WO2021036508A1 - 定位的方法和通信装置 - Google Patents

定位的方法和通信装置 Download PDF

Info

Publication number
WO2021036508A1
WO2021036508A1 PCT/CN2020/100319 CN2020100319W WO2021036508A1 WO 2021036508 A1 WO2021036508 A1 WO 2021036508A1 CN 2020100319 W CN2020100319 W CN 2020100319W WO 2021036508 A1 WO2021036508 A1 WO 2021036508A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
serving cell
terminal device
configuration information
cell
Prior art date
Application number
PCT/CN2020/100319
Other languages
English (en)
French (fr)
Inventor
黄甦
郭英昊
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021036508A1 publication Critical patent/WO2021036508A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This application relates to the field of wireless communication technology, and more specifically, to a positioning method and communication device.
  • LMF location management function
  • the present application provides a positioning method and communication device, without the involvement of the core network, and the access network can complete the positioning of the terminal device, which helps to reduce the positioning delay.
  • a positioning method includes: a serving cell sends one or more positioning reference signal PRS configuration information to a terminal device, and the PRS corresponding to the one or more PRS configuration information is determined by the serving cell. And/or sent by one or more neighboring cells, each PRS configuration information in the one or more PRS configuration information includes one or more of the following information: configuration information of periodic PRS, configuration of semi-persistent PRS Information, configuration information of aperiodic PRS; the serving cell receives the PRS measurement result for the serving cell and the one or more neighboring cells from the terminal device; the serving cell positions the terminal device according to the measurement result.
  • one or more neighboring cells of the serving cell assist the serving cell in positioning the terminal device.
  • the access network can realize the positioning of the terminal equipment without the participation of the core network. Positioning the terminal equipment by the access network can reduce the positioning delay on the one hand.
  • the access network can be deployed independently of the core network, which can prevent the terminal equipment from being exposed to the public network.
  • the serving cell sends PRS configuration information to the terminal device, that is, the access network device of the serving cell sends PRS configuration information to the terminal device.
  • the neighboring cell sends cell information to the serving cell, that is, the access network device of the neighboring cell sends the cell information to the access network device of the serving cell.
  • the transmission of other information or signals is similar.
  • the method further includes: the serving cell receives the cell information of the one or more neighboring cells from the one or more neighboring cells, and the information of each neighboring cell is The cell information includes one or more of the following information: location information of the neighboring cell, PRS configuration information, and cell timing information, where the PRS configuration information includes one or more of the following information: periodic PRS Configuration information, semi-persistent PRS configuration information, non-periodic PRS configuration information.
  • the method further includes: the serving cell sends a request message to the one or more neighboring cells, the request message being used to request the one or more neighboring cells
  • the cell sends a PRS to the terminal device, where the PRS is a semi-persistent PRS or an aperiodic PRS, where the request message includes at least one of the following information: the number of times the semi-persistent PRS is sent, and the semi-persistent PRS is sent The duration of the PRS and the time slot for transmitting the aperiodic PRS.
  • the configuration of semi-persistent, aperiodic PRS can be enabled, the transmission of the PRS of the base station is more flexible, and the transmission of the PRS can be quickly adjusted according to the current load of the base station.
  • the method further includes: the serving cell sends a first media access control control element MAC CE to the terminal device, and the first MAC CE is used for the terminal device
  • the device activates or deactivates the reception of semi-persistent PRS.
  • MAC CE to activate and deactivate the semi-persistent PRS helps to switch the PRS flexibly, so that the transmission of the PRS can be quickly adjusted according to the current load of the base station.
  • the method further includes: the serving cell sends first downlink control information DCI to the terminal device, where the first DCI is used by the terminal device to activate non-active Receipt of periodic PRS.
  • Using DCI to activate aperiodic PRS helps to flexibly schedule a single PRS, so that real-time dynamic measurement can be realized.
  • the method further includes: the serving cell sends report configuration information to the terminal device, and the reported configuration information includes one or more of the following information: measurement The measurement volume included in the result, the channel used for reporting the measurement result, the periodicity of reporting the measurement result, and the PRS resources of each cell used for reporting the measurement result.
  • the terminal can feed back the measurement result to the base station faster, and the base station can unpack the physical layer channel data faster, and the base station can obtain the terminal measurement result faster.
  • the method further includes: the serving cell sends a second MAC CE to the terminal device, and the second MAC CE is used to activate or deactivate the terminal device
  • the measurement result is reported semi-continuously through PUCCH.
  • MAC CE to activate and deactivate the reporting channel can flexibly switch the reporting channel, so that the base station can quickly adjust the terminal reporting measurement according to the current load.
  • the method further includes: the serving cell sends a second DCI to the terminal device, and the second DCI is used to activate or deactivate the terminal device through the PUCCH Or PUSCH semi-continuously reports the measurement result.
  • Using DCI to activate and deactivate the reporting channel can flexibly switch the reporting channel, so that the base station can quickly adjust the terminal reporting measurement according to the current load.
  • the serving cell sends a third DCI to the terminal device, and the third DCI is used to activate the terminal device to report the measurement aperiodicly through PUCCH or PUSCH result.
  • Using DCI to activate PUCCH or PUSCH aperiodic reporting is helpful for scheduling a single reporting, so that real-time dynamic reporting can be realized.
  • the PRS configuration information includes one or more of the following information: time-frequency domain resources mapped by the PRS, the number of ports for transmitting the PRS, the sequence of the PRS, QCL information, where the time domain resource includes the period and offset of sending the PRS.
  • the measurement result is included in the combined information, and the combined information satisfies the following rule: the combined information is a combination of the measurement result The measured quantity and the channel state information contained in the CSI are combined; or, the combined information is the first information obtained after combining the measured quantity and the CSI, and then combined with the hybrid automatic repeat request acknowledgement HARQ -ACK and scheduling request SR combined; or; the combined information includes part of the measurement result and/or part of the CSI, wherein the measurement result includes multiple measurement values, so The CSI includes multiple parts.
  • the reporting mechanism can be optimized.
  • a positioning method includes: the method further includes: a terminal device receives one or more PRS configuration information from a serving cell, and the PRS corresponding to the one or more PRS configuration information comes from the service A cell and/or one or more neighboring cells, wherein each PRS configuration information in the one or more PRS configuration information includes one or more of the following information: periodic PRS configuration information, semi-persistent PRS The configuration information of the aperiodic PRS; the terminal device obtains the PRS measurement results for the serving cell and/or the one or more neighboring cells according to the one or more PRS configuration information; the terminal The device sends the measurement result to the serving cell.
  • the positioning method of the second aspect and the positioning method of the first aspect are based on the same inventive concept. Therefore, the beneficial technical effects that can be achieved by the technical solutions in the second aspect can be referred to the description of the corresponding solutions in the first aspect. No longer.
  • the method further includes: the terminal device receives a first MAC CE from a serving cell, and the first MAC CE is used for activation or deactivation of the terminal device Semi-continuous PRS reception.
  • the first MAC CE is used for the terminal device to activate the semi-persistent PRS reception, and the method further includes: the terminal device according to the first MAC CE, periodically receiving the semi-persistent PRS from a cell in a first cell set, where the first cell set includes a serving cell and a cell that transmits the semi-persistent PRS among the one or more neighboring cells.
  • the method further includes: the terminal device receives a first DCI from a serving cell, and the first DCI is used by the terminal device to activate aperiodic PRS reception .
  • the method further includes: the terminal device receives the aperiodic PRS from a cell in a second cell set according to the first DCI, wherein The second cell set includes a serving cell and a cell that transmits aperiodic PRS among the one or more neighboring cells.
  • the method before the terminal device sends the measurement result to the serving cell, the method further includes: the terminal device receives report configuration information from the serving cell, and the report The configuration information includes one or more of the following information: the amount of measurement included in the measurement result, the channel used for reporting the measurement result, the periodicity of reporting the measurement result, and the PRS resources of each cell used for reporting the measurement result.
  • the method further includes: the terminal device receives a second MAC CE from the serving cell, and the second MAC CE is used to activate or deactivate the terminal device The measurement result is reported semi-continuously through PUCCH.
  • the method further includes: the terminal device receives a second DCI from the serving cell, and the second DCI is used to activate or deactivate the terminal device through the PUCCH Or PUSCH semi-continuously reports the measurement result.
  • the method further includes: the terminal device receives a third DCI from the serving cell, and the third DCI is used to activate the terminal device to use PUCCH or PUSCH non Report the measurement results periodically.
  • the PRS configuration information includes one or more of the following information: time-frequency domain resources mapped by the PRS, the number of ports for transmitting the PRS, the sequence of the PRS, QCL information, where the time domain resource includes the period and offset of sending the PRS.
  • the measurement result is included in the combined information, and the combined information satisfies the following rule: the combined information is a combination of the measurement result The measured quantity and the channel state information contained in the CSI are combined; or, the combined information is the first information obtained after combining the measured quantity and the CSI, and then combined with the hybrid automatic repeat request acknowledgement HARQ -ACK and scheduling request SR combined; or; the combined information includes part of the measurement result and/or part of the CSI, wherein the measurement result includes multiple measurement values, so The CSI includes multiple parts.
  • the terminal device sending the measurement result to the serving cell includes: the physical layer of the terminal device encapsulates the measurement result through the uplink control information UCI Sent to the serving cell.
  • a positioning method includes: a first neighboring cell sends one or more PRS configuration information to a serving cell, and the PRS corresponding to the one or more PRS configuration information comes from the serving cell, all One or more of the first neighboring cell and other neighboring cells; the first neighboring cell receives the PRS measurement results of the terminal device for the serving cell and one or more neighboring cells from the serving cell; the first neighboring cell, according to the measurement results, Position the terminal equipment.
  • the serving cell does not have a positioning function, but the first neighboring cell of the serving cell has a positioning function.
  • the serving cell obtains the PRS configuration information through the first neighboring cell, and sends it to the terminal device. Further, the serving cell requests other neighboring cells to send PRS to the terminal device through the first neighboring cell.
  • the terminal device receives and measures the PRS of the serving cell and the one or more neighboring cells. After the terminal device completes the measurement, it reports the measurement result to the serving cell based on the reported configuration information of the serving cell.
  • the serving cell provides the measurement result to the first neighboring cell, and the first neighboring cell locates the terminal device. Therefore, in a scenario where the serving cell does not have a positioning function, and its neighboring cells have a positioning function, the access network can also complete the positioning of the terminal device without the participation of the core network.
  • the method before the first neighboring cell sends the PRS configuration information of the one or more neighboring cells to the serving cell, the method further includes: And/or the other neighboring cells receive cell information, the serving cell and the cell information of each cell in the other neighboring cells include one or more of the following information: cell location information, PRS configuration information, and cell timing information, wherein, the PRS configuration information includes one or more of the following information: configuration information of periodic PRS, configuration information of semi-persistent PRS, and configuration information of aperiodic PRS.
  • the method further includes: the first neighboring cell receives a request message from the serving cell, and the request message is used to request the one or more neighboring cells to send a request to the terminal device.
  • Send a PRS where the PRS is a semi-persistent PRS or an aperiodic PRS; the first neighboring cell sends the request message to the other neighboring cells.
  • the method further includes: the first neighboring cell sends the location information of the terminal device to the serving cell.
  • the present application provides a communication device that has a function of implementing the method in the first aspect or any possible implementation manner thereof.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the present application provides a communication device that has a function of implementing the method in the second aspect or any possible implementation manner thereof.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the present application provides a communication device that has a function of implementing the method in the third aspect or any possible implementation manner thereof.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the present application provides a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the network device executes the method in the first aspect or any possible implementation manner thereof.
  • this application provides a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the method in the second aspect or any possible implementation manner thereof.
  • this application provides a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the network device executes the method in the third aspect or any possible implementation manner thereof.
  • the network device or the terminal device may include one or more processors, and there may also be one or more memories.
  • this application provides a computer-readable storage medium in which computer instructions are stored.
  • the computer instructions run on a computer, the computer executes the first aspect or any possible implementation manner thereof. In the method.
  • the present application provides a computer-readable storage medium having computer instructions stored in the computer-readable storage medium.
  • the computer instructions run on a computer, the computer executes the second aspect or any possible implementation thereof. The method in the way.
  • this application provides a computer-readable storage medium having computer instructions stored in the computer-readable storage medium.
  • the computer instructions run on the computer, the computer executes the third aspect or any possible implementation thereof The method in the way.
  • this application provides a chip including a processor.
  • the processor is used to read and execute the computer program stored in the memory to execute the method in the first aspect or any possible implementation manner thereof.
  • the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
  • the chip further includes a communication interface.
  • this application provides a chip including a processor.
  • the processor is used to read and execute the computer program stored in the memory to execute the method in the second aspect or any possible implementation manner thereof.
  • the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
  • the chip further includes a communication interface.
  • this application provides a chip including a processor.
  • the processor is used to read and execute the computer program stored in the memory to execute the method in the third aspect or any possible implementation manner thereof.
  • the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit or a wire.
  • the chip further includes a communication interface.
  • this application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the first aspect or any of its possible implementations. Methods.
  • this application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the second aspect or any of its possible implementations. Methods.
  • this application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the third aspect or any of its possible implementations. Methods.
  • this application also provides a wireless communication system, including the access network equipment of the serving cell and the access network equipment of one or more neighboring cells in the embodiments of this application.
  • the wireless communication system may also include the terminal device in the embodiment of the present application.
  • this application also provides another wireless communication system, including the access network equipment of the serving cell and the access network equipment of the first neighboring cell in the embodiment of this application.
  • the wireless communication system may also include the terminal device in the embodiment of the present application.
  • the wireless communication system may also include one or more access network devices of other neighboring cells.
  • FIG. 1 is an example of an architecture of a communication system 100 applicable to an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of the positioning method provided by the present application.
  • FIG. 3 is a schematic flowchart of the positioning method provided by this application.
  • FIG. 4 is another schematic flowchart of the positioning method provided by this application.
  • Fig. 5 is an example of a positioning process in which a serving cell has a positioning function.
  • Fig. 6 is an example of a positioning process in which the serving cell does not have a positioning function.
  • Fig. 7 is a schematic diagram of the communication protocol stack of the LMF and the terminal device (taking the UE as an example).
  • FIG. 8 is a schematic block diagram of a communication device 700 for positioning provided by this application.
  • FIG. 9 is a schematic block diagram of a communication device 800 provided by this application.
  • FIG. 10 is a schematic block diagram of a communication device 900 provided by this application.
  • FIG. 11 is a schematic structural diagram of the communication device 10 provided by the present application.
  • FIG. 12 is a schematic structural diagram of the communication device 20 provided by the present application.
  • FIG. 13 is a schematic structural diagram of the communication device 30 provided by the present application.
  • FIG. 1 is an example of an architecture of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 includes a core network, a radio access network (RAN), and terminal equipment.
  • the core network includes access and mobility management function (AMF), location management function (location management function, LMF), unified data management (unified data management, UDM), gateway mobile location center (gateway) mobile location center (GMLC) and location retrieval function (LRF) and other functions.
  • NG-RAN includes one or more ng-eNBs and gNBs.
  • the ng-eNB is a long term evolution (LTE) base station that accesses the 5G core network
  • the gNB is a 5G base station that accesses the 5G core network
  • the communication system 100 may also include one or more terminal devices.
  • the NG-RAN is connected to the core network via the AMF through the NG-C interface.
  • the terminal is connected to the RAN via ng-eNB and gNB via LTE-Uu and NR-Uu, respectively.
  • the core network 5GC in FIG. 1 is shown with a dashed line, indicating that the communication system 100 may only include terminal equipment and RAN.
  • 5GC is optional.
  • the participation of any network element of the core network may not be required.
  • the external client in Figure 1 can be an application connected to the Internet.
  • the application requests terminal location information from the 5G core network through the Internet.
  • the gateway mobile location center of the 5G core network GMLC is responsible for the processing of external client location requests.
  • the core network can complete the selection, authorization, and control of the positioning process of the access network device positioning, for example, the initiation of the positioning process and the acquisition of the positioning result.
  • the positioning process is completely completed by the access network, without the involvement of the core network.
  • interface names between the network elements shown in FIG. 1 are only examples. In different communication systems, or with the evolution of the communication system, the interfaces between the network elements shown in FIG. 1 may also be different from those shown in FIG. 1, which is not limited herein.
  • the radio access network device mentioned in this application is a device that is deployed in the RAN and meets the 5G standard or the next-generation communication standard to provide wireless communication functions for terminal devices.
  • the wireless access network equipment may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, wearable devices, and vehicle-mounted devices.
  • the gNB may also be a transmission and reception point (TRP), etc.
  • terminal devices in this application include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • terminal equipment may refer to user equipment (UE), access terminal, user unit, user station, mobile station (mobile station, MS), mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal , Wireless communication equipment, user agent or user device.
  • Terminal devices can also be cellular phones, smart phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital processing (personal digital assistant, PDA), in-vehicle devices, wearable devices, tablet computers, wireless modems (modem), handheld devices (handset), laptop computers, machine type communication (MTC)
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital processing
  • modem wireless modem
  • handset handheld devices
  • MTC machine type communication
  • a terminal a terminal device in a 5G network or a public land mobile network (PLMN) that will evolve in the future, and this application is not limited thereto.
  • PLMN public land mobile network
  • FIG. 2 is a schematic flowchart of the positioning method provided by the present application.
  • the serving cell sends one or more PRS configuration information to the terminal device.
  • the terminal device receives the one or more PRS configuration information from the serving cell.
  • the serving cell sends PRS configuration information to the terminal device, that is, the access network device of the serving cell sends PRS configuration information to the terminal device.
  • the access network device of the serving cell sends PRS configuration information to the terminal device.
  • the serving cell sends information to the neighboring cell, or the serving cell receives information from the neighboring cell, that is, the access network device of the serving cell sends information to the access network device of the neighboring cell, or the access network device of the serving cell receives information from the neighboring cell.
  • the access network equipment of the cell receives the information.
  • the terminal device receives information from the serving cell, that is, the terminal device receives information from the access network device of the serving cell.
  • the terminal device receives the PRS from the serving cell or the neighboring cell, that is, the terminal device receives the PRS from the access network device of the serving cell or the neighboring cell.
  • the terminal device sends information to the serving cell, that is, the terminal device sends information to the access network device of the serving cell.
  • the one or more PRS configuration information comes from the serving cell and/or one or more neighboring cells
  • the PRS corresponding to the one or more PRS configuration information comes from the serving cell and/or the one or more neighboring cells
  • Each PRS configuration information may include one or more of the following information: configuration information of a periodic PRS, configuration information of a semi-persistent PRS, or configuration information of a non-periodic PRS.
  • the periodic PRS refers to the PRS that is sent periodically.
  • Semi-continuous PRS refers to PRS that is sent semi-continuously.
  • Aperiodic PRS refers to PRS that is sent aperiodicly.
  • the terminal device obtains the PRS measurement result of the serving cell and the one or more neighboring cells according to the one or more PRS configuration information.
  • the terminal device receives the one or more PRS configuration information from the serving cell, and then learns the PRS configuration of the cell corresponding to the one or more PRS configuration information. By receiving and measuring the PRS of the serving cell and the one or more neighboring cells, the terminal device obtains the measurement result of the PRS of the serving cell and the one or more neighboring cells.
  • the terminal device sends the measurement result to the serving cell.
  • the serving cell locates the terminal device according to the measurement result.
  • the serving cell can complete the positioning of the terminal device according to the measurement result reported by the terminal device. Or, after receiving the measurement result, the serving cell sends the measurement result to the neighboring cell with positioning function.
  • the neighboring cell with positioning function calculates the position of the terminal device according to the measurement result, and can also complete the positioning of the terminal device. Finally, the neighboring cell with positioning function can provide the calculated location information of the terminal device to the serving cell.
  • one or more neighboring cells of the serving cell can assist the serving cell in locating the terminal device.
  • the core network is not required to participate.
  • the terminal device is located by the access network, on the one hand, the positioning delay can be reduced, and on the other hand, the terminal device can be prevented from being exposed to the public network.
  • the serving cell of the terminal device has a positioning function
  • the following is divided into two scenarios to describe in detail the detailed process of the terminal device positioning by the access network.
  • the serving cell of the terminal equipment has a positioning function.
  • FIG. 3 is a schematic flowchart of the positioning method provided by this application.
  • the serving cell obtains PRS configuration information of one or more neighboring cells.
  • one or more neighboring cells participating in positioning send their respective PRS configuration information to the serving cell.
  • the neighboring cells participating in the positioning send cell information to the serving cell, and the cell information includes PRS configuration information of the neighboring cells.
  • the cell information may also include the location information of the neighboring cell and the timing information of the cell.
  • the PRS configuration information of each neighboring cell may include one or more of the following: periodic PRS configuration information, semi-persistent PRS configuration information, or aperiodic PRS configuration information.
  • the PRS configuration information of a neighboring cell only includes a certain type of PRS configuration information, it means that the neighboring cell sends a corresponding type of PRS.
  • the PRS configuration information of a neighboring cell only includes periodic PRS configuration information, it means that the neighboring cell sends periodic PRS.
  • the PRS configuration information of a neighboring cell includes two or more types of PRS configuration information, it means that the neighboring cell can send different types of PRS in different time periods.
  • the PRS configuration information of a neighboring cell includes aperiodic PRS configuration information and semi-persistent PRS configuration information, it means that the neighboring cell can send aperiodic PRS and semi-persistent PRS based on the request of the serving cell.
  • the PRS configuration information of each neighboring cell may include the following information: subcarrier spacing, frequency of point A, time-frequency domain resources in the slot, number of ports, sequence, and quasi-co-loacted (QCL) information, etc. .
  • the subcarrier spacing of the PRS may be 30KHz.
  • the frequency of point A can be represented by the absolute radio frequency channel number (ARFCN) of the neighboring cell.
  • ARFCN absolute radio frequency channel number
  • the frequency of point A can be ARFCN 653334, indicating that the absolute frequency of point A is 3800.01MHz.
  • the time domain resources of the time-frequency domain resources may be symbols 5, 6, 7, 8, 9, 10, 11, 12, and 13 in a time slot occupied by the time domain symbols.
  • the frequency domain resources can start from CBR#2 of the common resource block (CRB) of the carrier and occupy 192 RBs.
  • the time domain resource may also include a period and an offset within the period.
  • the period can be 10ms, and the offset within the period can be 2ms.
  • the subcarrier interval is 30KHz, it means that the PRS transmission timing is the fifth time slot of each system frame.
  • the period may be 40 timeslots, and the offset within the period may be 4 timeslots, which means that the transmission timing of the PRS is the fifth timeslot of an even-numbered system frame.
  • the number of ports can be 1.
  • the sequence initialization scrambling code index can be 139. Based on the scrambling code index, a sequence on each slot and each symbol can be generated.
  • the QCL may be the synchronization signal block (SS/PBCH block, SSB) #2 of the neighboring cell, indicating the PRS of the neighboring cell and SSB#2QCL.
  • SS/PBCH block SSB
  • SSB#2QCL the synchronization signal block
  • the location information of the neighboring cell may be the geographic location of the neighboring cell, for example, longitude and latitude coordinates.
  • the timing information of the cell may be the system frame number (SFN) initialization time.
  • SFN system frame number
  • the serving cell sends the PRS configuration information of the serving cell and the one or more neighboring cells to the terminal device.
  • the serving cell After receiving the PRS configuration information from the one or more neighboring cells, the serving cell sends the PRS configuration information of the one or more neighboring cells and the PRS configuration information of the serving cell to the terminal device.
  • the serving cell sends the PRS configuration information of all cells participating in positioning to the terminal device.
  • the serving cell sends the PRS configuration information of multiple cells to the terminal device, so that the terminal device can measure the PRS of multiple cells, so that the access network can check the PRS of multiple cells according to the measurement results.
  • Terminal equipment positioning may include a serving cell and some neighboring cells.
  • the serving cell sends PRS configuration information of one or two cells to the terminal device.
  • the terminal equipment measures the PRS sent by different beams in a cell, and the measurement results obtained can also be used to locate the terminal equipment. Compared with the former, the positioning accuracy may be slightly lower.
  • the serving cell sends the report configuration information to the terminal device.
  • the terminal device receives the reported configuration information from the serving cell.
  • the serving cell In addition to the PRS configuration information in step 302, the serving cell also needs to issue report configuration information to the terminal device, which is used to instruct the terminal device how to report the measurement result.
  • the reported configuration information may include one or more of the following information:
  • the measurement result should include the measurement volume, the channel used for reporting the measurement result, the periodicity of reporting the measurement result, and the PRS resources of each cell used for reporting the measurement result.
  • the measurement quantity may include reference signal time difference (RSTD), reference signal received quality (RSRQ), reference signal received power (RSRP), and the like.
  • RSTD reference signal time difference
  • RSS reference signal received quality
  • RSRP reference signal received power
  • the channel used for reporting the measurement result is referred to as the reporting channel in the following.
  • the report channel may include a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the reporting manner may include periodic reporting, semi-continuous reporting, or aperiodic reporting.
  • the PRS resources of each cell used for reporting the measurement result may be as follows:
  • Periodic reporting is generally based on periodic PRS
  • Semi-continuous reporting can be based on periodic PRS or semi-continuous PRS;
  • Aperiodic reporting can be based on periodic PRS, semi-persistent PRS or aperiodic PRS.
  • the PRS configuration information in step 302 and the reported configuration information in step 303 may be sent to the terminal device by the serving cell together, or may be sent separately, which is not limited in this application. When sending separately, the order of sending should not be limited.
  • step 340 After the serving cell sends the PRS configuration information and reports the configuration information to the terminal device, step 340 may be performed.
  • the serving cell sends a request message to the one or more neighboring cells.
  • the request message is used to request these neighboring cells to send semi-persistent PRS or aperiodic PRS to terminal equipment.
  • the request message sent by the serving cell to the neighboring cell may include one or more of the following information: the number of sending semi-persistent PRS, the duration of sending semi-persistent PRS, and the time slot for sending aperiodic PRS.
  • the serving cell activates the reception of the semi-persistent PRS or aperiodic PRS by the terminal device.
  • the serving cell can activate the terminal device to receive semi-persistent PRS or aperiodic PRS through MAC CE or DCI.
  • the serving cell may activate the terminal device to receive the semi-persistent PRS through the MAC CE.
  • the serving cell sends a MAC CE to the terminal device, where the MAC CE is used to activate the semi-persistent PRS in the serving cell and one or more neighboring cells. After activation, the terminal device considers that the semi-persistent PRS is sent periodically.
  • the serving cell can also deactivate the transmission of the semi-persistent PRS through the MAC CE as required. After deactivation, the terminal device considers that the semi-persistent PRS will no longer be sent.
  • the serving cell can activate the terminal device to receive the aperiodic PRS through DCI.
  • the serving cell sends DCI to the terminal device, where the DCI is used to activate the aperiodic PRS in the serving cell and one or more neighboring cells. After activation, the terminal device receives an aperiodic PRS.
  • the terminal device receives it periodically.
  • the serving cell activates semi-continuous reporting or aperiodic reporting of the terminal equipment.
  • the reporting configuration information includes reporting periodicity.
  • the periodicity of reporting may include periodic reporting, semi-continuous reporting, and non-periodic reporting.
  • the serving cell needs to be activated by MAC CE or DCI.
  • the serving cell can activate PUCCH-based semi-continuous reporting through MAC CE.
  • the serving cell may send a MAC CE to the terminal device, and the MAC CE is used to activate the terminal device to perform semi-continuous reporting based on the PUCCH. After activation, the terminal device periodically reports the measurement result.
  • the serving cell can deactivate the semi-continuous reporting through the MAC CE as needed. After deactivation, the terminal device no longer reports.
  • the MAC CE used to activate semi-persistent reporting and the MAC CE used to activate semi-persistent PRS may be sent separately or together.
  • the serving cell may also activate PUCCH or PUSCH-based aperiodic reporting through DCI.
  • the serving cell sends DCI to the terminal device, and the DCI is used to activate the terminal device to perform aperiodic reporting based on PUCCH or PUSCH.
  • the serving cell sends DCI to the terminal device, which by default means that the terminal device can select one of PUCCH and PUSCH to report.
  • the serving cell sends DCI to the terminal device, and the DCI may carry indication information, and the indication information is used to indicate whether the reporting channel uses PUCCH or PUSCH.
  • the bit "0" carried in the DCI indicates that the serving cell instructs the terminal equipment to use the PUCCH for aperiodic reporting.
  • the bit "1" carried in the DCI indicates that the serving cell instructs the terminal equipment to use the PUSCH for aperiodic reporting.
  • the terminal device only reports once.
  • the DCI used to activate the aperiodic report and the DCI used to activate the aperiodic PRS are the same DCI.
  • the serving cell and the one or more neighboring cells send a PRS to the terminal device.
  • step 307 all cells participating in the positioning send PRS to the terminal device.
  • the semi-persistent PRS is sent to the terminal device according to the number and duration of the semi-persistent PRS specified by the serving cell, or The time slot designated by the serving cell sends aperiodic PRS to the terminal equipment.
  • the terminal device receives and measures the periodic PRS, semi-persistent PRS or aperiodic PRS sent by the serving cell and the one or more neighboring cells, and obtains the measurement result.
  • the terminal device sends the measurement result to the serving cell.
  • the terminal device sends the measurement result to the serving cell according to the report channel designated by the serving cell and the period of the report.
  • the terminal device reports the measurement result to the serving cell according to the activation and deactivation of the semi-periodic reporting or aperiodic reporting described in step 306.
  • the terminal device encapsulates the measurement result and sends it to the serving cell through uplink control information (UCI).
  • UCI uplink control information
  • the serving cell locates the terminal device according to the measurement result.
  • the serving cell After the serving cell receives the measurement result of the terminal device, it combines the cell information received from the one or more neighboring cells in step 310, such as the location information of each neighboring cell, cell timing information, etc., to locate the terminal device.
  • the serving cell can obtain the positioning information of the terminal device according to the measurement result, the location information of each neighboring cell, and the cell timing information.
  • the positioning algorithm includes a variety of For the implementation method, refer to the description of the prior art for details.
  • the serving cell has a positioning function.
  • the serving cell obtains the PRS configuration information of one or more neighboring cells, and sends it to the terminal device together with the PRS configuration information of the serving cell. Further, the serving cell requests the one or more neighboring cells to send the PRS to the terminal device, so that the PRS available for measurement can be sent to the terminal device together with the serving cell, and the terminal device responds to the serving cell and the one or more neighboring cells. PRS is measured. After the terminal device completes the measurement, it reports the measurement result to the serving cell based on the reported configuration information of the serving cell. The serving cell can complete the positioning of the terminal device based on the measurement result.
  • the access network can complete the positioning of the terminal device without the involvement of the core network.
  • the serving cell does not have a positioning function, but a neighboring cell of the serving cell has a positioning function.
  • the neighboring cell with the positioning function of the serving cell is denoted as the first neighboring cell below. It should be understood that the first neighboring cell may be any cell with a positioning function among all neighboring cells of the serving cell.
  • the serving cell may have multiple neighboring cells with positioning functions.
  • the first neighboring cell may be any one of the multiple neighboring cells with positioning functions.
  • FIG. 4 is another schematic flowchart of the positioning method provided by this application.
  • the serving cell obtains one or more PRS configuration information through the first neighboring cell.
  • the one or more PRS configuration information comes from the serving cell, the first neighboring cell, and one or more other neighboring cells.
  • the one or more PRS configuration information comes from the serving cell and one or more neighboring cells.
  • the one or more neighboring cells include a first neighboring cell. That is, one or more neighboring cells of the serving cell include the first neighboring cell and other neighboring cells.
  • the serving cell and other neighboring cells send their respective PRS configuration information to the first neighboring cell, and then the first neighboring cell provides the PRS configuration information of the cell participating in positioning to the serving cell.
  • the one or more PRS configuration information provided by the first neighboring cell to the serving cell may include PRS configuration information of the serving cell, the first neighboring cell, and one or more other neighboring cells.
  • the serving cell sends message information of the serving cell to the first neighboring cell
  • the cell information of the serving cell includes PRE configuration information of the serving cell, location information of the cell, and cell timing information.
  • other neighboring cells also send their own cell information to the first neighboring cell.
  • the cell information includes PRS configuration information, cell location information, and cell timing information.
  • the first neighboring cell receives the one or more PRS configuration information from the serving cell and one or more other neighboring cells, and provides the one or more PRS configuration information to the serving cell.
  • the serving cell and the cells participating in positioning among other neighboring cells are determined by the first neighboring cell.
  • the serving cell and other neighboring cells send their cell information to the first neighboring cell. After the first neighboring cell obtains the PRS configuration information of the serving cell and one or more neighboring cells, it only needs to provide the serving cell with the PRS configuration information of all cells participating in positioning.
  • the serving cell only needs to transparently transmit the PRS configuration information of the cell participating in the positioning determined by the first neighboring cell to the terminal device.
  • the location information and cell timing information of each cell can be reserved by the first neighboring cell without providing For the serving cell, this is different from scenario 1.
  • all neighboring cells provide their cell information to the serving cell, where the cell information of each neighboring cell includes the location information and timing information of the neighboring cell.
  • the serving cell does not have a positioning function
  • the first neighboring cell has a positioning function.
  • the first neighboring cell retains the location information and timing information of the serving cell and other neighboring cells, which can be subsequently used to locate the terminal device without providing it to the serving cell.
  • the serving cell receives one or more PRS configuration information from the first neighboring cell.
  • the serving cell sends PRS configuration information of the serving cell and the one or more neighboring cells to the terminal device.
  • the serving cell sends the report configuration information to the terminal device.
  • Steps 402-403 can be referred to the above steps 302-303 respectively, which will not be repeated here.
  • the serving cell sends a request message to the neighboring cell that sends the semi-persistent PRS or the aperiodic PRS through the first neighboring cell.
  • the serving cell For neighboring cells that send semi-persistent PRS or aperiodic PRS, the serving cell needs to send a request message to these neighboring cells.
  • the request message carries one or more of the following information: the number of times the semi-persistent PRS is sent, and the number of semi-persistent PRSs sent Duration, and the time slot for sending aperiodic PRS.
  • the serving cell activates reception of the semi-persistent PRS or aperiodic PRS by the terminal device.
  • the serving cell activates semi-continuous reporting or aperiodic reporting.
  • the serving cell and the one or more neighboring cells send a PRS to the terminal device.
  • the terminal device receives and measures the PRS of the serving cell and the one or more neighboring cells.
  • the terminal device sends the measurement result to the serving cell.
  • the serving cell receives the measurement result from the terminal device.
  • steps 405-408 refer to the descriptions of steps 305-308 respectively, which will not be repeated here.
  • the serving cell sends the measurement result to the first neighboring cell.
  • the first neighboring cell locates the terminal device according to the measurement result.
  • the first neighboring cell locates the terminal device according to the measurement result and the location information and timing information of other neighboring cells received from the other neighboring cells in step 401, combined with the location information and timing information of the first neighboring cell.
  • the serving cell does not have a positioning function, and a neighboring cell (for example, the first neighboring cell) of the serving cell has a positioning function.
  • the serving cell obtains the PRS configuration information of the cell participating in the positioning through the first neighboring cell, and sends the PRS configuration information of the cell participating in the positioning to the terminal device. Further, the serving cell requests other neighboring cells to send PRS to the terminal device through the first neighboring cell.
  • the terminal device receives and measures the PRS of the serving cell and the one or more neighboring cells. After the terminal device completes the measurement, it reports the measurement result to the serving cell based on the reported configuration information of the serving cell.
  • the serving cell provides the measurement result to the first neighboring cell, and the first neighboring cell locates the terminal device.
  • the access network can also complete the positioning of the terminal device without the participation of the core network.
  • the reporting channel may be different from carrying a hybrid automatic repeat request acknowledgement (HARQ-ACK), A scheduling request (SR) or channel state information (channel state information, CSI) PUCCH, or a time-domain collision with a PUSCH carrying data or CSI
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • SR scheduling request
  • CSI channel state information
  • the solution of this application further proposes a method to deal with this collision.
  • the terminal device may combine the measurement volume, CSI, HARQ-ACK, and SR according to the priority order of the measurement volume, CSI, HARQ-ACK, and SR, and then report the combined information to the serving cell.
  • the priority of the measurement volume and the CSI may be predefined, or may also be defined by the terminal device.
  • the priority of all measurement variables is lower than that of CSI, or the priority of all measurement variables is higher than that of CSI, or the priority of measurement variables is between L1-RSRP and other CSI.
  • the terminal device when a collision occurs, if there is CSI, the terminal device first combines the measured quantity and the CSI to obtain the first information (or referred to as combined CSI). Further, the combined CSI, HARQ-ACK, and SR are combined to obtain the combined information.
  • the combined processing of the combined CSI, HARQ-ACK, and SR can refer to the 3GPP standard protocol TS 38.213 9.2.5-9.2.6.
  • the terminal device can directly combine the measured quantity with HARQ-ACK, SR or data, and then report the combined information to the serving cell.
  • the measurement result may include multiple measurement quantities, and the CSI includes multiple parts (for example, part 1, part 2).
  • the above-mentioned defining the priority of the measurement quantity and the CSI includes defining the priority of the plurality of measurement quantities and the plurality of parts of the CSI.
  • the multiple measurement quantities and the priority of multiple parts of the CSI are combined.
  • the terminal device can discard the measurement volume with lower priority or the priority of CSI The lower part. That is, these measurement quantities with lower priority or parts of CSI are not reported.
  • the terminal device combines the measurement quantity with higher priority and the part with higher CSI priority, and reports the combined information to the serving cell.
  • the terminal device when the terminal device reports the combined information to the serving cell, it may re-select PUCCH or PUSCH to send the combined information.
  • the terminal device may need to combine the measurement volume and the SR, or combine the measurement volume and HARQ-ACK, or the reporting channel may be PUCCH, or the reporting channel may be PUSCH.
  • the terminal device may need to combine the measurement volume and the SR, or combine the measurement volume and HARQ-ACK, or the reporting channel may be PUCCH, or the reporting channel may be PUSCH.
  • Fig. 5 is an example of a positioning process in which a serving cell has a positioning function.
  • a gNB of a serving cell receives cell information of one or more neighboring cells from a gNB of one or more neighboring cells through an Xn interface based on the XnAP protocol.
  • the cell information of each neighboring cell includes the PRS configuration information, location information and timing information of the neighboring cell. .
  • the gNB of the serving cell sends the report configuration information and the PRS configuration information of the cell participating in the positioning to the UE through the RRC protocol.
  • the cells participating in positioning may include the serving cell and the one or more neighboring cells.
  • the PRS configuration information and the reported configuration information may be sent to the UE through an RRC message.
  • the UE receives the reported configuration information and the PRS configuration information of the serving cell and the one or more neighboring cells from the gNB of the serving cell.
  • the gNB of the serving cell sends a request message to the gNB of the neighboring cell through the Xn interface based on the XnAP protocol.
  • the request message is used to request the one or more neighboring cells to send semi-persistent PRS or aperiodic PRS.
  • the gNB of the serving cell activates the UE to receive the semi-persistent PRS or the aperiodic PRS.
  • the gNB of the serving cell can activate the UE to receive semi-persistent PRS through MAC CE, or activate the UE to receive aperiodic PRS through DCI.
  • the gNB of the serving cell activates the UE to perform semi-continuous reporting or aperiodic reporting.
  • the gNB of the serving cell may activate the UE based on MAC CE or DCI to perform semi-continuous reporting or aperiodic reporting.
  • the gNB of the serving cell and the gNB of the one or more neighboring cells send a PRS to the UE.
  • a neighboring cell configured to send a semi-persistent PRS sends the PRS at a specified time according to the request of the gNB of the serving cell, and sends the PRS a specified number of times.
  • the neighboring cell configured to transmit aperiodic PRS transmits the PRS at a specified time (for example, in a specified time slot) according to the request of the serving cell.
  • the UE receives and measures the PRS of the serving cell and each neighboring cell according to the PRS configuration information of the serving cell and each neighboring cell received in step 502.
  • the PRS sent by it can be periodic PRS, aperiodic PRS or semi-persistent PRS, depending on the configuration of the PRS of each cell.
  • the UE sends the measurement result to the gNB of the serving cell.
  • the UE reports the measurement result according to the report configuration information received from the gNB of the serving cell in step 502.
  • the UE periodically reports the measurement result according to the report configuration information in step 502.
  • the UE reports the measurement result to the gNB of the serving cell on the reporting channel activated in step 504 according to the reporting configuration information in step 502.
  • the UE when the UE reports the measurement result, if the report channel collides with the PUCCH carrying CSI, HARQ-ACK, or SR in the time domain, or collides with the PUSCH carrying data or CSI, the UE handles the collision as described above. The process is processed, so I won't repeat it here.
  • the gNB of the serving cell calculates the location of the UE according to the measurement result reported by the UE.
  • the location information is provided to the UE.
  • the gNB of the serving cell sends the calculated location information of the UE to the UE through an RRC message or MAC CE.
  • FIG. 6 is an example of a positioning process in which the serving cell does not have a positioning function.
  • the serving cell sends PRS configuration information of the serving cell to the first neighboring cell, and one or more other neighboring cells send their respective PRS configuration information to the first neighboring cell.
  • the first neighboring cell receives the PRS configuration information of each cell from the serving cell and the one or more other neighboring cells.
  • the gNB of the serving cell receives one or more cell information from the gNB of the first neighboring cell through the Xn interface based on the XnAP.
  • the one or more cell information comes from the serving cell and the one or more neighboring cells.
  • the one or more neighboring cells include the first neighboring cell.
  • the gNB of the first neighboring cell After the gNB of the first neighboring cell obtains the PRS configuration information of each cell from the gNB of the serving cell and the one or more other neighboring cells, it provides the gNB of the serving cell with the PRS configuration information of each cell participating in positioning .
  • the cells participating in the positioning may be a serving cell and part or all of the one or more neighboring cells, which is not limited here.
  • the cell information of each cell includes the PRS configuration information, location information, and timing information of the cell.
  • the cell information provided by the first neighboring cell to the gNB of the serving cell does not include the information that participates in positioning. Location information of the cell.
  • the gNB of the first neighboring cell only provides the PRS configuration information of each cell participating in positioning to the gNB of the serving cell.
  • the gNB of the serving cell Based on the RRC protocol, the gNB of the serving cell provides the UE with reported configuration information, the serving cell, and the PRS configuration information of the one or more neighboring cells.
  • the gNB of the serving cell sends a request message to the one or more other neighboring cells via the gNB of the first neighboring cell through the Xn interface based on the XnAP protocol.
  • the request message is used to request the corresponding neighboring cell to send a semi-persistent PRS or aperiodic PRS.
  • the gNB of the serving cell activates the UE to receive the semi-persistent PRS or the aperiodic PRS.
  • the gNB of the serving cell activates the UE to perform semi-continuous reporting or aperiodic reporting.
  • the gNB of the serving cell and the gNB of the one or more neighboring cells send a PRS to the UE.
  • the UE receives and measures the PRS of the serving cell and the one or more neighboring cells according to the PRS configuration information of the serving cell and each neighboring cell received in step 603.
  • the PRS sent by it may be periodic PRS, aperiodic PRS or semi-persistent PRS, depending on the configuration of the PRS of the cell.
  • the UE reports the measurement result to the gNB of the serving cell.
  • the gNB of the serving cell sends the measurement result to the gNB of the first neighboring cell.
  • the gNB of the first neighboring cell calculates the location of the UE according to the measurement result and the location information and timing information of each neighboring cell obtained from each other neighboring cell in step 601.
  • the gNB of the first neighboring cell sends the calculated location information of the UE to the gNB of the serving cell through the Xn interface.
  • the gNB of the serving cell provides the UE with location information of the UE.
  • each step in the process shown in FIG. 5 and FIG. 6 may refer to the description of the corresponding step in FIG. 3 and FIG. 4, respectively. In order to avoid redundant description, detailed description will not be repeated.
  • the physical layer of the terminal device encapsulates the measurement result and sends it to the UCI through uplink control information (UCI). Serving area.
  • UCI uplink control information
  • the long term evolution positioning protocol (LPP) layer of the terminal device encapsulates the measurement results through the non-access layer (non-access stratum).
  • NAS NAS signaling is further encapsulated by the RRC/PDCP/RLC/MAC layer and then mapped to the uplink shared channel (UL-SCH) in the logical channel, and sent to the uplink shared channel (UL-SCH) via layer 1 (PHY layer, physical layer) Base station, the base station sends data packets to LMF via AMF.
  • the protocol stack is shown in Figure 7.
  • FIG. 7 is a schematic diagram of the communication protocol stack of the LMF and the terminal device (taking UE as an example).
  • Information is transferred between the UE and the LMF through LPP messages, forwarded transparently through the base station, and transferred to the LMF through the AMF.
  • the physical layer of the terminal device is used for reporting, and the terminal device can feed back the measurement result to the base station more quickly.
  • the base station unpacks the physical layer channel data faster, and the base station can obtain terminal measurement results faster.
  • the positioning method provided by the present application is described in detail above, and the communication device for positioning provided by the present application is introduced below.
  • FIG. 8 is a schematic block diagram of a communication device 700 for positioning provided in this application.
  • the communication device 700 includes a transceiving unit 710 and a processing unit 720.
  • the transceiver unit 710 is configured to send one or more positioning reference signal PRS configuration information to the terminal equipment, and the PRS corresponding to the one or more PRS configuration information is determined by the serving cell and/or one or more corresponding to the communication device. Sent by a neighboring cell, each PRS configuration information in the one or more PRS configuration information includes one or more of the following information: configuration information of periodic PRS, configuration information of semi-persistent PRS, configuration of aperiodic PRS information;
  • the transceiving unit 710 is further configured to receive PRS measurement results for the serving cell and the one or more neighboring cells from the terminal device;
  • the processing unit 720 is configured to locate the terminal device according to the measurement result.
  • the transceiver unit 710 may also be replaced by a receiving unit and/or a sending unit.
  • the transceiving unit 710 may be replaced by a receiving unit when performing the receiving step.
  • the transceiving unit 710 can be replaced by a sending unit when performing the sending step.
  • the transceiver unit 710 is further configured to receive cell information of the one or more neighboring cells from the one or more neighboring cells, and the cell information of each neighboring cell includes the following information: One or more:
  • the location information, PRS configuration information, and cell timing information of the neighboring cells where the PRS configuration information includes one or more of the following information: configuration information of periodic PRS, configuration information of semi-persistent PRS, aperiodic PRS configuration information
  • the transceiver unit 710 is further configured to send a request message to the one or more neighboring cells, and the request message is used to request the one or more neighboring cells to send to the terminal device.
  • PRS the PRS is a semi-persistent PRS or an aperiodic PRS, wherein the request message includes at least one of the following information:
  • the number of sending the semi-persistent PRS, the duration of sending the semi-persistent PRS, and the time slot for sending the aperiodic PRS is the number of sending the semi-persistent PRS, the duration of sending the semi-persistent PRS, and the time slot for sending the aperiodic PRS.
  • the transceiving unit 710 is further configured to send a first MAC CE to the terminal device, and the first MAC CE is used for the terminal device to activate or deactivate the reception of the semi-persistent PRS.
  • the transceiving unit 710 is further configured to send the first downlink control information DCI to the terminal device, where the first DCI is used for the terminal device to activate aperiodic PRS reception.
  • the transceiving unit 710 is further configured to send reported configuration information to the terminal device, where the reported configuration information includes one or more of the following information: the measurement amount included in the measurement result, The channel used for reporting the measurement result, the periodicity of reporting the measurement result, and the PRS resources of each cell used for reporting the measurement result.
  • the transceiving unit 710 is further configured to send a second MAC CE to the terminal device, and the second MAC CE is used to activate or deactivate the terminal device to report the measurement result semi-continuously through the PUCCH.
  • the transceiving unit 710 is further configured to send a second DCI to the terminal device, and the second DCI is used to activate or deactivate the terminal device to report the measurement result semi-continuously through PUCCH or PUSCH .
  • the transceiver unit 710 is further configured to send a third DCI to the terminal device, where the third DCI is used to activate the terminal device to report the measurement result aperiodicly through PUCCH or PUSCH.
  • the communication device 700 may be the gNB of the serving cell in the method embodiment.
  • the transceiver unit 710 may be a transceiver.
  • the transceiver has the function of sending and/or receiving.
  • the processing unit 720 is a processing device.
  • the communication device 700 may be a chip or an integrated circuit installed in the gNB of the serving cell.
  • the transceiver unit 710 may be a communication interface.
  • the processing unit 720 may be a processing device.
  • the function of the processing device can be realized by hardware, or by hardware executing corresponding software.
  • the processing device may include a memory and a processor, where the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory, so that the communication device 700 executes the operations performed by the gNB of the serving cell in the various method embodiments. Operation and/or processing.
  • the processing device may only include a processor, and the memory for storing the computer program is located outside the processing device.
  • the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the transceiving unit 710 may be a radio frequency device
  • the processing unit 720 may be a baseband device.
  • the communication device 800 includes a transceiving unit 810 and a processing unit 820.
  • the transceiver unit 810 is configured to receive one or more PRS configuration information from a serving cell, and the PRS corresponding to the one or more PRS comes from the serving cell and/or one or more neighboring cells, wherein the one or Each PRS configuration information in the multiple PRS configuration information includes one or more of the following information: configuration information of a periodic PRS, configuration information of a semi-persistent PRS, and configuration information of a non-periodic PRS;
  • the processing unit 820 is configured to obtain PRS measurement results of the serving cell and/or one or more neighboring cells according to the one or more PRS configuration information;
  • the transceiver unit 810 is further configured to send the measurement result to the serving cell.
  • the transceiving unit 810 may also be replaced by a receiving unit and/or a sending unit.
  • the transceiving unit 810 may be replaced by a receiving unit when performing the receiving step.
  • the transceiving unit 810 may be replaced by a sending unit when performing the sending step.
  • the transceiving unit 810 is further configured to receive a first MAC CE from the serving cell, and the first MAC CE is used for the terminal device to activate or deactivate the reception of the semi-persistent PRS.
  • the processing unit 820 is further configured to control the transceiver unit 810 to periodically receive the semi-persistent PRS from a cell in the first cell set according to the first MAC CE, where the first MAC CE A cell set includes the serving cell and a cell that transmits semi-persistent PRS among the one or more neighboring cells.
  • the transceiving unit 810 is further configured to receive a first DCI from the serving cell, and the first DCI is used for the terminal device to activate aperiodic PRS reception.
  • the processing unit 820 is further configured to control the transceiver unit 810 to receive the aperiodic PRS from a cell in a second cell set according to the first DCI, where the second cell set Including the serving cell and the cell that transmits aperiodic PRS among the one or more neighboring cells.
  • the transceiver unit 810 is further configured to receive reported configuration information from the serving cell, where the reported configuration information includes one or more of the following information:
  • the measurement amount included in the measurement result the channel used for reporting the measurement result, the periodicity of reporting the measurement result, and the PRS resources of each cell used for reporting the measurement result.
  • the transceiving unit 810 is further configured to receive a second MAC CE from the serving cell, and the second MAC CE is used to activate or deactivate the terminal device through PUCCH semi-continuous reporting Measurement results.
  • the transceiving unit 810 is further configured to receive a second DCI from the serving cell, and the second DCI is used to activate or deactivate the terminal device to report the semi-continuously through PUCCH or PUSCH. Measurement results.
  • the transceiving unit 810 is further configured to receive a third DCI from the serving cell, and the third DCI is used to activate the terminal device to report the measurement result aperiodicly through PUCCH or PUSCH.
  • the communication apparatus 800 may be a terminal device in the method embodiment.
  • the transceiver unit 810 may be a transceiver.
  • the transceiver has the function of sending and/or receiving.
  • the processing unit 820 is a processing device.
  • the communication device 800 may be a chip or an integrated circuit installed in a terminal device.
  • the transceiver unit 810 may be a communication interface.
  • the processing unit 820 may be a processing device.
  • the function of the processing device can be realized by hardware, or by hardware executing corresponding software.
  • the processing device may include a memory and a processor, where the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory, so that the communication device 800 executes the operations performed by the terminal device in each method embodiment and /Or processing.
  • the processing device may only include a processor, and the memory for storing the computer program is located outside the processing device.
  • the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the transceiving unit 810 may be a radio frequency device
  • the processing unit 820 may be a baseband device.
  • the communication device 900 includes a transceiving unit 910 and a processing unit 920.
  • the transceiver unit 910 is configured to send one or more PRS configuration information to a serving cell, and the PRS corresponding to the one or more PRS configuration information comes from the serving cell, the first neighboring cell corresponding to the communication device, and other neighboring cells.
  • the processing unit 920 is configured to receive, from the serving cell, the PRS measurement result of the terminal device on the serving cell and one or more neighboring cells;
  • the transceiver unit 910 is further configured to locate the terminal device according to the measurement result.
  • the transceiving unit 910 may also be replaced by a receiving unit and/or a sending unit.
  • the transceiving unit 910 when the transceiving unit 910 performs the receiving step, it can be replaced by the receiving unit.
  • the transceiving unit 910 may be replaced by a sending unit when performing the steps of sending.
  • the transceiver unit 910 is further configured to receive cell information from the serving cell and/or other neighboring cells, and the cell information of each cell includes one or more of the following information: cell location information, PRS configuration information and cell timing information, where the PRS configuration information includes one or more of the following information: configuration information of periodic PRS, configuration information of semi-persistent PRS, and configuration information of aperiodic PRS.
  • the transceiving unit 910 is further configured to receive a request message from the serving cell, and the requesting cell is configured to request the one or more neighboring cells to send a PRS to the terminal device, and the The PRS is a semi-persistent PRS or an aperiodic PRS; and the transceiver unit 910 is also configured to send the request message to other neighboring cells.
  • the transceiver unit 910 is further configured to send the location information of the terminal device to the serving cell.
  • the communication device 900 may be the gNB of the first neighboring cell in the method embodiment.
  • the transceiving unit 910 may be a transceiver.
  • the transceiver has the function of sending and/or receiving.
  • the processing unit 920 is a processing device.
  • the communication device 900 may be a chip or an integrated circuit installed in the gNB of the first neighboring cell.
  • the transceiver unit 910 may be a communication interface.
  • the processing unit 920 may be a processing device.
  • the function of the processing device can be realized by hardware, or by hardware executing corresponding software.
  • the processing device may include a memory and a processor, where the memory is used to store a computer program, and the processor reads and executes the computer program stored in the memory, so that the communication device 900 executes the gNB of the first neighboring cell in each method embodiment. Operations and/or processing performed.
  • the processing device may only include a processor, and the memory for storing the computer program is located outside the processing device.
  • the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the transceiving unit 910 may be a radio frequency device
  • the processing unit 920 may be a baseband device.
  • the communication device 10 includes: one or more processors 11, one or more memories 12, and one or more communication interfaces 13.
  • the processor 11 is used to control the communication interface 13 to send and receive signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12 to execute the positioning method provided by this application by the service cell The process and/or operation performed by the access network device.
  • the processor 11 may have the function of the processing unit 710 shown in FIG. 8, and the communication interface 13 may have the function of the transceiving unit 720 shown in FIG. 8.
  • the processor 11 may have the function of the processing unit 710 shown in FIG. 8
  • the communication interface 13 may have the function of the transceiving unit 720 shown in FIG. 8.
  • the processor 11 may be a baseband device installed in the access network device, and the communication interface 13 may be a radio frequency device.
  • FIG. 12 is a schematic structural diagram of the communication device 20 provided in the present application.
  • the communication device 20 includes: one or more processors 21, one or more memories 22, and one or more communication interfaces 23.
  • the processor 21 is used to control the communication interface 23 to send and receive signals
  • the memory 22 is used to store a computer program
  • the processor 21 is used to call and run the computer program from the memory 22 to execute the positioning method provided by this application. Process and/or operation.
  • the processor 21 may have the function of the processing unit 820 shown in FIG. 9, and the communication interface 23 may have the function of the transceiving unit 820 shown in FIG. 9.
  • the processor 21 may be a baseband device installed in the terminal device, and the communication interface 23 may be a radio frequency device.
  • the communication device 30 includes: one or more processors 31, one or more memories 32, and one or more communication interfaces 33.
  • the processor 31 is used to control the communication interface 33 to send and receive signals
  • the memory 32 is used to store a computer program
  • the processor 31 is used to call and run the computer program from the memory 32 to execute the positioning method provided by the application by the first neighbor The process and/or operation performed by the access network equipment of the cell.
  • the processor 31 may have the function of the processing unit 920 shown in FIG. 10, and the communication interface 33 may have the function of the transceiving unit 910 shown in FIG.
  • the processor 31 may have the function of the processing unit 920 shown in FIG. 10
  • the communication interface 33 may have the function of the transceiving unit 910 shown in FIG.
  • the processor 31 may be a baseband device installed in the gNB of the first neighboring cell, and the communication interface 33 may be a radio frequency device.
  • the memory and the memory in the foregoing device embodiments may be physically independent units, or the memory may also be integrated with the processor.
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions.
  • the computer instructions run on the computer, the computer can execute the positioning method provided in this application by the service cell. The operations and/or processes performed by the connected devices.
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions.
  • the computer instructions run on the computer, the computer executes the positioning method provided in this application by the terminal device. Operations and/or processes.
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions.
  • the computer instructions run on the computer, the computer executes the positioning method provided in this application by the first neighboring cell. The operations and/or processes performed by the access network equipment.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the operations performed by the access network equipment of the serving cell in the positioning method provided in this application. And/or process.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the operations and/or processes performed by the terminal device in the positioning method provided in this application.
  • This application also provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the positioning method provided in this application by the access network device of the first neighboring cell. Operations and/or processes.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory to perform operations and/or processing performed by the access network device of the serving cell in any method embodiment.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, an input/output circuit, and the like.
  • the chip may also include the memory.
  • the present application also provides a chip including a processor.
  • the memory used to store the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory to perform operations and/or processing performed by the terminal device in any method embodiment.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, an input/output circuit, and the like.
  • the chip may also include the memory.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory to perform operations and/or processing performed by the access network device of the first neighboring cell in any method embodiment.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, an input/output circuit, and the like.
  • the chip may also include the memory.
  • this application also provides a wireless communication system, including the access network equipment of the serving cell and the access network equipment of one or more neighboring cells in the embodiments of this application.
  • the wireless communication system may also include the terminal device in the embodiment of the present application.
  • this application also provides another wireless communication system, including the access network equipment of the serving cell and the access network equipment of the first neighboring cell in the embodiment of this application.
  • the wireless communication system may also include the terminal device in the embodiment of the present application.
  • the wireless communication system may also include one or more access network devices of other neighboring cells.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has the ability to process signals.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the processor can be a general-purpose processor, digital signal processor (digital signal processor, DSP), application specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic Devices, discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware encoding processor, or executed and completed by a combination of hardware and software modules in the encoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct rambus RAM, DRRAM
  • direct rambus RAM direct rambus RAM
  • unit used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in a process and/or thread of execution.
  • the components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • a component can be based on data that has one or more data packets (for example, data from two components that interact with another component in a local system, a distributed system, and/or a network, for example, the Internet that interacts with other systems through signals) Signals are communicated through local and/or remote processes.
  • data packets for example, data from two components that interact with another component in a local system, a distributed system, and/or a network, for example, the Internet that interacts with other systems through signals
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请提供一种定位的方法和通信装置,由接入网设备对终端设备定位,可以降低定位的时延。当终端设备的服务小区具有定位功能时,服务小区向终端设备发送服务小区以及邻小区的定位参考信号PRS配置信息。终端设备接收并测量服务小区以及邻小区的PRS,并向服务小区上报测量结果。服务小区根据测量结果对终端设备进行定位。或者,当服务小区不具有定位功能时,服务小区通过邻区中具有定位功能的第一邻小区获取邻小区的PRS配置信息,并发送给终端设备。终端设备接收并测量服务小区以及邻小区的PRS,并向服务小区发送测量结果。服务小区将测量结果提供给第一邻小区,由第一邻小区对终端设备定位。

Description

定位的方法和通信装置
本申请要求于2019年08月30日提交国家知识产权局、申请号为201910813973.X、申请名称为“定位的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,更具体地,涉及一种定位的方法和通信装置。
背景技术
在无线通信技术中,定位一直是第三代合作伙伴计划(the third partnership project,3GPP)的一个重要内容。在长期演进(long term evolution,LTE)的版本15(release 15,Rel15)以后以及新空口(new radio,NR)的版本15中,接入第五代核心网(the fifth generation core,5GC)的定位都采用了由核心网的定位管理功能(location management function,LMF)控制,接入网和终端设备辅助的架构。在此架构下,LMF与终端设备的服务小区和邻小区之间交互小区信息,并与终端设备之间完成终端设备的能力信息、用于定位的辅助信息以及测量结果的交互。最后,LMF基于各小区的小区信息以及终端设备对各小区的定位参考信号的测量和上报,完成对终端设备的定位。
但是,随着NR技术的演进,出现了更多的应用场景。这些应用场景对于定位的时延提出了更高的要求。而在现有的基于核心网LMF的架构中,由于接入网和终端设备与LMF的信息交互会带来较大时延,因此,不能满足NR对于定位的低时延的需求。
发明内容
本申请提供一种定位的方法和通信装置,不需要核心网的参与,接入网可以完成对终端设备的定位,有助于降低定位的时延。
第一方面,提供了一种定位的方法,该方法包括:服务小区向终端设备发送一个或多个定位参考信号PRS配置信息,所述一个或多个PRS配置信息所对应的PRS分别由服务小区和/或一个或多个邻小区发送,所述一个或多个PRS配置信息中的每个PRS配置信息包括以下信息中的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息;服务小区从所述终端设备接收针对服务小区以及所述一个或多个邻小区的PRS的测量结果;服务小区根据所述测量结果对所述终端设备进行定位。
在本申请提供的定位方法,服务小区的一个或多个邻区辅助服务小区对终端设备进行定位。在整个定位流程中,不需要核心网的参与,接入网就可以实现对终端设备的定位。由接入网对终端设备进行定位,一方面可以降低定位的时延,另一方面接入网可以独立于核心网而部署,可以避免终端设备暴露在公网中。
应理解,本申请中,服务小区向终端设备发送PRS配置信息,也即,服务小区的接 入网设备向终端设备发送PRS配置信息。邻小区向服务小区发送小区信息,也即邻小区的接入网设备向服务小区的接入网设备发送小区信息。另外,有关其它信息或信号的发送也是类似的。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:服务小区从所述一个或多个邻小区接收所述一个或多个邻小区的小区信息,每个邻小区的小区信息包括以下信息中的一项或多项:所述邻小区的位置信息、PRS配置信息、小区定时信息,其中,所述PRS配置信息包括以下信息中的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息。
通过配置周期性、半持续或非周期的PRS,从而可以使能周期性、半持续、非周期的PRS的配置,使得PRS的发送更灵活,并且可以根据基站当前负载快速调整PRS的发送。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:服务小区向所述一个或多个邻小区发送请求消息,所述请求消息用于请求所述一个或多个邻小区向所述终端设备发送PRS,所述PRS为半持续PRS或非周期PRS,其中,所述请求消息包括如下信息中的至少一项:发送所述半持续PRS的次数、发送所述半持续PRS的时长、发送所述非周期PRS的时隙。
这样可以使能半持续、非周期的PRS的配置,基站PRS的发送更灵活,并且可以根据基站当前负载快速调整PRS的发送。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:服务小区向所述终端设备发送第一媒体访问控制控制元素MAC CE,所述第一MAC CE用于所述终端设备激活或去激活半持续PRS的接收。
利用MAC CE激活、去激活半持续PRS,有助于灵活地开关PRS,从而可以根据基站当前负载快速调整PRS的发送。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:服务小区向所述终端设备发送第一下行控制信息DCI,所述第一DCI用于所述终端设备激活非周期PRS的接收。
利用DCI激活非周期PRS,有助于灵活的调度单次PRS,从而可以实现实时动态测量。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:服务小区向所述终端设备发送上报配置信息,所述上报配置信息包括以下信息中的一项或多项:测量结果所包括的测量量、上报测量结果所采用的信道、上报测量结果的周期性、上报测量结果所用的各小区的PRS资源。
利用物理层信道上报,终端可以更快的将测量结果反馈给基站,同时基站对物理层信道数据的解包也更快,基站可以更快地获取到终端测量结果。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:服务小区向所述终端设备发送第二MAC CE,所述第二MAC CE用于激活或去激活所述终端设备通过PUCCH半持续上报所述测量结果。
利用MAC CE激活、去激活上报信道,可以灵活地开关上报信道,使得基站可以根据当前负载快速调整终端上报测量。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:服务小区向所述终端 设备发送第二DCI,所述第二DCI用于激活或去激活所述终端设备通过PUCCH或PUSCH半持续上报所述测量结果。
利用DCI激活、去激活上报信道,可以灵活地开关上报信道,使得基站可以根据当前负载快速调整终端上报测量。
结合第一方面,在第一方面的某些实现方式中,服务小区向所述终端设备发送第三DCI,所述第三DCI用于激活所述终端设备通过PUCCH或PUSCH非周期上报所述测量结果。
利用DCI激活PUCCH或PUSCH的非周期上报,有助于调度单次上报,从而可以实现实时动态上报。
结合第一方面,在第一方面的某些实现方式中,所述PRS配置信息包括如下信息中的一项或多项:PRS映射的时频域资源、发送PRS的端口数、PRS的序列、QCL信息,其中,时域资源包括发送PRS的周期以及偏移量。
结合第一方面,在第一方面的某些实现方式中,所述测量结果包含在合并后的信息中,所述合并后的信息满足如下规则:所述合并后的信息是将所述测量结果中包含的测量量和信道状态信息CSI合并得到的;或者,所述合并后的信息是将所述测量量和所述CSI合并之后得到的第一信息,再和混合自动重传请求肯定应答HARQ-ACK、调度请求SR合并得到的;或者;所述合并后的信息包括所述测量结果中的部分测量量和/或所述CSI的部分,其中,所述测量结果包括多个测量量,所述CSI包括多个部分。
通过设计测量量和CSI、HARQ-ACK、SR或数据等的合并规则,可以在上报信道与携带HARQ-ACK、SR或CSI的PUCCH,或者与携带数据或CSI的PUSCH等发生时域碰撞时,保证优先级相对较高的信息被上报,可以优化上报机制。
第二方面,提供了一种定位的方法,该方法包括:该方法还包括:终端设备从服务小区接收一个或多个PRS配置信息,所述一个或多个PRS配置信息所对应的PRS来自服务小区和/或一个或多个邻小区,其中,所述一个或多个PRS配置信息中的每个PRS配置信息包括以下信息中的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息;所述终端设备根据所述一个或多个PRS配置信息,获得针对服务小区和/或所述一个或多个邻小区的PRS的测量结果;所述终端设备向服务小区发送所述测量结果。
应理解,第二方面的定位的方法和第一方面的定位的方法基于相同的发明构思,因此第二方面中各技术方案能够取得的有益技术效果,可以参考第一方面的相应方案的说明,不再赘述。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:所述终端设备从服务小区接收第一MAC CE,所述第一MAC CE用于所述终端设备激活或去激活半持续PRS的接收。
结合第二方面,在第二方面的某些实现方式中,所述第一MAC CE用于所述终端设备激活半持续PRS的接收,该方法还包括:所述终端设备根据所述第一MAC CE,从第一小区集合中的小区周期性接收所述半持续PRS,其中,所述第一小区集合包括服务小区以及所述一个或多个邻小区中发送半持续PRS的小区。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:所述终端设备从服务 小区接收第一DCI,所述第一DCI用于所述终端设备激活非周期PRS的接收。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:所述终端设备根据所述第一DCI,从第二小区集合中的小区接收所述非周期PRS,其中,所述第二小区集合包括服务小区以及所述一个或多个邻小区中发送非周期PRS的小区。
结合第二方面,在第二方面的某些实现方式中,所述终端设备向服务小区发送所述测量结果之前,该方法还包括:所述终端设备从服务小区接收上报配置信息,所述上报配置信息包括以下信息中的一项或多项:测量结果所包括的测量量、上报测量结果所采用的信道、上报测量结果的周期性、上报测量结果所用的各小区的PRS资源。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:所述终端设备从服务小区接收第二MAC CE,所述第二MAC CE用于激活或去激活所述终端设备通过PUCCH半持续上报所述测量结果。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:所述终端设备从服务小区接收第二DCI,所述第二DCI用于激活或去激活所述终端设备通过PUCCH或PUSCH半持续上报所述测量结果。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:所述终端设备从服务小区接收第三DCI,所述第三DCI用于激活所述终端设备通过PUCCH或PUSCH非周期上报所述测量结果。
结合第二方面,在第二方面的某些实现方式中,所述PRS配置信息包括如下信息中的一项或多项:PRS映射的时频域资源、发送PRS的端口数、PRS的序列、QCL信息,其中,时域资源包括发送PRS的周期以及偏移量。
结合第二方面,在第二方面的某些实现方式中,所述测量结果包含在合并后的信息中,所述合并后的信息满足如下规则:所述合并后的信息是将所述测量结果中包含的测量量和信道状态信息CSI合并得到的;或者,所述合并后的信息是将所述测量量和所述CSI合并之后得到的第一信息,再和混合自动重传请求肯定应答HARQ-ACK、调度请求SR合并得到的;或者;所述合并后的信息包括所述测量结果中的部分测量量和/或所述CSI的部分,其中,所述测量结果包括多个测量量,所述CSI包括多个部分。
结合第二方面,在第二方面的某些实现方式中,所述终端设备向服务小区发送所述测量结果,包括:所述终端设备的物理层对所述测量结果封装后通过上行控制信息UCI发送给服务小区。
第三方面,提供了一种定位的方法,该方法包括:第一邻小区向服务小区发送一个或多个PRS配置信息,所述一个或多个PRS配置信息所对应的PRS来自服务小区、所述第一邻小区以及其它邻小区中的一个或多个;第一邻小区从服务小区接收终端设备针对服务小区以及一个或多个邻小区的PRS的测量结果;第一邻小区根据测量结果,对终端设备进行定位。
在本实施例中,服务小区不具有定位功能,而服务小区的第一邻小区具有定位功能。服务小区通过第一邻小区获取PRS配置信息,并将其发送给终端设备。进一步地,服务小区通过第一邻小区请求其它邻小区向终端设备发送PRS。终端设备接收并测量服务小区以及该一个或多个邻小区的PRS。终端设备完成测量之后,基于服务小区的上报配置信息,向服务小区上报测量结果。服务小区将该测量结果提供给第一邻小区,由第一邻小区对终 端设备进行定位。因此,在服务小区不具有定位功能,而其邻小区具有定位功能的场景下,不需要核心网的参与,接入网也可以完成对终端设备的定位。
结合第三方面,在第三方面的某些实现方式中,第一邻小区向服务小区发送所述一个或多个邻小区的PRS配置信息之前,该方法还包括:第一邻小区从服务小区和/或所述其它邻小区接收小区信息,服务小区和所述其他邻小区中每个小区的小区信息包括如下信息的一项或多项:小区的位置信息、PRS配置信息和小区定时信息,其中,所述PRS配置信息包括以下信息中的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:第一邻小区从服务小区接收请求消息,所述请求消息用于请求所述一个或多个邻小区向终端设备发送PRS,所述PRS为半持续PRS或非周期PRS;第一邻小区向所述其它邻小区发送所述请求消息。
结合第三方面,在第三方面的某些实现方式中,第一邻小区对终端设备进行定位之后,该方法还包括:第一邻小区向服务小区发送终端设备的位置信息。
第四方面,本申请提供一种通信装置,所述通信装置具有实现第一方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,本申请提供一种通信装置,所述通信装置具有实现第二方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第六方面,本申请提供一种通信装置,所述通信装置具有实现第三方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第七方面,本申请提供一种网络设备,包括处理器和存储器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,以使得网络设备执行第一方面或其任意可能的实现方式中的方法。
第八方面,本申请提供一种终端设备,包括处理器和存储器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,以使得终端设备执行第二方面或其任意可能的实现方式中的方法。
第九方面,本申请提供一种网络设备,包括处理器和存储器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,以使得网络设备执行第三方面或其任意可能的实现方式中的方法。
可选地,第七方面至第九方面中,网络设备或终端设备包括的处理器可以为一个或多个,存储器也可以为一个或多个。
第十方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行第一方面或其任意可能的实现方式中的方法。
第十一方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行第二方面或其任意可能的实现方式中的方法。
第十二方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行第三方面或其任意可能的实现方式中的方法。
第十三方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第一方面或其任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十四方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第二方面或其任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十五方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第三方面或其任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路或电线与存储器连接。
进一步可选地,所述芯片还包括通信接口。
第十六方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行第一方面或其任意可能的实现方式中的方法。
第十七方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行第二方面或其任意可能的实现方式中的方法。
第十八方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行第三方面或其任意可能的实现方式中的方法。
第十九方面,本申请还提供一种无线通信系统,包括本申请实施例中的服务小区的接入网设备以及一个或多个邻小区的接入网设备。
可选地,该无线通信系统中还可以包括本申请实施例中的终端设备。
可选地,本申请还提供另一种无线通信系统,包括本申请实施例中的服务小区的接入网设备和第一邻小区的接入网设备。
可选地,该无线通信系统还可以包括本申请实施例中的终端设备。
进一步可选地,该无线通信系统还可以包括一个或多个其它邻小区的接入网设备。
附图说明
图1是适用于本申请实施例的通信系统100的一种架构的示例。
图2是本申请提供的定位的方法的示意性流程图。
图3为本申请提供的定位的方法的一个示意性流程图。
图4为本申请提供的定位的方法的另一个示意性流程图。
图5是服务小区具有定位功能的定位流程的一个示例。
图6是服务小区不具有定位功能的定位流程的一个示例。
图7为LMF和终端设备(以UE为例)的通信协议栈的示意图。
图8为本申请提供的用于定位的通信装置700的示意性框图。
图9为本申请提供的通信装置800的示意性框图。
图10为本申请提供的通信装置900的示意性框图。
图11是本申请提供的通信装置10的示意性结构图。
图12是本申请提供的通信装置20的示意性结构图。
图13是本申请提供的通信装置30的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
参见图1,图1是适用于本申请实施例的通信系统100的一种架构的示例。如图1所示,通信系统100包括核心网、无线接入网(radio access network,RAN)和终端设备。其中,核心网包括接入和移动性管理功能(access and mobility management function,AMF)、定位管理功能(location management function,LMF)、统一数据管理(unified data manage,UDM)、网关移动位置中心(gateway mobile location center,GMLC)和位置检索功能(location retrieval function,LRF)等功能。NG-RAN包括一个或多个ng-eNB和gNB。其中,ng-eNB是接入5G核心网的长期演进(long term evolution,LTE)基站,gNB是接入5G核心网的5G基站。另外,通信系统100中还可以包括一个或多个终端设备。NG-RAN通过NG-C接口经由AMF连接到核心网。终端通过LTE-Uu和NR-Uu分别经由ng-eNB和gNB连接到RAN。
需要说明的是,图1中的核心网5GC用虚线示出,表示通信系统100可以仅包括终端设备和RAN。在本申请的技术方案中,5GC是可选的。或者说,本申请提供的定位的方法中,可以不需要核心网的任何网元的参与。
另外,图1中的外部客户端(external client),可以是连到互联网的应用程序,该应用程序通过互联网向5G核心网请求终端位置信息,5G核心网的网关移动位置中心(gateway mobile location center,GMLC)负责外部客户端位置请求的处理。
可选地,在另一种架构中,核心网可以完成对接入网设备定位的选取、授权以及定位流程的控制,例如,定位流程的启动以及定位结果的获取。而定位的过程完全由接入网完成,不需要核心网的参与。
另外,应理解,图1中所示的各网元之间的接口名称仅是作为示例。在不同的通信系统中,或者随着通信系统的演进,图1中所示的各网元之间的接口也可以不同于图1所示,本文不作限定。
本申请中提及的无线接入网设备是一种部署在RAN中满足5G标准或者下一代通信标准的为终端设备提供无线通信功能的装置。无线接入网设备可以包括各种形式的宏基站、微基站(也称为,小站)、中继站、接入点,可穿戴设备,车载设备。gNB还可以是传输接收节点(transmission and reception point,TRP)等。
本申请中的终端设备包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。例如,终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站(mobile station,MS)、移动台、 远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、车载设备、可穿戴设备、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端,5G网络或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请对此并不限定。
下面介绍本申请提供的定位的方法。
参见图2,图2是本申请提供的定位的方法的示意性流程图。
210、服务小区向终端设备发送一个或多个PRS配置信息。
相应地,终端设备从服务小区接收该一个或多个PRS配置信息。
本申请中,服务小区向终端设备发送PRS配置信息,也即,服务小区的接入网设备向终端设备发送PRS配置信息。为了描述上的简洁,本文简化了描述。
另外,关于服务小区和邻小区之间的信息交互的描述也是类似。例如,服务小区向邻小区发送信息,或者服务小区从邻小区接收信息,也即服务小区的接入网设备向邻小区的接入网设备发送信息,或者,服务小区的接入网设备从邻小区的接入网设备接收信息。
此外,终端设备和服务小区或邻小区之间的信息和信号的交互也是类似的。例如,终端设备从服务小区接收信息,也即终端设备从服务小区的接入网设备接收信息。或者,终端设备从服务小区或邻小区接收PRS,也即终端设备从服务小区或邻小区的接入网设备接收PRS。或者,终端设备向服务小区发送信息,也即,终端设备向服务小区的接入网设备发送信息。
上述说明对于本申请中的各实施例均是适用的,以下不再说明。
其中,该一个或多个PRS配置信息来自服务小区和/或一个或多个邻小区,以及,该一个或多个PRS配置信息对应的PRS来自服务小区和/或所述一个或多个邻小区。每个PRS配置信息可以包括如下信息的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息或非周期PRS的配置信息。
应理解,周期性PRS是指周期性发送的PRS。半持续PRS是指半持续发送的PRS。非周期PRS是指非周期发送的PRS。
220、终端设备根据该一个或多个PRS配置信息,获得对服务小区以及该一个或多个邻小区的PRS的测量结果。
终端设备从服务小区接收该一个或多个PRS配置信息,进而获知该一个或多个PRS配置信息各自对应的小区的PRS的配置。通过接收并测量服务小区以及该一个或多个邻小区的PRS,终端设备获得服务小区以及该一个或多个邻小区的PRS的测量结果。
230、终端设备向服务小区发送测量结果。
240、服务小区根据测量结果,对终端设备进行定位。
服务小区根据终端设备上报的测量结果,可以完成对终端设备的定位。或者,服务小区接收到测量结果之后,将测量结果发送给具有定位功能的邻小区。该具有定位功能的邻小区根据测量结果计算终端设备的位置,也可以完成对终端设备的定位。最后,该具有定 位功能的邻小区可以将计算得到的终端设备的位置信息提供给服务小区。其中,测量结果包括哪些测量,以及服务小区如何根据测量结果得到终端设备的定位,请参考下方实施例的描述。
因此,在本申请提供的由接入网对终端设备进行定位的方法中,服务小区的一个或多个邻区可以辅助服务小区对终端设备进行定位。在整个定位流程中,不需要核心网的参与。由接入网对终端设备进行定位,一方面可以降低定位的时延,另一方面可以避免终端设备暴露在公网中。
针对终端设备的服务小区是否具有定位功能,下文分两种场景分别详细说明接入网对终端设备进行定位的详细流程。
场景1
终端设备的服务小区具有定位功能。
参见图3,图3为本申请提供的定位的方法的一个示意性流程图。
301、服务小区获取一个或多个邻小区的PRS配置信息。
具体地,参与定位的一个或多个邻小区向服务小区发送各自的PRS配置信息。
可选地,在一种实现方式中,参与定位的邻小区向服务小区发送小区信息,小区信息包括邻小区的PRS配置信息。此外,小区信息还可以包括该邻小区的位置信息和小区的定时信息等。
其中,每个邻小区的PRS配置信息可以包括如下一项或多项:周期PRS配置信息、半持续PRS配置信息或非周期PRS配置信息。
应理解,当一个邻小区的PRS配置信息仅包括某一种类型的PRS配置信息时,表示该邻小区发送相应类型的PRS。例如,如果一个邻小区的PRS配置信息仅包括周期PRS配置信息时,表示该邻小区发送周期性PRS。当一个邻小区的PRS配置信息包括两种或两种以上的PRS配置信息时,表示该邻小区可以在不同的时段发送不同类型的PRS。例如,如果一个邻小区的PRS配置信息包括非周期PRS配置信息和半持续PRS配置信息,表示该邻小区可以基于服务小区的请求发送非周期PRS和半持续PRS。
进一步地,每个邻小区的PRS配置信息可以包括如下信息:子载波间隔、A点频点、slot内时频域资源、端口数、序列以及准共址(quasi co-loacted,QCL)信息等。
例如,PRS的子载波间隔可以为30KHz。
A点频点可以用邻小区的绝对无线频道编号(absolute radio frequency channel number,ARFCN)表示。例如,A点频点可以为ARFCN 653334,表明A点绝对频点为3800.01MHz。
时频域资源的时域资源可以为时域符号所占用的一个时隙内的符号5,6,7,8,9,10,11,12,13。频域资源可以从载波公共资源块(common resource block,CRB)的CBR#2开始,占用192个RB。
进一步地,对于周期性PRS和半持续PRS,时域资源还可以包括周期以及周期内的偏移。
例如,周期可以为10ms,周期内的偏移可以为2ms。当子载波间隔为30KHz时,表示PRS的发送时机为每个系统帧的第5个时隙。又例如,周期可以为40个时隙,周期内的偏移可以为4个时隙,则表示PRS的发送时机为偶数系统帧的第5个时隙。
端口数可以为1。
序列初始化扰码索引可以为139。基于扰码索引可以生成每个时隙、每个符号上的序列。
QCL可以为该邻小区的同步信号块(SS/PBCH block,SSB)#2,表明邻小区的PRS与SSB#2QCL。
邻小区的位置信息可以为邻小区的地理位置,例如,经纬度坐标。
小区的定时信息可以为系统帧号(system frame number,SFN)初始化时间。
302、服务小区向终端设备发送服务小区以及该一个或多个邻小区的PRS配置信息。
服务小区从该一个或多个邻小区接收PRS配置信息之后,向终端设备发送该一个或多个邻小区的PRS配置信息以及服务小区的PRS配置信息。
换句话说,服务小区向终端设备发送所有参与定位的小区的PRS配置信息。
可选地,为了达到对终端设备进行定位的目的,服务小区向终端设备发送多个小区的PRS配置信息,使得终端设备可以对多个小区的PRS进行测量,从而由接入网根据测量结果对终端设备定位。其中,所述多个(三个或三个以上)小区可以包括服务小区以及部分邻小区。
在一些可能的场景下,服务小区向终端设备发送一个或者两个小区的PRS配置信息。终端设备通过对一个小区的不同波束发送的PRS进行测量,得到的测量结果也可以用于对终端设备的定位,相对于前者,定位精度可能略低。
303、服务小区向终端设备发送上报配置信息。
相应地,终端设备从服务小区接收上报配置信息。
除了步骤302中的PRS配置信息,服务小区还需要向终端设备下发上报配置信息,用于指示终端设备如何上报测量结果。
可选地,上报配置信息可以包括如下信息中的一项或多项:
测量结果应该包括的测量量、上报测量结果所采用的信道、上报测量结果的周期性以及上报测量结果所用的各小区的PRS资源。
可选地,测量量可以包括参考信号时间差(reference signal time difference,RSTD)、参考信号接收质量(reference signal received quality,RSRQ)以及参考信号接收功率(reference signal received power,RSRP)等。
为了描述上的方便,以下将上报测量结果所采用的信道称为上报信道。
可选地,上报信道可以包括物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)。
可选地,上报的方式可以包括周期性上报、半持续上报或者非周期上报。
可选地,上报测量结果所用的各小区的PRS资源可以如下:
周期性上报一般基于周期性PRS;
半持续上报可以基于周期性PRS或半持续PRS;
非周期上报可以基于周期性PRS、半持续PRS或非周期PRS。
应理解,步骤302中的PRS配置信息和步骤303中的上报配置信息可以由服务小区一起发送给终端设备,也可以分开发送,本申请不作限定。当分开发送时,也不应限定发送的先后顺序。
服务小区向终端设备发送PRS配置信息和上报配置信息之后,可以执行步骤340。
304、服务小区向该一个或多个邻小区发送请求消息。
其中,请求消息用于请求这些邻小区向终端设备发送半持续PRS或非周期PRS。
具体地,服务小区发送给邻小区的请求消息中可以包括如下信息中的一项或多项:发送半持续PRS的次数、发送半持续PRS的时长,以及发送非周期PRS的时隙。
305、服务小区激活终端设备对半持续PRS或非周期PRS的接收。
对于发送半持续PRS或非周期PRS的邻小区,服务小区可以通过MAC CE或DCI激活终端设备对半持续PRS或非周期PRS的接收。
可选地,在一种实现中,对于半持续PRS,服务小区可以通过MAC CE激活终端设备对于半持续PRS的接收。
例如,服务小区向终端设备发送MAC CE,其中,该MAC CE用于激活服务小区以及上述一个或多个邻小区中的半持续PRS。激活之后,终端设备认为半持续PRS是周期发送的。
在激活半持续PRS之后,服务小区也可以根据需要,通过MAC CE去激活半持续PRS的发送。去激活之后,终端设备认为半持续PRS不再发送。
对于非周期PRS,服务小区可以通过DCI激活终端设备对于非周期PRS的接收。
例如,服务小区向终端设备发送DCI,其中,该DCI用于激活服务小区以及上述一个或多个邻小区中的非周期PRS。激活之后,终端设备接收一次非周期PRS。
对于周期PRS,终端设备周期性接收。
306、服务小区激活终端设备的半持续上报或非周期上报。
如步骤303所述,上报配置信息中包括上报的周期性。上报的周期性可以包括周期上报、半持续上报以及非周期上报。
其中,对于半持续上报和非周期上报,服务小区需要通过MAC CE或者DCI激活。
在一种实现中,服务小区可以通过MAC CE激活基于PUCCH的半持续上报。
例如,服务小区可以向终端设备发送MAC CE,该MAC CE用于激活终端设备基于PUCCH进行半持续上报。激活之后,终端设备周期性上报测量结果。
可选地,激活半持续上报之后,服务小区可以根据需要通过MAC CE去激活半持续上报。去激活之后,终端设备不再上报。
可选地,用于激活半持续上报的MAC CE和用于激活半持续PRS的MAC CE可以分开发送,也可以一起发送。
在一种实现中,服务小区也可以通过DCI激活基于PUCCH或PUSCH的非周期上报。
例如,服务小区向终端设备发送DCI,该DCI用于激活终端设备基于PUCCH或PUSCH进行非周期上报。
可选地,服务小区向终端设备发送DCI,默认表示终端设备可以从PUCCH和PUSCH中选择一个上报。或者,服务小区向终端设备发送DCI,DCI中可以携带指示信息,指示信息用于指示上报信道采用PUCCH或是PUSCH。例如,DCI中携带比特“0”,表示服务小区指示终端设备采用PUCCH进行非周期上报。DCI中携带比特“1”,表示服务小区指示终端设备采用PUSCH进行非周期上报。
应理解,对于非周期上报,服务小区通过DCI激活之后,终端设备只上报一次。
可选地,如果非周期上报基于非周期PRS,则用于激活非周期上报的DCI和用于激 活非周期PRS的DCI为同一个DCI。
307、服务小区以及该一个或多个邻小区向终端设备发送PRS。
在步骤307,所有参与定位的小区向终端设备发送PRS。
其中,对于发送半持续PRS或非周期PRS的邻小区,根据步骤304中从服务小区接收到的请求消息,根据服务小区指定的半持续PRS的次数以及时长向终端设备发送半持续PRS,或者在服务小区指定的时隙向终端设备发送非周期PRS。
对于发送周期性PRS的小区而言,根据PRS配置信息向终端设备周期发送PRS即可。
相应地,终端设备接收并测量服务小区以及该一个或多个邻小区发送的周期PRS、半持续PRS或非周期PRS,得到测量结果。
308、终端设备向服务小区发送测量结果。
根据步骤303中接收到的上报配置信息,终端设备按照服务小区指定的上报信道以及上报的周期性向服务小区发送测量结果。
进一步地,如果服务小区指示终端设备半持续上报或者非周期上报,终端设备根据步骤306中所述的半持续上报或者非周期上报的激活以及去激活向服务小区上报测量结果。
可选地,在步骤308中,终端设备将测量结果封装后,通过上行控制信息(uplink control information,UCI)发送给服务小区。
309、服务小区根据测量结果对终端设备进行定位。
服务小区接收到终端设备的测量结果之后,结合步骤310中从该一个或多个邻小区接收到的小区信息,例如各邻小区的位置信息、小区定时信息等,对终端设备进行定位。
例如,当测量结果为参考信号接收质量(reference signal received quality,RSRQ),服务小区可以根据该测量结果和各邻小区的位置信息、小区定时信息,得到终端设备的定位信息,定位算法包括多种实现方法,具体可以参考现有技术的描述。
在场景1中,服务小区具有定位功能。服务小区获取其一个或多个邻小区的PRS配置信息,并和服务小区的PRS配置信息一起发送给终端设备。进一步地,服务小区请求该一个或多个邻小区向终端设备发送PRS,从而可以和服务小区一起向终端设备发送可供测量的PRS,由终端设备对服务小区以及该一个或多个邻小区的PRS进行测量。终端设备完成测量之后,基于服务小区的上报配置信息,向服务小区上报测量结果。服务小区基于该测量结果,可以完成对终端设备的定位。
通过以上步骤310-380,不需要核心网的参与,接入网可以完成对终端设备的定位。
场景2
服务小区不具有定位功能,而服务小区的某个邻小区具有定位功能。
为了描述上的清楚,以下将该服务小区的具有定位功能的邻小区记作第一邻小区。应理解,第一邻小区可以是服务小区的所有邻小区中任意一个具有定位功能的小区。
可选地,在一种可能的情况下,服务小区可以有多个具有定位功能的邻小区,此时,第一邻小区可以为该多个具有定位功能的邻小区中的任意一个。
下面结合图4,对场景2的定位流程进行说明。
参见图4,图4为本申请提供的定位的方法的另一个示意性流程图。
401、服务小区通过第一邻小区获取一个或多个PRS配置信息。
其中,所述一个或多个PRS配置信息来自服务小区、第一邻小区以及一个或多个其 它邻小区。
或者说,所述一个或多个PRS配置信息来自服务小区以及一个或多个邻小区。所述一个或多个邻小区包括第一邻小区。也即,服务小区的一个或多个邻小区包括第一邻小区和其它邻小区。
具体地,在步骤401之前,服务小区以及其它邻小区向第一邻小区发送各自的PRS配置信息,再由第一邻小区将参与定位的小区的PRS配置信息提供给服务小区。
应理解,第一邻小区向服务小区提供的一个或多个PRS配置信息,可以包括服务小区、第一邻小区以及一个或多个其它邻小区的PRS配置信息。
在一种实现中,服务小区向第一邻小区发送服务小区的消息信息,服务小区的小区信息包括服务小区的PRE配置信息、小区的位置信息以及小区定时信息等。同时,其它邻小区也向第一邻小区发送自己的小区信息,小区信息包括PRS配置信息、小区的位置信息以及小区定时信息等。
第一邻小区从服务小区以及一个或多个其它邻小区接收该一个或多个PRS配置信息,并将该一个或多个PRS配置信息提供给服务小区。
应理解,由于第一邻小区是具有定位功能的小区,因此,服务小区以及其它邻小区中参与定位的小区是由第一邻小区确定的。服务小区和其它邻小区将各自的小区信息发送给第一邻小区。第一邻小区获取到服务小区以及一个或多个邻小区的PRS配置信息后,只需要向服务小区提供所有参与定位的小区的PRS配置信息。
相应地,服务小区只需要向终端设备透传第一邻小区确定出的参与定位的小区的PRS配置信息即可。
可选地,在另一种实现中,第一邻小区获取到服务小区以及其它邻小区的小区信息之后,每个小区的位置信息、小区定时信息可以由第一邻小区保留,而不需要提供给服务小区,这是与场景1不同。
在场景1中,所有邻小区都将各自的小区信息提供给服务小区,其中,每个邻小区的小区信息包括该邻小区的位置信息、定时信息。
区别的原因在于,在场景2中,服务小区不具有定位功能,而第一邻小区具有定位功能。第一邻小区保留服务小区以及其它邻小区的位置信息和定时信息,后续可以用于对终端设备进行定位,而不需要提供给服务小区。
服务小区从第一邻小区接收一个或多个PRS配置信息。
402、服务小区向终端设备发送服务小区以及该一个或多个邻小区的PRS配置信息。
403、服务小区向终端设备发送上报配置信息。
步骤402-403可以分别参见上文的步骤302-303,这里不再赘述。
404、服务小区通过第一邻小区向发送半持续PRS或非周期PRS的邻小区发送请求消息。
对于发送半持续PRS或非周期PRS的邻小区,服务小区需要向这些邻小区发送请求消息,请求消息中携带如下信息中的一项或多项:发送半持续PRS的次数、发送半持续PRS的时长,以及发送非周期PRS的时隙。
405、服务小区激活终端设备对半持续PRS或非周期PRS的接收。
406、服务小区激活半持续上报或非周期上报。
407、服务小区以及该一个或多个邻小区向终端设备发送PRS。
终端设备接收并测量服务小区以及该一个或多个邻小区的PRS。
408、终端设备向服务小区发送测量结果。
服务小区从终端设备接收测量结果。
步骤405-408分别参见步骤305-308的说明,不再赘述。
409、服务小区向第一邻小区发送该测量结果。
410、第一邻小区根据测量结果,对终端设备进行定位。
第一邻小区根据测量结果,以及步骤401中从其它邻小区接收到的其它邻小区的位置信息、定时信息等,结合第一邻小区的位置信息、定时信息,对终端设备进行定位。
在场景2中,服务小区不具有定位功能,而服务小区的一个邻小区(例如,第一邻小区)具有定位功能。服务小区通过第一邻小区获取参与定位的小区的PRS配置信息,并将该参与定位的小区的PRS配置信息发送给终端设备。进一步地,服务小区通过第一邻小区请求其它邻小区向终端设备发送PRS。终端设备接收并测量服务小区以及该一个或多个邻小区的PRS。终端设备完成测量之后,基于服务小区的上报配置信息,向服务小区上报测量结果。服务小区将该测量结果提供给第一邻小区,由第一邻小区对终端设备进行定位。
可见,在服务小区不具有定位功能,而其邻小区具有定位功能的场景下,不需要核心网的参与,接入网也可以完成对终端设备的定位。
考虑到终端设备在上报测量结果(例如,场景1的步骤308或场景2的步骤408)时,上报信道可能会与携带混合自动重传请求肯定应答(hybrid automatic repeat request acknowledgement,HARQ-ACK)、调度请求(scheduling request,SR)或信道状态信息(channel state information,CSI)的PUCCH,或者与携带数据或CSI的PUSCH发生时域碰撞,本申请的方案进一步提出处理这种碰撞的方法。
终端设备可以按照测量量、CSI、HARQ-ACK以及SR的优先级顺序,对测量量、CSI、HARQ-ACK以及SR进行合并,再向服务小区上报合并后的信息。
可选地,测量量和CSI的优先级可以是预先定义的,或者也可以由终端设备定义。
例如,所有测量量的优先级低于CSI,或者所有测量量的优先级高于CSI,或者测量量的优先级介于L1-RSRP与其它CSI之间。
可选地,当发生碰撞时,如果有CSI,终端设备首先合并测量量和CSI,得到第一信息(或者称为,合并后的CSI)。进一步地,再将合并后的CSI和HARQ-ACK、SR进行合并,得到所述合并后的信息。其中,合并后的CSI和HARQ-ACK、SR的合并处理可以参见3GPP标准协议TS 38.213 9.2.5-9.2.6。
可选地,当发生碰撞时,如果没有CSI,终端设备可以直接合并测量量和HARQ-ACK、SR或数据,再向服务小区上报合并后的信息。
可选地,测量结果中可能包括多个测量量,CSI包括多个部分(例如,part 1,part 2)。上述定义测量量和CSI的优先级包括定义该多个测量量和CSI的所述多个部分的优先级。当发生碰撞时,按照该多个测量量和CSI的多个部分的优先级进行合并。
例如,上报信道无法将测量量和CSI全部传输(或者说,测量量和CSI的比特数超出了上报信道的最大码率)时,终端设备可以丢弃优先级较低的测量量或者CSI的优先级较 低的部分。也即,这些优先级较低的测量量或者CSI的部分不予上报。终端设备将优先级较高的测量量和CSI的优先级较高的部分进行合并,并向服务小区上报合并后的信息。
此外,终端设备向服务小区上报合并后的信息时,可能重新选择PUCCH或PUSCH用于发送合并后的信息。
可选地,终端设备可能需要合并测量量和SR,或者合并测量量和HARQ-ACK,或者上报信道可能为PUCCH,或者上报信道可能为PUSCH。在这些不同的情况下,可以分别有不同的合并规则,本文不作限定。
通过设计测量量和CSI、HARQ-ACK、SR或数据等的合并规则,可以在碰撞发生时,保证优先级相对较高的信息被上报,可以优化上报机制。
以上结合图3和图4,对本申请提供的由接入网对终端设备进行定位的方法作了详细说明。
下面结合图5和图6进行举例说明。
参见图5,图5是服务小区具有定位功能的定位流程的一个示例。
501、服务小区的gNB基于XnAP协议通过Xn接口,从一个或多个邻小区的gNB接收该一个或多个邻小区的小区信息。
其中,每个邻小区的小区信息包括该邻小区的PRS配置信息、位置信息和定时信息。。
502、服务小区的gNB通过RRC协议向UE发送上报配置信息以及参与定位的小区的PRS配置信息。
其中,参与定位的小区可以包括服务小区以及该一个或多个邻小区。
应理解,在本实施例中,PRS配置信息和上报配置信息可以通过一条RRC消息发送给UE。
UE从服务小区的gNB接收上报配置信息以及服务小区和该一个或多个邻小区的PRS配置信息。
503、服务小区的gNB基于XnAP协议通过Xn接口向邻小区的gNB发送请求消息。
其中,请求消息用于请求该一个或多个邻小区发送半持续PRS或非周期PRS。
504、服务小区的gNB激活UE接收半持续PRS或非周期PRS。
具体地,服务小区的gNB可以通过MAC CE激活UE接收半持续PRS,或者通过DCI激活UE接收非周期PRS。
505、服务小区的gNB激活UE进行半持续上报或非周期上报。
可选地,服务小区的gNB可以基于MAC CE或DCI激活UE进行半持续上报或非周期上报。
506、服务小区的gNB和该一个或多个邻小区的gNB向UE发送PRS。
其中,被配置为发送半持续PRS的邻小区,根据服务小区的gNB的请求,在指定时间发送PRS,并发送指定次数。被配置为发送非周期PRS的邻小区,根据服务小区的请求,在指定时间(例如,在指定的时隙)发送PRS。
相应地,UE根据步骤502中接收到的服务小区和各邻小区的PRS配置信息,接收并测量服务小区以及各邻小区的PRS。对于服务小区或任意一个邻小区而言,其发送的PRS可以是周期PRS、非周期PRS或半持续PRS,具体取决于各小区的PRS的配置。
507、UE向服务小区的gNB发送测量结果。
UE根据步骤502中从服务小区的gNB接收到的上报配置信息,上报测量结果。
具体地,如果服务小区的gNB配置UE周期性上报,UE根据步骤502中的上报配置信息,周期上报测量结果。
如果服务小区的gNB配置UE进行半持续上报或非周期上报,UE根据步骤502中的上报配置信息,在步骤504中激活的上报信道上向服务小区的gNB上报测量结果。
可选地,UE在上报测量结果时,如果上报信道与携带CSI、HARQ-ACK或SR的PUCCH发生时域碰撞,或者与携带数据或CSI的PUSCH发生碰撞,UE按照上文描述的处理碰撞的流程进行处理,这里不再赘述。
508、服务小区的gNB根据UE上报的测量结果,计算UE的位置。
可选地,服务小区的gNB计算得到UE的位置信息之后,将该位置信息提供给UE。
509、服务小区的gNB通过RRC消息或者MAC CE,向UE发送计算得到的UE的位置信息。
参见图6,图6是服务小区不具有定位功能的定位流程的一个示例。
601、服务小区向第一邻小区发送服务小区的PRS配置信息,一个或多个其它邻小区向第一邻小区发送各自的PRS配置信息。
第一邻小区从服务小区以及所述一个或多个其它邻小区接收各小区的PRS配置信息。
602、服务小区的gNB基于XnAP通过Xn接口,从第一邻小区的gNB接收一个或多个小区信息。
应理解,所述一个或多个小区信息来自服务小区以及该一个或多个邻小区。其中,所该一个或多个邻小区包括第一邻小区。
换句话说,第一邻小区的gNB从服务小区以及所述一个或多个其它邻小区的gNB获取到各小区的PRS配置信息之后,向服务小区的gNB提供参与定位的各小区的PRS配置信息。其中,参与定位的小区可以为服务小区以及该一个或多个邻小区中的部分或全部,这里不作限定。
其中,每个小区(例如,服务小区或邻小区)的小区信息包括该该小区的PRS配置信息、位置信息以及定时信息。
可选地,第一邻小区的gNB从服务小区以及该一个或多个其它邻小区的gNB接收到小区信息之后,第一邻小区向服务小区的gNB提供的小区信息中不包含各参与定位的小区的位置信息。或者,第一邻小区的gNB向服务小区的gNB只提供各参与定位的小区的PRS配置信息。
603、服务小区的gNB基于RRC协议,向UE提供上报配置信息、服务小区以及该一个或多个邻小区的PRS配置信息。
关于每个邻小区的PRS配置信息以及上报配置信息可以参见步骤402-403的说明,这里不再赘述。
604、服务小区的gNB基于XnAP协议通过Xn接口,经由第一邻小区的gNB向该一个或多个其它邻小区发送请求消息。
其中,请求消息用于请求相应的邻小区发送半持续PRS或非周期PRS。
605、服务小区的gNB激活UE接收半持续PRS或非周期PRS。
606、服务小区的gNB激活UE进行半持续上报或非周期上报。
607、服务小区的gNB和该一个或多个邻小区的gNB向UE发送PRS。
UE根据步骤603中接收到的服务小区以及各邻小区的PRS配置信息,接收并测量服务小区以及该一个或多个邻小区的PRS。
应理解,对于服务小区或任意一个邻小区而言,其发送的PRS可以是周期PRS、非周期PRS或半持续PRS,取决于小区的PRS的配置。
608、UE向服务小区的gNB上报测量结果。
609、服务小区的gNB将测量结果发送给第一邻小区的gNB。
610、第一邻小区的gNB根据测量结果以及步骤601中从各其它邻小区获取到的各邻小区的位置信息、定时信息等,计算UE的位置。
611、第一邻小区的gNB通过Xn接口,将计算得到的UE的位置信息发送给服务小区的gNB。
612、服务小区的gNB向UE提供UE的位置信息。
应理解,图5和图6所示流程中的各个步骤可以分别参考图3和图4中相应步骤的说明,为了避免赘述,不再展开详细说明。
需要说明的是,在本申请的各实施例中,终端设备向服务小区上报测量结果时,是由终端设备的物理层对测量结果进行封装后通过上行控制信息(uplink control information,UCI)发送给服务小区的。
而在现有的通过核心网的LMF进行定位的机制中,是由终端设备的长期演进定位协议(long term evolution positioning protocol,LPP)层对测量结果封装后通过非接入层(non-access stratum,NAS)信令并进一步经由RRC/PDCP/RLC/MAC层封装后映射到逻辑信道中的上行共享信道(uplink-shared channel,UL-SCH),经由层1(PHY层,物理层)发送给基站,基站将数据包经由AMF发送LMF的。协议栈如图7所示。
参见图7,图7为LMF和终端设备(以UE为例)的通信协议栈的示意图。UE和LMF之间通过LPP消息传递信息,经由基站透明转发,并经由AMF传递至LMF处。
而本申请中利用终端设备的物理层进行上报,终端设备可以更快的将测量结果反馈给基站。同时,基站对物理层信道数据的解包也更快,基站可以更快地获取到终端测量结果。
以上对本申请提供的定位的方法进行了详细说明,下面介绍本申请提供的用于定位的通信装置。
参见图8,图8为本申请提供的用于定位的通信装置700的示意性框图。通信装置700包括收发单元710和处理单元720。
收发单元710,用于向终端设备发送一个或多个定位参考信号PRS配置信息,所述一个或多个PRS配置信息所对应的PRS由所述通信装置对应的服务小区和/或一个或多个邻小区发送,所述一个或多个PRS配置信息中的每个PRS配置信息包括以下信息中的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息;
所述收发单元710,还用于从终端设备接收针对服务小区以及该一个或多个邻小区的PRS的测量结果;
处理单元720,用于根据所述测量结果对终端设备进行定位。
可选地,收发单元710也可以由接收单元和/或发送单元代替。
例如,收发单元710在执行接收的步骤时,可以由接收单元代替。收发单元710在执 行发送的步骤时,可以由发送单元代替。
可选地,在一个实施例中,收发单元710还用于从所述一个或多个邻小区接收所述一个或多个邻小区的小区信息,每个邻小区的小区信息包括以下信息中的一项或多项:
所述邻小区的位置信息、PRS配置信息、小区定时信息,其中,所述PRS配置信息包括以下信息中的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息
可选地,在一个实施例中,收发单元710还用于向所述一个或多个邻小区发送请求消息,所述请求消息用于请求所述一个或多个邻小区向所述终端设备发送PRS,所述PRS为半持续PRS或非周期PRS,其中,请求消息包括如下信息中的至少一项:
发送所述半持续PRS的次数、发送所述半持续PRS的时长、发送所述非周期PRS的时隙。
可选地,在一个实施例中,收发单元710还用于向终端设备发送第一MAC CE,所述第一MAC CE用于终端设备激活或去激活半持续PRS的接收。
可选地,在一个实施例中,收发单元710还用于向所述终端设备发送第一下行控制信息DCI,所述第一DCI用于所述终端设备激活非周期PRS的接收。
可选地,在一个实施例中,收发单元710还用于向所述终端设备发送上报配置信息,所述上报配置信息包括以下信息中的一项或多项:测量结果所包括的测量量、上报测量结果所采用的信道、上报测量结果的周期性、上报测量结果所用的各小区的PRS资源。
可选地,在一个实施例中,收发单元710还用于向终端设备发送第二MAC CE,所述第二MAC CE用于激活或去激活终端设备通过PUCCH半持续上报所述测量结果。
可选地,在一个实施例中,收发单元710还用于向终端设备发送第二DCI,所述第二DCI用于激活或去激活所述终端设备通过PUCCH或PUSCH半持续上报所述测量结果。
可选地,在一个实施例中,收发单元710还用于向终端设备发送第三DCI,所述第三DCI用于激活终端设备通过PUCCH或PUSCH非周期上报所述测量结果。
在一种实现方式中,通信装置700可以为方法实施例中的服务小区的gNB。在这种实现方式中,收发单元710可以为收发器。收发器具有发送和/或接收的功能。处理单元720为处理装置。
在另一种实现方式中,通信装置700可以为安装在服务小区的gNB中的芯片或集成电路。在这种实现方式中,收发单元710可以为通信接口。例如,输入输出接口或者输入输出电路。处理单元720可以为处理装置。
这里,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,使得通信装置700执行各方法实施例中由服务小区的gNB执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
可选地,收发单元710可以为射频装置,处理单元720可以为基带装置。
参见图9,图9为本申请提供的通信装置800的示意性框图。通信装置800包括收发单元810和处理单元820。
收发单元810,用于从服务小区接收一个或多个PRS配置信息,所述一个或多个PRS所对应的PRS来自所述服务小区和/或一个或多个邻小区,其中,所述一个或多个PRS配置信息中的每个PRS配置信息包括以下信息中的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息;
处理单元820,用于根据所述一个或多个PRS配置信息,获得服务小区和/或一个或多个邻小区的PRS的测量结果;
收发单元810,还用于向服务小区发送所述测量结果。
可选地,收发单元810也可以由接收单元和/或发送单元代替。
例如,收发单元810在执行接收的步骤时,可以由接收单元代替。收发单元810在执行发送的步骤时,可以由发送单元代替。
可选地,在一个实施例中,收发单元810还用于从所述服务小区接收第一MAC CE,所述第一MAC CE用于所述终端设备激活或去激活半持续PRS的接收。
可选地,在一个实施例中,处理单元820还用于根据所述第一MAC CE,控制收发单元810从第一小区集合中的小区周期性接收所述半持续PRS,其中,所述第一小区集合包括所述服务小区以及所述一个或多个邻小区中发送半持续PRS的小区。
可选地,在一个实施例中,收发单元810还用于从所述服务小区接收第一DCI,所述第一DCI用于所述终端设备激活非周期PRS的接收。
可选地,在一个实施例中,处理单元820还用于根据所述第一DCI,控制收发单元810从第二小区集合中的小区接收所述非周期PRS,其中,所述第二小区集合包括所述服务小区以及所述一个或多个邻小区中发送非周期PRS的小区。
可选地,在一个实施例中,收发单元810还用于从所述服务小区接收上报配置信息,所述上报配置信息包括以下信息中的一项或多项:
测量结果所包括的测量量、上报测量结果所采用的信道、上报测量结果的周期性、上报测量结果所用的各小区的PRS资源。
可选地,在一个实施例中,收发单元810还用于从所述服务小区接收第二MAC CE,所述第二MAC CE用于激活或去激活所述终端设备通过PUCCH半持续上报所述测量结果。
可选地,在一个实施例中,收发单元810还用于从所述服务小区接收第二DCI,所述第二DCI用于激活或去激活所述终端设备通过PUCCH或PUSCH半持续上报所述测量结果。
可选地,在一个实施例中,收发单元810还用于从所述服务小区接收第三DCI,所述第三DCI用于激活所述终端设备通过PUCCH或PUSCH非周期上报所述测量结果。
在一种实现方式中,通信装置800可以为方法实施例中的终端设备。在这种实现方式中,收发单元810可以为收发器。收发器具有发送和/或接收的功能。处理单元820为处理装置。
在另一种实现方式中,通信装置800可以为安装在终端设备中的芯片或集成电路。在这种实现方式中,收发单元810可以为通信接口。例如,输入输出接口或者输入输出电路。处理单元820可以为处理装置。
这里,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例 如,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,使得通信装置800执行各方法实施例中由终端设备执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
可选地,收发单元810可以为射频装置,处理单元820可以为基带装置。
参见图10,图10为本申请提供的通信装置900的示意性框图。通信装置900包括收发单元910和处理单元920。
收发单元910,用于向服务小区发送一个或多个PRS配置信息,所述一个或多个PRS配置信息所对应的PRS来自所述服务小区、所述通信装置对应的第一邻小区以及其它邻小区中的一个或多个;
处理单元920,用于从服务小区接收所述终端设备对服务小区以及一个或多个邻小区的PRS的测量结果;
收发单元910,还用于根据所述测量结果,对所述终端设备进行定位。
可选地,收发单元910也可以由接收单元和/或发送单元代替。
例如,收发单元910在执行接收的步骤时,可以由接收单元代替。收发单元910在执行发送的步骤时,可以由发送单元代替。
可选地,在一个实施例中,收发单元910还用于从服务小区和/或其它邻小区接收小区信息,每个小区的小区信息包括如下信息的一项或多项:小区的位置信息、PRS配置信息和小区定时信息,其中,所述PRS配置信息包括以下信息中的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息。
可选地,在一个实施例中,收发单元910还用于从所述服务小区接收请求消息,所述请求小区用于请求所述一个或多个邻小区向所述终端设备发送PRS,所述PRS为半持续PRS或非周期PRS;以及,收发单元910还用于向其它邻小区发送所述请求消息。
可选地,在一个实施例中,收发单元910还用于向所述服务小区发送所述终端设备的位置信息。
在一种实现方式中,通信装置900可以为方法实施例中的第一邻小区的gNB。在这种实现方式中,收发单元910可以为收发器。收发器具有发送和/或接收的功能。处理单元920为处理装置。
在另一种实现方式中,通信装置900可以为安装在第一邻小区的gNB中的芯片或集成电路。在这种实现方式中,收发单元910可以为通信接口。例如,输入输出接口或者输入输出电路。处理单元920可以为处理装置。
这里,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括存储器和处理器,其中,存储器用于存储计算机程序,处理器读取并执行存储器中存储的计算机程序,使得通信装置900执行各方法实施例中由第一邻小区的gNB执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
可选地,收发单元910可以为射频装置,处理单元920可以为基带装置。
参见图11,图11是本申请提供的通信装置10的示意性结构图。如图11所示,通信装置10包括:一个或多个处理器11,一个或多个存储器12,一个或多个通信接口13。处理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行该计算机程序,以执行本申请提供的定位的方法中由服务小区的接入网设备执行的流程和/或操作。
例如,处理器11可以具有图8中所示的处理单元710的功能,通信接口13可以具有图8中所示的收发单元720的功能。具体可以参见图8中的说明,这里不再赘述。
可选地,当通信装置10为服务小区的接入网设备时,处理器11可以为安装在接入网设备中的基带装置,通信接口13可以为射频装置。
参见图12,图12是本申请提供的通信装置20的示意性结构图。如图12所示,通信装置20包括:一个或多个处理器21,一个或多个存储器22,一个或多个通信接口23。处理器21用于控制通信接口23收发信号,存储器22用于存储计算机程序,处理器21用于从存储器22中调用并运行该计算机程序,以执行本申请提供的定位的方法由终端设备执行的流程和/或操作。
例如,处理器21可以具有图9中所示的处理单元820的功能,通信接口23可以具有图9中所示的收发单元820的功能。具体可以参见图9中的说明,这里不再赘述。
可选地,当通信装置20为终端设备时,处理器21可以为安装在终端设备中的基带装置,通信接口23可以为射频装置。
参见图13,图13是本申请提供的通信装置30的示意性结构图。如图13所示,通信装置30包括:一个或多个处理器31,一个或多个存储器32,一个或多个通信接口33。处理器31用于控制通信接口33收发信号,存储器32用于存储计算机程序,处理器31用于从存储器32中调用并运行该计算机程序,以执行本申请提供的定位的方法中由第一邻小区的接入网设备执行的流程和/或操作。
例如,处理器31可以具有图10中所示的处理单元920的功能,通信接口33可以具有图10中所示的收发单元910的功能。具体可以参见图10中的说明,这里不再赘述。
可选地,当通信装置30为第一邻小区的gNB时,处理器31可以为安装在第一邻小区的gNB中的基带装置,通信接口33可以为射频装置。
可选的,上述各装置实施例中的存储器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
此外,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行本申请提供的定位的方法中由服务小区的接入网设备执行的操作和/或流程。
此外,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行本申请提供的定位的方法中由终端设备执行的操作和/或流程。
此外,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行本申请提供的定位的方法中由第一邻小区的接入网设备执行的操作和/或流程。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机 程序代码在计算机上运行时,使得计算机执行本申请提供的定位的方法中由服务小区的接入网设备执行的操作和/或流程。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行本申请提供的定位的方法中由终端设备执行的操作和/或流程。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行本申请提供的定位的方法中由第一邻小区的接入网设备执行的操作和/或流程。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以执行任意一个方法实施例中由服务小区的接入网设备执行的操作和/或处理。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,输入/输出电路等。进一步地,所述芯片还可以包括所述存储器。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以执行任意一个方法实施例中由终端设备执行的操作和/或处理。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,输入/输出电路等。进一步地,所述芯片还可以包括所述存储器。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以执行任意一个方法实施例中由第一邻小区的接入网设备执行的操作和/或处理。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,输入/输出电路等。进一步地,所述芯片还可以包括所述存储器。
此外,本申请还提供一种无线通信系统,包括本申请实施例中的服务小区的接入网设备以及一个或多个邻小区的接入网设备。
可选地,该无线通信系统中还可以包括本申请实施例中的终端设备。
可选地,本申请还提供另一种无线通信系统,包括本申请实施例中的服务小区的接入网设备和第一邻小区的接入网设备。
可选地,该无线通信系统还可以包括本申请实施例中的终端设备。
进一步可选地,该无线通信系统还可以包括一个或多个其它邻小区的接入网设备。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存 储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在本说明书中使用的术语“单元”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中。部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从上面存储有各种数据结构的各种计算机可读介质执行。部件可根据具有一个或多个数据分组(例如,来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如,通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (37)

  1. 一种定位的方法,其特征在于,包括:
    服务小区向终端设备发送一个或多个定位参考信号PRS配置信息,所述一个或多个PRS配置信息所对应的PRS分别由所述服务小区和/或一个或多个邻小区发送,所述一个或多个PRS配置信息中的每个PRS配置信息包括以下信息中的一项或多项:
    周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息;
    所述服务小区从所述终端设备接收针对所述服务小区以及所述一个或多个邻小区的PRS的测量结果;
    所述服务小区根据所述测量结果对所述终端设备进行定位。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述服务小区从所述一个或多个邻小区接收所述一个或多个邻小区的小区信息,每个邻小区的小区信息包括以下信息中的一项或多项:
    所述邻小区的位置信息、PRS配置信息、小区定时信息,其中,所述PRS配置信息包括以下信息中的一项或多项:
    周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述服务小区向所述一个或多个邻小区发送请求消息,所述请求消息用于请求所述一个或多个邻小区向所述终端设备发送PRS,所述PRS为半持续PRS或非周期PRS,其中,所述请求消息包括如下信息中的至少一项:
    发送所述半持续PRS的次数、发送所述半持续PRS的时长、发送所述非周期PRS的时隙。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述服务小区向所述终端设备发送第一媒体访问控制控制元素MAC CE,所述第一MAC CE用于所述终端设备激活或去激活半持续PRS的接收。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述服务小区向所述终端设备发送第一下行控制信息DCI,所述第一DCI用于所述终端设备激活非周期PRS的接收。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    所述服务小区向所述终端设备发送上报配置信息,所述上报配置信息包括以下信息中的一项或多项:
    测量结果所包括的测量量、上报测量结果所采用的信道、上报测量结果的周期性、上报测量结果所用的各小区的PRS资源。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述服务小区向所述终端设备发送第二MAC CE,所述第二MAC CE用于激活或去激活所述终端设备通过物理上行控制信道PUCCH半持续上报所述测量结果。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述服务小区向所述终端设备发送第二DCI,所述第二DCI用于激活或去激活所述终 端设备通过物理上行控制信道PUCCH或物理上行共享信道PUSCH半持续上报所述测量结果。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述服务小区向所述终端设备发送第三DCI,所述第三DCI用于激活所述终端设备通过PUCCH或PUSCH非周期上报所述测量结果。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述PRS配置信息包括如下信息中的一项或多项:
    PRS映射的时频域资源、发送PRS的端口数、PRS的序列、准共址QCL信息,其中,时域资源包括发送PRS的周期以及偏移量。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述测量结果包含在合并后的信息中,所述合并后的信息满足如下规则:
    所述合并后的信息是将所述测量结果中包含的测量量和信道状态信息CSI合并得到的;或者,
    所述合并后的信息是将所述测量量和所述CSI合并之后得到的第一信息,再和混合自动重传请求肯定应答HARQ-ACK、调度请求SR合并得到的;或者;
    所述合并后的信息包括所述测量结果中的部分测量量和/或所述CSI的部分,其中,所述测量结果包括多个测量量,所述CSI包括多个部分。
  12. 一种定位的方法,其特征在于,包括:
    终端设备从服务小区接收一个或多个定位参考信号PRS配置信息,所述一个或多个PRS配置信息对应的PRS来自所述服务小区和/或一个或多个邻小区,其中,所述一个或多个PRS配置信息中的每个PRS配置信息包括以下信息中的一项或多项:
    周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息;
    所述终端设备根据所述一个或多个PRS配置信息,获得针对所述服务小区和/或所述一个或多个邻小区的PRS的测量结果;
    所述终端设备向所述服务小区发送所述测量结果。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述服务小区接收第一媒体访问控制控制元素MAC CE,所述第一MAC CE用于所述终端设备激活或去激活半持续PRS的接收。
  14. 根据权利要求13所述的方法,其特征在于,所述第一MAC CE用于所述终端设备激活半持续PRS的接收,所述方法还包括:
    所述终端设备根据所述第一MAC CE,从第一小区集合中的小区周期性接收所述半持续PRS,其中,所述第一小区集合包括所述服务小区以及所述一个或多个邻小区中发送半持续PRS的小区。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述服务小区接收第一下行控制信息DCI,所述第一DCI用于所述终端设备激活非周期PRS的接收。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一DCI,从第二小区集合中的小区接收所述非周期PRS,其中,所述第二小区集合包括所述服务小区以及所述一个或多个邻小区中发送非周期PRS 的小区。
  17. 根据权利要求12-16中任一项所述的方法,其特征在于,所述终端设备向所述服务小区发送所述测量结果之前,所述方法还包括:
    所述终端设备从所述服务小区接收上报配置信息,所述上报配置信息包括以下信息中的一项或多项:
    测量结果所包括的测量量、上报测量结果所采用的信道、上报测量结果的周期性、上报测量结果所用的各小区的PRS资源。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述服务小区接收第二MAC CE,所述第二MAC CE用于激活或去激活所述终端设备通过物理上行控制信道PUCCH半持续上报所述测量结果。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述服务小区接收第二DCI,所述第二DCI用于激活或去激活所述终端设备通过PUCCH或物理上行共享信道PUSCH半持续上报所述测量结果。
  20. 根据权利要求18或19所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述服务小区接收第三DCI,所述第三DCI用于激活所述终端设备通过PUCCH或PUSCH非周期上报所述测量结果。
  21. 根据权利要求12-20中任一项所述的方法,其特征在于,所述PRS配置信息包括如下信息中的一项或多项:
    PRS映射的时频域资源、发送PRS的端口数、PRS的序列、QCL信息,其中,时域资源包括发送PRS的周期以及偏移量。
  22. 根据权利要求12-21中任一项所述的方法,其特征在于,所述测量结果包含在合并后的信息中,所述合并后的信息满足如下规则:
    所述合并后的信息是将所述测量结果中包含的测量量和信道状态信息CSI合并得到的;或者,
    所述合并后的信息是将所述测量量和所述CSI合并之后得到的第一信息,再和混合自动重传请求肯定应答HARQ-ACK、调度请求SR合并得到的;或者;
    所述合并后的信息包括所述测量结果中的部分测量量和/或所述CSI的部分,其中,所述测量结果包括多个测量量,所述CSI包括多个部分。
  23. 根据权利要求12-22中任一项所述的方法,其特征在于,所述终端设备向所述服务小区发送所述测量结果,包括:
    所述终端设备的物理层对所述测量结果封装后通过上行控制信息UCI发送给所述服务小区。
  24. 一种定位的方法,其特征在于,包括:
    第一邻小区向服务小区发送一个或多个PRS配置信息,所述一个或多个PRS配置信息所对应的PRS来自所述服务小区、所述第一邻小区以及其他邻小区中的一个或多个;
    所述第一邻小区从所述服务小区接收所述终端设备针对所述服务小区以及一个或多个邻小区的PRS的测量结果;
    所述第一邻小区根据所述测量结果,对所述终端设备进行定位。
  25. 根据权利要求24所述的方法,其特征在于,所述第一邻小区向所述服务小区发 送所述一个或多个邻小区的PRS配置信息之前,所述方法还包括:
    所述第一邻小区从所述服务小区和/或所述其它邻小区接收小区信息,所述服务小区和所述其他邻小区中每个小区的小区信息包括如下信息的一项或多项:
    小区的位置信息、PRS配置信息和小区定时信息,其中,所述PRS配置信息包括以下信息中的一项或多项:
    周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息。
  26. 根据权利要求24或25所述的方法,其特征在于,所述方法还包括:
    所述第一邻小区从所述服务小区接收请求消息,所述请求消息用于请求所述一个或多个邻小区向所述终端设备发送PRS,所述PRS为半持续PRS或非周期PRS;
    所述第一邻小区向所述其它邻小区发送所述请求消息。
  27. 根据权利要求24-26中任一项所述的方法,其特征在于,所述第一邻小区对所述终端设备进行定位之后,所述方法还包括:
    所述第一邻小区向所述服务小区发送所述终端设备的位置信息。
  28. 一种通信装置,其特征在于,包括:
    收发单元,用于向终端设备发送一个或多个定位参考信号PRS配置信息,所述一个或多个PRS配置信息所对应的PRS分别由所述通信装置对应的服务小区和/或一个或多个邻小区发送,所述一个或多个PRS配置信息中的每个PRS配置信息包括以下信息中的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息;
    所述收发单元,还用于从所述终端设备接收针对所述服务小区以及所述一个或多个邻小区的PRS的测量结果;
    处理单元,用于根据所述测量结果对所述终端设备进行定位。
  29. 一种通信装置,其特征在于,包括:
    收发单元,用于从服务小区接收一个或多个定位参考信号PRS配置信息,所述一个或多个PRS配置信息对应的PRS来自所述服务小区和/或一个或多个邻小区,其中,所述一个或多个PRS配置信息中的每个PRS配置信息包括以下信息中的一项或多项:周期性PRS的配置信息、半持续PRS的配置信息、非周期PRS的配置信息;
    处理单元,用于根据所述一个或多个PRS配置信息,获得针对所述服务小区和/或所述一个或多个邻小区的PRS的测量结果;
    所述收发单元,还用于向所述服务小区发送所述测量结果。
  30. 一种通信装置,其特征在于,包括:
    收发单元,用于向服务小区发送一个或多个PRS配置信息,所述一个或多个PRS配置信息所对应的PRS来自所述服务小区、所述通信装置对应的第一邻小区以及其他邻小区中的一个或多个;
    所述收发单元,还用于从所述服务小区接收终端设备针对所述服务小区以及一个或多个邻小区的PRS的测量结果;
    处理单元,用于根据所述测量结果,对所述终端设备进行定位。
  31. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以 使得所述通信装置执行如权利要求1-11中任一项所述的方法。
  32. 一种通信装置,其特征在于,所述通信装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述通信装置执行如权利要求12-23中任一项所述的方法。
  33. 一种通信装置,其特征在于,所述终端装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述通信装置执行如权利要求24-27中任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1-11中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求12-23中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求24-27中任一项所述的方法。
  37. 一种无线通信系统,其特征在于,包括如权利要求28所述的通信装置,如权利要求29所述的通信装置,以及如权利要求30所述的通信装置中的任意两项或多项。
PCT/CN2020/100319 2019-08-30 2020-07-06 定位的方法和通信装置 WO2021036508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910813973.X 2019-08-30
CN201910813973.XA CN112449370B (zh) 2019-08-30 2019-08-30 定位的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2021036508A1 true WO2021036508A1 (zh) 2021-03-04

Family

ID=74683234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100319 WO2021036508A1 (zh) 2019-08-30 2020-07-06 定位的方法和通信装置

Country Status (2)

Country Link
CN (1) CN112449370B (zh)
WO (1) WO2021036508A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116867061A (zh) * 2021-12-31 2023-10-10 荣耀终端有限公司 定位方法及设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11895521B2 (en) * 2020-01-27 2024-02-06 Qualcomm Incorporated Positioning measurement data reported via L1 or L2 signaling
CN116868531A (zh) * 2021-03-25 2023-10-10 华为技术有限公司 一种非周期定位参考信号的测量上报方法和装置
CN115150850A (zh) * 2021-03-31 2022-10-04 华为技术有限公司 一种非周期定位参考信号prs的触发方法和装置
CN115175235A (zh) * 2021-04-02 2022-10-11 华为技术有限公司 一种定位方法及装置
WO2022234437A1 (en) * 2021-05-03 2022-11-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Positioning measurement mechanism and methods of operating the same
CN115333681A (zh) * 2021-05-11 2022-11-11 大唐移动通信设备有限公司 信息传输方法、装置及存储介质
CN114026907B (zh) * 2021-09-28 2024-01-30 北京小米移动软件有限公司 一种上行波束的测量方法及其装置
WO2023147699A1 (en) * 2022-02-07 2023-08-10 Nokia Shanghai Bell Co., Ltd. Positioning reference signal configuration and measurement update
WO2023173406A1 (en) * 2022-03-18 2023-09-21 Zte Corporation A method for carrier phase based positioning

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037504A (zh) * 2011-09-28 2013-04-10 华为技术有限公司 采用观察的到达时间差对移动台进行定位的方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329604B (zh) * 2010-12-14 2017-04-05 Lg电子株式会社 用于测量观测到达时间差otdoa的方法和装置
US10721720B2 (en) * 2014-01-30 2020-07-21 Qualcomm Incorporated Cell On-Off procedure for dual connectivity
CN106507472A (zh) * 2015-09-07 2017-03-15 北京信威通信技术股份有限公司 一种无线通信系统中的定位方法
WO2019087360A1 (ja) * 2017-11-02 2019-05-09 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037504A (zh) * 2011-09-28 2013-04-10 华为技术有限公司 采用观察的到达时间差对移动台进行定位的方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Combined Downlink and Uplink NR Positioning Procedures", 3GPP DRAFT; R2-1817899_(POSITIONING PROCEDURES), vol. RAN WG2, 2 November 2018 (2018-11-02), Spokane, USA, pages 1 - 18, XP051481785 *
QUALCOMM INCORPORATED: "NG-RAN Positioning Architecture and Procedures", 3GPP DRAFT; R2-1817898_(NG-RAN POSITIONING ARCHITECTURE), vol. RAN WG2, 2 November 2018 (2018-11-02), Spokane, USA, pages 1 - 17, XP051481784 *
QUALCOMM INCORPORATED: "NG-RAN Positioning Architecture and Procedures", 3GPP DRAFT; R3-190191_(NG-RAN POSITIONING ARCHITECTURE), vol. RAN WG3, 15 February 2019 (2019-02-15), Athens, Greece, pages 1 - 10, XP051604135 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116867061A (zh) * 2021-12-31 2023-10-10 荣耀终端有限公司 定位方法及设备
CN116867061B (zh) * 2021-12-31 2024-04-16 荣耀终端有限公司 定位方法及设备

Also Published As

Publication number Publication date
CN112449370A (zh) 2021-03-05
CN112449370B (zh) 2023-02-14

Similar Documents

Publication Publication Date Title
WO2021036508A1 (zh) 定位的方法和通信装置
US11937203B2 (en) Signal transmission method and apparatus
CN114422937B (zh) 按需定位参考信号的配置和管理系统及方法
WO2020001585A1 (zh) 一种时钟同步的方法和装置
WO2019213845A1 (zh) 无线通信方法、通信设备、芯片和系统
JP7254902B2 (ja) 情報の伝送方法、端末機器およびネットワーク機器
EP4149181A1 (en) Method for determining time advance (ta), and network device and terminal
KR20220031086A (ko) 포지셔닝 방법 및 통신 장치
WO2018053814A1 (zh) 传输srs的方法、网络设备和终端设备
US20230063450A1 (en) Positioning Capabilities of Reduced Capability New Radio Devices
US20230095158A1 (en) Wireless communication method, terminal device and network device
US20220070892A1 (en) Wireless communication method, terminal device, and network device
US20230095079A1 (en) Method for wireless communication, terminal device, and network device
CN116438865A (zh) Ue发起的传播延迟补偿机制
US20220053437A1 (en) Method for obtaining timing advance and apparatus
JP2023521544A (ja) 情報伝送方法、端末機器及びネットワーク機器
TW202025839A (zh) 用於隨機存取的方法、網路設備和終端設備
WO2021012822A1 (zh) 一种通信方法及装置
WO2020221237A1 (zh) 调整时域资源边界的方法和通信装置
WO2021134698A1 (zh) 一种探测参考信号srs周期的配置方法及装置
WO2021056383A1 (zh) 无线通信的方法、终端设备和网络设备
CA3091299C (en) Maximum transmission power determining method, apparatus, system, and storage medium
US20230039155A1 (en) Positioning method, positioning apparatus, and device
WO2022236703A1 (en) Aperiodic and semi-persistent positioning reference signal and measurement gaps
WO2023119155A1 (en) Positioning measurement request including number of paths

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859412

Country of ref document: EP

Kind code of ref document: A1