WO2018053755A1 - 一种探测参考信号发送方法及用户设备 - Google Patents

一种探测参考信号发送方法及用户设备 Download PDF

Info

Publication number
WO2018053755A1
WO2018053755A1 PCT/CN2016/099729 CN2016099729W WO2018053755A1 WO 2018053755 A1 WO2018053755 A1 WO 2018053755A1 CN 2016099729 W CN2016099729 W CN 2016099729W WO 2018053755 A1 WO2018053755 A1 WO 2018053755A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
transmit power
power
frequency resource
offset
Prior art date
Application number
PCT/CN2016/099729
Other languages
English (en)
French (fr)
Inventor
孙晓东
王键
斯特林-加拉赫·理查德
董辰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680086749.XA priority Critical patent/CN109417813B/zh
Priority to PCT/CN2016/099729 priority patent/WO2018053755A1/zh
Priority to EP16916494.4A priority patent/EP3503659B1/en
Priority to US16/335,684 priority patent/US10771216B2/en
Publication of WO2018053755A1 publication Critical patent/WO2018053755A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for transmitting a sounding reference signal and a user equipment.
  • the user equipment and the base station in addition to transmitting data signals, the user equipment and the base station usually need to send some known reference signals, such as a Sounding Reference Signal (SRS), for estimating the state of the wireless channel.
  • SRS Sounding Reference Signal
  • the SRS is sent by the user equipment (User Equipment, UE) to the base station, and the base station estimates the uplink channel state by using the received SRS to perform resource scheduling according to the uplink channel state.
  • SRS can also be used for downlink channel estimation and measurement due to reciprocity of uplink and downlink channels.
  • the SRS may be sent in a periodic or non-periodic manner, and the non-beam shaping is used for omnidirectional transmission. Because it is omnidirectional transmission, it is possible for the base stations of other surrounding cells to listen to the transmitted. SRS is easy to cause interference between adjacent cells and reduces the effectiveness of transmitting SRS.
  • the embodiment of the invention provides a method for transmitting a sounding reference signal and a user equipment.
  • the beamforming SRS can enhance the coverage distance of the SRS and reduce the interference between adjacent cells, thereby improving the effectiveness of transmitting the SRS.
  • an embodiment of the present invention provides a method for transmitting a sounding reference signal, including:
  • the configuration parameter includes a trigger type, a period parameter, and a time-frequency resource location identifier; wherein the triggering The type includes beamforming or non-beamforming; the period parameter is an identifier for indicating to periodically send the SRS or aperiodically send the SRS;
  • the beamformed SRS since the beamformed SRS can be transmitted, the beamformed SRS can enhance the coverage distance of the SRS and reduce the neighboring cell compared to the non-beamformed SRS. Interference, which in turn increases the effectiveness of sending SRS.
  • the user equipment may receive configuration parameters of multiple SRSs, and receive configuration parameters of two SRSs, where the SRS includes the first SRS and the first a second SRS; correspondingly, the configuration parameter of the first SRS is a first configuration parameter, and the configuration parameter of the second SRS is a second configuration parameter; according to the first aspect, according to the power control parameter, according to a preset calculation The formula calculates a transmit power of the SRS, determines a transmit power of the first SRS as a first transmit power, and determines a transmit power of the second SRS as a second transmit power.
  • the Sending the SRS according to the transmit power on the time-frequency resource including:
  • first SRS and the second SRS occupy the same time-frequency resource, send the first SRS or transmit the second transmit power by using the first transmit power according to a preset priority rule.
  • Said second SRS Said second SRS
  • first SRS and the second SRS occupy different time-frequency resources, send the first SRS according to the first transmit power and send the second SRS according to the second transmit power.
  • the user equipment may define a preset priority rule, for example, the priority of the SRS of any trigger type that is sent aperiodically is higher than the priority of any triggered SRS that is periodically sent;
  • the transmitted beamformed SRS has a higher priority than the periodically transmitted non-beamformed SRS;
  • the aspherically transmitted beamformed SRS has a higher priority than the aperiodicly transmitted non-beamformed The priority of the SRS.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is a non-scheduledly transmitted beam-formed SRS
  • the transmitting the power according to the transmit power on the time-frequency resource SRS including:
  • first SRS and the second SRS occupy the same time-frequency resource, send the second SRS according to the second transmit power on the same time-frequency resource that is occupied;
  • first SRS and the second SRS occupy different time-frequency resources, send the first SRS according to the first transmit power and send the second SRS according to the second transmit power.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is a periodically transmitted non-beam-formed SRS
  • the second SRS and the first SRS have the same period
  • first SRS and the second SRS occupy the same time-frequency resource, divide the same time-frequency resource into a first same time-frequency resource and a second same time-frequency resource, and at the first Transmitting the first SRS according to the first transmit power on the same time-frequency resource, and transmitting the second SRS according to the second transmit power on the second same time-frequency resource; or, Transmitting the first SRS according to the first transmit power on the same time-frequency resource;
  • first SRS and the second SRS occupy different time-frequency resources, send the first SRS according to the first transmit power and send the second SRS according to the second transmit power.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is a periodically transmitted non-beam-formed SRS
  • the second SRS and the first SRS have different periods
  • first SRS and the second SRS occupy the same time-frequency resource, send the first SRS according to the first transmit power on the same time-frequency resource that is occupied;
  • first SRS and the second SRS occupy different time-frequency resources, send the first SRS according to the first transmit power and send the second SRS according to the second transmit power.
  • the power control parameter includes a non-beamformed SRS power offset value, an occupied resource block number, a power adjustment value, a path loss compensation factor, and an expectation. Receive power and power gains for calculating a power offset value of the SRS of the trigger type beamforming according to the non-beamformed SRS power offset value.
  • the preset calculation formula is:
  • P SRS min ⁇ P CMAX ,P SRS_OFFSET (m)+10log 10 (M SRS )+P O + ⁇ PL+f ⁇
  • the P SRS is the transmit power of the SRS;
  • the P CMAX is the maximum transmit power preset in the user equipment;
  • the P SRS_OFFSET (m) is the power offset, and the values of m are 0, 1, 2, and 3;
  • M SRS is the number of resource blocks occupied by the SRS;
  • P O is the expected received power;
  • is the path loss compensation factor;
  • PL is the path loss estimated by the user equipment;
  • f is the power adjustment value;
  • P SRS_OFFSET (0) is the power offset of the non-beamformed SRS periodically transmitted;
  • P SRS_OFFSET (1) is the power offset of the non-periodic non-beamformed SRS;
  • P SRS_OFFSET (2) is the period The power offset of the SRS that is beamformed by the transmit beam;
  • P SRS_OFFSET (3) is the power offset of the SRS of the aperiodic transmit beamforming;
  • P SRS_OFFSET (2) and P SRS_OFFSET (3) are calculated as:
  • P SRS_OFFSET (2) P SRS_OFFSET (0)-pBF_SRS_Gain
  • P SRS_OFFSET (3) P SRS_OFFSET (1)-pBF_SRS_GainAp
  • pBF_SRS_Gain is a gain of a periodically-formed beam-formed SRS relative to a periodically transmitted non-beam-formed SRS
  • pBF_SRS_GainAp is a non-periodicly transmitted beam-formed SRS versus aperiodicly transmitted non-beamformed The gain of the SRS.
  • an embodiment of the present invention provides a user equipment, including:
  • a receiving unit configured to receive a configuration parameter of the sounding reference signal SRS sent by the base station, and determine a time-frequency resource occupied by the SRS according to the configuration parameter, where the configuration parameter includes a trigger type, a period parameter, and a time-frequency resource location identifier;
  • An acquiring unit configured to acquire a power control parameter of the SRS, and calculate, according to the power control parameter, a transmit power that sends the SRS according to a preset calculation formula
  • a sending unit configured to send the SRS according to the transmit power on the time-frequency resource
  • the trigger type includes beamforming or non-beamforming; and the periodic parameter is an identifier used to indicate that the SRS is periodically sent or the SRS is sent aperiodically.
  • the SRS includes a first SRS and a second SRS; the configuration parameter of the first SRS is a first configuration parameter, and the configuration parameter of the second SRS is a second configuration parameter, where the first SRS is The transmit power is the first transmit power, and the transmit power of the second SRS is the second transmit power.
  • the user equipment provided by the second aspect of the present invention is used to perform the method for transmitting the sounding reference signal provided by the first aspect of the present invention.
  • the user equipment provided by the second aspect of the present invention is used to perform the method for transmitting the sounding reference signal provided by the first aspect of the present invention.
  • the structure of the user equipment includes a processor and a transceiver for performing the sounding reference signal transmission manner provided by the first aspect of the present invention.
  • a memory is provided for storing application code that supports a user device to perform the above method, the processor being configured to execute an application stored in the memory.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the user equipment, including a program designed to perform the above aspects.
  • the names of the base station and the user equipment are not limited to the device itself. In actual implementation, the devices may appear under other names. As long as the functions of the respective devices are similar to the present invention, they are within the scope of the claims and the equivalents thereof.
  • the user equipment receives the trigger type, the period parameter, and the time-frequency resource location identifier configuration parameter of the SRS sent by the base station, and determines the time-frequency resource occupied by the SRS according to the configuration parameter; and then acquires the power control parameter of the SRS.
  • the transmit power of the transmitted SRS is calculated according to a preset calculation formula; finally, on the time-frequency resource, the SRS is transmitted according to the transmit power.
  • the trigger type includes beamforming or non-beamforming, and may send or periodically transmit the SRS. Compared with the non-beamformed SRS, the beamformed SRS can enhance the coverage distance of the SRS and reduce the interference between adjacent cells, thereby improving the effectiveness of transmitting the SRS.
  • FIG. 1 is a possible network architecture according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for transmitting a sounding reference signal according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another method for transmitting a sounding reference signal according to an embodiment of the present invention.
  • FIG. 4a is a schematic diagram of an example according to an embodiment of the present disclosure.
  • FIG. 4b is a schematic diagram of an example according to an embodiment of the present disclosure.
  • FIG. 5a is a schematic diagram of an example according to an embodiment of the present disclosure.
  • FIG. 5b is a schematic diagram of an example according to an embodiment of the present disclosure.
  • FIG. 5c is a schematic diagram of an example according to an embodiment of the present disclosure.
  • FIG. 6a is a schematic diagram of an example according to an embodiment of the present disclosure.
  • FIG. 6b is a schematic diagram of an example according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a modularization of a user equipment according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the beamforming SRS in the solution provided by the invention can enhance the coverage distance of the SRS and reduce the interference between adjacent cells, thereby improving the effectiveness of transmitting the SRS.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • the base station and the user equipment located in the coverage of the base station may be included, and the base station may trigger.
  • the user equipment sends an SRS.
  • a method for transmitting an SRS specified in LTE is: the last SC_FDMA symbol in each uplink subframe of length 1 ms can be used to transmit an SRS.
  • Each UE may select a different bandwidth to transmit the SRS.
  • the user equipment sends the SRS in a comb-like spectrum, ie, every 2 subcarriers at a fixed interval. Set an SRS symbol.
  • the SRS may be sent in a periodic or non-periodic manner, and the non-beam shaping is used for omnidirectional transmission. Because it is omnidirectional transmission, it is possible for the base stations of other surrounding cells to listen to the transmitted. SRS is easy to cause interference between adjacent cells.
  • the SRS of the transmit beamforming by using the SRS of the transmit beamforming, since it is directional transmission, inter-cell interference can be reduced. For example, receiving a configuration parameter of the sounding reference signal SRS sent by the base station, and determining a time-frequency resource occupied by the SRS according to the configuration parameter, where the configuration parameter includes a trigger type, a period parameter, and a time-frequency resource location identifier; a power control parameter of the SRS, and calculating, according to the power control parameter, a transmit power for transmitting the SRS according to a preset calculation formula; and transmitting, on the time-frequency resource, the SRS according to the transmit power;
  • the trigger type includes beamforming or non-beamforming;
  • the periodic parameter is an identifier for indicating that the SRS is periodically transmitted or the SRS is sent aperiodically. This can improve the effectiveness of transmitting SRS.
  • the embodiments of the present invention can be applied to other communication systems that support transmitting a sounding reference signal, such as an Evolved Packet System (EPS), a Global System of Mobile communication (GSM) system, and code division multiple access.
  • EPS Evolved Packet System
  • GSM Global System of Mobile communication
  • code division multiple access Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), LTE Frequency Division Duplex (FDD) System, LTE Time Division Duplex (TDD), etc.
  • EPS Evolved Packet System
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the user equipment may include, but is not limited to, a terminal, a mobile station (MS), etc., and may also be a mobile phone (or "cellular" phone), or may be portable. Pocket, handheld, computer built-in or in-vehicle mobile devices (smart bracelets, smart watches, smart glasses, etc.).
  • the base station and user equipment in the embodiment of the present invention may appear under other names. As long as the functions of the respective devices are similar to the present invention, they are within the scope of the claims and the equivalents thereof.
  • FIG. 2 is a schematic flowchart of a method for transmitting a sounding reference signal according to an embodiment of the present invention.
  • the method for transmitting sounding reference signals according to an embodiment of the present invention includes steps 101 to 103.
  • the method for transmitting the sounding reference signal in the embodiment of the present invention is performed by the user equipment. Please refer to the detailed description below for the specific process.
  • the configuration parameter of the sounding reference signal SRS sent by the base station is received, and the time-frequency resource occupied by the SRS is determined according to the configuration parameter, where the configuration parameter includes a trigger type, a period parameter, and a time-frequency resource location identifier.
  • the user equipment receives the configuration parameter of the SRS sent by the base station, and determines the time-frequency resource occupied by the SRS according to the configuration parameter.
  • the configuration parameters include a trigger type, a period parameter, and a time-frequency resource location identifier.
  • the trigger type includes beamforming or non-beamforming.
  • Beamforming is a signal preprocessing technique based on antenna array. Beamforming generates a directional beam by adjusting the weighting coefficients of each array element in the antenna array.
  • the beamforming SRS sent by the user equipment is toward a beam.
  • the SRS is transmitted in a preset direction, for example, the user equipment transmits the SRS in the direction of the location where the base station is located.
  • the non-beamformed SRS sent by the user equipment is an omnidirectional transmission SRS. It is conceivable that for the case of transmitting with the same transmit power, the coverage distance of the beamformed SRS is greater than the coverage distance of the non-beamformed SRS.
  • the user equipment sends a non-beam assignment to the base station of the current cell.
  • SRS since it is omnidirectional transmission, it is possible for the base stations of other surrounding cells to listen to the transmitted SRS, which is likely to cause interference between adjacent cells, and the method of transmitting beamformed SRS is adopted, and the directional transmission is performed. Therefore, interference between adjacent cells can be greatly reduced.
  • the period parameter is an identifier used to indicate that the SRS is periodically sent or the SRS is sent aperiodically.
  • the identifier may be a field that is jointly agreed by the base station and the user equipment and is used to indicate periodic transmission or non-periodic transmission. For example, when the period parameter is “true”, it indicates that the identifier is periodically sent. SRS; when the period parameter is "false”, it means that the SRS is sent aperiodically. For another example, when the period parameter is “0000”, the SRS is sent aperiodically; when the period parameter is “0001”, the SRS is periodically sent, and “0001” can be used to determine a period of periodic transmission.
  • the value corresponding to the field may be determined as a period, or a value that has a mapping relationship with the field may be determined as a period.
  • the identifier may be a signaling that is jointly agreed by the base station and the user equipment and is used to indicate periodic transmission or non-periodic transmission, for example, if it is for higher layer signaling, for example, a radio resource. Controlling (Radio Resource Control, RRC) signaling, indicating periodic transmission, and adding a period in the configuration parameter, indicating that the user equipment sends the SRS according to the period; if it is physical layer signaling, for example Downlink Control Information (DCI) format signaling indicates aperiodic transmission.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the time-frequency resource location identifier is used to determine a time-frequency resource used by the SRS.
  • the time-frequency resource location identifier may include a frequency domain start location, a frequency domain offset, a frequency domain occupied bandwidth, a time domain start subframe (or a symbol identifier), and a time domain offset, where The time domain location is represented by a time domain start subframe (or symbol identifier) and a time domain offset, and the frequency domain location is represented by a frequency domain start location, a frequency domain offset, and a frequency domain occupied bandwidth.
  • the time-frequency resource location identifier may further include a resource identifier or a port identifier occupied by the SRS sent according to the beamforming. It can be seen that, regardless of whether the trigger type is beamforming or non-beamforming, for the SRS that is periodically sent, the user equipment may determine, according to the time-frequency resource location identifier and the period, the SRS that is periodically sent. The time-frequency resource; for the non-scheduled SRS, the user equipment may determine the time-frequency resource occupied by the SRS that is sent aperiodically according to the time-frequency resource location identifier.
  • the SRS determined by the configuration parameter may be a beamforming SRS that is periodically transmitted, a beamforming SRS that is sent aperiodically, or a non-periodicly transmitted non-sequence. Beamformed SRS and non-periodic transmitted non-beamformed SRS.
  • the user equipment acquires a power control parameter of the SRS, and calculates, according to the power control parameter, a transmit power that sends the SRS according to a preset calculation formula.
  • the power control parameter is sent by the base station.
  • the power control parameter is sent by the base station to send the SRS, in which case the base station may send the configuration parameter of the SRS and the power control parameter to the user equipment.
  • the user equipment acquires the received power control parameter, and calculates a transmit power of the SRS according to a preset calculation formula.
  • the power control parameter is not sent for the SRS, and is sent before the base station sends a configuration parameter of the SRS to the user equipment, where the user equipment receives before receiving
  • the power control parameter calculates the transmit power of the SRS according to a preset calculation formula.
  • the power control parameter includes a non-beamformed SRS power offset value, an occupied resource block number, a power adjustment value, a path loss compensation factor, a desired received power, and a power gain, where the power gain is used according to
  • the non-beamformed SRS power offset value calculates a power offset value of the SRS whose trigger type is beamforming.
  • the base station may send each parameter included in the power control parameter in a separate manner or in any combination. After receiving the power control parameter, the user equipment stores it.
  • P SRS min ⁇ P CMAX ,P SRS_OFFSET (m)+10log 10 (M SRS )+P O + ⁇ PL+f ⁇
  • the P SRS is a transmit power that needs to be calculated to send the SRS;
  • P CMAX is a preset maximum transmit power in the user equipment;
  • P SRS_OFFSET (m) is a power offset, and the value of m is 0, 1. 2 and 3;
  • M SRS is the number of resource blocks occupied by the SRS;
  • P O is the expected received power;
  • is the path loss compensation factor;
  • PL is the path loss estimated by the user equipment;
  • f is the power adjustment value.
  • P SRS_OFFSET (m) the specific physical meaning of other parameters can refer to P SRS in 3GPP TS36.213v10.2.0.
  • P SRS_OFFSET (0) is a power offset of periodically transmitting non-beamformed SRS
  • P SRS_OFFSET (1) is a power offset of non-periodic transmitting non-beamformed SRS
  • P SRS_OFFSET (2) is the power offset of the SRS that periodically transmits the beamforming
  • P SRS_OFFSET (3) is the power offset of the SRS of the aperiodic transmitting beamforming
  • P SRS_OFFSET (0) or P SRS_OFFSET (1) is included in the power control parameter and transmitted by the base station, and the user equipment can directly determine according to the power control parameter.
  • P SRS_OFFSET (2) and P SRS_OFFSET (3) are calculated as:
  • P SRS_OFFSET (2) P SRS_OFFSET (0)-pBF_SRS_Gain
  • P SRS_OFFSET (3) P SRS_OFFSET (1)-pBF_SRS_GainAp
  • pBF_SRS_Gain is a gain of a periodically-formed beam-formed SRS relative to a periodically transmitted non-beam-formed SRS
  • pBF_SRS_GainAp is a non-periodicly transmitted beam-formed SRS versus aperiodicly transmitted non-beamformed The gain of the SRS.
  • the user equipment can determine P SRS_OFFSET (2) and P SRS_OFFSET (3) by the above calculation formula.
  • the user equipment sends the SRS according to the transmit power on the time-frequency resource according to the time-frequency resource occupied by the SRS determined by the configuration parameter.
  • the user equipment receives the trigger type, the period parameter, and the time-frequency resource location identifier configuration parameter of the SRS sent by the base station, and determines the time-frequency resource occupied by the SRS according to the configuration parameter; and then acquires the power control parameter of the SRS.
  • the transmit power of the transmitted SRS is calculated according to a preset calculation formula; finally, on the time-frequency resource, the SRS is transmitted according to the transmit power.
  • the trigger type includes beamforming or non-beamforming, and may send or periodically transmit the SRS. Beamformed SRS can enhance SRS coverage compared to non-beamformed SRS Cover the distance and reduce interference between adjacent cells, thereby improving the effectiveness of transmitting SRS.
  • FIG. 3 is a schematic flowchart of another method for transmitting a sounding reference signal according to an embodiment of the present invention.
  • the method for transmitting sounding reference signals according to an embodiment of the present invention includes steps 201 to 208.
  • the method for transmitting the sounding reference signal in the embodiment of the present invention is considered from the perspective of interaction between the user equipment and the base station, where the base station may send multiple configuration parameters of the SRS to the user equipment, to notify the user equipment to send the corresponding configuration parameter.
  • the two SRSs are taken as an example in the embodiment of the present invention. For details, refer to the following detailed description.
  • the base station sends, to the user equipment, a first configuration parameter of the first SRS.
  • the base station sends the first configuration parameter of the first SRS to the user equipment.
  • first configuration parameter refers to the detailed description of the configuration parameters in the embodiment shown in FIG. 2, and details are not described herein again.
  • the user equipment receives the first configuration parameter of the first SRS sent by the base station.
  • the user equipment determines, according to the first configuration parameter, a first time-frequency resource occupied by the first SRS.
  • the base station sends a second configuration parameter of the second SRS to the user equipment.
  • the base station sends a second configuration parameter of the second SRS to the user equipment.
  • a second configuration parameter of the second SRS For details of the second configuration parameter, refer to the detailed description of the configuration parameters in the embodiment shown in FIG. 2, and details are not described herein again.
  • the user equipment receives the second configuration parameter of the second SRS sent by the base station.
  • the user equipment determines, according to the second configuration parameter, a second time-frequency resource occupied by the second SRS.
  • the first configuration parameter or the second configuration parameter is that the base station is to the Any one of a plurality of configuration parameters sent by the user equipment, where the base station can send the configuration parameter of one SRS to the user equipment once, so step 201 and step 203 are not sequentially divided.
  • the base station sends a power control parameter to the user equipment.
  • the sending, by the base station, the power control parameters to the user equipment can be classified into the following two cases.
  • the power control parameter is sent by the base station to send the first SRS or the second SRS, in which case the base station sends a message to the user equipment.
  • a first power control parameter of an SRS and a second power control parameter for transmitting a second SRS.
  • the base station may send the first configuration parameter of the first SRS and the first power control parameter to the user equipment, and set a second configuration parameter and a second power control parameter of the second SRS. And sent to the user equipment.
  • the power control parameter is not sent to the first SRS or the second SRS, and is a first configuration parameter that is sent by the base station to the user equipment to send a first SRS, and Sent before sending the second configuration parameter of the second SRS.
  • the power control parameter includes a non-beamformed SRS power offset value, an occupied resource block number, a power adjustment value, a path loss compensation factor, a desired received power, and a power gain, where the power gain is used according to
  • the non-beamformed SRS power offset value calculates a power offset value of the SRS whose trigger type is beamforming.
  • the base station may send each parameter included in the power control parameter in a separate manner or in any combination.
  • the user equipment receives the power control parameter sent by the base station.
  • the user equipment acquires a power control parameter of the first SRS, and calculates, according to a power control parameter of the first SRS, a first transmit power that sends the first SRS according to a preset calculation formula.
  • the user equipment acquires a power control parameter of the second SRS, and calculates a second transmit power for sending the second SRS according to a preset calculation formula according to the power control parameter of the second SRS.
  • step 206 and step 207 can be referred to the detailed description of step 102 in the embodiment shown in FIG. 2 . It should be noted that, for the SRS of different trigger types that are periodically or aperiodically transmitted, the user equipment acquires a power control parameter of a corresponding type, and then calculates a transmit power of the corresponding SRS according to a preset calculation formula.
  • the first SRS is a periodically-formed beam-formed SRS
  • the non-beam-formed SRS power offset value, the occupied resource block number, the power adjustment value, the path loss compensation factor, and the expected reception are acquired.
  • Power and power gain wherein the power gain is a gain of a periodically transmitted beamformed SRS versus a periodically transmitted non-beamformed SRS.
  • the first transmit power of the first SRS is calculated according to a preset calculation formula.
  • the user equipment sends the first SRS according to the first transmit power and/or the second transmit power according to the first time-frequency resource and the second time-frequency resource. Two SRS.
  • the user equipment sends the first SRS according to the first transmit power and/or the second transmit power according to the first time-frequency resource and the second time-frequency resource.
  • the specific process of the second SRS is separately described in the following ways.
  • the priority rule may be set in advance.
  • An optional priority rule is that the priority of the SRS of any trigger type that is sent aperiodically is higher than the priority of any triggered SRS that is periodically sent. Level; the priority of the beamformed SRS of periodic transmission is higher than the priority of the non-beamformed SRS of periodic transmission; the priority of the beamformed SRS of aperiodic transmission is higher than that of aperiodic transmission The priority of the non-beamformed SRS.
  • the priority rule if the first SRS and the second SRS occupy the same time-frequency resource, the first SRS or the destination is sent according to the preset priority rule according to the preset priority rule. Transmitting the second SRS according to the second transmit power; if the first SRS and the second SRS occupy different time-frequency resources, sending the first SRS according to the first transmit power and according to the first The second transmit power transmits the second SRS.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is a non-periodically transmitted beam-formed SRS
  • the second SRS is sent according to the second transmit power on the same time-frequency resource that is occupied; or when the first SRS is a non-beam-formed periodically transmitted.
  • SRS when the second SRS is a non-beam-formed SRS that is sent aperiodically, if the first SRS and the second SRS occupy the same time-frequency resource, the same time-frequency is occupied.
  • the second SRS is transmitted on the resource according to the second transmit power.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is a non-periodically transmitted beam-formed SRS
  • the first SRS and the SRS are The second SRS occupies the same time-frequency resource, and then the second time is occupied on the same time-frequency resource. Transmit power transmits the second SRS.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is sent aperiodically.
  • the beam-formed SRS as shown in FIG. 4a, is that the first time-frequency resource occupied by the first SRS and the second time-frequency resource occupied by the second SRS have the same time-frequency resource, as seen in FIG. 4b.
  • the user equipment sends a beam-formed SRS that is aperiodically transmitted, that is, a second SRS, on the same time-frequency resource.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is a periodically transmitted non-beam-formed SRS
  • the second SRS is If the first SRS and the second SRS occupy the same time-frequency resource, the first SRS and the second SRS are divided into the first same time-frequency resource and the second same time-frequency resource. And transmitting the first SRS according to the first transmit power on the first same time-frequency resource, and sending the second on the second same time-frequency resource according to the second transmit power SRS; or, transmitting the first SRS according to the first transmit power on the same time-frequency resource.
  • the manner in which the user equipment divides the first same time-frequency resource and the second same time-frequency resource may be randomly divided, or may be according to a certain regularity, for example, because both the first SRS and the second SRS are periodically sent.
  • the same time-frequency resource exists in the same period, and the user equipment divides the 2i-1 identical time-frequency resources into the first identical time-frequency resource, and divides the 2i-th identical time-frequency resource into the second
  • the same time-frequency resource where i is a positive integer greater than or equal to 1, such that the user equipment can implement the alternating transmission of the first SRS and the second SRS after the division. It is to be understood that the embodiments of the present invention are not limited to other division manners.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is a period.
  • the first SRS and the second SRS are the same, and the first time-frequency resource occupied by the first SRS and the second time-frequency occupied by the second SRS are used.
  • the resources are the same.
  • One way is that, as shown in FIG.
  • the user equipment sends a periodically-formed beam-formed SRS, that is, a first SRS, on the same time-frequency resource;
  • a periodically-formed beam-formed SRS that is, a first SRS
  • User equipment The same time-frequency resource is divided into a first time-frequency resource and a second time-frequency resource, so that the first SRS and the second SRS are alternately transmitted.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is a periodically transmitted non-beam-formed SRS
  • the second SRS is If the first SRS and the second SRS occupy the same time-frequency resource, the first SRS and the second SRS are sent according to the first transmit power on the same time-frequency resource that is occupied. SRS.
  • the SRSs that are shaped by the different periodic and periodically transmitted beams and the non-beamformed SRSs that are periodically transmitted may also occupy the same time-frequency resources, for example, one cycle of the two cycles is another.
  • m is a positive integer of greater than 1, such that the first time-frequency resource occupied by the first SRS and the second time-frequency resource occupied by the second SRS are inclusive.
  • the first SRS and the second SRS may occupy the same time-frequency resource on the common multiple of the two.
  • FIG. 6a and FIG. 6b is a schematic diagram of an example of the present invention.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is The non-beam-formed SRS is periodically transmitted.
  • the periods of the first SRS and the second SRS are different, and the first time-frequency resource occupied by the first SRS and the second time occupied by the second SRS are used.
  • the time-frequency resource has the same time-frequency resource.
  • the first SRS is sent on the same time-frequency resource of the user equipment. It can be understood that, when the first SRS and the second SRS occupy different time-frequency resources, sending the first SRS according to the first transmit power and sending the first according to the second transmit power Two SRS.
  • the second SRS is a non-periodicly transmitted non-beam-formed SRS, if the first SRS and the SRS If the second SRS occupies the same time-frequency resource, the second SRS is sent according to the second transmit power on the same time-frequency resource; if the first SRS and the second SRS occupy different And transmitting, by the first transmit power, the first SRS according to the first transmit power, and transmitting the second SRS according to the second transmit power.
  • the first SRS is a beam-formed SRS that is sent aperiodically
  • the second SRS is a non-beam-formed SRS that is sent aperiodically. If the first SRS and the second SRS occupy the same time-frequency resource, the same time-frequency resource is used according to the Transmitting, by the first transmit power, the first SRS; if the first SRS and the second SRS occupy different time-frequency resources, sending the first SRS according to the first transmit power and according to the second Transmit power transmits the second SRS.
  • a seventh mode when the first SRS is a beam-formed SRS that is sent aperiodically, the second SRS is a non-beam-formed SRS that is periodically transmitted, if the first SRS and the SRS are If the second SRS occupies the same time-frequency resource, the first SRS is sent according to the first transmit power on the same time-frequency resource; if the first SRS and the second SRS occupy different And transmitting, by the first transmit power, the first SRS according to the first transmit power, and transmitting the second SRS according to the second transmit power.
  • the second SRS when the first SRS is a periodically transmitted non-beamformed SRS, the second SRS is a non-periodicly transmitted non-beamformed SRS, if the first SRS and If the second SRS occupies the same time-frequency resource, the second SRS is sent according to the second transmit power on the same time-frequency resource; if the first SRS and the second SRS occupy different And transmitting, by the first transmit power, the first SRS according to the first transmit power, and transmitting the second SRS according to the second transmit power.
  • the user equipment receives the trigger type, the period parameter, and the time-frequency resource location identifier configuration parameter of the SRS sent by the base station, and determines the time-frequency resource occupied by the SRS according to the configuration parameter; and then acquires the power control parameter of the SRS.
  • the transmit power of the transmitted SRS is calculated according to a preset calculation formula; finally, on the time-frequency resource, the SRS is transmitted according to the transmit power.
  • the trigger type includes beamforming or non-beamforming, and may send or periodically transmit the SRS. Compared with the non-beamformed SRS, the beamformed SRS can enhance the coverage distance of the SRS and reduce the interference between adjacent cells, thereby improving the effectiveness of transmitting the SRS.
  • FIG. 7 is a schematic diagram of a modularization of a user equipment according to an embodiment of the present invention.
  • the user equipment in the embodiment of the present invention may be the user equipment provided in any of the embodiments in FIG. 2-6.
  • the user equipment 1 of the embodiment of the present invention may include: a receiving unit 11, an obtaining unit 12, and a transmitting unit 13.
  • the receiving unit 11 is configured to receive a configuration parameter of the sounding reference signal SRS sent by the base station, and determine a time-frequency resource occupied by the SRS according to the configuration parameter, where the configuration parameter includes a trigger type, Periodic parameters and time-frequency resource location identifiers;
  • the obtaining unit 12 is configured to acquire a power control parameter of the SRS, and calculate, according to the power control parameter, a transmit power that sends the SRS according to a preset calculation formula;
  • the sending unit 13 is configured to send, according to the transmit power, the SRS on the time-frequency resource;
  • the trigger type includes beamforming or non-beamforming; and the periodic parameter is an identifier used to indicate that the SRS is periodically sent or the SRS is sent aperiodically.
  • the SRS includes a first SRS and a second SRS; the configuration parameter of the first SRS is a first configuration parameter, and the configuration parameter of the second SRS is a second configuration parameter, where the first SRS is The transmit power is the first transmit power, and the transmit power of the second SRS is the second transmit power.
  • the sending unit 13 is specifically configured to:
  • first SRS and the second SRS occupy the same time-frequency resource, send the first SRS or transmit the second transmit power by using the first transmit power according to a preset priority rule.
  • Said second SRS Said second SRS
  • first SRS and the second SRS occupy different time-frequency resources, send the first SRS according to the first transmit power and send the second SRS according to the second transmit power.
  • the preset priority rule includes:
  • the priority of any triggered type of SRS sent aperiodically is higher than the priority of any triggered SRS periodically sent;
  • the priority of the beamformed SRS periodically transmitted is higher than the priority of the periodically transmitted non-beamformed SRS
  • the beamformed SRS of the aperiodic transmission has a higher priority than the aperiodicly transmitted non-beamformed SRS.
  • the sending unit 13 is specifically configured to:
  • first SRS and the second SRS occupy the same time-frequency resource, send the second SRS according to the second transmit power on the same time-frequency resource that is occupied;
  • first SRS and the second SRS occupy different time-frequency resources, send the first SRS according to the first transmit power and send the second SRS according to the second transmit power.
  • the sending unit 13 is specifically configured to:
  • first SRS and the second SRS occupy the same time-frequency resource, divide the same time-frequency resource into a first same time-frequency resource and a second same time-frequency resource, and at the first Transmitting the first SRS according to the first transmit power on the same time-frequency resource, and transmitting the second SRS according to the second transmit power on the second same time-frequency resource; or, Transmitting the first SRS according to the first transmit power on the same time-frequency resource;
  • first SRS and the second SRS occupy different time-frequency resources, send the first SRS according to the first transmit power and send the second SRS according to the second transmit power.
  • the first SRS is a periodically-formed beam-formed SRS
  • the second SRS is a periodically transmitted non-beam-formed SRS
  • the second SRS and the first SRS are The sending unit 13 is specifically configured to:
  • first SRS and the second SRS occupy the same time-frequency resource, send the first SRS according to the first transmit power on the same time-frequency resource that is occupied;
  • first SRS and the second SRS occupy different time-frequency resources, send the first SRS according to the first transmit power and send the second SRS according to the second transmit power.
  • the power control parameter includes a non-beamformed SRS power offset value, an occupied resource block number, a power adjustment value, a path loss compensation factor, a desired received power, and a power gain, where the power gain is used according to
  • the non-beamformed SRS power offset value calculates a power offset value of the SRS whose trigger type is beamforming.
  • the preset calculation formula is:
  • P SRS min ⁇ P CMAX ,P SRS_OFFSET (m)+10log 10 (M SRS )+P O + ⁇ PL+f ⁇
  • the P SRS is the transmit power of the SRS;
  • the P CMAX is the maximum transmit power preset in the user equipment;
  • the P SRS_OFFSET (m) is the power offset, and the values of m are 0, 1, 2, and 3;
  • M SRS is the number of resource blocks occupied by the SRS;
  • P O is the expected received power;
  • is the path loss compensation factor;
  • PL is the path loss estimated by the user equipment;
  • f is the power adjustment value;
  • P SRS_OFFSET (0) is the power offset of the non-beamformed SRS periodically transmitted;
  • P SRS_OFFSET (1) is the power offset of the non-periodic non-beamformed SRS;
  • P SRS_OFFSET (2) is the period The power offset of the SRS that is beamformed by the transmit beam;
  • P SRS_OFFSET (3) is the power offset of the SRS of the aperiodic transmit beamforming;
  • P SRS_OFFSET (2) and P SRS_OFFSET (3) are calculated as:
  • P SRS_OFFSET (2) P SRS_OFFSET (0)-pBF_SRS_Gain
  • P SRS_OFFSET (3) P SRS_OFFSET (1)-pBF_SRS_GainAp
  • pBF_SRS_Gain is a gain of a periodically-formed beam-formed SRS relative to a periodically transmitted non-beam-formed SRS
  • pBF_SRS_GainAp is a non-periodicly transmitted beam-formed SRS versus aperiodicly transmitted non-beamformed The gain of the SRS.
  • the user equipment in the embodiment shown in FIG. 7 can be implemented by the user equipment shown in FIG. 8.
  • FIG. 8 a schematic structural diagram of a user equipment is provided in the embodiment of the present invention.
  • the user equipment 1000 shown in FIG. The system includes a power source 1001, a user interface 1002, a communication module 1003, a processor 1004, a display system 1005, a sensing system 1006, and an audio system 1007.
  • the structure of the user equipment shown in FIG. 8 does not constitute a limitation on the embodiment of the present invention.
  • the power supply 1001 provides power guarantee for implementing various functions of the user equipment 1000.
  • the user interface 1002 is used for the user device 1000 to be connected to other devices or devices to enable communication or data transmission of other devices or devices with the user device 1000.
  • the communication module 1003 is configured to implement communication or data transmission between the user equipment 1000 and a network side device such as a base station or a satellite, and is also used to implement communication or data transmission between the user equipment 1000 and other user equipment.
  • the processor 1004 can implement or perform various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • Display system 1005 is used for output display of information and for receiving user input operations.
  • Sensing system 1006 includes various sensors, such as temperature sensors, distance sensors, and the like.
  • Audio system 1007 is used for the output of audio signals.
  • the processor 1003 is configured to implement the functions of the obtaining unit 12 in FIG. 7. Accordingly, the communication module 1003 is configured to implement the functions of the receiving unit 11 and the transmitting unit 13.
  • a computer storage medium for storing computer software instructions used by the user equipment, which includes a program designed to perform the above aspects for the user equipment, to implement FIG. 2 to FIG. 6 .
  • the action of the user equipment in any of the illustrated embodiments.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include a random access memory (RAM), a read-only memory (ROM), and an electrically erasable programmable read-only memory (Electrically Erasable Programmable).
  • EEPROM Electrically Error Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), or wireless technologies such as infrared, radio, and microwave, Then coaxial cable, fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the associated medium.
  • DSL Digital Subscriber Line
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种探测参考信号发送方法及用户设备,其中方法包括如下步骤:接收基站发送的探测参考信号SRS的配置参数,并根据所述配置参数确定所述SRS占用的时频资源,所述配置参数包括触发类型、周期参数和时频资源位置标识;获取所述SRS的功率控制参数,并根据所述功率控制参数,按照预设计算公式计算发送所述SRS的发射功率;在所述时频资源上,按照所述发射功率发送所述SRS;其中,所述触发类型包括波束赋形或非波束赋形;所述周期参数为用于指示周期性发送所述SRS或非周期性发送所述SRS的标识符。采用本发明,通过波束赋形的SRS能够增强SRS的覆盖距离,并降低相邻小区间的干扰,进而提高了发送SRS的有效性。

Description

一种探测参考信号发送方法及用户设备 技术领域
本发明涉及通信技术领域,尤其涉及一种探测参考信号发送方法及用户设备。
背景技术
在无线通信系统中,用户设备和基站之间除了发送数据信号外,通常还需要发送一些已知的参考信号,例如,探测参考信号(Sounding Reference Signal,SRS),用于估计无线信道状态。SRS是由用户设备(User Equipment,UE)发送到基站,基站通过接收到的SRS估计上行信道状态,以根据上行信道状态进行资源调度。在时分双工(Time Division Duplexing,TDD)系统中,由于上下行信道具有互易性,SRS还可用于下行信道估计和测量。
而在现有技术中,SRS可以采用周期性或非周期性的方式发送,且采用非波束赋形全向发送,由于是全向发送,因此有可能让周围其他小区的基站监听到所发送的SRS,容易引起相邻小区间干扰,降低了发送SRS的有效性。
发明内容
本发明实施例提供了一种探测参考信号发送方法及用户设备,采用波束赋形的SRS能够增强SRS的覆盖距离,并降低相邻小区间的干扰,进而提高了发送SRS的有效性。
第一方面,本发明实施例提供了一种探测参考信号发送方法,包括:
接收基站发送的探测参考信号SRS的配置参数,并根据所述配置参数确定所述SRS占用的时频资源,其中,配置参数包括触发类型、周期参数和时频资源位置标识;其中,所述触发类型包括波束赋形或非波束赋形;所述周期参数为用于指示周期性发送所述SRS或非周期性发送所述SRS的标识符;
获取所述SRS的功率控制参数,并根据所述功率控制参数,按照预设计算公式计算发送所述SRS的发射功率;
在所述时频资源上,按照所述发射功率发送所述SRS。
在本发明实施例第一方面中,由于可以发送波束赋形的SRS,相比于非波束赋形的SRS,波束赋形的SRS能够增强SRS的覆盖距离,并降低相邻小区 间的干扰,进而提高发送SRS的有效性。
结合第一方面,在第一方面的第一种实现方式中,用户设备可能接收到多个SRS的配置参数,以接收到两个SRS的配置参数为例,所述SRS包括第一SRS和第二SRS;相应地,所述第一SRS的配置参数为第一配置参数,所述第二SRS的配置参数为第二配置参数;根据第一方面中根据所述功率控制参数,按照预设计算公式计算发送所述SRS的发射功率的步骤,确定所述第一SRS的发射功率为第一发射功率,以及确定所述第二SRS的发射功率为第二发射功率。
结合第一方面的第一种实现方式,在第一方面的第二种实现方式中,对于接收到第一SRS的第一配置参数和第二SRS的第二配置参数的情况下,所述在所述时频资源上,按照所述发射功率发送所述SRS,包括:
若所述第一SRS和所述第二SRS占用相同的时频资源,则按照预设优先级规则,以所述第一发射功率发送所述第一SRS或以所述第二发射功率发送所述第二SRS;
若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
可选的,所述用户设备可以自行定义预设优先级规则,例如,非周期性发送的任一触发类型的SRS的优先级高于周期性发送的任一触发的SRS的优先级;周期性发送的波束赋形的SRS的优先级高于周期性发送的非波束赋形的SRS的优先级;非周期性发送的波束赋形的SRS的优先级高于非周期性发送的非波束赋形的SRS的优先级。
结合第一方面的第一种实现方式,在第一方面的第三种实现方式中,对于接收到第一SRS的第一配置参数和第二SRS的第二配置参数的情况下,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为非周期性发送的波束赋形的SRS时,所述在所述时频资源上,按照所述发射功率发送所述SRS,包括:
若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第二发射功率发送所述第二SRS;
若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
结合第一方面的第一种实现方式,在第一方面的第四种实现方式中,对于接收到第一SRS的第一配置参数和第二SRS的第二配置参数的情况下,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,且所述第二SRS与所述第一SRS具备相同周期时,所述在所述时频资源上,按照所述发射功率发送所述SRS,包括:
若所述第一SRS和所述第二SRS占用相同的时频资源,则将所述相同的时频资源划分为第一相同时频资源和第二相同时频资源,并在所述第一相同时频资源上按照所述第一发射功率发送所述第一SRS,以及在所述第二相同时频资源上按照所述第二发射功率发送所述第二SRS;或者,则在所述相同的时频资源上按照所述第一发射功率发送所述第一SRS;
若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
结合第一方面的第一种实现方式,在第一方面的第五种实现方式中,对于接收到第一SRS的第一配置参数和第二SRS的第二配置参数的情况下,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,且所述第二SRS与所述第一SRS具备不同周期时,所述在所述时频资源上,按照所述发射功率发送所述SRS,包括:
若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第一发射功率发送所述第一SRS;
若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
结合第一方面、第一方面的第一种实现方式、第一方面的第二种实现方式、第一方面的第三种实现方式、第一方面的第四种实现方式或第一方面的第五种实现方式,在第一方面的第六种实现方式中,所述功率控制参数包括非波束赋形的SRS功率偏移值、占用的资源块数、功率调整值、路损补偿因子、期望接收功率和功率增益,所述功率增益用于根据所述非波束赋形的SRS功率偏移值计算所述触发类型为波束赋形的SRS的功率偏移值。
可选的,所述预设计算公式为:
PSRS=min{PCMAX,PSRS_OFFSET(m)+10log10(MSRS)+PO+α·PL+f}
其中,PSRS为发送所述SRS的发射功率;PCMAX为用户设备中预设的最大 发射功率;PSRS_OFFSET(m)为功率偏移量,m的取值为0、1、2和3;MSRS为发送所述SRS占用的资源块数;PO为期望接收功率;α为路损补偿因子;PL为由所述用户设备预估的路损;f为功率调整值;
PSRS_OFFSET(0)为周期性发送非波束赋形的SRS的功率偏移量;PSRS_OFFSET(1)为非周期性发送非波束赋形的SRS的功率偏移量;PSRS_OFFSET(2)为周期性发送波束赋形的SRS的功率偏移量;PSRS_OFFSET(3)为非周期性发送波束赋形的SRS的功率偏移量;
PSRS_OFFSET(2)和PSRS_OFFSET(3)的计算方式为:
PSRS_OFFSET(2)=PSRS_OFFSET(0)-pBF_SRS_Gain
PSRS_OFFSET(3)=PSRS_OFFSET(1)-pBF_SRS_GainAp
其中,pBF_SRS_Gain为周期性发送的波束赋形的SRS相对周期性发送的非波束赋形的SRS的增益;pBF_SRS_GainAp为非周期性发送的波束赋形的SRS相对非周期性发送的非波束赋形的SRS的增益。
第二方面,本发明实施例提供了一种用户设备,包括:
接收单元,用于接收基站发送的探测参考信号SRS的配置参数,并根据所述配置参数确定所述SRS占用的时频资源,所述配置参数包括触发类型、周期参数和时频资源位置标识;
获取单元,用于获取所述SRS的功率控制参数,并根据所述功率控制参数,按照预设计算公式计算发送所述SRS的发射功率;
发送单元,用于在所述时频资源上,按照所述发射功率发送所述SRS;
其中,所述触发类型包括波束赋形或非波束赋形;所述周期参数为用于指示周期性发送所述SRS或非周期性发送所述SRS的标识符。
可选的,所述SRS包括第一SRS和第二SRS;所述第一SRS的配置参数为第一配置参数,所述第二SRS的配置参数为第二配置参数,所述第一SRS的发射功率为第一发射功率,所述第二SRS的发射功率为第二发射功率。
本发明实施例第二方面提供的用户设备用于执行本发明第一方面提供的探测参考信号发送方法,具体的可参见本发明实施例第一方面的描述,在此不再赘述。
在一个可能的设计中,用户设备的结构中包括处理器和收发器,所述处理器用于执行本发明第一方面提供的探测参考信号发送方式。可选的,还可以包 括存储器,所述存储器用于存储支持用户设备执行上述方法的应用程序代码,所述处理器被配置为用于执行所述存储器中存储的应用程序。
第三方面,本发明实施例提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例中,基站、用户设备的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本发明类似,属于本发明权利要求及其等同技术的范围之内。
在本发明实施例中,用户设备接收基站发送的SRS的包括触发类型、周期参数和时频资源位置标识配置参数,并根据配置参数确定SRS占用的时频资源;接着获取SRS的功率控制参数,并根据功率控制参数,按照预设计算公式计算发送SRS的发射功率;最后在时频资源上,按照发射功率发送SRS。其中,所述触发类型包括波束赋形或非波束赋形,并可以周期性发送或非周期性发送SRS。相比于非波束赋形的SRS,波束赋形的SRS能够增强SRS的覆盖距离,并降低相邻小区间的干扰,进而提高发送SRS的有效性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种可能的网络架构;
图2为本发明实施例提供的一种探测参考信号发送方法的流程示意图;
图3为本发明实施例提供的另一种探测参考信号发送方法的流程示意图;
图4a为本发明实施例提供的一种示例示意图;
图4b为本发明实施例提供的一种示例示意图;
图5a为本发明实施例提供的一种示例示意图;
图5b为本发明实施例提供的一种示例示意图;
图5c为本发明实施例提供的一种示例示意图;
图6a为本发明实施例提供的一种示例示意图;
图6b为本发明实施例提供的一种示例示意图;
图7为本发明实施例提供的一种用户设备的模块化示意图;
图8为本发明实施例提供的一种用户设备的结构示意图。
具体实施方式
本发明提供的方案中采用波束赋形的SRS能够增强SRS的覆盖距离,并降低相邻小区间的干扰,进而提高了发送SRS的有效性。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了便于理解本发明,下面先介绍下本发明实施例适用的一种可能的网络架构图,在图1所示的网络构架中,可以包括基站和位于基站覆盖范围内的用户设备,基站可以触发用户设备发送SRS。例如在长期演进(Long Term Evolution,LTE)系统中,LTE中规定的SRS的发送方法为:在每一个长度为1ms的上行子帧中的最后一个SC_FDMA符号可以用来发送SRS。每个UE可以选择不同的带宽来发送SRS,在选择的带宽内,用户设备以梳状谱(comb-likespectrum)的方式发送SRS,即以固定的间隔,每隔2个子载波放 置一个SRS符号。而在现有技术中,SRS可以采用周期性或非周期性的方式发送,且采用非波束赋形全向发送,由于是全向发送,因此有可能让周围其他小区的基站监听到所发送的SRS,容易引起相邻小区间干扰。
而在本发明实施例中,通过采用发送波束赋形的SRS,由于是定向发送,因此能够降低小区间干扰。例如,接收基站发送的探测参考信号SRS的配置参数,并根据所述配置参数确定所述SRS占用的时频资源,所述配置参数包括触发类型、周期参数和时频资源位置标识;获取所述SRS的功率控制参数,并根据所述功率控制参数,按照预设计算公式计算发送所述SRS的发射功率;在所述时频资源上,按照所述发射功率发送所述SRS;其中,所述触发类型包括波束赋形或非波束赋形;所述周期参数为用于指示周期性发送所述SRS或非周期性发送所述SRS的标识符。这样能够提高发送SRS的有效性。
本发明实施例,可应用于其它支持发送探测参考信号的通信系统中,例如:演进分组系统(Evolved Packet System,EPS)、全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)等。
在本发明实施例中,用户设备可以包括但不限定于终端(Terminal)、移动台(Mobile Station,MS)等,还可以是移动电话(或称为“蜂窝”电话),还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置(智能手环、智能手表、智能眼镜等)。
基于图1所示的网络架构,本发明实施例中的基站、用户设备可以以其他名称出现。只要各个设备的功能和本发明类似,属于本发明权利要求及其等同技术的范围之内。
请参见图2,为本发明实施例提供了一种探测参考信号发送方法的流程示意图,如图2所示,本发明实施例的所述探测参考信号发送方法包括步骤101至步骤103。其中,本发明实施例中的探测参考信号发送方法是由用户设备执行的。具体过程请参见以下详细介绍。
101,接收基站发送的探测参考信号SRS的配置参数,并根据所述配置参数确定所述SRS占用的时频资源,所述配置参数包括触发类型、周期参数和时频资源位置标识。
具体的,用户设备接收基站发送的SRS的配置参数,并根据所述配置参数确定所述SRS占用的时频资源。所述配置参数包括触发类型、周期参数和时频资源位置标识。
其中,所述触发类型包括波束赋形或非波束赋形。波束赋形是一种基于天线阵列的信号预处理技术,波束赋形通过调整天线阵列中每个阵元的加权系数产生具有指向性的波束,用户设备发送的波束赋形的SRS为朝着一个预设方向的发送SRS,例如,用户设备朝着基站所在位置的方向发送SRS。而用户设备发送的非波束赋形的SRS为全向的发送SRS。可想而知,对于采用相同发射功率进行发送的情况,波束赋形的SRS的覆盖距离会大于非波束赋形的SRS的覆盖距离,进一步,当用户设备向当前所在小区的基站发送非波束赋形的SRS时,由于是全向发送,因此有可能让周围其他小区的基站监听到所发送的SRS,容易引起相邻小区间干扰,而采用发送波束赋形的SRS的方式,由于时定向发送,因此能从很大程度上降低相邻小区间的干扰。
其中,所述周期参数为用于指示周期性发送所述SRS或非周期性发送所述SRS的标识符。一种可行的方案中,所述标识符可以是基站和用户设备共同约定的且用于表示周期性发送或者非周期性发送的字段,例如,周期参数为“true”时,表示周期性发送所述SRS;周期参数为“false”时,表示非周期性发送所述SRS。又例如,周期参数为“0000”时,表示非周期性发送所述SRS;周期参数为“0001”时,表示周期性发送所述SRS,且“0001”可以用于确定周期性发送的周期,可以将该字段对应的数值确定为周期,或者,也可以将与该字段存在映射关系的数值确定为周期。另一种可行的方案中,所述标识符可以是通过基站和用户设备共同约定的且用于表示周期性发送或者非周期性发送的信令,例如,若为高层信令时,例如无线资源控制(Radio Resource Control,RRC)信令,表示周期性发送,并在所述配置参数中增加周期,用于指示所述用户设备按照该周期发送所述SRS;若为物理层信令时,例如下行控制信息(Downlink Control Information,DCI)格式信令,表示非周期性发送。以上仅为举例说明,本发明实施例对周期参数的可实现方式不做限定。
其中,所述时频资源位置标识用于确定发送所述SRS所占用的时频资源。可选的,所述时频资源位置标识可以包括频域起始位置、频域偏移量、频域占用带宽、时域起始子帧(或符号标识)和时域偏移量,其中,通过时域起始子帧(或符号标识)和时域偏移量表示时域位置,通过频域起始位置、频域偏移量和频域占用带宽表示频域位置。对于用户设备中部署了多天线的情况,所述时频资源位置标识还可以包括基于波束赋形发送的SRS占用的资源标识或端口标识。由此可见,不论触发类型为波束赋形还是非波束赋形,对于周期性发送的SRS,所述用户设备可以根据所述时频资源位置标识和周期,确定周期性发送的每个SRS占用的时频资源;对于非周期性发送的SRS,所述用户设备可以根据所述时频资源位置标识,确定非周期性发送的这一SRS占用的时频资源。
进一步,可以理解的是,在本发明实施例中,通过所述配置参数确定的所述SRS可以是周期性发送的波束赋形SRS、非周期性发送的波束赋形SRS、周期性发送的非波束赋形SRS以及非周期性发送的非波束赋形SRS。
102,获取所述SRS的功率控制参数,并根据所述功率控制参数,按照预设计算公式计算发送所述SRS的发射功率。
具体的,所述用户设备获取所述SRS的功率控制参数,并根据所述功率控制参数,按照预设计算公式计算发送所述SRS的发射功率。其中,所述功率控制参数是由所述基站发送的。可行的方案中,所述功率控制参数是所述基站针对发送所述SRS发送的,在这种情况下,基站可以将所述SRS的配置参数和功率控制参数一并发送至所述用户设备。所述用户设备获取接收到的功率控制参数,按照预设计算公式计算发送所述SRS的发射功率。或者,另一可行的方案中,所述功率控制参数并非是针对所述SRS发送的,是在所述基站向所述用户设备发送SRS的配置参数之前发送的,所述用户设备获取之前接收到的功率控制参数,按照预设计算公式计算发送所述SRS的发射功率。
可选的,所述功率控制参数包括非波束赋形的SRS功率偏移值、占用的资源块数、功率调整值、路损补偿因子、期望接收功率和功率增益,所述功率增益用于根据所述非波束赋形的SRS功率偏移值计算所述触发类型为波束赋形的SRS的功率偏移值。可行的方案中,所述基站可以将所述功率控制参数中所包括的各个参数以分开的方式或者以任意组合的方式发送。所述用户设备接收到所述功率控制参数之后,将其进行存储。
进一步,所述预设计算公式为:
PSRS=min{PCMAX,PSRS_OFFSET(m)+10log10(MSRS)+PO+α·PL+f}
其中,PSRS为需要计算得到的发送所述SRS的发射功率;PCMAX为用户设备中预设的最大发射功率;PSRS_OFFSET(m)为功率偏移量,m的取值为0、1、2和3;MSRS为发送所述SRS占用的资源块数;PO为期望接收功率;α为路损补偿因子;PL为由所述用户设备预估的路损;f为功率调整值。除了PSRS_OFFSET(m)之外,其他参数具体物理意义可以参考3GPP TS36.213v10.2.0中的PSRS
在本发明实施例中,PSRS_OFFSET(0)为周期性发送非波束赋形的SRS的功率偏移量;PSRS_OFFSET(1)为非周期性发送非波束赋形的SRS的功率偏移量;PSRS_OFFSET(2)为周期性发送波束赋形的SRS的功率偏移量;PSRS_OFFSET(3)为非周期性发送波束赋形的SRS的功率偏移量;
PSRS_OFFSET(0)或PSRS_OFFSET(1)是包括于功率控制参数中由基站发送的,所述用户设备可以根据功率控制参数直接确定。而PSRS_OFFSET(2)和PSRS_OFFSET(3)的计算方式为:
PSRS_OFFSET(2)=PSRS_OFFSET(0)-pBF_SRS_Gain
PSRS_OFFSET(3)=PSRS_OFFSET(1)-pBF_SRS_GainAp
其中,pBF_SRS_Gain为周期性发送的波束赋形的SRS相对周期性发送的非波束赋形的SRS的增益;pBF_SRS_GainAp为非周期性发送的波束赋形的SRS相对非周期性发送的非波束赋形的SRS的增益。所述用户设备可以通过以上计算公式确定PSRS_OFFSET(2)和PSRS_OFFSET(3)。
103,根据所述配置参数,按照所述发射功率发送所述SRS。
具体的,所述用户设备根据所述配置参数确定的所述SRS占用的时频资源,在所述时频资源上按照所述发射功率发送所述SRS。
在本发明实施例中,用户设备接收基站发送的SRS的包括触发类型、周期参数和时频资源位置标识配置参数,并根据配置参数确定SRS占用的时频资源;接着获取SRS的功率控制参数,并根据功率控制参数,按照预设计算公式计算发送SRS的发射功率;最后在时频资源上,按照发射功率发送SRS。其中,所述触发类型包括波束赋形或非波束赋形,并可以周期性发送或非周期性发送SRS。相比于非波束赋形的SRS,波束赋形的SRS能够增强SRS的覆 盖距离,并降低相邻小区间的干扰,进而提高发送SRS的有效性。
请参见图3,为本发明实施例提供了另一种探测参考信号发送方法的流程示意图,如图3所示,本发明实施例的所述探测参考信号发送方法包括步骤201至步骤208。其中,本发明实施例中的探测参考信号发送方法是从用户设备和基站交互的角度考虑的,其中,基站可以向用户设备发送多个SRS的配置参数,以通知用户设备发送与配置参数对应的SRS,本发明实施例以两个SRS为例,具体过程请参见以下详细介绍。
201,基站向用户设备发送第一SRS的第一配置参数。
其中,所述基站向用户设备发送第一SRS的第一配置参数。第一配置参数的具体介绍可以参见图2所示实施例中配置参数的详细描述,在此不再赘述。
相应地,所述用户设备接收所述基站发送的所述第一SRS的第一配置参数。
202,所述用户设备根据所述第一配置参数确定第一SRS占用的第一时频资源。
其中,所述用户设备根据所述第一配置参数确定第一SRS占用的第一时频资源的具体过程可以参见图2所示实施例中步骤101中时频资源的详细描述,在此不再赘述。
203,基站向用户设备发送第二SRS的第二配置参数。
其中,所述基站向用户设备发送第二SRS的第二配置参数。第二配置参数具体可以参见图2所示实施例中配置参数的具体介绍,在此不再赘述。
相应地,所述用户设备接收所述基站发送的所述第二SRS的第二配置参数。
204,所述用户设备根据所述第二配置参数确定第二SRS占用的第二时频资源。
其中,所述用户设备根据所述第二配置参数确定第二SRS占用的第二时频资源的具体过程可以参见图2所示实施例中步骤101中时频资源的详细描述,在此不再赘述。
需要说明的是,所述第一配置参数或所述第二配置参数是所述基站向所述 用户设备发送的多个配置参数中的任意一个,其中,所述基站可以一个SRS的配置参数向所述用户设备发送一次,因此步骤201和步骤203并无先后顺序之分。
205,基站向所述用户设备发送功率控制参数。
其中,基站向所述用户设备发送功率控制参数可以分为以下两种情况介绍。
第一种可行的方案中,所述功率控制参数是所述基站针对发送所述第一SRS或所述第二SRS发送的,在这种情况下,所述基站会向所述用户设备发送第一SRS的第一功率控制参数,以及发送第二SRS的第二功率控制参数。这样基站可以将所述第一SRS的第一配置参数和第一功率控制参数一并发送至所述用户设备,以及将所述第二SRS的第二配置参数和第二功率控制参数一并发送至所述用户设备。
第二种可行的方案中,所述功率控制参数并非是针对所述第一SRS或所述第二SRS发送的,是在所述基站向所述用户设备发送第一SRS的第一配置参数以及发送第二SRS的第二配置参数之前发送的。
可选的,所述功率控制参数包括非波束赋形的SRS功率偏移值、占用的资源块数、功率调整值、路损补偿因子、期望接收功率和功率增益,所述功率增益用于根据所述非波束赋形的SRS功率偏移值计算所述触发类型为波束赋形的SRS的功率偏移值。对应于上述第二种可行的方案中,所述基站可以将所述功率控制参数中所包括的各个参数以分开的方式或者以任意组合的方式发送。
相应地,所述用户设备接收所述基站发送的功率控制参数。
206,所述用户设备获取所述第一SRS的功率控制参数,并根据所述第一SRS的功率控制参数,按照预设计算公式计算发送第一SRS的第一发射功率。
207,所述用户设备获取所述第二SRS的功率控制参数,并根据所述第二SRS的功率控制参数,按照预设计算公式计算发送第二SRS的第二发射功率。
其中,步骤206和步骤207中涉及的预设计算公式可以参考图2所示实施例中步骤102的详细介绍。这里需要说明的是,对于采用周期性或非周期性发送的不同触发类型的SRS,所述用户设备获取相应类型的功率控制参数,进而根据预设计算公式计算相应SRS的发射功率。
举例来说,若所述第一SRS为周期性发送的波束赋形SRS时,获取非波束赋形的SRS功率偏移值、占用的资源块数、功率调整值、路损补偿因子、期望接收功率和功率增益,其中,所述功率增益为周期性发送的波束赋形的SRS相对周期性发送的非波束赋形的SRS的增益。进而根据所获取的功率控制参数,按照预设计算公式计算第一SRS的第一发射功率。
208,所述用户设备根据所述第一时频资源和所述第二时频资源,以所述第一发射功率发送所述第一SRS和/或以所述第二发射功率发送所述第二SRS。
具体的,所述用户设备根据所述第一时频资源和所述第二时频资源,以所述第一发射功率发送所述第一SRS和/或以所述第二发射功率发送所述第二SRS的具体过程分为以下几种方式进行分别说明。
在第一种方式中,可以预先设置优先级规则,一种可选的优先级规则为非周期性发送的任一触发类型的SRS的优先级高于周期性发送的任一触发的SRS的优先级;周期性发送的波束赋形的SRS的优先级高于周期性发送的非波束赋形的SRS的优先级;非周期性发送的波束赋形的SRS的优先级高于非周期性发送的非波束赋形的SRS的优先级。按照这一优先级规则,若所述第一SRS和所述第二SRS占用相同的时频资源,则按照预设优先级规则,以所述第一发射功率发送所述第一SRS或以所述第二发射功率发送所述第二SRS;若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
举例来说,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为非周期性发送的波束赋形的SRS时,若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第二发射功率发送所述第二SRS;或者,当所述第一SRS为周期性发送的非波束赋形的SRS,所述第二SRS为非周期性发送的非波束赋形的SRS时,若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第二发射功率发送所述第二SRS。
在第二种方式中,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为非周期性发送的波束赋形的SRS时,若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第二 发射功率发送所述第二SRS。
请一并参见图4a和图4b,为本发明实施例提供了一种示例示意图,在图4a中,第一SRS为周期性发送的波束赋形的SRS,第二SRS为非周期性发送的波束赋形的SRS,从图4a中可以看出,第一SRS占用的第一时频资源和第二SRS占用的第二时频资源中存在相同的时频资源,从图4b中看出,所述用户设备在所述相同的时频资源上发送非周期性发送的波束赋形的SRS,即第二SRS。
可以理解的是,若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
在第三种方式中,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,且所述第二SRS与所述第一SRS具备相同周期时,若所述第一SRS和所述第二SRS占用相同的时频资源,则将所述相同的时频资源划分为第一相同时频资源和第二相同时频资源,并在所述第一相同时频资源上按照所述第一发射功率发送所述第一SRS,以及在所述第二相同时频资源上按照所述第二发射功率发送所述第二SRS;或者,则在所述相同的时频资源上按照所述第一发射功率发送所述第一SRS。
其中,所述用户设备划分第一相同时频资源和第二相同时频资源的方式,可以随意划分,或者可以按照一定规律性,例如,由于是第一SRS和第二SRS都是周期性发送的且周期相同,因此存在多个相同的时频资源,所述用户设备将第2i-1个相同时频资源划分为第一相同时频资源,将第2i个相同时频资源划分为第二相同时频资源,其中,i为大于或等于1的正整数,这样划分之后所述用户设备可实现交替性发送第一SRS和第二SRS。可以理解的是,这里仅仅为举例,本发明实施例对于其他的划分方式不做限定。
请一并参见图5a、图5b和图5c,为本发明实施例提供了另一种示例示意图,在图5a中,第一SRS为周期性发送的波束赋形的SRS,第二SRS为周期性发送的非波束赋形的SRS,从图5a中可以看出,第一SRS和第二SRS的周期相同,且第一SRS占用的第一时频资源和第二SRS占用的第二时频资源相同,一种方式是,从图5b中看出,所述用户设备在所述相同的时频资源上发送周期性发送的波束赋形的SRS,即第一SRS;另一种方式是,所述用户设备 将所述相同的时频资源划分为第一时频资源和第二时频资源,进而实现交替性的发送第一SRS和第二SRS。
可以理解的是,若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
在第四种方式中,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,且所述第二SRS与所述第一SRS具备不同周期时,若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第一发射功率发送所述第一SRS。
其中,由于对于以不同周期且周期性发送的波束赋形的SRS和周期性发送的非波束赋形SRS,也会存在占用相同时频资源的情况,例如,两个周期中一个周期为另一个周期的m倍,m为大于1的正整数,这样第一SRS占用的第一时频资源和第二SRS占用的第二时频资源为包含关系。又如,两个周期不存在整数倍的关系,则在两者的公倍数上可能会发生第一SRS和第二SRS占用相同时频资源的情况。
对于这类情况,请一并参见图6a和图6b,为本发明实施例提供了一种示例示意图,在图6a中,第一SRS为周期性发送的波束赋形的SRS,第二SRS为周期性发送的非波束赋形的SRS,从图6a中可以看出,第一SRS和第二SRS的周期不相同,且第一SRS占用的第一时频资源和第二SRS占用的第二时频资源存在相同的时频资源,从图6b中看出,所述用户设备所述相同的时频资源上发送第一SRS。可以理解的是,对于所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
在第五种方式中,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为非周期性发送的非波束赋形的SRS,若所述第一SRS和所述第二SRS占用相同的时频资源,则在所述相同的时频资源上按照所述第二发射功率发送所述第二SRS;若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
在第六种方式中,当所述第一SRS为非周期性发送的波束赋形的SRS, 所述第二SRS为非周期性发送的非波束赋形的SRS,若所述第一SRS和所述第二SRS占用相同的时频资源,则在所述相同的时频资源上按照所述第一发射功率发送所述第一SRS;若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
在第七种方式中,当所述第一SRS为非周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,若所述第一SRS和所述第二SRS占用相同的时频资源,则在所述相同的时频资源上按照所述第一发射功率发送所述第一SRS;若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
在第八种方式中,当所述第一SRS为周期性发送的非波束赋形的SRS,所述第二SRS为非周期性发送的非波束赋形的SRS,若所述第一SRS和所述第二SRS占用相同的时频资源,则在所述相同的时频资源上按照所述第二发射功率发送所述第二SRS;若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
在本发明实施例中,用户设备接收基站发送的SRS的包括触发类型、周期参数和时频资源位置标识配置参数,并根据配置参数确定SRS占用的时频资源;接着获取SRS的功率控制参数,并根据功率控制参数,按照预设计算公式计算发送SRS的发射功率;最后在时频资源上,按照发射功率发送SRS。其中,所述触发类型包括波束赋形或非波束赋形,并可以周期性发送或非周期性发送SRS。相比于非波束赋形的SRS,波束赋形的SRS能够增强SRS的覆盖距离,并降低相邻小区间的干扰,进而提高发送SRS的有效性。
图7为本发明实施例提供了一种用户设备的模块化示意图。本发明实施例中的用户设备可以是图2-图6中任一实施例提供的用户设备。如图7所示,本发明实施例的用户设备1可以包括:接收单元11、获取单元12和发送单元13。
接收单元11,用于接收基站发送的探测参考信号SRS的配置参数,并根据所述配置参数确定所述SRS占用的时频资源,所述配置参数包括触发类型、 周期参数和时频资源位置标识;
获取单元12,用于获取所述SRS的功率控制参数,并根据所述功率控制参数,按照预设计算公式计算发送所述SRS的发射功率;
发送单元13,用于在所述时频资源上,按照所述发射功率发送所述SRS;
其中,所述触发类型包括波束赋形或非波束赋形;所述周期参数为用于指示周期性发送所述SRS或非周期性发送所述SRS的标识符。
可选的,所述SRS包括第一SRS和第二SRS;所述第一SRS的配置参数为第一配置参数,所述第二SRS的配置参数为第二配置参数,所述第一SRS的发射功率为第一发射功率,所述第二SRS的发射功率为第二发射功率。
可选的,所述发送单元13具体用于:
若所述第一SRS和所述第二SRS占用相同的时频资源,则按照预设优先级规则,以所述第一发射功率发送所述第一SRS或以所述第二发射功率发送所述第二SRS;
若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
可选的,所述预设优先级规则包括:
非周期性发送的任一触发类型的SRS的优先级高于周期性发送的任一触发的SRS的优先级;
周期性发送的波束赋形的SRS的优先级高于周期性发送的非波束赋形的SRS的优先级;
非周期性发送的波束赋形的SRS的优先级高于非周期性发送的非波束赋形的SRS的优先级。
可选的,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为非周期性发送的波束赋形的SRS时,所述发送单元13具体用于:
若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第二发射功率发送所述第二SRS;
若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
可选的,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,且所述第二SRS与所述第一SRS具备相 同周期时,所述发送单元13具体用于:
若所述第一SRS和所述第二SRS占用相同的时频资源,则将所述相同的时频资源划分为第一相同时频资源和第二相同时频资源,并在所述第一相同时频资源上按照所述第一发射功率发送所述第一SRS,以及在所述第二相同时频资源上按照所述第二发射功率发送所述第二SRS;或者,则在所述相同的时频资源上按照所述第一发射功率发送所述第一SRS;
若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
可选的,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,且所述第二SRS与所述第一SRS具备不同周期时,所述发送单元13具体用于:
若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第一发射功率发送所述第一SRS;
若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
可选的,所述功率控制参数包括非波束赋形的SRS功率偏移值、占用的资源块数、功率调整值、路损补偿因子、期望接收功率和功率增益,所述功率增益用于根据所述非波束赋形的SRS功率偏移值计算所述触发类型为波束赋形的SRS的功率偏移值。
可选的,所述预设计算公式为:
PSRS=min{PCMAX,PSRS_OFFSET(m)+10log10(MSRS)+PO+α·PL+f}
其中,PSRS为发送所述SRS的发射功率;PCMAX为用户设备中预设的最大发射功率;PSRS_OFFSET(m)为功率偏移量,m的取值为0、1、2和3;MSRS为发送所述SRS占用的资源块数;PO为期望接收功率;α为路损补偿因子;PL为由所述用户设备预估的路损;f为功率调整值;
PSRS_OFFSET(0)为周期性发送非波束赋形的SRS的功率偏移量;PSRS_OFFSET(1)为非周期性发送非波束赋形的SRS的功率偏移量;PSRS_OFFSET(2)为周期性发送波束赋形的SRS的功率偏移量;PSRS_OFFSET(3)为非周期性发送波束赋形的SRS的功率偏移量;
PSRS_OFFSET(2)和PSRS_OFFSET(3)的计算方式为:
PSRS_OFFSET(2)=PSRS_OFFSET(0)-pBF_SRS_Gain
PSRS_OFFSET(3)=PSRS_OFFSET(1)-pBF_SRS_GainAp
其中,pBF_SRS_Gain为周期性发送的波束赋形的SRS相对周期性发送的非波束赋形的SRS的增益;pBF_SRS_GainAp为非周期性发送的波束赋形的SRS相对非周期性发送的非波束赋形的SRS的增益。
需要说明的是,在图7所示实施例的用户设备中,各功能单元的具体实现方式以及带来的技术效果参见图2至图6中相应方法实施例的具体描述,在此不再赘述。
图7所示实施例中的用户设备可以以图8所示的用户设备实现,如图8所示,为本发明实施例提供了一种用户设备的结构示意图,图8所示的用户设备1000包括:电源1001、用户接口1002、通信模块1003、处理器1004、显示系统1005、传感系统1006和音频系统1007。图8所示的用户设备的结构并不构成对本发明实施例的限定。
其中,电源1001为用户设备1000各项功能的实现提供电力保障。用户接口1002用于用户设备1000与其它设备或装置相连接,实现其它设备或装置与用户设备1000的通信或数据传输。通信模块1003用于实现用户设备1000与基站、卫星等网络侧设备之间的通信或数据传输,还用于实现用户设备1000与其它用户设备之间的通信或数据传输。处理器1004可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。显示系统1005用于信息的输出显示以及接收用户输入的操作。传感系统1006包括各种传感器,例如温度传感器、距离传感器等。音频系统1007用于音频信号的输出。
应用于本发明实施例中,处理器1003用于实现图7中获取单元12的功能,相应地,通信模块1003用于实现接收单元11和发送单元13的功能。
在本发明实施例中还提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述方面为用户设备所设计的程序,以实现图2至图6所示任一实施例中用户设备的动作。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为根据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施 例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例装置中的单元可以根据实际需要进行合并、划分和删减。本领域的技术人员可以将本说明书中描述的不同实施例以及不同实施例的特征进行结合或组合。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(Digital Subscriber Line,DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本 发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种探测参考信号发送方法,其特征在于,包括:
    接收基站发送的探测参考信号SRS的配置参数,并根据所述配置参数确定所述SRS占用的时频资源,所述配置参数包括触发类型、周期参数和时频资源位置标识;
    获取所述SRS的功率控制参数,并根据所述功率控制参数,按照预设计算公式计算发送所述SRS的发射功率;
    在所述时频资源上,按照所述发射功率发送所述SRS;
    其中,所述触发类型包括波束赋形或非波束赋形;所述周期参数为用于指示周期性发送所述SRS或非周期性发送所述SRS的标识符。
  2. 根据权利要求1所述的方法,其特征在于,所述SRS包括第一SRS和第二SRS;所述第一SRS的配置参数为第一配置参数,所述第二SRS的配置参数为第二配置参数,所述第一SRS的发射功率为第一发射功率,所述第二SRS的发射功率为第二发射功率。
  3. 根据权利要求2所述的方法,其特征在于,所述在所述时频资源上,按照所述发射功率发送所述SRS,包括:
    若所述第一SRS和所述第二SRS占用相同的时频资源,则按照预设优先级规则,以所述第一发射功率发送所述第一SRS或以所述第二发射功率发送所述第二SRS;
    若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
  4. 根据权利要求3所述的方法,其特征在于,所述预设优先级规则包括:
    非周期性发送的任一触发类型的SRS的优先级高于周期性发送的任一触发的SRS的优先级;
    周期性发送的波束赋形的SRS的优先级高于周期性发送的非波束赋形的 SRS的优先级;
    非周期性发送的波束赋形的SRS的优先级高于非周期性发送的非波束赋形的SRS的优先级。
  5. 根据权利要求2所述的方法,其特征在于,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为非周期性发送的波束赋形的SRS时,所述在所述时频资源上,按照所述发射功率发送所述SRS,包括:
    若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第二发射功率发送所述第二SRS;
    若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
  6. 根据权利要求2所述的方法,其特征在于,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,且所述第二SRS与所述第一SRS具备相同周期时,所述在所述时频资源上,按照所述发射功率发送所述SRS,包括:
    若所述第一SRS和所述第二SRS占用相同的时频资源,则将所述相同的时频资源划分为第一相同时频资源和第二相同时频资源,并在所述第一相同时频资源上按照所述第一发射功率发送所述第一SRS,以及在所述第二相同时频资源上按照所述第二发射功率发送所述第二SRS;或者,则在所述相同的时频资源上按照所述第一发射功率发送所述第一SRS;
    若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
  7. 根据权利要求2所述的方法,其特征在于,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,且所述第二SRS与所述第一SRS具备不同周期时,所述在所述时频资源上,按照所述发射功率发送所述SRS,包括:
    若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第一发射功率发送所述第一SRS;
    若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述功率控制参数包括非波束赋形的SRS功率偏移值、占用的资源块数、功率调整值、路损补偿因子、期望接收功率和功率增益,所述功率增益用于根据所述非波束赋形的SRS功率偏移值计算所述触发类型为波束赋形的SRS的功率偏移值。
  9. 根据权利要求8所述的方法,其特征在于,所述预设计算公式为:
    PSRS=min{PCMAX,PSRS_OFFSET(m)+10log10(MSRS)+PO+α·PL+f}
    其中,PSRS为发送所述SRS的发射功率;PCMAX为用户设备中预设的最大发射功率;PSRS_OFFSET(m)为功率偏移量,m的取值为0、1、2和3;MSRS为发送所述SRS占用的资源块数;PO为期望接收功率;α为路损补偿因子;PL为由所述用户设备预估的路损;f为功率调整值;
    PSRS_OFFSET(0)为周期性发送非波束赋形的SRS的功率偏移量;PSRS_OFFSET(1)为非周期性发送非波束赋形的SRS的功率偏移量;PSRS_OFFSET(2)为周期性发送波束赋形的SRS的功率偏移量;PSRS_OFFSET(3)为非周期性发送波束赋形的SRS的功率偏移量;
    PSRS_OFFSET(2)和PSRS_OFFSET(3)的计算方式为:
    PSRS_OFFSET(2)=PSRS_OFFSET(0)-pBF_SRS_Gain
    PSRS_OFFSET(3)=PSRS_OFFSET(1)-pBF_SRS_GainAp
    其中,pBF_SRS_Gain为周期性发送的波束赋形的SRS相对周期性发送的非波束赋形的SRS的增益;pBF_SRS_GainAp为非周期性发送的波束赋形的SRS相对非周期性发送的非波束赋形的SRS的增益。
  10. 一种用户设备,其特征在于,包括:
    接收单元,用于接收基站发送的探测参考信号SRS的配置参数,并根据所述配置参数确定所述SRS占用的时频资源,所述配置参数包括触发类型、周期参数和时频资源位置标识;
    获取单元,用于获取所述SRS的功率控制参数,并根据所述功率控制参 数,按照预设计算公式计算发送所述SRS的发射功率;
    发送单元,用于在所述时频资源上,按照所述发射功率发送所述SRS;
    其中,所述触发类型包括波束赋形或非波束赋形;所述周期参数为用于指示周期性发送所述SRS或非周期性发送所述SRS的标识符。
  11. 根据权利要求10所述的用户设备,其特征在于,所述SRS包括第一SRS和第二SRS;所述第一SRS的配置参数为第一配置参数,所述第二SRS的配置参数为第二配置参数,所述第一SRS的发射功率为第一发射功率,所述第二SRS的发射功率为第二发射功率。
  12. 根据权利要求11所述的用户设备,其特征在于,所述发送单元具体用于:
    若所述第一SRS和所述第二SRS占用相同的时频资源,则按照预设优先级规则,以所述第一发射功率发送所述第一SRS或以所述第二发射功率发送所述第二SRS;
    若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
  13. 根据权利要求12所述的用户设备,其特征在于,所述预设优先级规则包括:
    非周期性发送的任一触发类型的SRS的优先级高于周期性发送的任一触发的SRS的优先级;
    周期性发送的波束赋形的SRS的优先级高于周期性发送的非波束赋形的SRS的优先级;
    非周期性发送的波束赋形的SRS的优先级高于非周期性发送的非波束赋形的SRS的优先级。
  14. 根据权利要求11所述的用户设备,其特征在于,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为非周期性发送的波束赋形的SRS时,所述发送单元具体用于:
    若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第二发射功率发送所述第二SRS;
    若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
  15. 根据权利要求11所述的用户设备,其特征在于,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,且所述第二SRS与所述第一SRS具备相同周期时,所述发送单元具体用于:
    若所述第一SRS和所述第二SRS占用相同的时频资源,则将所述相同的时频资源划分为第一相同时频资源和第二相同时频资源,并在所述第一相同时频资源上按照所述第一发射功率发送所述第一SRS,以及在所述第二相同时频资源上按照所述第二发射功率发送所述第二SRS;或者,则在所述相同的时频资源上按照所述第一发射功率发送所述第一SRS;
    若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
  16. 根据权利要求11所述的用户设备,其特征在于,当所述第一SRS为周期性发送的波束赋形的SRS,所述第二SRS为周期性发送的非波束赋形的SRS,且所述第二SRS与所述第一SRS具备不同周期时,所述发送单元具体用于:
    若所述第一SRS和所述第二SRS占用相同的时频资源,则在占用的所述相同时频资源上按照所述第一发射功率发送所述第一SRS;
    若所述第一SRS和所述第二SRS占用不同的时频资源,则按照所述第一发射功率发送所述第一SRS和按照所述第二发射功率发送所述第二SRS。
  17. 根据权利要求10-16任一项所述的用户设备,其特征在于,所述功率控制参数包括非波束赋形的SRS功率偏移值、占用的资源块数、功率调整值、路损补偿因子、期望接收功率和功率增益,所述功率增益用于根据所述非波束赋形的SRS功率偏移值计算所述触发类型为波束赋形的SRS的功率偏移值。
  18. 根据权利要求17所述的用户设备,其特征在于,所述预设计算公式为:
    PSRS=min{PCMAX,PSRS_OFFSET(m)+10log10(MSRS)+PO+α·PL+f}
    其中,PSRS为发送所述SRS的发射功率;PCMAX为用户设备中预设的最大发射功率;PSRS_OFFSET(m)为功率偏移量,m的取值为0、1、2和3;MSRS为发送所述SRS占用的资源块数;PO为期望接收功率;α为路损补偿因子;PL为由所述用户设备预估的路损;f为功率调整值;
    PSRS_OFFSET(0)为周期性发送非波束赋形的SRS的功率偏移量;PSRS_OFFSET(1)为非周期性发送非波束赋形的SRS的功率偏移量;PSRS_OFFSET(2)为周期性发送波束赋形的SRS的功率偏移量;PSRS_OFFSET(3)为非周期性发送波束赋形的SRS的功率偏移量;
    PSRS_OFFSET(2)和PSRS_OFFSET(3)的计算方式为:
    PSRS_OFFSET(2)=PSRS_OFFSET(0)-pBF_SRS_Gain
    PSRS_OFFSET(3)=PSRS_OFFSET(1)-pBF_SRS_GainAp
    其中,pBF_SRS_Gain为周期性发送的波束赋形的SRS相对周期性发送的非波束赋形的SRS的增益;pBF_SRS_GainAp为非周期性发送的波束赋形的SRS相对非周期性发送的非波束赋形的SRS的增益。
  19. 一种用户设备,其特征在于,所述用户设备包括处理器和收发器,所述处理器用于执行权利要求1至权利要求9任一项所述的方法。
PCT/CN2016/099729 2016-09-22 2016-09-22 一种探测参考信号发送方法及用户设备 WO2018053755A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680086749.XA CN109417813B (zh) 2016-09-22 2016-09-22 一种探测参考信号发送方法及用户设备
PCT/CN2016/099729 WO2018053755A1 (zh) 2016-09-22 2016-09-22 一种探测参考信号发送方法及用户设备
EP16916494.4A EP3503659B1 (en) 2016-09-22 2016-09-22 Sounding reference signal sending method and user equipment
US16/335,684 US10771216B2 (en) 2016-09-22 2016-09-22 Sounding reference signal sending method and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099729 WO2018053755A1 (zh) 2016-09-22 2016-09-22 一种探测参考信号发送方法及用户设备

Publications (1)

Publication Number Publication Date
WO2018053755A1 true WO2018053755A1 (zh) 2018-03-29

Family

ID=61689762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099729 WO2018053755A1 (zh) 2016-09-22 2016-09-22 一种探测参考信号发送方法及用户设备

Country Status (4)

Country Link
US (1) US10771216B2 (zh)
EP (1) EP3503659B1 (zh)
CN (1) CN109417813B (zh)
WO (1) WO2018053755A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088686A1 (zh) * 2018-11-02 2020-05-07 中兴通讯股份有限公司 测量参考信号传输方法、装置、通信节点设备及存储介质
CN111200475A (zh) * 2018-11-16 2020-05-26 华为技术有限公司 一种探测参考信号srs的干扰协调方法和装置
WO2021134698A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 一种探测参考信号srs周期的配置方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424883B2 (en) * 2018-03-29 2022-08-23 Lg Electronics Inc. Method for transmitting sounding reference signal (SRS) in wireless communication system and apparatus therefor
WO2020047080A1 (en) * 2018-08-28 2020-03-05 Hua Zhou Uplink transmission in a wireless communication system
WO2020065894A1 (ja) * 2018-09-27 2020-04-02 三菱電機株式会社 基地局、端末装置および測位方法
WO2021093138A1 (en) * 2020-01-03 2021-05-20 Zte Corporation Methods and devices for enhancement on sounding reference signal (srs) transmission signaling
WO2022082721A1 (en) * 2020-10-23 2022-04-28 Qualcomm Incorporated System and method for mapping sounding reference signals to resources

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427608A (zh) * 2011-12-06 2012-04-25 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
EP2579490A2 (en) * 2010-06-04 2013-04-10 LG Electronics Inc. Method of terminal transmitting sounding reference signal on the basis of aperiodic sounding reference signal triggering and method for controlling uplink transmission power to transmit aperiodic sounding reference signal
CN104604170A (zh) * 2012-09-07 2015-05-06 株式会社Ntt都科摩 无线基站、无线通信系统以及无线通信方法
CN104737489A (zh) * 2012-10-24 2015-06-24 高通股份有限公司 用于lte-a中的mimo操作的增强型srs传输
CN105007126A (zh) * 2014-04-23 2015-10-28 电信科学技术研究院 一种信道状态信息测量的方法、系统及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572896B (zh) * 2008-04-29 2011-01-26 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
KR20130032906A (ko) 2009-03-17 2013-04-02 인터디지탈 패튼 홀딩스, 인크 사운딩 레퍼런스 신호(srs) 전송의 전력 제어를 위한 방법 및 장치
US20110249639A1 (en) * 2010-04-08 2011-10-13 Yu-Chih Jen Method of Handling Sounding Reference Signal and Physical Uplink Control Channel and Related Communication Device
WO2013051206A1 (ja) * 2011-10-03 2013-04-11 パナソニック株式会社 端末、基地局および通信方法
CN103096449B (zh) 2011-11-04 2018-06-19 中兴通讯股份有限公司 一种探测参考信号的功率控制方法、系统及装置
CN103036663B (zh) 2012-12-06 2015-09-09 北京北方烽火科技有限公司 一种lte系统中分配srs资源的方法、装置和基站
US10425142B2 (en) * 2015-11-23 2019-09-24 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system, and apparatus therefor
CN108882382B (zh) * 2017-05-12 2020-04-21 华为技术有限公司 传输方法、终端和网络设备
US11115892B2 (en) * 2018-02-15 2021-09-07 Ofinno, Llc Beam failure information for radio configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2579490A2 (en) * 2010-06-04 2013-04-10 LG Electronics Inc. Method of terminal transmitting sounding reference signal on the basis of aperiodic sounding reference signal triggering and method for controlling uplink transmission power to transmit aperiodic sounding reference signal
CN102427608A (zh) * 2011-12-06 2012-04-25 电信科学技术研究院 一种发送srs和指示srs发送的方法及设备
CN104604170A (zh) * 2012-09-07 2015-05-06 株式会社Ntt都科摩 无线基站、无线通信系统以及无线通信方法
CN104737489A (zh) * 2012-10-24 2015-06-24 高通股份有限公司 用于lte-a中的mimo操作的增强型srs传输
CN105007126A (zh) * 2014-04-23 2015-10-28 电信科学技术研究院 一种信道状态信息测量的方法、系统及设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088686A1 (zh) * 2018-11-02 2020-05-07 中兴通讯股份有限公司 测量参考信号传输方法、装置、通信节点设备及存储介质
US12095695B2 (en) 2018-11-02 2024-09-17 Zte Corporation Sounding reference signal transmission method and apparatus, communication node device and storage medium
CN111200475A (zh) * 2018-11-16 2020-05-26 华为技术有限公司 一种探测参考信号srs的干扰协调方法和装置
CN111200475B (zh) * 2018-11-16 2021-09-21 华为技术有限公司 一种探测参考信号srs的干扰协调方法和装置
WO2021134698A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 一种探测参考信号srs周期的配置方法及装置

Also Published As

Publication number Publication date
EP3503659A1 (en) 2019-06-26
US20200036492A1 (en) 2020-01-30
EP3503659B1 (en) 2020-11-18
EP3503659A4 (en) 2019-08-07
CN109417813B (zh) 2020-10-09
US10771216B2 (en) 2020-09-08
CN109417813A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2018053755A1 (zh) 一种探测参考信号发送方法及用户设备
CN110291762B (zh) 减少无线通信系统中的干扰的系统和方法
US11115165B2 (en) Method and apparatus for multiple transmit/receive point (TRP) operations
US11540309B2 (en) Data transmission method and apparatus
KR102209559B1 (ko) 상향링크 측정 기준 신호 전력 제어 방법, 네트워크 장치, 및 단말 장치
WO2019192405A1 (zh) 上行信号的发送、接收方法及装置、存储介质、电子设备
US11088796B2 (en) Method and device for indicating uplink reference signal information, and storage medium
WO2015016986A1 (en) Controlling interference
WO2016131186A1 (zh) 一种上行参考信号的通信装置及方法
WO2019095266A1 (en) Method and apparatus for uplink scheduling
JP2020518188A (ja) 端末、ネットワーク装置、および方法
EP3744016A1 (en) Beam selection priority
EP3796585A1 (en) Time-frequency resource allocation method and device
CN108923834B (zh) 波束成型方法及其网络设备
WO2019029586A1 (zh) 通信方法和通信设备
EP3906631B1 (en) Efficient signaling of rate matching patterns
EP3579603B1 (en) Scheduling method, base station and terminal
CN113271656B (zh) 定位参考信号的功率控制
TWI710269B (zh) 信號的傳輸方法及裝置
CN109644348B (zh) 一种随机接入方法、装置及系统
CN111771338B (zh) 用于物理上行链路共享信道跳频分配的方法和装置
US20220346152A1 (en) Optimization for early data transmission (edt)
JP2020503727A (ja) 上り制御信号伝送方法および上り制御信号伝送装置
WO2020143702A1 (zh) 参考信号的接收、发送方法及装置
US10278145B2 (en) Communication of uplink control information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016916494

Country of ref document: EP

Effective date: 20190322