WO2021258369A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021258369A1
WO2021258369A1 PCT/CN2020/098249 CN2020098249W WO2021258369A1 WO 2021258369 A1 WO2021258369 A1 WO 2021258369A1 CN 2020098249 W CN2020098249 W CN 2020098249W WO 2021258369 A1 WO2021258369 A1 WO 2021258369A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
terminal device
time
parameter value
time domain
Prior art date
Application number
PCT/CN2020/098249
Other languages
English (en)
French (fr)
Inventor
李海涛
胡奕
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/098249 priority Critical patent/WO2021258369A1/zh
Priority to CN202080102255.2A priority patent/CN115918180A/zh
Priority to CN202310354372.3A priority patent/CN116456445A/zh
Priority to EP20941592.6A priority patent/EP4156805A4/en
Publication of WO2021258369A1 publication Critical patent/WO2021258369A1/zh
Priority to US18/076,664 priority patent/US20230095158A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to wireless communication methods, terminal devices, and network devices.
  • An important feature of uplink transmission is orthogonal multiple access in time and frequency for different terminal devices, that is, the uplink transmissions of different terminal devices from the same cell do not interfere with each other.
  • network equipment requires signals from different terminal equipments at the same time but with different frequency domain resources to arrive at the network equipment at substantially the same time.
  • the New Radio (NR) and Non-Terrestrial Network (NTN) systems support the Timing Advance (TA) mechanism.
  • TA Timing Advance
  • terminal equipment with positioning capabilities can calculate TA through location information and ephemeris information to achieve the purpose of uplink synchronization.
  • the network device In addition to maintaining uplink synchronization, the network device also needs to obtain the TA value calculated by the terminal device to determine how to schedule uplink transmission. However, when the terminal device frequently reports the TA value to the network device, excessive network overhead will be caused.
  • the embodiments of the present application provide a wireless communication method, terminal device, and network device, so as to reduce network overhead.
  • a wireless communication method which includes: when the terminal device satisfies a preset condition, the terminal device sends a first TA value of the terminal device to the network device.
  • a wireless communication method including: a network device receives a first TA value of a terminal device; wherein the first TA value is sent when the terminal device satisfies a preset condition.
  • a terminal device which is used to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a network device is provided, which is used to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each of its implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the second aspect or its implementation manners.
  • a device for implementing the method in any one of the foregoing first aspect to the second aspect or each of its implementation manners.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above-mentioned first aspect to the second aspect or each of its implementation manners .
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, and the computer program instructions cause a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each of its implementation manners.
  • the terminal device when the terminal device meets the preset condition, the terminal device sends the first TA value of the terminal device to the network device. In other words, the terminal device does not report the TA value to the network device under any circumstances, but only reports the TA value when a preset condition is met, thereby reducing network overhead.
  • FIG. 1A is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 1B is a schematic structural diagram of another communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of time synchronization on the network device side according to an embodiment of the application
  • FIG. 3 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of reporting TA values according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of reporting TA values according to another embodiment of this application.
  • FIG. 6 shows a schematic block diagram of a terminal device 600 according to an embodiment of the present application.
  • FIG. 7 shows a schematic block diagram of a network device 700 according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device 400 provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum, NR-U) system, non-terrestrial communication network (Non-Terrestrial Networks, NTN) system, Universal Mobile Telecommunication System (UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), the fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • the embodiments of the present application can be applied to unlicensed spectrum and can also be applied to licensed spectrum.
  • unlicensed spectrum can also be considered as shared spectrum
  • licensed spectrum can also be considered as unshared spectrum.
  • the embodiments of the present application can be applied to a non-terrestrial network (Non-Terrestrial Networks, NTN) system, and can also be applied to a terrestrial network (Terrestrial Networks, TN) system.
  • NTN non-terrestrial Networks
  • TN terrestrial network
  • the embodiments of this application describe various embodiments in conjunction with network equipment and terminal equipment.
  • the terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote station. Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in the NR network or Terminal equipment in the public land mobile network (PLMN) network that will evolve in the future.
  • STAION, ST station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • land including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • First class can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (AR) ) Terminal equipment, wireless terminals in industrial control, vehicle-mounted terminal equipment, wireless terminals in self-driving (self-driving), wireless terminal equipment in remote medical, and smart grid (smart grid) Wireless terminal equipment, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, wearable terminal equipment, etc.
  • a virtual reality virtual reality
  • AR augmented reality
  • the terminal equipment involved in the embodiments of the present application may also be referred to as a terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station , Remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device used to communicate with mobile devices.
  • the network equipment can be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, or a base station in LTE Evolutional Node B (eNB or eNodeB), or relay station or access point, or vehicle-mounted equipment, wearable equipment, and network equipment (gNB) in the NR network or network equipment in the future evolved PLMN network, etc.
  • Access Point Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • eNB LTE Evolutional Node B
  • gNB network equipment
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network equipment can be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, or a high elliptical orbit (High Elliptical Orbit, HEO). ) Satellite etc.
  • the network device may also be a base station installed in a location such as land or water.
  • the network equipment may provide services for the cell, and the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network equipment ( For example, the cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, and Pico cell ( Pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • FIG. 1A is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • a terminal device 1101 and a satellite 1102 which includes a terminal device 1101 and a satellite 1102, and wireless communication can be performed between the terminal device 1101 and the satellite 1102.
  • the network formed between the terminal device 1101 and the satellite 1102 can also be referred to as NTN.
  • the satellite 1102 may have the function of a base station, and the terminal device 1101 and the satellite 1102 may communicate directly. Under the system architecture, the satellite 1102 can be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which is not limited in the embodiment of the present application.
  • FIG. 1B is a schematic structural diagram of another communication system provided by an embodiment of this application.
  • the terminal device 1201 and the satellite 1202 can communicate wirelessly, and the satellite 1202 and the base station 1203 can communicate.
  • the network formed between the terminal device 1201, the satellite 1202, and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of a base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed by the satellite 1202. Under this type of system architecture, the base station 1203 can be referred to as a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which is not limited in the embodiment of the present application.
  • FIGS. 1A-1B are only examples of the systems applicable to this application.
  • the methods shown in the embodiments of this application can also be applied to other systems, such as 5G communication systems, LTE communication systems, etc.
  • the embodiments of this application do not specifically limit this.
  • the wireless communication system shown in Figures 1A-1B may also include other network entities such as mobility management entities (MME), access and mobility management functions (Access and Mobility Management Function, AMF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, an indirect indication, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B relation.
  • correlate can mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association relationship between the two, or indicating and being instructed, configuring and being Configuration and other relationships.
  • the indication information in the embodiment of this application includes physical layer signaling such as downlink control information (DCI), radio resource control (Radio Resource Control, RRC) signaling, and media access control control element ( At least one of Media Access Control Control Element, MAC CE).
  • DCI downlink control information
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • the high-layer parameters in the embodiment of the present application include at least one of RRC signaling and MAC CE.
  • uplink transmission is orthogonal multiple access in time and frequency for different terminal devices, that is, the uplink transmissions of different terminal devices from the same cell do not interfere with each other.
  • network equipment requires signals from different terminal equipments at the same time but with different frequency domain resources to arrive at the network equipment at substantially the same time.
  • NR supports an uplink TA mechanism.
  • FIG. 2 is a schematic diagram of time synchronization on the network device side according to an embodiment of the application.
  • the uplink clock and downlink clock on the network device side are the same, and the uplink clock and downlink clock on the UE side are the same.
  • the clock is also the same.
  • the TA mechanism is not adopted, the time when the uplink data from different UEs arrive at the network device side is not synchronized.
  • the uplink clock and downlink clock on the network device side are the same, but there is an offset between the uplink clock and downlink clock on the UE side, and different UEs have different uplink TA values. , That is, the introduction of the TA mechanism.
  • the network equipment can control the time when the uplink data from different UEs arrive at the network equipment by appropriately controlling the TA value corresponding to each UE, so as to synchronize the time when the uplink data from different UEs arrive at the network equipment side. Specifically, for UEs that are farther from the network equipment, due to a larger transmission delay, it is necessary to send uplink data earlier than the UEs that are closer to the network equipment.
  • the network device determines the TA value of each terminal device based on measuring the uplink transmission of the terminal device.
  • the network device sends TA commands to the terminal device in two ways.
  • Initial TA acquisition In the random access process, the network device determines the TA value by measuring the received preamble, and uses the random access response (Random Access Response, RAR) Timing Advance Command (Timing Advance Command) The field is sent to the terminal device.
  • RAR Random Access Response
  • Timing Advance Command Timing Advance Command
  • the terminal device and the network device have achieved uplink synchronization during the random access process, the timing of the uplink signal reaching the network device may change over time. Therefore, the terminal device needs to be continuously updated Its upstream TA value to maintain upstream synchronization. If the TA value of a terminal device needs to be corrected, the network device will send a Timing Advance Command to the terminal device, requesting it to adjust the TA value. The Timing Advance Command is sent to the terminal device through the Timing Advance Command MAC CE.
  • the timing relationship in the NR system may include one or more of the following situations:
  • Transmission timing DCI scheduled physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) of: when a terminal device is DCI scheduled transmitted PUSCH, the DCI includes information indicating K 2 where, K 2 for determining the transmission of the PUSCH is Time slot. For example, if the scheduled DCI is received on time slot n, the time slot allocated for PUSCH transmission is the time slot Among them, K 2 is determined according to the sub-carrier spacing of the Physical Downlink Shared Channel (Physical Downlink Shared Channel, PDSCH), and ⁇ PUSCH and ⁇ PDCCH are used to determine the PUSCH and Physical Downlink Control Channel (Physical Downlink Control Channel, PDCCH) configurations, respectively. The subcarrier spacing. The value range of K 2 is 0 to 32.
  • Transmission timing of PUSCH scheduled by RAR grant For the time slot scheduled for PUSCH transmission by RAR grant, if a terminal device initiates physical random access channel (Physical Random Access Channel, PRACH) transmission, the terminal device receives The end position of the PDSCH corresponding to the RAR grant message is in time slot n, then the terminal device transmits the PUSCH in time slot n+K 2 + ⁇ , where K 2 and ⁇ are agreed upon by the protocol.
  • PRACH Physical Random Access Channel
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledgement
  • PUCCH Physical Uplink Control Channel
  • K 1 is the number of time slots and is indicated by the PDSCH-to-HARQ-timing-indicator information field in the DCI format, or provided by the dl-DataToUL-ACK parameter.
  • K 1 0 corresponds to the last time slot of PUCCH transmission overlapping with the time slot of PDSCH reception or PDCCH reception indicating SPS PDSCH release.
  • the CSI transmission timing on the PUSCH is the same as the transmission timing of the DCI scheduled PUSCH transmission in general.
  • the CSI reference resource for reporting CSI in the uplink time slot n' is determined according to a single downlink time slot nn CSI_ref, where, ⁇ DL and ⁇ UL are the subcarrier spacing configuration for downlink and uplink respectively.
  • n CSI_ref depends on the type of CSI report.
  • Aperiodic channel sounding reference signal (Sounding Reference Signal, SRS) transmission timing If a terminal device receives DCI in time slot n and triggers the transmission of aperiodic SRS, the terminal device is in the time slot
  • the aperiodic SRS in each triggered SRS resource set is transmitted, where k is configured by the high-level parameter slotOffset in each triggered SRS resource set and is determined according to the subcarrier interval corresponding to the triggered SRS transmission , ⁇ SRS and ⁇ PDCCH are the subcarrier spacing configuration of the triggered SRS transmission and the PDCCH carrying the trigger command, respectively.
  • terminal devices with positioning capabilities can calculate TA through location information and ephemeris information to achieve The purpose of uplink synchronization.
  • the network device also needs to obtain the TA value calculated by the terminal device to determine how to schedule the uplink transmission. For example, when scheduling the PUSCH through DCI, the K 2 indicated by the DCI needs to be greater than the TA value reported by the terminal device. In this way, the availability of uplink scheduling resources can be guaranteed.
  • the terminal device frequently reports the TA value to the network device, it will cause excessive network overhead.
  • this application solves this technical problem by reporting the TA value only when the terminal device meets certain conditions.
  • FIG. 3 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application.
  • the method 300 may be applied to the communication system shown in FIG. 1A or FIG. 1B. Specifically, as shown in FIG. 3, the method 300 may include the following steps:
  • Step S301 When the terminal device meets the preset condition, the terminal device sends the first TA value of the terminal device to the network device.
  • the first TA value is a current TA value determined by the terminal device according to current location information and ephemeris information of the terminal device.
  • the first TA value is an absolute TA value or a relative TA value of the terminal device.
  • the absolute TA value of the terminal device refers to the timing advance of the uplink transmission determined by the terminal device relative to the downlink scheduling.
  • the downlink scheduling is used to schedule the uplink transmission. For example, when the PUSCH is scheduled by DCI, the terminal device is currently The determined PUSCH timing advance relative to the PDCCH carrying DCI.
  • the relative TA value is the TA change amount of the absolute TA value relative to the TA value acquired by the terminal device last time.
  • the TA value acquired last time is the TA value acquired by the terminal device from the network device during the random access process.
  • the network device determines the TA value by measuring the received preamble, and sends it to the terminal device through the Timing Advance Command field of the RAR.
  • the TA value acquired last time is the TA value reported by the terminal device to the network device after the random access procedure by the terminal device. That is, the TA value acquired last time is the TA value determined by the terminal device according to the most recent position information and ephemeris information.
  • the random access procedure is triggered by the first event.
  • the first event is any of the following:
  • the terminal equipment enters the RRC_CONNECTED state from the radio resource control idle RRC_IDLE state. That is, a wireless connection is established when the terminal device is initially connected.
  • the terminal equipment enters the RRC connection re-establishment process.
  • the terminal device When the terminal device is in the RRC_CONNECTED state, the downlink (DL) data arrives, and the uplink (Uplink, UL) data is in an out-of-synchronization state.
  • the downlink (DL) data arrives, and the uplink (Uplink, UL) data is in an out-of-synchronization state.
  • the terminal device When the terminal device is in the RRC_CONNECTED state, the UL data arrives, and the DL data is in an out-of-synchronization state.
  • the terminal device receives the RRC connection reconfiguration message. For example: the terminal device establishes, modifies or releases a radio bearer (Radio Bearer, RB), performs handover, prepares, modifies, or releases measurement, etc.
  • a radio bearer Radio Bearer, RB
  • the terminal device enters the RRC_CONNECTED state from the radio resource control inactive RRC_INACTIVE state.
  • the terminal device establishes time calibration during the process of adding a secondary cell (Secondary cell, SCell).
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the time domain parameter value indicated by the network device to the terminal device is not available, and the time domain parameter value is used to determine the uplink channel of the terminal device or the sending time of the uplink transmission information.
  • the preset condition includes: the TA change amount of the first TA value relative to the TA value last acquired by the terminal device is greater than or equal to a preset threshold. And/or, the time domain parameter value indicated by the network device to the terminal device is not available, and the time domain parameter value is used to determine the uplink channel of the terminal device or the sending time of the uplink transmission information.
  • the time domain parameter value is a parameter value K 2 used to determine the transmission time of the PUSCH when the PUSCH is scheduled through DCI.
  • the time domain parameter value K 2 is unavailable, which means that the transmission time of the PUSCH scheduled through the PDCCH is earlier than the reception time of the PDCCH.
  • the time domain parameter value is the parameter value K 2 used to determine the transmission time of the PUSCH when the PUSCH is scheduled through the RAR grant.
  • the time domain parameter value K 2 is unavailable, which means that the transmission time of the PUSCH scheduled by the RAR grant is earlier than the reception time of the RAR grant.
  • the time domain parameter value is a parameter value K 1 used to determine the sending moment of the HARQ-ACK transmitted on the PUCCH.
  • the time domain parameter value K 1 is unavailable, which means that the HARQ-ACK transmission time is earlier than the reception time of the PDSCH detected by HARQ-ACK, or the transmission time of HARQ-ACK is earlier than the SPS detected by HARQ-ACK The receiving time of the PDCCH released by the PDSCH.
  • the time domain parameter value is a parameter value used to determine the transmission time of the CSI when the channel state information CSI on the PUSCH is scheduled through DCI.
  • the unavailability of the time domain parameter value means that the transmission time of the CSI scheduled through the PDCCH is earlier than the reception time of the PDCCH.
  • the time domain parameter value is a parameter value n CSI_ref used to determine the transmission moment of the CSI reference resource.
  • the time domain parameter value n CSI_ref is unavailable, which means that the transmission time of the CSI reference resource is earlier than the single downlink time slot used to determine the CSI reference resource.
  • the time domain parameter value is the parameter value k used to determine the transmission moment of the aperiodic SRS when the aperiodic SRS is scheduled through DCI.
  • the unavailability of the time domain parameter value k means that the transmission time of the SRS scheduled by the DCI is earlier than the reception time of the DCI.
  • the above-mentioned time domain parameter value may be an absolute time domain parameter value or a relative time domain parameter value.
  • the above-mentioned time domain parameter values are all absolute time domain parameter values.
  • the above-mentioned time domain parameter value needs to be greater than the TA value of the terminal device, where the TA value is an absolute TA value.
  • the propagation delay of signal communication is very large, and the propagation delay can range from tens of milliseconds to hundreds of milliseconds, which is specifically related to the satellite orbit height and the service type of satellite communication.
  • the TA value of the terminal equipment is much larger than that of the terminal equipment in the NR system. Therefore, the above-mentioned time domain parameter value will also be much larger, and the time domain parameter value is sent by the network device
  • the time domain parameter value is too large, it will inevitably lead to too many coded bits, thereby causing additional signaling overhead. Therefore, in some solutions, an offset is introduced, and both the terminal device and the network device know the offset, and the time domain parameter value indicated by the network device at this time is the relative time domain parameter value relative to the offset.
  • K2 and K indicated by the network device through the PDCCH are relative time domain parameter values, so that additional signaling overhead can be reduced.
  • the preset threshold value in the foregoing preset condition is carried in configuration information configured by the network device for the terminal device.
  • the preset threshold value corresponding to the first TA value when the first TA value is an absolute TA value and the preset threshold value corresponding to the first TA value when the first TA value is a relative TA value may be the same Or different.
  • the preset threshold value corresponding to the first TA value refers to that the TA change amount of the first TA value with respect to the TA value acquired by the terminal device last time is greater than the preset threshold value in the preset threshold value.
  • the above configuration information also carries resource configuration information used to report the first TA value. Based on this, the terminal device can report the first TA value on the corresponding resource according to the resource configuration information. Specifically, it can include the following two optional methods:
  • Option 1 The first TA value is carried in the MAC CE on the first PUSCH.
  • the terminal device is configured with at least one UL carrier bandwidth part (Carrier Band with Part, BWP), and for at least one UL BWP of the at least one UL BWP, a first PUSCH is configured.
  • BWP Carrier Band with Part
  • the first PUSCH is any one of the following: dynamically scheduled PUSCH, pre-configured grant-physical uplink shared channel (Configured Grant-Physical Uplink Shared Channel, CG-PUSCH), SPS PUSCH.
  • Option 2 The first TA value is carried on the first PUCCH.
  • the terminal device is configured with at least one UL BWP, and for at least one UL BWP among the at least one UL BWP, PUCCH resources are configured.
  • the configured PUCCH resource includes the first PUCCH.
  • the first PUCCH is a periodic PUCCH or an aperiodic PUCCH.
  • the above-mentioned first TA value may also be carried in other uplink channels other than PUCCH and PUSCH, such as other uplink shared channels (Uplink Shared Channel, UL-SCH), which is not limited in this application.
  • the configuration information configured by the network device for the terminal device includes resource information of other uplink channels.
  • this application provides a wireless communication method, including: when the terminal device meets a preset condition, the terminal device sends the first TA value of the terminal device to the network device.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value acquired last time by the terminal device is greater than the preset threshold.
  • the time domain parameter value indicated by the network device to the terminal device is not available. That is, the terminal device does not report the TA value to the network device under any circumstances, but only reports the TA value when the preset condition is met, thereby reducing network overhead.
  • this application also provides a method for determining the offset, which is specifically described by the following embodiments:
  • the terminal device determines the offset corresponding to the time domain parameter value according to the TA value acquired last time and the preset threshold value.
  • the time domain parameter value is the relative time domain parameter value
  • the sum of the offset and the relative time domain parameter value is the absolute time domain parameter value corresponding to the time domain parameter value.
  • time domain parameter value finally used by the terminal device is an absolute time domain parameter value.
  • the terminal device may also determine the TA value acquired last time, the preset threshold value, and a fixed parameter value such as the sum of a as the offset corresponding to the time domain parameter value.
  • the network device it can also determine the offset corresponding to the time domain parameter value through the above method. Therefore, the method for the network device to determine the offset corresponding to the time domain parameter value can refer to the terminal device to determine the offset corresponding to the time domain parameter value. The method of this application will not be repeated in this application.
  • the terminal device or the network device can determine the offset corresponding to the time domain parameter value according to the TA value acquired last time and the preset threshold value, so that the offset is close to the first TA value (that is, the current TA value). Value), and the time domain parameter value needs to be greater than the first TA value of the terminal device.
  • the time domain parameter value indicated by the network device is the relative time domain parameter value relative to the offset. Close to the first TA value, the smaller the relative time domain parameter value is, the less coding bits are required, which can reduce the network signaling overhead.
  • the preset condition includes: the TA change amount of the first TA value relative to the TA value last acquired by the terminal device is greater than the preset threshold. And/or, the time domain parameter value indicated by the network device to the terminal device is not available, and the time domain parameter value is used to determine the uplink channel of the terminal device or the sending time of the uplink transmission information.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than or equal to the preset threshold. And/or, the time domain parameter value indicated by the network device to the terminal device is not available, and the time domain parameter value is used to determine the uplink channel of the terminal device or the sending time of the uplink transmission information.
  • FIG. 4 is a schematic diagram of reporting the TA value provided by an embodiment of this application.
  • the terminal device obtains the TA value indicated by the network device during the random access process, which is recorded as TA0 ;
  • the terminal device calculates the TA value through the position information and ephemeris information, etc., denoted as TA1, and calculates the difference between TA1 and TA0 to obtain the current TA change, because the TA change is equal to the preset gate Therefore, the terminal equipment triggers TA reporting at time T1; at time T2, the terminal equipment calculates the TA value through the position information and ephemeris information, etc., which is recorded as TA2, and calculates the difference between TA2 and TA0 to obtain the current TA change amount.
  • the terminal device Since the TA change amount is equal to the preset threshold value, the terminal device triggers TA reporting at time T2; at time T3, the terminal device calculates the TA value based on position information and ephemeris information, which is recorded as TA3, and Calculate the difference between TA3 and TA0 to obtain the current TA change. Since the TA change is equal to the preset threshold, the terminal device triggers TA to report at time T3.
  • FIG. 5 is a schematic diagram of reporting TA values according to another embodiment of this application.
  • the network device schedules PUSCH through DCI in the PDCCH
  • the network device is on the DL
  • the terminal device triggers TA value reporting at this time.
  • FIG. 6 shows a schematic block diagram of a terminal device 600 according to an embodiment of the present application. As shown in FIG. 6, the terminal device 600 includes:
  • the communication unit 610 is configured to send the first TA value of the terminal device to the network device when the terminal device meets a preset condition.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the time domain parameter value indicated by the network device to the terminal device is not available, and the time domain parameter value is used to determine the uplink channel of the terminal device or the sending time of the uplink transmission information.
  • the time domain parameter value is a parameter value K 2 used to determine the transmission time of the PUSCH when the PUSCH is scheduled through DCI.
  • the time domain parameter value is the parameter value K 2 used to determine the transmission time of the PUSCH when the PUSCH is scheduled through the RAR grant.
  • the time domain parameter value is a parameter value K 1 used to determine the transmission moment of the HARQ-ACK transmitted on the PUCCH.
  • the time domain parameter value is a parameter value used to determine the transmission time of the CSI when the channel state information CSI on the PUSCH is scheduled through the DCI.
  • the time domain parameter value is a parameter value n CSI_ref used to determine the transmission time of the CSI reference resource.
  • the time domain parameter value is a parameter value k used to determine the transmission time of the aperiodic SRS when the aperiodic SRS is scheduled through DCI.
  • the terminal device 600 further includes: a processing unit 620, configured to determine the offset corresponding to the time domain parameter value according to the TA value acquired last time and the preset threshold value.
  • the time domain parameter value is the relative time domain parameter value
  • the sum of the offset and the relative time domain parameter value is the absolute time domain parameter value corresponding to the time domain parameter value.
  • the processing unit 620 is specifically configured to determine that the sum of the TA value acquired last time and the preset threshold value is the offset corresponding to the time domain parameter value.
  • the preset condition includes: the TA change amount of the first TA value relative to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the transmission time of the PUSCH scheduled through the PDCCH is earlier than the reception time of the PDCCH.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the sending time of the PUSCH scheduled through the RAR grant is earlier than the receiving time of the RAR grant.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the transmission time of HARQ-ACK is earlier than the reception time of PDSCH detected by HARQ-ACK, or the transmission time of HARQ-ACK is earlier than the reception time of PDCCH released by SPS PDSCH detected by HARQ-ACK.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the transmission time of the CSI scheduled through the PDCCH is earlier than the reception time of the PDCCH.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the transmission time of the CSI reference resource is earlier than the single downlink time slot used to determine the CSI reference resource.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the transmission time of the SRS scheduled by the DCI is earlier than the reception time of the DCI.
  • the most recently acquired TA value is the TA value acquired by the terminal device from the network device during the random access process, or the most recently acquired TA value is reported by the terminal device after the random access process.
  • TA value for network equipment is the TA value acquired by the terminal device from the network device during the random access process.
  • the random access procedure is triggered by the first event.
  • the first event is any of the following:
  • the terminal equipment enters the RRC_CONNECTED state from the RRC_IDLE state.
  • the terminal equipment enters the RRC connection re-establishment process.
  • the terminal equipment When the terminal equipment is in the RRC_CONNECTED state, the DL data arrives, and the UL data is in an out-of-synchronization state.
  • the terminal device When the terminal device is in the RRC_CONNECTED state, the UL data arrives, and the DL data is in an out-of-synchronization state.
  • the terminal device receives the RRC connection reconfiguration message.
  • the terminal device enters the RRC_CONNECTED state from the RRC_INACTIVE state.
  • the terminal device establishes time calibration during the SCell adding process.
  • the preset threshold value is carried in the configuration information.
  • the configuration information also carries resource configuration information used to upload the first TA value.
  • the first TA value is carried in the MAC CE on the first PUSCH.
  • the first PUSCH is any one of the following: dynamically scheduled PUSCH, CG-PUSCH, SPS PUSCH.
  • the terminal device is configured with at least one UL BWP, and for at least one UL BWP among the at least one UL BWP, one first PUSCH is configured.
  • the first TA value is carried on the first PUCCH.
  • the first PUCCH is a periodic PUCCH or an aperiodic PUCCH.
  • the terminal device is configured with at least one UL BWP, and for at least one UL BWP among the at least one UL BWP, PUCCH resources are configured.
  • the configured PUCCH resource includes the first PUCCH.
  • the first TA value is an absolute TA value or a relative TA value of the terminal device.
  • the relative TA value is the TA change amount of the absolute TA value with respect to the TA value acquired last time by the terminal device.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 600 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 600 are to implement the method shown in FIG. 3 respectively.
  • the corresponding process of the terminal equipment in 300 will not be repeated here.
  • Fig. 7 shows a schematic block diagram of a network device 700 according to an embodiment of the present application.
  • the network device 700 includes: a communication unit 710, configured to receive the first TA value of the terminal device. Wherein, the first TA value is sent when the terminal device meets a preset condition.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the time domain parameter value indicated by the network device to the terminal device is not available, and the time domain parameter value is used to determine the uplink channel of the terminal device or the sending time of the uplink transmission information.
  • the time domain parameter value is a parameter value K 2 used to determine the transmission time of the PUSCH when the PUSCH is scheduled through DCI.
  • the time domain parameter value is the parameter value K 2 used to determine the transmission time of the PUSCH when the PUSCH is scheduled through the RAR grant.
  • the time domain parameter value is a parameter value K 1 used to determine the transmission moment of the HARQ-ACK transmitted on the PUCCH.
  • the time domain parameter value is a parameter value used to determine the transmission time of the CSI when the channel state information CSI on the PUSCH is scheduled through the DCI.
  • the time domain parameter value is a parameter value n CSI_ref used to determine the transmission time of the CSI reference resource.
  • the time domain parameter value is a parameter value k used to determine the transmission time of the aperiodic SRS when the aperiodic SRS is scheduled through DCI.
  • the network device 700 further includes: a processing unit 720, configured to determine the offset corresponding to the time domain parameter value according to the TA value acquired last time and the preset threshold value.
  • the time domain parameter value is the relative time domain parameter value
  • the sum of the offset and the relative time domain parameter value is the absolute time domain parameter value corresponding to the time domain parameter value.
  • the processing unit 720 is specifically configured to determine that the sum of the TA value acquired last time and the preset threshold value is the offset corresponding to the time domain parameter value.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the transmission time of the PUSCH scheduled through the PDCCH is earlier than the reception time of the PDCCH.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the sending time of the PUSCH scheduled through the RAR grant is earlier than the receiving time of the RAR grant.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the transmission time of HARQ-ACK is earlier than the reception time of PDSCH detected by HARQ-ACK, or the transmission time of HARQ-ACK is earlier than the reception time of PDCCH released by SPS PDSCH detected by HARQ-ACK.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the transmission time of the CSI scheduled through the PDCCH is earlier than the reception time of the PDCCH.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the transmission time of the CSI reference resource is earlier than the single downlink time slot used to determine the CSI reference resource.
  • the preset condition includes: the TA change amount of the first TA value with respect to the TA value last acquired by the terminal device is greater than a preset threshold. And/or, the transmission time of the SRS scheduled by the DCI is earlier than the reception time of the DCI.
  • the most recently acquired TA value is the TA value acquired by the terminal device from the network device during the random access process, or the most recently acquired TA value is reported by the terminal device after the random access process.
  • TA value for network equipment is the TA value acquired by the terminal device from the network device during the random access process.
  • the random access procedure is triggered by the first event.
  • the first event is any of the following:
  • the terminal equipment enters the RRC_CONNECTED state from the RRC_IDLE state.
  • the terminal equipment enters the RRC connection re-establishment process.
  • the terminal device When the terminal device is in the RRC_CONNECTED state, the downlink DL data arrives, and the uplink UL data is in an out-of-synchronization state.
  • the terminal device When the terminal device is in the RRC_CONNECTED state, the UL data arrives, and the DL data is in an out-of-synchronization state.
  • the terminal device receives the RRC connection reconfiguration message.
  • the terminal device enters the RRC_CONNECTED state from the RRC_INACTIVE state.
  • the terminal device establishes time calibration during the SCell adding process.
  • the preset threshold value is carried in the configuration information.
  • the configuration information also carries resource configuration information used to upload the first TA value.
  • the first TA value is carried in the MAC CE on the first PUSCH.
  • the first PUSCH is any one of the following: dynamically scheduled PUSCH, CG-PUSCH, SPS PUSCH.
  • the terminal device is configured with at least one UL BWP, and for at least one UL BWP among the at least one UL BWP, one first PUSCH is configured.
  • the first TA value is carried on the first PUCCH.
  • the first PUCCH is a periodic PUCCH or an aperiodic PUCCH.
  • the terminal device is configured with at least one UL BWP, and for at least one UL BWP among the at least one UL BWP, PUCCH resources are configured.
  • the configured PUCCH resource includes the first PUCCH.
  • the first TA value is an absolute TA value or a relative TA value of the terminal device.
  • the relative TA value is the TA change amount of the absolute TA value with respect to the TA value acquired last time by the terminal device.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the network device 700 may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the various units in the network device 700 are to implement the method shown in FIG. 3, respectively.
  • the corresponding process of the network equipment in 300 will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 shown in FIG. 8 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 800 may specifically be a network device of an embodiment of the application, and the communication device 800 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, it will not be repeated here. .
  • the communication device 800 may specifically be a terminal device of an embodiment of the application, and the communication device 800 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the application. For brevity, details are not repeated here. .
  • Fig. 9 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the device 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the device 900 may further include an input interface 930.
  • the processor 910 can control the input interface 930 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 900 may further include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 10 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application. As shown in FIG. 10, the communication system 1000 includes a terminal device 1010 and a network device 1020.
  • the terminal device 1010 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1020 can be used to implement the corresponding function implemented by the network device or the base station in the above method. Repeat it again.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or base station in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device or the base station in each method of the embodiment of the present application, in order to It's concise, so I won't repeat it here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or the base station in the embodiment of the application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device or the base station in each method of the embodiment of the application, for the sake of brevity , I won’t repeat it here.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device or base station in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding implementation of the network device or the base station in each method of the embodiment of the present application.
  • the process will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备和网络设备,包括:终端设备满足预设条件时,终端设备向网络设备发送终端设备的第一TA值。即终端设备不是在任何情况下都要向网络设备上报TA值,而是在满足预设条件的情况下才上报TA值,从而降低网络开销。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备和网络设备。
背景技术
上行传输的一个重要特征是不同终端设备在时频上正交多址接入,即来自同一小区的不同终端设备的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内干扰,网络设备要求来自同一时刻但不同频域资源的不同终端设备的信号到达网络设备的时间基本上是对齐的。为了保证网络设备侧的时间同步,新空口(New Radio,NR)和非地面通信网络(Non-Terrestrial Network,NTN)系统支持定时提前(Timing Advance,TA)的机制。
在NTN系统中,为了避免网络设备频繁下发TA调整指令,具有定位能力的终端设备可以通过位置信息和星历信息等计算TA,以达到上行同步的目的。除了保持上行同步之外,网络设备也需要获取终端设备计算的TA值,以决定如何调度上行传输,然而,当终端设备频繁向网络设备上报TA值时,将会造成过大的网络开销。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,从而可以降低网络开销。
第一方面,提供了一种无线通信方法,包括:在终端设备满足预设条件时,终端设备向网络设备发送终端设备的第一TA值。
第二方面,提供了一种无线通信方法,包括:网络设备接收终端设备的第一TA值;其中,第一TA值是在终端设备满足预设条件时发送的。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,计算机程序指令使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
通过上述技术方案,即在终端设备满足预设条件时,终端设备向网络设备发送终端设备的第一TA值。也就是说,终端设备不是在任何情况下都要向网络设备上报TA值,而是在满足预设条件的情况下才上报TA值,从而降低网络开销。
附图说明
图1A为本申请实施例提供的一种通信系统的架构示意图;
图1B为本申请实施例提供的另一种通信系统的架构示意图;
图2为本申请一实施例提供的网络设备侧的时间同步示意图;
图3是根据本申请实施例的无线通信方法300的示意性流程图;
图4为本申请一实施例提供的上报TA值的示意图;
图5为本申请另一实施例提供的上报TA值的示意图;
图6示出了根据本申请实施例的终端设备600的示意性框图;
图7示出了根据本申请实施例的网络设备700的示意性框图;
图8是本申请实施例提供的一种通信设备400示意性结构图;
图9是本申请实施例的装置的示意性结构图;
图10是本申请实施例提供的一种通信系统1000的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信,或车联网V2X通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例可应用于非授权频谱,也可以应用于授权频谱。其中,非授权频谱也可以认为是共享频谱,授权频谱也可以认为是非共享频谱。
可选地,本申请实施例可应用于非地面通信网络(Non-Terrestrial Networks,NTN)系统,也可应用于地面通信网络(Terrestrial Networks,TN)系统。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,简称VR)终端设备、增强现实(augmented reality,简称AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、可穿戴终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实 现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备。网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
网络设备可以具有移动特性,例如,网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
下面结合图1A-图1B,对本申请中的通信系统的架构进行说明。
图1A为本申请实施例提供的一种通信系统的架构示意图。请参见图1A,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图1A所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。可选地,通信系统中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图1B为本申请实施例提供的另一种通信系统的架构示意图。请参见图1B,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图1B所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。可选地,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1A-图1B只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统,例如,5G通信系统、LTE通信系统等,本申请实施例对此不作具体限定。
可选地,图1A-图1B所示的无线通信系统还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常可互换使用。本文中术语“和/或”用来描述关联对象的关联关系,例如表示前后关联对象可存在三种关系,举例说明,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况。本文中字符“/”一般表示前后关联对象是“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
可选地,在本申请实施例中的指示信息包括物理层信令例如下行控制信息(Downlink Control Information,DCI)、无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制控制元素(Media Access Control Control Element,MAC CE)中的至少一种。
可选地,在本申请实施例中的高层参数包括RRC信令和MAC CE中的至少一种。
为了清楚地阐述本申请实施例的思想,首先对本申请实施例的相关技术内容进行简要描述。本申请实施例包括以下内容中的至少部分内容。
NR系统中的TA机制:
上行传输的一个重要特征是不同终端设备在时频上正交多址接入,即来自同一小区的不同终端设备的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内干扰,网络设备要求来自同一时刻但不同频域资源的不同终端设备的信号到达网络设备的时间基本上是对齐的。为了保证网络设备侧的时间同步,NR支持上行TA机制。
图2为本申请一实施例提供的网络设备侧的时间同步示意图,如图2中的左侧附图所示,网络设备侧的上行时钟和下行时钟是相同的,UE侧的上行时钟和下行时钟也是相同的,在没有采用TA机制时,来自不同UE的上行数据到达网络设备侧的时间不同步。如图2中的右侧附图所示,网络设备侧的上行时钟和下行时钟是相同的,而UE侧的上行时钟和下行时钟之间有偏移,并且不同UE有各自不同的上行TA值,即引入了TA机制。网络设备通过适当地控制每个UE对应的TA值,可以控制来自不同UE的上行数据到达网络设备的时间,以使来自不同UE的上行数据到达网络设备侧的时间同步。具体地,对于距离网络设备较远的UE,由于有较大的传输时延,就要比距离网络设备较近的UE提前发送上行数据。
其中,网络设备基于测量终端设备的上行传输来确定每个终端设备的TA值。网络设备通过两种方式给终端设备发送TA命令。
初始TA的获取:在随机接入过程,网络设备通过测量接收到的前导码(preamble)来确定TA值,并通过随机接入响应(Random Access Response,RAR)的定时提前命令(Timing Advance Command)字段发送给终端设备。
RRC连接态下TA的调整:虽然在随机接入过程中,终端设备与网络设备取得了上行同步,但上行信号到达网络设备的定时可能会随着时间发生变化,因此,终端设备需要不断地更新其上行TA值,以保持上行同步。如果某个终端设备的TA值需要校正,则网络设备会发送一个定时提前命令(Timing Advance Command)给该终端设备,要求其调整TA值。该Timing Advance Command是通过Timing Advance Command MAC CE发送给终端设备的。
基于上述TA机制,NR系统中的时序关系可以包括以下情形中的一种或多种:
DCI调度的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输时序:当终端设备被DCI调度发送PUSCH时,该DCI中包括K 2的指示信息,其中,K 2用于确定传输该PUSCH的时隙。例如,如果在时隙n上收到该调度DCI,则被分配用于PUSCH传输的时隙为时隙
Figure PCTCN2020098249-appb-000001
其中,K 2是根据物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的子载波间隔确定的,μ PUSCH和μ PDCCH分别用于确定为PUSCH和物理下行控制信道(Physical Downlink Control Channel,PDCCH)配置的子载波间隔。K 2的取值范围是0到32。
RAR授权(grant)调度的PUSCH的传输时序:对于被RAR grant调度进行PUSCH传输的时隙,如果终端设备发起物理随机接入信道(Physical Random Access Channel,PRACH)传输后,该终端设备收到包括该对应RAR grant消息的PDSCH的结束位置在时隙n,那么终端设备在时隙n+K 2+Δ上传输该PUSCH,其中,K 2和Δ是协议约定的。
物理上行控制信道(Physical Uplink Control Channel,PUCCH)上传输混合自动重传请求-应答(Hybrid Automatic Repeat Request-Acknowledgement,HARQ-ACK)的传输时序:对于PUCCH传输的时隙,如果一个PDSCH接收的结束位置在时隙n或一个指示半持续性调度(Semi-Persistent Scheduling,SPS)PDSCH释放的PDCCH接收的结束位置在时隙n,终端设备应在时隙n+K 1内的PUCCH资源上传输对应的HARQ-ACK信息,其中K 1是时隙个数并且是通过DCI格式中PDSCH-to-HARQ-timing-indicator信息域来指示的,或是通过dl-DataToUL-ACK参数提供的。K 1=0对应PUCCH传输的最后一个时隙与PDSCH接收或指示SPS PDSCH释放的PDCCH接收的时隙重叠。
PUSCH上的信道状态信息(Channel State Information,CSI)传输时序:PUSCH上的CSI传输时序和一般情况下DCI调度PUSCH传输的传输时序相同。
CSI参考资源时序:对于在上行时隙n'上上报CSI的CSI参考资源是根据单个下行时隙n-n CSI_ref确定的,其中,
Figure PCTCN2020098249-appb-000002
μ DL和μ UL分别是下行和上行的子载波间隔配置。n CSI_ref的取值取决于CSI上报的类型。
非周期信道探测参考信号(Sounding Reference Signal,SRS)传输时序:如果终端设备在时隙n上收到DCI触发传输非周期SRS,该终端设备在时隙
Figure PCTCN2020098249-appb-000003
上传输每个被触发的SRS资源集合中的非周期SRS,其中k是通过每个被触发的SRS资源集合中的高层参数slotOffset配置的并且是根据被触发的SRS传输对应的子载波间隔确定的,μ SRS和μ PDCCH分别是被触发的SRS传输和携带触发命令的PDCCH的子载波间隔配置。
上述TA机制被沿用至NTA系统中,如上所述,在NTN系统中,为了避免网络设备频繁下发TA调整指令,具有定位能力的终端设备可以通过位置信息和星历信息等计算TA,以达到上行同步的目的。除了保持上行同步之外,网络设备也需要获取终端设备计算的TA值,以决定如何调度上行传输,例如:在通过DCI调度PUSCH时,DCI所指示的K 2需要大于终端设备上报的TA值,这样才能保证上行调度资源可用。然而,当终端设备频繁向网络设备上报TA值时,将会造成过大的网络开销。
为了解决上述技术问题,本申请通过终端设备满足一定的条件才上报TA值的方式来解决这一技术问题。
以下通过具体实施例详述本申请的技术方案。
图3是根据本申请实施例的无线通信方法300的示意性流程图,该方法300可以应用于如图1A或图1B所示的通信系统。具体地,如图3所示,该方法300可以包括如下步骤:
步骤S301:在终端设备满足预设条件时,终端设备向网络设备发送终端设备的第一TA值。
可选地,该第一TA值是终端设备根据终端设备当前的位置信息和星历信息等确定的当前TA值。
可选地,第一TA值为终端设备的绝对TA值或者相对TA值。
其中,终端设备的绝对TA值指的是终端设备当前所确定的上行传输相对于下行调度的定时提前量,该下行调度用于调度该上行传输,例如:在通过DCI调度PUSCH时,终端设备当前所确定PUSCH相对于携带DCI的PDCCH的定时提前量。
相对TA值是绝对TA值相对于终端设备最近一次获取到的TA值的TA变化量。
可选地,最近一次获取到的TA值是终端设备在随机接入过程中从网络设备获取到的TA值。例如:在随机接入过程,网络设备通过测量接收到的preamble来确定TA值,并通过RAR的Timing Advance Command字段发送给终端设备。
或者,最近一次获取到的TA值是终端设备在随机接入过程之后终端设备上报给网络设备的TA值。即最近一次获取到的TA值是终端设备根据最近一次的位置信息和星历信息等确定的TA值。
可选地,该随机接入过程是通过第一事件触发的。其中,第一事件为以下任一项:
终端设备从无线资源控制空闲RRC_IDLE态进入到无线资源控制连接RRC_CONNECTED态。即终端设备初始接入时建立无线连接。
终端设备进入RRC连接重建过程。
终端设备在RRC_CONNECTED态下,下行链路(Downlink,DL)数据到达,上行链路(Uplink,UL)数据处于失步状态。
终端设备在RRC_CONNECTED态下,UL数据到达,DL数据处于失步状态。
终端设备接收到RRC连接重配置消息。例如:终端设备建立、修改或者释放无线承载(Radio Bearer,RB),进行切换,准备、修改或者释放测量等。
终端设备从无线资源控制非激活RRC_INACTIVE态进入RRC_CONNECTED态。
终端设备在辅小区(Secondary cell,SCell)添加过程中建立时间校准。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,网络设备向终端设备指示的时域参数值不可用,时域参数值用于确定终端设备的上行信道或者上行传输信息的发送时刻。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于或等于预设门限值。和/或,网络设备向终端设备指示的时域参数值不可用,时域参数值用于确定终端设备的上行信道或者上行传输信息的发送时刻。
可选地,时域参数值是通过DCI调度PUSCH时,用于确定PUSCH的发送时刻的参数值K 2
这种情况下,时域参数值K 2不可用表示通过PDCCH调度的PUSCH的发送时刻早于PDCCH的接收时刻。
可选地,时域参数值是通过RAR grant调度PUSCH时,用于确定PUSCH的发送时刻的参数值K 2
这种情况下,时域参数值K 2不可用表示通过RAR grant调度的PUSCH的发送时刻早于RAR grant的接收时刻。
可选地,时域参数值是用于确定PUCCH上传输的HARQ-ACK的发送时刻的参数值K 1
这种情况下,时域参数值K 1不可用表示HARQ-ACK的发送时刻早于HARQ-ACK所检测的PDSCH的接收时刻,或者,HARQ-ACK的发送时刻早于HARQ-ACK所检测的SPS PDSCH释放的PDCCH的接收时刻。
可选地,时域参数值是通过DCI调度PUSCH上的信道状态信息CSI时,用于确定CSI的发送时刻的参数值。
这种情况下,时域参数值不可用表示通过PDCCH调度的CSI的发送时刻早于PDCCH的接收时刻。
可选地,时域参数值是用于确定CSI参考资源的发送时刻的参数值n CSI_ref
这种情况下,时域参数值n CSI_ref不可用表示CSI参考资源的发送时刻早于用于确定CSI参考资源的单个下行时隙。
可选地,时域参数值是通过DCI调度非周期SRS时,用于确定非周期SRS的发送时刻的参数值k。
这种情况下,时域参数值k不可用表示通过DCI调度的SRS的发送时刻早于DCI的接收时刻。
需要说明的是,上述时域参数值可以是绝对时域参数值或者相对时域参数值。例如:在NR系统的TA机制中,上述时域参数值均是绝对时域参数值。而根据TA机制可知,上述时域参数值需要大于终端设备的TA值,其中该TA值是绝对TA值,而在NTN场景中,由于终端设备和卫星(或者说网络设备)之间的通信距离很远,信号通信的传播时延很大,传播时延范围可以从几十毫秒到几百毫秒,具体和卫星轨道高度和卫星通信的业务类型相关。为了处理比较大的传播时延,终端设备的TA值相对于NR系统中终端设备的TA值要大很多,因此上述的时域参数值也会大很多,而时域参数值是由网络设备发送给终端设备的,时域参数值过大,势必导致编码比特过多,从而造成额外的信令开销。因此,在一些方案中,引入一个偏置(offset),终端设备和网络设备都已知该offset,而这时网络设备所指示的时域参数值是相对于该offset的相对时域参数值,例如:网络设备通过PDCCH指示的K2和K是相对时域参数值,从而可以较小额外的信令开销。
可选地,上述预设条件中的预设门限值携带在网络设备为终端设备配置的配置信息中。
需要说明的是,第一TA值是绝对TA值时第一TA值所对应的预设门限值与第一TA值是相对TA值时第一TA值所对应的预设门限值可以相同或者不同。
其中,第一TA值所对应的预设门限值指的是第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值中的该预设门限值。
需要说明的是,本申请对如何确定预设门限值不作限制。
上述配置信息还携带用于上报第一TA值的资源配置信息,基于此,终端设备可以根据该资源配置信息在对应的资源上上报第一TA值。具体可以包括如下两种可选方式:
可选方式一:第一TA值携带在第一PUSCH上的MAC CE中。
其中,终端设备被配置至少一个UL载波带宽部分(Carrier Bandwith Part,BWP),对于至少一个UL BWP中的至少一个UL BWP,配置一个第一PUSCH。
可选地,第一PUSCH是以下任一项:动态调度的PUSCH、预配置授权-物理上行共享信道(Configured Grant-Physical Uplink Shared Channel,CG-PUSCH)、SPS PUSCH。
可选方式二:第一TA值携带在第一PUCCH上。
其中,终端设备被配置至少一个UL BWP,对于至少一个UL BWP中的至少一个UL BWP,配置PUCCH资源。配置的PUCCH资源包括第一PUCCH。
可选地,第一PUCCH是周期PUCCH或者非周期的PUCCH。
需要说明的是,上述第一TA值还可以携带在除PUCCH、PUSCH的其他上行信道中,如其他的上行共享信道(Uplink Shared Channel,UL-SCH)中,本申请对此不作限制。基于此,网络设备为终端设备配置的配置信息中包括其他上行信道的资源信息。
综上,本申请提供一种无线通信方法,包括:终端设备满足预设条件时,终端设备向网络设备发送终端设备的第一TA值。其中,该预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,网络设备向终端设备指示的时域参数值不可用。也就是说,终端设备不是在任何情况下都要向网络设备上报TA值,而是在满足预设条件的情况下才上报TA值, 从而降低网络开销。
如上所述,在一些方案中,引入一个偏置(offset),终端设备和网络设备都已知该offset,而这时网络设备所指示的时域参数值是相对于该offset的相对时域参数值,例如:网络设备通过PDCCH指示的K2和K是相对时域参数值,从而可以较小额外的信令开销。因此,本申请还提供了确定offset的方法,具体通过如下实施例进行说明:
可选地,终端设备根据最近一次获取到的TA值和预设门限值,确定时域参数值对应的偏置。这种情况下,该时域参数值是相对时域参数值,偏置和相对时域参数值之和是时域参数值对应的绝对时域参数值。
需要说明的是,终端设备最终使用的时域参数值是绝对时域参数值。
可选地,终端设备确定最近一次获取到的TA值与预设门限值之和为时域参数值对应的偏置。假设偏置用offset表示,最近一次获取到的TA值用TA表示,预设门限值用TA-delta表示,那么offset=TA+TA-delta。
需要说明的是,终端设备还可以确定最近一次获取到的TA值与预设门限值、以及一个固定参数值如a之和为时域参数值对应的偏置。
对应网络设备而言,其也可以通过上述方法确定时域参数值对应的偏置,因此,网络设备确定时域参数值对应的偏置的方法可参考终端设备确定时域参数值对应的偏置的方法,本申请对此不再赘述。
在本申请中,终端设备或者网络设备可以根据最近一次获取到的TA值与预设门限值确定时域参数值对应的偏置,从而使得该偏置接近于第一TA值(即当前TA值),而时域参数值需要大于终端设备的第一TA值,在一些方案中,网络设备所指示的时域参数值是相对于该offset的相对时域参数值,因此,当偏置越接近于第一TA值,相对时域参数值越小,所需的编码比特过少,从而可以降低网络信令开销。
如上所述,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,网络设备向终端设备指示的时域参数值不可用,时域参数值用于确定终端设备的上行信道或者上行传输信息的发送时刻。或者,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于或等于预设门限值。和/或,网络设备向终端设备指示的时域参数值不可用,时域参数值用于确定终端设备的上行信道或者上行传输信息的发送时刻。下面分别针对当预设条件是第一TA值相对于终端设备最近一次获取到的TA值的TA变化量等于预设门限值和网络设备向终端设备指示的时域参数值不可用两种情况,进行示例性说明:
示例一:图4为本申请一实施例提供的上报TA值的示意图,如图4所示,在T0时刻,终端设备在随机接入过程中,获取到网络设备指示的TA值,记为TA0;在T1时刻,终端设备通过位置信息和星历信息等计算TA值,记为TA1,并计算该TA1和TA0的差值,以得到当前的TA变化量,由于该TA变化量等于预设门限值,因此,终端设备在T1时刻触发TA上报;在T2时刻,终端设备通过位置信息和星历信息等计算TA值,记为TA2,并计算该TA2和TA0的差值,以得到当前的TA变化量,由于该TA变化量等于预设门限值,因此,终端设备在T2时刻触发TA上报;在T3时刻,终端设备通过位置信息和星历信息等计算TA值,记为TA3,并计算该TA3和TA0的差值,以得到当前的TA变化量,由于该TA变化量等于预设门限值,因此,终端设备在T3时刻触发TA上报。
示例二:图5为本申请另一实施例提供的上报TA值的示意图,如图5所示,在网络设备通过PDCCH中的DCI调度PUSCH时,网络设备在DL上,帧n中的子帧0上指示K2=4,即相对时域参数值是4,而假设该K2参数对应的偏置为8,那么K2对应的绝对时域参数值是4+8=12。假设当前TA值=14,由于K2对应的绝对时域参数值12小于当前TA值14,因此K2不可用,这时终端设备触发TA值上报。
上文结合图3至图5,详细描述了本申请的方法实施例,下文结合图6至图10,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图6示出了根据本申请实施例的终端设备600的示意性框图。如图6所示,该终端设备600包括:
通信单元610,用于在终端设备满足预设条件时,向网络设备发送终端设备的第一TA值。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,网络设备向终端设备指示的时域参数值不可用,时域参数值用于确定终端设备的上行信道或者上行传输信息的发送时刻。
可选地,时域参数值是通过DCI调度PUSCH时,用于确定PUSCH的发送时刻的参数值K 2。或者,时域参数值是通过RAR grant调度PUSCH时,用于确定PUSCH的发送时刻的参数值K 2。或 者,时域参数值是用于确定PUCCH上传输的HARQ-ACK的发送时刻的参数值K 1。或者,时域参数值是通过DCI调度PUSCH上的信道状态信息CSI时,用于确定CSI的发送时刻的参数值。或者,时域参数值是用于确定CSI参考资源的发送时刻的参数值n CSI_ref。或者,时域参数值是通过DCI调度非周期SRS时,用于确定非周期SRS的发送时刻的参数值k。
可选地,终端设备600还包括:处理单元620,用于根据最近一次获取到的TA值和预设门限值,确定时域参数值对应的偏置。其中,时域参数值是相对时域参数值,偏置和相对时域参数值之和是时域参数值对应的绝对时域参数值。
可选地,处理单元620具体用于:确定最近一次获取到的TA值与预设门限值之和为时域参数值对应的偏置。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,通过PDCCH调度的PUSCH的发送时刻早于PDCCH的接收时刻。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,通过RAR grant调度的PUSCH的发送时刻早于RAR grant的接收时刻。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,HARQ-ACK的发送时刻早于HARQ-ACK所检测的PDSCH的接收时刻,或者,HARQ-ACK的发送时刻早于HARQ-ACK所检测的SPS PDSCH释放的PDCCH的接收时刻。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,通过PDCCH调度的CSI的发送时刻早于PDCCH的接收时刻。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,CSI参考资源的发送时刻早于用于确定CSI参考资源的单个下行时隙。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,通过DCI调度的SRS的发送时刻早于DCI的接收时刻。
可选地,最近一次获取到的TA值是终端设备在随机接入过程中从网络设备获取到的TA值,或者,最近一次获取到的TA值是终端设备在随机接入过程之后终端设备上报给网络设备的TA值。
可选地,随机接入过程是通过第一事件触发的。其中,第一事件为以下任一项:
终端设备从RRC_IDLE态进入到RRC_CONNECTED态。
终端设备进入RRC连接重建过程。
终端设备在RRC_CONNECTED态下,DL数据到达,UL数据处于失步状态。
终端设备在RRC_CONNECTED态下,UL数据到达,DL数据处于失步状态。
终端设备接收到RRC连接重配置消息。
终端设备从RRC_INACTIVE态进入RRC_CONNECTED态。
终端设备在SCell添加过程中建立时间校准。
可选地,预设门限值携带在配置信息中。
可选地,配置信息还携带用于上传第一TA值的资源配置信息。
可选地,第一TA值携带在第一PUSCH上的MAC CE中。
可选地,第一PUSCH是以下任一项:动态调度的PUSCH、CG-PUSCH、SPS PUSCH。
可选地,终端设备被配置至少一个UL BWP,对于至少一个UL BWP中的至少一个UL BWP,配置一个第一PUSCH。
可选地,第一TA值携带在第一PUCCH上。
可选地,第一PUCCH是周期PUCCH或者非周期的PUCCH。
可选地,终端设备被配置至少一个UL BWP,对于至少一个UL BWP中的至少一个UL BWP,配置PUCCH资源。其中,配置的PUCCH资源包括第一PUCCH。
可选地,第一TA值为终端设备的绝对TA值或者相对TA值。
可选地,相对TA值是绝对TA值相对于终端设备最近一次获取到的TA值的TA变化量。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备600可对应于本申请方法实施例中的终端设备,并且终端设备600中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法300中终端设备的相应流程,为了简洁,在此不再赘述。
图7示出了根据本申请实施例的网络设备700的示意性框图。如图7所示,该网络设备700包括:通信单元710,用于接收终端设备的第一TA值。其中,第一TA值是在终端设备满足预设条件时发送的。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,网络设备向终端设备指示的时域参数值不可用,时域参数值用于确定终端设备的上行信道或者上行传输信息的发送时刻。
可选地,时域参数值是通过DCI调度PUSCH时,用于确定PUSCH的发送时刻的参数值K 2。或者,时域参数值是通过RAR grant调度PUSCH时,用于确定PUSCH的发送时刻的参数值K 2。或者,时域参数值是用于确定PUCCH上传输的HARQ-ACK的发送时刻的参数值K 1。或者,时域参数值是通过DCI调度PUSCH上的信道状态信息CSI时,用于确定CSI的发送时刻的参数值。或者,时域参数值是用于确定CSI参考资源的发送时刻的参数值n CSI_ref。或者,时域参数值是通过DCI调度非周期SRS时,用于确定非周期SRS的发送时刻的参数值k。
可选地,网络设备700还包括:处理单元720,用于根据最近一次获取到的TA值和预设门限值,确定时域参数值对应的偏置。其中,时域参数值是相对时域参数值,偏置和相对时域参数值之和是时域参数值对应的绝对时域参数值。
可选地,处理单元720具体用于:确定最近一次获取到的TA值与预设门限值之和为时域参数值对应的偏置。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,通过PDCCH调度的PUSCH的发送时刻早于PDCCH的接收时刻。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,通过RAR grant调度的PUSCH的发送时刻早于RAR grant的接收时刻。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,HARQ-ACK的发送时刻早于HARQ-ACK所检测的PDSCH的接收时刻,或者,HARQ-ACK的发送时刻早于HARQ-ACK所检测的SPS PDSCH释放的PDCCH的接收时刻。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,通过PDCCH调度的CSI的发送时刻早于PDCCH的接收时刻。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,CSI参考资源的发送时刻早于用于确定CSI参考资源的单个下行时隙。
可选地,预设条件包括:第一TA值相对于终端设备最近一次获取到的TA值的TA变化量大于预设门限值。和/或,通过DCI调度的SRS的发送时刻早于DCI的接收时刻。
可选地,最近一次获取到的TA值是终端设备在随机接入过程中从网络设备获取到的TA值,或者,最近一次获取到的TA值是终端设备在随机接入过程之后终端设备上报给网络设备的TA值。
可选地,随机接入过程是通过第一事件触发的。其中,第一事件为以下任一项:
终端设备从RRC_IDLE态进入到RRC_CONNECTED态。
终端设备进入RRC连接重建过程。
终端设备在RRC_CONNECTED态下,下行链路DL数据到达,上行链路UL数据处于失步状态。
终端设备在RRC_CONNECTED态下,UL数据到达,DL数据处于失步状态。
终端设备接收到RRC连接重配置消息。
终端设备从RRC_INACTIVE态进入RRC_CONNECTED态。
终端设备在SCell添加过程中建立时间校准。
可选地,预设门限值携带在配置信息中。
可选地,配置信息还携带用于上传第一TA值的资源配置信息。
可选地,第一TA值携带在第一PUSCH上的MAC CE中。
可选地,第一PUSCH是以下任一项:动态调度的PUSCH、CG-PUSCH、SPS PUSCH。
可选地,终端设备被配置至少一个UL BWP,对于至少一个UL BWP中的至少一个UL BWP,配置一个第一PUSCH。
可选地,第一TA值携带在第一PUCCH上。
可选地,第一PUCCH是周期PUCCH或者非周期的PUCCH。
可选地,终端设备被配置至少一个UL BWP,对于至少一个UL BWP中的至少一个UL BWP,配置PUCCH资源。其中,配置的PUCCH资源包括第一PUCCH。
可选地,第一TA值为终端设备的绝对TA值或者相对TA值。
可选地,相对TA值是绝对TA值相对于终端设备最近一次获取到的TA值的TA变化量。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的网络设备700可对应于本申请方法实施例中的网络设备,并且网络设备700中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例提供的一种通信设备800示意性结构图。图8所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图8所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的装置的示意性结构图。图9所示的装置900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,装置900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该装置900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统1000的示意性框图。如图10所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备或者基站实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据 速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备或者基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备或者基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请 各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (102)

  1. 一种无线通信方法,其特征在于,包括:
    在终端设备满足预设条件时,所述终端设备向网络设备发送所述终端设备的第一定时提前TA值。
  2. 根据权利要求1所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    所述网络设备向所述终端设备指示的时域参数值不可用,所述时域参数值用于确定所述终端设备的上行信道或者上行传输信息的发送时刻。
  3. 根据权利要求2所述的方法,其特征在于,
    所述时域参数值是通过下行控制信息DCI调度物理上行共享信道PUSCH时,用于确定所述PUSCH的发送时刻的参数值K 2
    或者,
    所述时域参数值是通过随机接入响应授权RAR grant调度PUSCH时,用于确定所述PUSCH的发送时刻的参数值K 2
    或者,
    所述时域参数值是用于确定物理上行控制信道PUCCH上传输的混合自动重传请求-应答HARQ-ACK的发送时刻的参数值K 1
    或者,
    所述时域参数值是通过DCI调度PUSCH上的信道状态信息CSI时,用于确定所述CSI的发送时刻的参数值;
    或者,
    所述时域参数值是用于确定CSI参考资源的发送时刻的参数值n CSI_ref
    或者,
    所述时域参数值是通过DCI调度非周期信道探测参考信号SRS时,用于确定所述非周期SRS的发送时刻的参数值k。
  4. 根据权利要求2或3所述的方法,其特征在于,还包括:
    所述终端设备根据所述最近一次获取到的TA值和所述预设门限值,确定所述时域参数值对应的偏置;
    其中,所述时域参数值是相对时域参数值,所述偏置和所述相对时域参数值之和是所述时域参数值对应的绝对时域参数值。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备根据所述最近一次获取到的TA值和所述预设门限值,确定所述时域参数值对应的偏置,包括:
    所述终端设备确定所述最近一次获取到的TA值与所述预设门限值之和为所述时域参数值对应的偏置。
  6. 根据权利要求1所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过物理下行控制信道PDCCH调度的PUSCH的发送时刻早于所述PDCCH的接收时刻。
  7. 根据权利要求1所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过RAR grant调度的PUSCH的发送时刻早于所述RAR grant的接收时刻。
  8. 根据权利要求1所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    HARQ-ACK的发送时刻早于所述HARQ-ACK所检测的PDSCH的接收时刻,或者,所述HARQ-ACK的发送时刻早于所述HARQ-ACK所检测的半持续调度SPS PDSCH释放的PDCCH的接收时刻。
  9. 根据权利要求1所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过PDCCH调度的CSI的发送时刻早于所述PDCCH的接收时刻。
  10. 根据权利要求1所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    CSI参考资源的发送时刻早于用于确定所述CSI参考资源的单个下行时隙。
  11. 根据权利要求1所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过DCI调度的SRS的发送时刻早于所述DCI的接收时刻。
  12. 根据权利要求2-11任一项所述的方法,其特征在于,所述最近一次获取到的TA值是所述终端设备在随机接入过程中从所述网络设备获取到的TA值,或者,所述最近一次获取到的TA值是所述终端设备在随机接入过程之后所述终端设备上报给所述网络设备的TA值。
  13. 根据权利要求12所述的方法,其特征在于,所述随机接入过程是通过第一事件触发的;
    其中,所述第一事件为以下任一项:
    所述终端设备从无线资源控制空闲RRC_IDLE态进入到无线资源控制连接RRC_CONNECTED态;
    所述终端设备进入RRC连接重建过程;
    所述终端设备在RRC_CONNECTED态下,下行链路DL数据到达,上行链路UL数据处于失步状态;
    所述终端设备在RRC_CONNECTED态下,UL数据到达,DL数据处于失步状态;
    所述终端设备接收到RRC连接重配置消息;
    所述终端设备从无线资源控制非激活RRC_INACTIVE态进入RRC_CONNECTED态;
    所述终端设备在辅小区SCell添加过程中建立时间校准。
  14. 根据权利要求2-13任一项所述的方法,其特征在于,所述预设门限值携带在配置信息中。
  15. 根据权利要求14所述的方法,其特征在于,所述配置信息还携带用于上传所述第一TA值的资源配置信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第一TA值携带在第一PUSCH上的媒体接入控制控制元素MAC CE中。
  17. 根据权利要求16所述的方法,其特征在于,所述第一PUSCH是以下任一项:动态调度的PUSCH、预配置授权-物理上行共享信道CG-PUSCH、半持续调度SPS PUSCH。
  18. 根据权利要求16或17所述的方法,其特征在于,所述终端设备被配置至少一个上行链路UL载波带宽部分BWP,对于所述至少一个UL BWP中的至少一个UL BWP,配置一个所述第一PUSCH。
  19. 根据权利要求15所述的方法,其特征在于,所述第一TA值携带在第一PUCCH上。
  20. 根据权利要求19所述的方法,其特征在于,所述第一PUCCH是周期PUCCH或者非周期的PUCCH。
  21. 根据权利要求19或20所述的方法,其特征在于,所述终端设备被配置至少一个UL BWP,对于所述至少一个UL BWP中的至少一个UL BWP,配置PUCCH资源;
    其中,配置的PUCCH资源包括所述第一PUCCH。
  22. 根据权利要求1-21任一项所述的方法,其特征在于,所述第一TA值为所述终端设备的绝对TA值或者相对TA值。
  23. 根据权利要求22所述的方法,其特征在于,所述相对TA值是所述绝对TA值相对于终端设备最近一次获取到的TA值的TA变化量。
  24. 一种无线通信方法,其特征在于,包括:
    网络设备接收终端设备的第一TA值;
    其中,所述第一TA值是在终端设备满足预设条件时发送的。
  25. 根据权利要求24所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    所述网络设备向所述终端设备指示的时域参数值不可用,所述时域参数值用于确定所述终端设备的上行信道或者上行传输信息的发送时刻。
  26. 根据权利要求25所述的方法,其特征在于,
    所述时域参数值是通过DCI调度PUSCH时,用于确定所述PUSCH的发送时刻的参数值K 2
    或者,
    所述时域参数值是通过RAR grant调度PUSCH时,用于确定所述PUSCH的发送时刻的参数值K 2
    或者,
    所述时域参数值是用于确定PUCCH上传输的HARQ-ACK的发送时刻的参数值K 1
    或者,
    所述时域参数值是通过DCI调度PUSCH上的信道状态信息CSI时,用于确定所述CSI的发送时刻的参数值;
    或者,
    所述时域参数值是用于确定CSI参考资源的发送时刻的参数值n CSI_ref
    或者,
    所述时域参数值是通过DCI调度非周期SRS时,用于确定所述非周期SRS的发送时刻的参数值k。
  27. 根据权利要求25或26所述的方法,其特征在于,还包括:
    所述网络设备根据所述最近一次获取到的TA值和所述预设门限值,确定所述时域参数值对应的偏置;
    其中,所述时域参数值是相对时域参数值,所述偏置和所述相对时域参数值之和是所述时域参数值对应的绝对时域参数值。
  28. 根据权利要求27所述的方法,其特征在于,所述网络设备根据所述最近一次获取到的TA值和所述预设门限值,确定所述时域参数值对应的偏置,包括:
    所述网络设备确定所述最近一次获取到的TA值与所述预设门限值之和为所述时域参数值对应的偏置。
  29. 根据权利要求24所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过PDCCH调度的PUSCH的发送时刻早于所述PDCCH的接收时刻。
  30. 根据权利要求24所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过RAR grant调度的PUSCH的发送时刻早于所述RAR grant的接收时刻。
  31. 根据权利要求24所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    HARQ-ACK的发送时刻早于所述HARQ-ACK所检测的PDSCH的接收时刻,或者,所述HARQ-ACK的发送时刻早于所述HARQ-ACK所检测的SPS PDSCH释放的PDCCH的接收时刻。
  32. 根据权利要求24所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过PDCCH调度的CSI的发送时刻早于所述PDCCH的接收时刻。
  33. 根据权利要求24所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    CSI参考资源的发送时刻早于用于确定所述CSI参考资源的单个下行时隙。
  34. 根据权利要求24所述的方法,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过DCI调度的SRS的发送时刻早于所述DCI的接收时刻。
  35. 根据权利要求25-34任一项所述的方法,其特征在于,所述最近一次获取到的TA值是所述终端设备在随机接入过程中从所述网络设备获取到的TA值,或者,所述最近一次获取到的TA值是所述终端设备在随机接入过程之后所述终端设备上报给所述网络设备的TA值。
  36. 根据权利要求35所述的方法,其特征在于,所述随机接入过程是通过第一事件触发的;
    其中,所述第一事件为以下任一项:
    所述终端设备从RRC_IDLE态进入到RRC_CONNECTED态;
    所述终端设备进入RRC连接重建过程;
    所述终端设备在RRC_CONNECTED态下,下行链路DL数据到达,上行链路UL数据处于失步状态;
    所述终端设备在RRC_CONNECTED态下,UL数据到达,DL数据处于失步状态;
    所述终端设备接收到RRC连接重配置消息;
    所述终端设备从RRC_INACTIVE态进入RRC_CONNECTED态;
    所述终端设备在SCell添加过程中建立时间校准。
  37. 根据权利要求25-36任一项所述的方法,其特征在于,所述预设门限值携带在配置信息中。
  38. 根据权利要求37所述的方法,其特征在于,所述配置信息还携带用于上传所述第一TA值的资源配置信息。
  39. 根据权利要求38所述的方法,其特征在于,所述第一TA值携带在第一PUSCH上的MAC CE中。
  40. 根据权利要求39所述的方法,其特征在于,所述第一PUSCH是以下任一项:动态调度的PUSCH、CG-PUSCH、SPS PUSCH。
  41. 根据权利要求39或40所述的方法,其特征在于,所述终端设备被配置至少一个UL BWP,对于所述至少一个UL BWP中的至少一个UL BWP,配置一个所述第一PUSCH。
  42. 根据权利要求38所述的方法,其特征在于,所述第一TA值携带在第一PUCCH上。
  43. 根据权利要求42所述的方法,其特征在于,所述第一PUCCH是周期PUCCH或者非周期的PUCCH。
  44. 根据权利要求42或43所述的方法,其特征在于,所述终端设备被配置至少一个UL BWP,对于所述至少一个UL BWP中的至少一个UL BWP,配置PUCCH资源;
    其中,配置的PUCCH资源包括所述第一PUCCH。
  45. 根据权利要求24-44任一项所述的方法,其特征在于,所述第一TA值为所述终端设备的绝对TA值或者相对TA值。
  46. 根据权利要求45所述的方法,其特征在于,所述相对TA值是所述绝对TA值相对于终端设备最近一次获取到的TA值的TA变化量。
  47. 一种终端设备,其特征在于,包括:
    通信单元,用于在终端设备满足预设条件时,向网络设备发送所述终端设备的第一TA值。
  48. 根据权利要求47所述的终端设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    所述网络设备向所述终端设备指示的时域参数值不可用,所述时域参数值用于确定所述终端设备的上行信道或者上行传输信息的发送时刻。
  49. 根据权利要求48所述的终端设备,其特征在于,
    所述时域参数值是通过DCI调度PUSCH时,用于确定所述PUSCH的发送时刻的参数值K 2
    或者,
    所述时域参数值是通过RAR grant调度PUSCH时,用于确定所述PUSCH的发送时刻的参数值K 2
    或者,
    所述时域参数值是用于确定PUCCH上传输的HARQ-ACK的发送时刻的参数值K 1
    或者,
    所述时域参数值是通过DCI调度PUSCH上的信道状态信息CSI时,用于确定所述CSI的发送时刻的参数值;
    或者,
    所述时域参数值是用于确定CSI参考资源的发送时刻的参数值n CSI_ref
    或者,
    所述时域参数值是通过DCI调度非周期SRS时,用于确定所述非周期SRS的发送时刻的参数值k。
  50. 根据权利要求48或49所述的终端设备,其特征在于,还包括:
    处理单元,用于根据所述最近一次获取到的TA值和所述预设门限值,确定所述时域参数值对应的偏置;
    其中,所述时域参数值是相对时域参数值,所述偏置和所述相对时域参数值之和是所述时域参数值对应的绝对时域参数值。
  51. 根据权利要求50所述的终端设备,其特征在于,所述处理单元具体用于:
    确定所述最近一次获取到的TA值与所述预设门限值之和为所述时域参数值对应的偏置。
  52. 根据权利要求47所述的终端设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过PDCCH调度的PUSCH的发送时刻早于所述PDCCH的接收时刻。
  53. 根据权利要求47所述的终端设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过RAR grant调度的PUSCH的发送时刻早于所述RAR grant的接收时刻。
  54. 根据权利要求47所述的终端设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    HARQ-ACK的发送时刻早于所述HARQ-ACK所检测的PDSCH的接收时刻,或者,所述HARQ-ACK的发送时刻早于所述HARQ-ACK所检测的SPS PDSCH释放的PDCCH的接收时刻。
  55. 根据权利要求47所述的终端设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过PDCCH调度的CSI的发送时刻早于所述PDCCH的接收时刻。
  56. 根据权利要求47所述的终端设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    CSI参考资源的发送时刻早于用于确定所述CSI参考资源的单个下行时隙。
  57. 根据权利要求47所述的终端设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过DCI调度的SRS的发送时刻早于所述DCI的接收时刻。
  58. 根据权利要求48-57任一项所述的终端设备,其特征在于,所述最近一次获取到的TA值是所述终端设备在随机接入过程中从所述网络设备获取到的TA值,或者,所述最近一次获取到的TA值是所述终端设备在随机接入过程之后所述终端设备上报给所述网络设备的TA值。
  59. 根据权利要求58所述的终端设备,其特征在于,所述随机接入过程是通过第一事件触发的;
    其中,所述第一事件为以下任一项:
    所述终端设备从RRC_IDLE态进入到RRC_CONNECTED态;
    所述终端设备进入RRC连接重建过程;
    所述终端设备在RRC_CONNECTED态下,DL数据到达,UL数据处于失步状态;
    所述终端设备在RRC_CONNECTED态下,UL数据到达,DL数据处于失步状态;
    所述终端设备接收到RRC连接重配置消息;
    所述终端设备从RRC_INACTIVE态进入RRC_CONNECTED态;
    所述终端设备在SCell添加过程中建立时间校准。
  60. 根据权利要求48-59任一项所述的终端设备,其特征在于,所述预设门限值携带在配置信息中。
  61. 根据权利要求60所述的终端设备,其特征在于,所述配置信息还携带用于上传所述第一TA值的资源配置信息。
  62. 根据权利要求61所述的终端设备,其特征在于,所述第一TA值携带在第一PUSCH上的MAC CE中。
  63. 根据权利要求62所述的终端设备,其特征在于,所述第一PUSCH是以下任一项:动态调度的PUSCH、CG-PUSCH、SPS PUSCH。
  64. 根据权利要求62或63所述的终端设备,其特征在于,所述终端设备被配置至少一个UL BWP,对于所述至少一个UL BWP中的至少一个UL BWP,配置一个所述第一PUSCH。
  65. 根据权利要求61所述的终端设备,其特征在于,所述第一TA值携带在第一PUCCH上。
  66. 根据权利要求65所述的终端设备,其特征在于,所述第一PUCCH是周期PUCCH或者非周期的PUCCH。
  67. 根据权利要求65或66所述的终端设备,其特征在于,所述终端设备被配置至少一个UL BWP,对于所述至少一个UL BWP中的至少一个UL BWP,配置PUCCH资源;
    其中,配置的PUCCH资源包括所述第一PUCCH。
  68. 根据权利要求47-67任一项所述的终端设备,其特征在于,所述第一TA值为所述终端设备的绝对TA值或者相对TA值。
  69. 根据权利要求68所述的终端设备,其特征在于,所述相对TA值是所述绝对TA值相对于终端设备最近一次获取到的TA值的TA变化量。
  70. 一种网络设备,其特征在于,包括:
    通信单元,用于接收终端设备的第一TA值;
    其中,所述第一TA值是在终端设备满足预设条件时发送的。
  71. 根据权利要求70所述的网络设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    所述网络设备向所述终端设备指示的时域参数值不可用,所述时域参数值用于确定所述终端设备的上行信道或者上行传输信息的发送时刻。
  72. 根据权利要求71所述的网络设备,其特征在于,
    所述时域参数值是通过DCI调度PUSCH时,用于确定所述PUSCH的发送时刻的参数值K 2
    或者,
    所述时域参数值是通过RAR grant调度PUSCH时,用于确定所述PUSCH的发送时刻的参数值K 2
    或者,
    所述时域参数值是用于确定PUCCH上传输的HARQ-ACK的发送时刻的参数值K 1
    或者,
    所述时域参数值是通过DCI调度PUSCH上的信道状态信息CSI时,用于确定所述CSI的发送时刻的参数值;
    或者,
    所述时域参数值是用于确定CSI参考资源的发送时刻的参数值n CSI_ref
    或者,
    所述时域参数值是通过DCI调度非周期SRS时,用于确定所述非周期SRS的发送时刻的参数值k。
  73. 根据权利要求71或72所述的网络设备,其特征在于,还包括:
    处理单元,用于根据所述最近一次获取到的TA值和所述预设门限值,确定所述时域参数值对应的偏置;
    其中,所述时域参数值是相对时域参数值,所述偏置和所述相对时域参数值之和是所述时域参数值对应的绝对时域参数值。
  74. 根据权利要求73所述的网络设备,其特征在于,所述处理单元具体用于:
    确定所述最近一次获取到的TA值与所述预设门限值之和为所述时域参数值对应的偏置。
  75. 根据权利要求70所述的网络设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过PDCCH调度的PUSCH的发送时刻早于所述PDCCH的接收时刻。
  76. 根据权利要求70所述的网络设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过RAR grant调度的PUSCH的发送时刻早于所述RAR grant的接收时刻。
  77. 根据权利要求70所述的网络设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    HARQ-ACK的发送时刻早于所述HARQ-ACK所检测的PDSCH的接收时刻,或者,所述HARQ-ACK的发送时刻早于所述HARQ-ACK所检测的SPS PDSCH释放的PDCCH的接收时刻。
  78. 根据权利要求70所述的网络设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过PDCCH调度的CSI的发送时刻早于所述PDCCH的接收时刻。
  79. 根据权利要求70所述的网络设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    CSI参考资源的发送时刻早于用于确定所述CSI参考资源的单个下行时隙。
  80. 根据权利要求70所述的网络设备,其特征在于,所述预设条件包括:
    所述第一TA值相对于所述终端设备最近一次获取到的TA值的TA变化量大于预设门限值;
    和/或,
    通过DCI调度的SRS的发送时刻早于所述DCI的接收时刻。
  81. 根据权利要求71-80任一项所述的网络设备,其特征在于,所述最近一次获取到的TA值是所述终端设备在随机接入过程中从所述网络设备获取到的TA值,或者,所述最近一次获取到的TA值是所述终端设备在随机接入过程之后所述终端设备上报给所述网络设备的TA值。
  82. 根据权利要求81所述的网络设备,其特征在于,所述随机接入过程是通过第一事件触发的;
    其中,所述第一事件为以下任一项:
    所述终端设备从RRC_IDLE态进入到RRC_CONNECTED态;
    所述终端设备进入RRC连接重建过程;
    所述终端设备在RRC_CONNECTED态下,下行链路DL数据到达,上行链路UL数据处于失步状态;
    所述终端设备在RRC_CONNECTED态下,UL数据到达,DL数据处于失步状态;
    所述终端设备接收到RRC连接重配置消息;
    所述终端设备从RRC_INACTIVE态进入RRC_CONNECTED态;
    所述终端设备在SCell添加过程中建立时间校准。
  83. 根据权利要求71-82任一项所述的网络设备,其特征在于,所述预设门限值携带在配置信息中。
  84. 根据权利要求83所述的网络设备,其特征在于,所述配置信息还携带用于上传所述第一TA值的资源配置信息。
  85. 根据权利要求84所述的网络设备,其特征在于,所述第一TA值携带在第一PUSCH上的MAC CE中。
  86. 根据权利要求85所述的网络设备,其特征在于,所述第一PUSCH是以下任一项:动态调度的PUSCH、CG-PUSCH、SPS PUSCH。
  87. 根据权利要求85或86所述的网络设备,其特征在于,所述终端设备被配置至少一个UL BWP,对于所述至少一个UL BWP中的至少一个UL BWP,配置一个所述第一PUSCH。
  88. 根据权利要求84所述的网络设备,其特征在于,所述第一TA值携带在第一PUCCH上。
  89. 根据权利要求88所述的网络设备,其特征在于,所述第一PUCCH是周期PUCCH或者非周期的PUCCH。
  90. 根据权利要求88或89所述的网络设备,其特征在于,所述终端设备被配置至少一个UL BWP,对于所述至少一个UL BWP中的至少一个UL BWP,配置PUCCH资源;
    其中,配置的PUCCH资源包括所述第一PUCCH。
  91. 根据权利要求70-90任一项所述的网络设备,其特征在于,所述第一TA值为所述终端设备的绝对TA值或者相对TA值。
  92. 根据权利要求91所述的网络设备,其特征在于,所述相对TA值是所述绝对TA值相对于终端设备最近一次获取到的TA值的TA变化量。
  93. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至23中任一项所述的方法。
  94. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求24至46中任一项所述的方法。
  95. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至23中任一项所述的方法。
  96. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求24至46中任一项所述的方法。
  97. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  98. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求24至46中任一项所述的方法。
  99. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至23中任一项所述的方法。
  100. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求24至46中任一项所述的方法。
  101. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  102. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求24至46中任一项所述的方法。
PCT/CN2020/098249 2020-06-24 2020-06-24 无线通信方法、终端设备和网络设备 WO2021258369A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/098249 WO2021258369A1 (zh) 2020-06-24 2020-06-24 无线通信方法、终端设备和网络设备
CN202080102255.2A CN115918180A (zh) 2020-06-24 2020-06-24 无线通信方法、终端设备和网络设备
CN202310354372.3A CN116456445A (zh) 2020-06-24 2020-06-24 无线通信方法、终端设备和网络设备
EP20941592.6A EP4156805A4 (en) 2020-06-24 2020-06-24 Wireless communication method, terminal device and network device
US18/076,664 US20230095158A1 (en) 2020-06-24 2022-12-07 Wireless communication method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098249 WO2021258369A1 (zh) 2020-06-24 2020-06-24 无线通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/076,664 Continuation US20230095158A1 (en) 2020-06-24 2022-12-07 Wireless communication method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2021258369A1 true WO2021258369A1 (zh) 2021-12-30

Family

ID=79282770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098249 WO2021258369A1 (zh) 2020-06-24 2020-06-24 无线通信方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230095158A1 (zh)
EP (1) EP4156805A4 (zh)
CN (2) CN116456445A (zh)
WO (1) WO2021258369A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210001A1 (en) * 2021-04-01 2022-10-06 Nec Corporation Method for reporting a timing advance, user equipment, and network node
CN115299125A (zh) * 2022-06-28 2022-11-04 北京小米移动软件有限公司 一种定时提前报告tar的触发方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154984A (zh) * 2006-09-25 2008-04-02 大唐移动通信设备有限公司 一种保持上行同步的方法及系统
WO2018032508A1 (zh) * 2016-08-19 2018-02-22 广东欧珀移动通信有限公司 传输数据的方法、终端设备和网络侧设备
CN109863793A (zh) * 2016-10-14 2019-06-07 瑞典爱立信有限公司 用于增强无线通信网络中的通信的方法、通信设备和网络节点
CN110475336A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 一种实现网络同步的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10652894B2 (en) * 2016-11-11 2020-05-12 Qualcomm Incorporated Timing advance reporting for latency reduction
US10455603B2 (en) * 2016-12-06 2019-10-22 Qualcomm Incorporated Wireless transmission timing based on timing advance values in shortened transmission time interval transmissions
JP6852813B2 (ja) * 2017-06-14 2021-03-31 ソニー株式会社 Csi報告提供の可否を決定するための装置および方法
EP4147499A4 (en) * 2020-05-11 2023-11-01 MediaTek Singapore Pte. Ltd. METHOD FOR REPORTING TIME ADVANCE IN NON-TERRESTRIAL NETWORK COMMUNICATIONS AND COMMUNICATION DEVICE THEREFOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154984A (zh) * 2006-09-25 2008-04-02 大唐移动通信设备有限公司 一种保持上行同步的方法及系统
WO2018032508A1 (zh) * 2016-08-19 2018-02-22 广东欧珀移动通信有限公司 传输数据的方法、终端设备和网络侧设备
CN109863793A (zh) * 2016-10-14 2019-06-07 瑞典爱立信有限公司 用于增强无线通信网络中的通信的方法、通信设备和网络节点
CN110475336A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 一种实现网络同步的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on Timing Advance and RACH Procedures for NTN", 3GPP TSG RAN WG1 MEETING #96BIS R1-1904000, 30 March 2019 (2019-03-30), pages 1 - 7, XP051691220 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210001A1 (en) * 2021-04-01 2022-10-06 Nec Corporation Method for reporting a timing advance, user equipment, and network node
CN115299125A (zh) * 2022-06-28 2022-11-04 北京小米移动软件有限公司 一种定时提前报告tar的触发方法、装置、设备及存储介质
CN115299125B (zh) * 2022-06-28 2023-10-10 北京小米移动软件有限公司 一种定时提前报告tar的触发方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US20230095158A1 (en) 2023-03-30
CN116456445A (zh) 2023-07-18
EP4156805A1 (en) 2023-03-29
EP4156805A4 (en) 2023-06-28
CN115918180A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US20220124645A1 (en) Wireless communication method, terminal device, and network device
US20230095158A1 (en) Wireless communication method, terminal device and network device
WO2020215262A1 (zh) 功率分配方法和终端设备
US20230262696A1 (en) Method for determining uplink transmission parameter, and terminal device
US20220394650A1 (en) Information transmission method, terminal device and network device
US20230095079A1 (en) Method for wireless communication, terminal device, and network device
WO2022067547A1 (zh) 无线通信方法、终端设备和网络设备
CN113518420B (zh) 通信方法以及通信装置
WO2022151085A1 (zh) 波束管理方法、终端设备和网络设备
WO2022077451A1 (zh) 无线通信的方法和终端设备
WO2021164684A1 (zh) 上行反馈资源的确定方法和终端设备
WO2021237751A1 (zh) 数据传输方法、终端设备和网络设备
CN115413045B (zh) 信息传输方法、终端设备和网络设备
US20230354207A1 (en) Wireless communication method, terminal device and network device
WO2022236542A1 (zh) 传输方法、终端设备、网络设备及通信系统
WO2024007336A1 (zh) 信息处理方法、终端设备和网络设备
US20240023070A1 (en) Wireless communication method and terminal device
WO2023077406A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024060164A1 (zh) 通信方法和终端设备
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
US20230130803A1 (en) Wireless communication method, terminal device and network device
WO2022016342A1 (zh) 信道加扰方法和终端设备
WO2023102829A1 (zh) 无线通信的方法、终端设备和网络设备
EP4262304A1 (en) Channel estimation method, terminal device, network device, chip and storage medium
EP4160962A1 (en) Information processing method, terminal device and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020941592

Country of ref document: EP

Effective date: 20221219

NENP Non-entry into the national phase

Ref country code: DE