配置SRS周期。
  12. 一种通信装置,其特征在于,所述装置包括:
    收发模块,用于获取第一小区的无线资源控制RRC连接用户数在一个变化周期内的历史统计数据,所述变化周期包括多个时段,所述历史统计数据包括所述第一小区在所述变化周期内的每个时段的RRC连接用户数;
    处理模块,用于根据所述第一小区在所述变化周期中与第三时段处于相同位置的时段的RRC连接用户数,预测所述第一小区在所述第三时段的RRC连接用户数;
    所述处理模块还用于,根据预测的所述第一小区在所述第三时段的RRC连接用户数, 为在所述第三时段内接入所述第一小区的终端设备配置SRS周期。
  13. 根据权利要求12所述的装置,其特征在于,所述收发模块具体用于:
    获取所述第一小区在过去的设定时长范围内的RRC连接用户数;
    根据所述第一小区在过去的设定时长范围内的RRC连接用户数,确定所述变化周期,所述设定时长范围包括多个所述变化周期;
    针对所述变化周期中的每个时段,根据所述第一小区在所述设定时长范围内包括的多个变化周期中的所述时段的RRC连接用户数,确定所述历史统计数据中所述第一小区在所述时段的RRC连接用户数。
  14. 根据权利要求13所述的装置,其特征在于,所述历史统计数据中所述第一小区在所述时段的RRC连接用户数为所述第一小区在所述设定时长范围内包括的多个变化周期中的所述时段的RRC连接用户数的平均值;或者,
    所述历史统计数据中所述第一小区在所述时段的RRC连接用户数为所述第一小区在所述设定时长范围内包括的多个变化周期中的所述时段的RRC连接用户数经过数据滤波的值;或者,所述处理模块还用于:
    根据所述第一小区在所述设定时长范围内包括的多个变化周期中的所述时段的RRC连接用户数的累积分布曲线,确定所述历史统计数据中所述第一小区在所述时段的RRC连接用户数。
  15. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至4中任一项所述的方法,或者使得所述装置执行如权利要求5至7中任一项所述的方法。
  16. 一种可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1至4中任一项所述的方法被实现,或者使如权利要求5至7中任一项所述的方法被实现。
  17. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于交互代码指令至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1至4中任一项所述的方法,或者所述处理器用于运行所述代码指令以执行如权利要求5至7中任一项所述的方法。
PCT/CN2019/130938 2019-12-31 2019-12-31 一种探测参考信号srs周期的配置方法及装置 WO2021134698A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/130938 WO2021134698A1 (zh) 2019-12-31 2019-12-31 一种探测参考信号srs周期的配置方法及装置
CN201980099979.3A CN114342532A (zh) 2019-12-31 2019-12-31 一种探测参考信号srs周期的配置方法及装置
EP19958390.7A EP4075902A4 (en) 2019-12-31 2019-12-31 SOUNDING REFERENCE SIGNAL PERIOD (SRS) CONFIGURATION METHOD AND APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130938 WO2021134698A1 (zh) 2019-12-31 2019-12-31 一种探测参考信号srs周期的配置方法及装置

Publications (1)

Publication Number Publication Date
WO2021134698A1 true WO2021134698A1 (zh) 2021-07-08

Family

ID=76687240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130938 WO2021134698A1 (zh) 2019-12-31 2019-12-31 一种探测参考信号srs周期的配置方法及装置

Country Status (3)

Country Link
EP (1) EP4075902A4 (zh)
CN (1) CN114342532A (zh)
WO (1) WO2021134698A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023116535A1 (zh) * 2021-12-20 2023-06-29 中兴通讯股份有限公司 Srs资源分配方法、装置及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714897A (zh) * 2009-11-12 2010-05-26 普天信息技术研究院有限公司 探测参考信号的配置方法
US20120224556A1 (en) * 2009-11-11 2012-09-06 Pantech Co., Ltd. Method and device for transmitting a reference signal and reference signal information in a cooperative multi-antenna sending and receiving system
CN103024915A (zh) * 2011-09-23 2013-04-03 普天信息技术研究院有限公司 一种实现上行侦听参考信号周期自适应的方法
WO2014038755A1 (ko) * 2012-09-10 2014-03-13 주식회사 케이티 상향링크 채널 추정 방법 및 통신 시스템
WO2017107054A1 (en) * 2015-12-22 2017-06-29 Intel IP Corporation Dual mode sounding reference signal (srs) scheme for wireless communications
WO2018053755A1 (zh) * 2016-09-22 2018-03-29 华为技术有限公司 一种探测参考信号发送方法及用户设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107347005B (zh) * 2016-05-05 2020-09-11 华为技术有限公司 配置探测参考信号的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120224556A1 (en) * 2009-11-11 2012-09-06 Pantech Co., Ltd. Method and device for transmitting a reference signal and reference signal information in a cooperative multi-antenna sending and receiving system
CN101714897A (zh) * 2009-11-12 2010-05-26 普天信息技术研究院有限公司 探测参考信号的配置方法
CN103024915A (zh) * 2011-09-23 2013-04-03 普天信息技术研究院有限公司 一种实现上行侦听参考信号周期自适应的方法
WO2014038755A1 (ko) * 2012-09-10 2014-03-13 주식회사 케이티 상향링크 채널 추정 방법 및 통신 시스템
WO2017107054A1 (en) * 2015-12-22 2017-06-29 Intel IP Corporation Dual mode sounding reference signal (srs) scheme for wireless communications
WO2018053755A1 (zh) * 2016-09-22 2018-03-29 华为技术有限公司 一种探测参考信号发送方法及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075902A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023116535A1 (zh) * 2021-12-20 2023-06-29 中兴通讯股份有限公司 Srs资源分配方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
EP4075902A4 (en) 2023-01-04
CN114342532A (zh) 2022-04-12
EP4075902A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
US11399361B2 (en) V2X sidelink communication
CN109246829B (zh) 通信方法和通信设备
WO2021036508A1 (zh) 定位的方法和通信装置
CN111757341A (zh) 一种无线承载的配置方法、装置及系统
WO2021022442A1 (zh) 无线通信方法、终端设备和网络设备
TW202010285A (zh) 傳輸訊息的方法、終端設備和網路設備
JP7100121B2 (ja) 伝送レート制御方法及び装置
CN109792606A (zh) 一种数据传输优化方法、终端及网络设备
US20220070892A1 (en) Wireless communication method, terminal device, and network device
JP7027529B2 (ja) 無線通信方法、端末装置及び送信ノード
WO2022193320A1 (zh) 信息传输方法、终端设备、网络设备、芯片和存储介质
WO2022027811A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021037118A1 (zh) 通信处理方法以及通信处理装置
WO2021134698A1 (zh) 一种探测参考信号srs周期的配置方法及装置
WO2021258369A1 (zh) 无线通信方法、终端设备和网络设备
WO2021237525A1 (zh) 无线通信的方法和设备
CN112399494B (zh) 一种无线通信的方法和通信装置
US20230007682A1 (en) Data transmission method, terminal device and network device
CN113518420A (zh) 通信方法以及通信装置
CN110073702A (zh) 无线通信的方法和装置
WO2020087294A1 (zh) 基于复制数据的传输方法和设备
US20230362872A1 (en) Wireless communication method, terminal device, and network device
WO2023065334A1 (zh) 无线通信方法、终端设备和网络设备
CN103703849A (zh) 资源调度的方法和装置
WO2024108526A1 (zh) 无线通信的方法, 终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019958390

Country of ref document: EP

Effective date: 20220713

NENP Non-entry into the national phase

Ref country code: DE