WO2018032508A1 - 传输数据的方法、终端设备和网络侧设备 - Google Patents

传输数据的方法、终端设备和网络侧设备 Download PDF

Info

Publication number
WO2018032508A1
WO2018032508A1 PCT/CN2016/096066 CN2016096066W WO2018032508A1 WO 2018032508 A1 WO2018032508 A1 WO 2018032508A1 CN 2016096066 W CN2016096066 W CN 2016096066W WO 2018032508 A1 WO2018032508 A1 WO 2018032508A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
value
signal power
threshold
network side
Prior art date
Application number
PCT/CN2016/096066
Other languages
English (en)
French (fr)
Inventor
杨宁
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to CN201680088488.5A priority Critical patent/CN109565696B/zh
Priority to EP16913264.4A priority patent/EP3490275B1/en
Priority to US16/326,110 priority patent/US10849146B2/en
Priority to JP2019510345A priority patent/JP6900464B2/ja
Priority to PCT/CN2016/096066 priority patent/WO2018032508A1/zh
Priority to KR1020197007755A priority patent/KR20190039288A/ko
Priority to TW106123102A priority patent/TWI737767B/zh
Publication of WO2018032508A1 publication Critical patent/WO2018032508A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/006Synchronisation arrangements determining timing error of reception due to propagation delay using known positions of transmitter and receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0095Synchronisation arrangements determining timing error of reception due to propagation delay estimated based on signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to the field of communications technologies, and, more particularly, to a method of transmitting data, a terminal device, and a network side device.
  • the terminal device when transmitting data, the terminal device needs to obtain a Timing advance (TA) value, and then uses the TA value for data transmission or access to the mobile communication system.
  • TA Timing advance
  • the terminal equipment should support a large number of services that support packet transmission, such as terminal equipment in the Internet Of Things (IOT).
  • IOT Internet Of Things
  • the service that supports the packet transmission is characterized in that the packets to be transmitted are very small, and after each transmission, the terminal device releases the connection with the base station.
  • the terminal device When the terminal device is performing the next data transmission, it also needs to reacquire the TA value to start transmitting data.
  • the problem with this is that for a terminal device that is not mobile, the process of reacquiring the TA value will inevitably increase the delay, and also increase the signaling overhead of the system. Based on this, there is a need to propose a way to solve this problem.
  • the embodiments of the present invention provide a method for transmitting data, a terminal device, and a network side device, which can reduce delay and reduce signaling overhead.
  • a method of transmitting data comprising:
  • Data transmission is performed according to the first TA value, wherein the first TA value is used by the last data transmission of the terminal device.
  • the terminal device determines that the terminal device meets the preset condition for reusing the first TA value, and performs data transmission according to the first TA value, where the first TA value is the last data transmission of the terminal device. Used, it can reduce the delay and reduce the signaling overhead.
  • the preset condition for reusing the first TA value may be related to the location change information of the terminal device.
  • the preset condition may be set according to some quantized values corresponding to the position change information, For example, the location value corresponding to the location change information, the moving distance value, or the Reference Signal Receiving Power (RSRP) value.
  • RSRP Reference Signal Receiving Power
  • the location change information may represent information that may be changed by the terminal device when the location changes, such as a changed distance value, a changed RSRP value, and the like. There is no limit to this.
  • determining that the terminal device meets a preset condition for reusing the first time advance TA value includes:
  • the distance between the current location of the terminal device and the location where the terminal device performs the last data transmission is not greater than the distance threshold.
  • the terminal device determines that the terminal device meets the preset condition for reusing the first TA value, and performs data transmission according to the first TA value, where the first TA value is used by the last data transmission of the terminal device, Reduce latency and reduce signaling overhead. Further, the preset condition that the terminal device satisfies can be determined by comparing the relationship between the moving distance of the terminal device and the distance threshold.
  • the “not more than the distance threshold” may be changed to “less than the distance threshold”, and the size relationship may be set or adjusted as needed, which is not limited thereto.
  • the method further includes:
  • the distance threshold may be sent by the receiving network side device, or may be agreed in the protocol.
  • the receiving the distance threshold sent by the network side device includes:
  • the terminal device may receive a distance threshold that is sent by the base station in the form of a broadcast message or a dedicated signaling.
  • the dedicated signaling may be Radio Resource Control (RRC) signaling, which is not limited thereto. .
  • determining that the terminal device meets a preset condition for reusing the first time advance TA value includes:
  • the signal power value of the terminal device is greater than a signal power lower threshold and less than a signal power upper threshold, wherein the signal power upper threshold is greater than the signal power lower threshold.
  • the signal power value may be a reference signal receiving.
  • the power RSRP value, the corresponding upper threshold of the signal power is the upper threshold of the RSRP, and the lower threshold of the corresponding signal power is the lower threshold of the RSRP.
  • the signal power values appearing below are also the same.
  • the RSRP value represents a key parameter of the wireless signal strength of the terminal device in the LTE network, and reflects the signal strength of the base station measured by the terminal device, and can be used to describe the location change information of the terminal device.
  • the terminal device determines that the terminal device meets the preset condition for reusing the first TA value, and performs data transmission according to the first TA value, where the first TA value is used by the last data transmission of the terminal device, Reduce latency and reduce system signaling overhead. Further, the preset condition that the terminal device satisfies can be determined by comparing the signal power value of the terminal device with the signal power upper threshold and the signal power lower threshold.
  • the method further includes:
  • the receiving the signal power upper threshold and the signal power lower threshold sent by the network side device including:
  • the terminal device may receive the signal power upper threshold value and the signal power lower threshold value, which are sent by the base station in the form of a broadcast message or a dedicated signaling, and are not limited thereto.
  • the signal power upper limit threshold and the signal power lower threshold may also be agreed by the terminal device and the network side device in the protocol, which is not limited thereto.
  • determining that the terminal device meets a preset condition for reusing the first time advance TA value includes:
  • the signal power value of the terminal device is determined to be greater than a signal power lower threshold value and less than a signal power upper threshold value, wherein the signal power upper threshold value is greater than the signal power lower threshold value.
  • the method further includes:
  • the indication information that is sent by the network side device to indicate the predetermined time period of the terminal device may also be carried in a broadcast message or signaling.
  • a method of transmitting data including:
  • the network side device may receive data sent by the terminal device according to the first TA value, where the first TA value is used by the terminal device for the last transmission. And, the terminal device reuses the first TA value when it determines that it meets the preset condition for reusing the first TA value. In this way, the network side device does not need to recalculate the new TA value for the terminal device, thereby reducing the delay and reducing the signaling overhead of the system.
  • the preset condition for reusing the first TA value may be related to location change information of the terminal device.
  • the method before the determining, by the receiving terminal device, the data that is transmitted according to the first TA value when the terminal device meets the preset condition for reusing the first TA value, the method further includes:
  • the data that is transmitted by the receiving terminal device according to the first time advance TA value when the terminal device determines that the terminal device meets the preset condition for reusing the first TA value includes:
  • sending a distance threshold to the terminal device including:
  • the distance threshold is sent to the terminal device by broadcast message or signaling.
  • the network side device may receive data transmitted by the terminal device according to the first TA value when determining that the terminal device meets a preset condition for reusing the first TA value, where the first TA value is the last data transmission of the terminal device.
  • the network side device is used to recalculate the new TA value for the terminal device, which can reduce the delay and reduce the signaling overhead of the system.
  • the network side device may send a distance threshold to the terminal device, so that the terminal device determines that it meets the preset condition for reusing the first TA value according to the distance threshold.
  • the method before the determining, by the receiving terminal device, the data that is transmitted according to the first TA value when the terminal device meets the preset condition for reusing the first TA value, the method further includes:
  • the data transmitted by the receiving terminal device according to the first TA value when determining that the terminal device meets the preset condition for reusing the first TA value includes:
  • the signal power value may be a reference signal received power RSRP value.
  • sending a signal power upper threshold and a signal power lower threshold to the terminal device including:
  • the signal power upper threshold and the signal power lower threshold are transmitted to the terminal device by broadcast messages or signaling.
  • the method further includes:
  • indication information Sending, to the terminal device, indication information, where the indication information is used to indicate a predetermined time period
  • the data transmitted by the receiving terminal device according to the first TA value when determining that the terminal device meets the preset condition for reusing the first TA value includes:
  • the predetermined time period may be understood as a timer set by the network side device for the terminal device, for example, in how many minutes, as long as the terminal device detects that the base station signal strength is not greater than a range, the reused A TA value.
  • the network side device may receive data transmitted by the terminal device according to the first TA value when determining that the terminal device meets a preset condition for reusing the first TA value, where the first TA value is the last data transmission of the terminal device.
  • the network side device is used to recalculate the new TA value for the terminal device, which can reduce the delay and reduce the signaling overhead of the system.
  • the network side device may send a signal power upper and lower threshold to the terminal device, so that the terminal device determines that it meets the preset condition for reusing the first TA value according to the signal power upper and lower thresholds.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a network side device for performing the method in any of the foregoing possible aspects of the second aspect or the second aspect.
  • the apparatus comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a terminal device in a fifth aspect, includes a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a network side device in a sixth aspect, includes a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a seventh aspect a computer readable storage medium storing a program for causing a terminal device to perform the above first aspect, and a method for transmitting data of any of the various implementations thereof .
  • a computer readable storage medium storing a program for causing a terminal device to perform the above second aspect, and a method for transmitting data of any of the various implementations thereof .
  • Figure 1 is a schematic diagram of an application scenario.
  • FIG. 2 is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a network side device according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a network side device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the network side device may also be referred to as a network device or a base station, and the base station may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA.
  • BTS Base Transceiver Station
  • NodeB base station
  • the present invention is not limited to this, and may be an evolved Node B (eNB or eNodeB) in LTE, or a base station device in a future 5G network.
  • the terminal device may communicate with one or more core networks through a Radio Access Network (RAN), and the terminal device may be referred to as an access terminal and a user.
  • RAN Radio Access Network
  • UE User Equipment
  • subscriber unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the terminal device can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless communication function.
  • Figure 1 is a schematic diagram of a scene. It should be understood that, for ease of understanding, the scenario in FIG. 1 is introduced as an example, but the present invention is not limited.
  • the terminal device 11, the terminal device 12, the terminal device 13, and the base station 21 are shown in FIG.
  • the terminal device 11 can communicate with the base station 21, the terminal device 12 can communicate with the base station 21, and the terminal device 13 communicates with the base station 21.
  • the terminal device 12 can also communicate with the terminal device 11.
  • the terminal device 13 communicates with the base station 12.
  • TA Timing Advance
  • the value of the TA may indicate the distance between the terminal device and the base station, or the value of the TA is introduced for uplink synchronization, so that the uplink data is conveniently transmitted later.
  • the process of obtaining the TA value is: the terminal device sends a known sequence to the base station, for example, a non-contention access scenario or a random access preamble in the contention access scenario, and the base station calculates the TA according to the known sequence. And the value of the TA is sent to the terminal device, where the TA value may be carried in a random access response message (RAR) sent by the base station to the terminal device.
  • RAR random access response message
  • the terminal device may receive an RAR message sent by the base station, where the RAR message includes a TA value.
  • the RAR message may further include an uplink grant (UL grant), where the uplink grant indicates an uplink transmission resource, where the terminal device sends uplink data, and the cell temporary identifier (Temporary C-RNTI, TC-RNTI) Information, used to identify terminal devices in a cell.
  • UL grant uplink grant
  • the uplink grant indicates an uplink transmission resource
  • the terminal device sends uplink data
  • the cell temporary identifier Temporal C-RNTI, TC-RNTI
  • the terminal device or the network side device of the patent attempts to make the terminal device use the TA value of the last data transmission to perform data transmission under the condition that certain conditions are met, so as to reduce the delay and reduce the signaling overhead. .
  • FIG. 2 shows a schematic flow diagram of a method 200 of transmitting data in accordance with an embodiment of the present invention.
  • the method 200 can be performed by a terminal device, for example, the terminal device can be the terminal device 11, the terminal device 12 or the terminal device 13 in FIG.
  • the method 200 includes:
  • the preset condition may be based on some quantized values corresponding to the location change information of the terminal device.
  • the setting such as the geographic location value corresponding to the position change information, the moving distance value, or the Reference Signal Receiving Power (RSRP) value, is not limited.
  • the RSRP threshold may be agreed in the protocol. As long as the RSRP value of the terminal device is within the RSRP threshold, the terminal device can determine that the location change information meets the preset condition.
  • the RSRP threshold may also be indicated by the base station to the terminal device.
  • the location change information may represent information that may be changed by the terminal device when the location changes, for example, a distance value that changes, and a change occurs.
  • the RSRP value and the like are not limited thereto.
  • S220 Perform data transmission according to the first TA value, where the first TA value is used by the last data transmission of the terminal device.
  • the data transmission may be performed according to the first TA value, and the first TA value is that the terminal device is The TA value used in the last data transfer.
  • the terminal device can skip the process of sending the known sequence to the network side device, directly using the TA value of the last data transmission, avoiding the process of waiting for the network side device to recalculate the TA value, reducing the delay, and reducing signaling. Overhead.
  • the terminal device can directly reuse the TA value of the last transmission when it determines that it meets the preset condition for reusing the first TA value. For example, the terminal device obtains the TA value in the connection establishment with the base station, and releases the connection with the base station after completing the data transmission; when the next terminal device performs the access system or data transmission, if the terminal device determines that the location change information meets the pre- If the condition is set, the process of sending a random access preamble (preamble) may be skipped, and the last obtained TA value may be used to access the system or send data, where the used resource for transmitting data may be pre-scheduled by the base station (pre - the uplink grant (UL grant) resource of the -scheduling, or the uplink grant resource sent by the base station based on contention based random access.
  • preamble the process of sending a random access preamble
  • the last obtained TA value may be used to access the system or send data, where the used resource for transmitting data may be pre-
  • the first TA value may be acquired by the terminal device when the device performs initial access, for example, when the cell attaches, the terminal device obtains the first TA value.
  • the TA value may be changed according to the indication of the base station, so as to obtain the first TA value.
  • the first TA value may also be obtained by the terminal device during the handover (ie, cell handover). For example, after the terminal device switches to the target cell, a new target cell can be obtained. TA value, such as the first TA value.
  • the first TA value of the terminal device may be acquired in multiple manners, and the foregoing is only an example and does not limit the present invention.
  • the first TA value may be reused as long as the location change information of the terminal device meets the preset condition. In other words, the present invention does not limit the manner in which the first TA value is acquired.
  • the terminal device determines that the terminal device meets the preset condition for reusing the first TA value, and performs data transmission according to the first TA value, where the first TA value is the last data transmission of the terminal device. Used, it can reduce the delay and reduce the signaling overhead.
  • first TA value is introduced “first” for convenience of description and does not specifically limit the present invention.
  • S210 may include:
  • the distance between the current location of the terminal device and the location where the terminal device performs the last data transmission is not greater than the distance threshold.
  • the determining, by the terminal device, that the location change information meets the preset condition may be that the terminal device determines that the distance between the current location and the location of the last data transmission is not greater than the distance threshold.
  • this preset condition is met, the terminal device can perform data transmission using the TA value of the last data transmission.
  • the terminal device may reuse the first A TA value if the location corresponding to the first TA value is A, and the location of the terminal device after the mobile is B, and the distance from B to A is less than a preset threshold.
  • the “not more than the distance threshold” may be changed to “less than the distance threshold”, and the size relationship may be set or adjusted as needed, which is not limited thereto.
  • the distance threshold is not limited to a distance threshold corresponding to the moving distance of the terminal device, and may also be a distance threshold corresponding to the corresponding distance of the location after the terminal device moves.
  • the distance corresponding to the current location B of the terminal device is k
  • the distance threshold is n
  • k is less than n
  • the terminal device may also determine that the location change information meets the preset condition.
  • the method 200 may further include:
  • the terminal device may receive the distance threshold or the distance threshold sent by the network side device. Then, when the terminal device determines that the moving distance meets the preset condition according to the distance threshold, the root device Data transmission is performed according to the first TA value.
  • the terminal device may report its geographical location information to the network side device.
  • the network side device may configure a geographic location information range (such as a distance threshold) to the terminal device, so that the geographic location information of the terminal device may reuse the TA value when the geographic location information range is met.
  • the receiving the distance threshold sent by the network side device includes:
  • the terminal device may receive a distance threshold that is sent by the network side device in the form of a broadcast message or a dedicated signaling.
  • the dedicated signaling may be Radio Resource Control (RRC) signaling. Not limited.
  • the distance threshold may be agreed by the terminal device and the network side device in the protocol, which is not limited.
  • the terminal device determines that the terminal device meets a preset condition for reusing the first TA value, and performs data transmission according to the first TA value, where the first TA value is the terminal The last time the device used data transmission, it can reduce the delay and reduce the signaling overhead. Further, the preset condition that the terminal device satisfies can be determined by comparing the relationship between the moving distance of the terminal device and the distance threshold.
  • S210 may include:
  • the signal power value of the terminal device is greater than a signal power lower threshold and less than a signal power upper threshold, wherein the signal power upper threshold is greater than the signal power lower threshold.
  • S210 may include:
  • the RSRP value of the reference signal received by the terminal device is greater than the lower threshold of the RSRP and is less than the upper threshold of the RSRP, wherein the upper threshold of the RSRP is greater than the lower threshold of the RSRP.
  • the terminal device determines that the location change information meets the preset condition, that is, the terminal device determines that the reference signal received power RSRP value is greater than the RSRP lower threshold, and is less than the RSRP upper threshold, where the RSRP upper threshold is greater than the RSRP lower threshold.
  • the terminal device can also perform data transmission using the TA value of the last data transmission.
  • the signal power value is not limited to the RSRP value, and may be other reasonable power values that can be used to represent the preset condition of the terminal device to reuse the first TA value, which is not limited thereto.
  • the RSRP value represents the wireless signal strength of the terminal device in the LTE network.
  • the key parameters reflect the base station signal strength measured by the terminal device and can be used to describe the position change information of the terminal device.
  • the RSRP value corresponding to the terminal device is 100 decibels db
  • the lower threshold of the RSRP is 95 db
  • the upper threshold of the RSRP is 105 db.
  • the first TA value corresponding to 100 db can be used for data transmission.
  • the terminal device may perform arc-shaped movement centering on the base station, and the location where the terminal device is located may have a corresponding RSRP value. Wherein, if the terminal device moves within the arc area, the terminal device can reuse the TA value.
  • the method 200 may further include:
  • the method 200 may further include:
  • the RSRP upper threshold and the lower RSRP threshold sent by the network side device are received.
  • the terminal device may receive the RSRP upper threshold and the RSRP lower threshold sent by the network side device, and then determine, according to the RSRP upper threshold and the RSRP lower threshold, that the RSRP value of the terminal device meets the preset condition, according to the first
  • the TA value is used for data transmission.
  • the receiving the RSRP upper threshold and the RSRP lower threshold sent by the network side device including:
  • the terminal device may receive the RSRP upper threshold and the lower threshold of the RSRP, which are sent by the network device in the form of a broadcast message or a dedicated signaling, and are not limited thereto.
  • the upper limit of the RSRP and the lower threshold of the RSRP may be agreed by the terminal device and the network device in the protocol, which is not limited.
  • S210 further includes:
  • the signal power value of the terminal device is determined to be greater than a signal power lower threshold value and less than a signal power upper threshold value, wherein the signal power upper threshold value is greater than the signal power lower threshold value.
  • S210 further includes:
  • the RSRP value of the terminal device is greater than a lower threshold of the RSRP, and It is less than the upper limit of the RSRP, where the upper threshold of the RSRP is greater than the lower threshold of the RSRP.
  • the terminal device may be within the predetermined time period.
  • the first TA value is reused for data transmission.
  • the method 200 further includes:
  • the terminal device may receive the indication information sent by the network side device, where the indication information is used to indicate the predetermined time period.
  • the predetermined time period may be a timer set by the base station for the terminal device.
  • the terminal device reuses the first TA value as long as the terminal device measures that the base station signal strength is not greater than a range.
  • the signal strength can be represented by the RSRP value of the terminal device, and the range can be represented by the RSRP upper threshold and the lower RSRP threshold.
  • the indication information that is sent by the network side device to indicate the predetermined time period of the terminal device may also be carried in the broadcast message or signaling.
  • the present invention only uses the distance threshold, the RSRP upper threshold, and the RSRP lower threshold as examples.
  • the terminal device may also use other reasonable information or indicators that can characterize the location change range of the terminal device. Judging the preset conditions is not specifically limited.
  • the terminal device determines that the terminal device meets a preset condition for reusing the first TA value, and performs data transmission according to the first TA value, where the first TA value is the terminal
  • the last data transmission used by the device can reduce the delay and reduce the signaling overhead of the system.
  • the preset condition that the terminal device satisfies can be determined by comparing the RSRP value of the terminal device with the RSRP upper threshold and the RSRP lower threshold.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • a method of transmitting data according to an embodiment of the present invention has been described above from the perspective of a terminal device, and a method of transmitting data according to an embodiment of the present invention will be described below from the perspective of a network side device. It should be understood that for the sake of brevity, some concepts or contents that are duplicated with the terminal device side will not be described.
  • FIG. 3 shows a schematic flow of a method 300 of transmitting data according to another embodiment of the present invention.
  • the method 300 can be performed by a network side device, for example, the network side device can be the base station 21 in FIG.
  • the method 300 includes:
  • the network side device may receive data sent by the terminal device according to the first TA value, where the first TA value is used by the terminal device for the last transmission. Moreover, the terminal device reuses the first TA value when determining that the location change information satisfies the preset condition. In this way, the network side device does not need to recalculate the new TA value for the terminal device, thereby reducing the delay and reducing the signaling overhead of the system.
  • the method 300 further includes:
  • S310 includes:
  • the network side device may send a distance threshold to the terminal device, so that the terminal device can determine whether the preset condition is met according to the distance threshold.
  • the network side device may receive the terminal device to reuse the first TA value to the network side device. The data sent.
  • sending a distance threshold to the terminal device including:
  • the distance threshold is sent to the terminal device by broadcast message or signaling.
  • the network side device may send the message by using a broadcast message or a dedicated signaling (for example, RRC signaling).
  • a broadcast message for example, RRC signaling
  • the network side device may receive data transmitted by the terminal device according to the first TA value when determining that the terminal device meets a preset condition for reusing the first TA value, where the first TA value is the last data transmission of the terminal device.
  • the network side device is used to recalculate the new TA value for the terminal device, which can reduce the delay and reduce the signaling overhead of the system.
  • the network side device may send a distance threshold to the terminal device, so that the terminal device determines that it meets the preset condition for reusing the first TA value according to the distance threshold.
  • the method 300 further includes:
  • S310 includes:
  • the method 300 further includes:
  • a reference signal receiving power RSRP upper threshold and an RSRP lower threshold Sending, by the terminal device, a reference signal receiving power RSRP upper threshold and an RSRP lower threshold, where the RSRP upper threshold is greater than the RSRP lower threshold;
  • S310 includes:
  • the network side device may send the RSRP upper limit threshold and the RSRP lower limit threshold to the terminal device, so that the terminal device can determine whether the preset condition is met according to the RSRP upper limit threshold and the RSRP lower limit threshold.
  • the network side device may receive data that the terminal device reuses the first TA value to send to the network side device.
  • the RSRP upper threshold and the RSRP lower threshold are sent to the terminal device, including:
  • the RSRP upper threshold and the RSRP lower threshold are sent to the terminal device by using a broadcast message or signaling.
  • the network side device may perform the transmission by using a broadcast message or a dedicated signaling (for example, RRC signaling).
  • a broadcast message for example, RRC signaling
  • the method 300 further includes:
  • indication information Sending, to the terminal device, indication information, where the indication information is used to indicate a predetermined time period
  • the data that is transmitted by the receiving terminal device according to the first time advance TA value when determining that the location change information of the terminal device meets the preset condition includes:
  • the network side device may send indication information to the terminal device, where the indication information is used. Determining a predetermined time period of the terminal device, so that the terminal device sends the RSRP value to the network side device according to the first TA value when the RSRP value of the terminal device is greater than the lower limit of the RSRP threshold and is less than the upper threshold of the RSRP. data.
  • the predetermined time period may be understood as a timer set by the network side device for the terminal device, for example, in how many minutes, as long as the terminal device detects that the base station signal strength is not greater than a range, the reused A TA value.
  • the network side device may receive data transmitted by the terminal device according to the first TA value when determining that the terminal device meets a preset condition for reusing the first TA value, where the first TA value is the last data transmission of the terminal device.
  • the network side device is used to recalculate the new TA value for the terminal device, which can reduce the delay and reduce the signaling overhead of the system.
  • the network side device may send the RSRP upper and lower thresholds to the terminal device, so that the terminal device determines that the location change information satisfies the preset condition for reusing the first TA value according to the upper and lower thresholds of the RSRP.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • FIG. 4 shows a schematic block diagram of a terminal device 400 in accordance with an embodiment of the present invention.
  • the terminal device 400 includes:
  • a determining module 410 configured to determine that the terminal device meets a preset condition for reusing the first time advance TA value
  • the transmission module 420 is configured to perform data transmission according to the first TA value, where the first TA value is used by the last data transmission of the terminal device.
  • the terminal device determines that the terminal device meets the preset condition for reusing the first TA value, and performs data transmission according to the first TA value, where the first TA value is the last data transmission of the terminal device. Used, it can reduce the delay and reduce the signaling overhead.
  • the determining module 410 is specifically configured to:
  • the distance between the current location of the terminal device and the location where the terminal device performs the last data transmission is not greater than the distance threshold.
  • the terminal device 400 further includes:
  • the first receiving module is configured to receive the distance threshold sent by the network side device.
  • the determining module 410 is specifically configured to:
  • the signal power value of the terminal device is greater than a signal power lower threshold and less than a signal power upper threshold, wherein the signal power upper threshold is greater than the signal power lower threshold.
  • the terminal device 400 further includes:
  • the second receiving module is configured to receive the signal power upper threshold and the signal power lower threshold sent by the network side device.
  • the determining module 410 is specifically configured to:
  • the reference signal received power signal power value of the terminal device is greater than the signal power lower threshold value and less than the signal power upper threshold value, wherein the signal power upper threshold is greater than the signal power lower threshold.
  • the terminal device 400 further includes:
  • the third receiving module is configured to receive the indication information sent by the network side device, where the indication information is used to indicate the predetermined time period.
  • the first receiving module is specifically configured to:
  • the second receiving module is specifically configured to:
  • the terminal device 400 may perform the method 200 of transmitting data according to an embodiment of the present invention, and the above-described and other operations and/or functions of the respective modules in the terminal device 400 are respectively implemented in order to implement respective processes of the foregoing respective methods. For the sake of brevity, we will not repeat them here.
  • the terminal device 400 of the embodiment of the present invention determines that the terminal device meets the preset condition for reusing the first TA value, and performs data transmission according to the first TA value, where the first TA value is the last time of the terminal device.
  • the data transmission used can reduce the delay and reduce the signaling overhead of the system.
  • the transmission module 420 may be implemented by a transmitter
  • the receiving module 420 may be implemented by a receiver
  • the determining module 410 may be implemented by a processor.
  • the terminal device 500 may include a processor 501, a receiver 502, a transmitter 503, and a memory 504.
  • the memory 504 can be used to store code and the like executed by the processor 501.
  • the processor 501 is configured to execute the code stored by the memory 504.
  • terminal device 500 The various components in terminal device 500 are coupled together by a bus system 505, where the bus system In addition to the data bus, the system 505 includes a power bus, a control bus, and a status signal bus.
  • the bus system In addition to the data bus, the system 505 includes a power bus, a control bus, and a status signal bus.
  • FIG. 6 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 600 of FIG. 6 includes an input interface 610, an output interface 620, at least one processor 630, and a memory 640.
  • the input interface 610, the output interface 620, the processor 630, and the memory 640 are connected by a bus 650.
  • 630 is for executing code in the memory 640, and when the code is executed, the processor 630 implements the method performed by the terminal device in FIG.
  • the terminal device 400 shown in FIG. 4 or the terminal device 500 shown in FIG. 5 or the system chip 600 shown in FIG. 6 can implement the various processes implemented by the terminal device in the foregoing method embodiment of FIG. 2, in order to avoid repetition, here is not Let me repeat.
  • FIG. 7 shows a schematic block diagram of a network side device 700 according to an embodiment of the present invention.
  • the network side device 700 includes:
  • the receiving module 710 is configured to receive data that is transmitted by the terminal device according to the first TA value when determining that the terminal device meets a preset condition for reusing the first time advance TA value, where the first TA value is on the terminal device Used for one data transfer.
  • the network side device may receive data sent by the terminal device according to the first TA value, where the first TA value is used by the terminal device for the last transmission. And, the terminal device reuses the first TA value when it determines that it meets the preset condition for reusing the first TA value. In this way, the network side device does not need to recalculate the new TA value for the terminal device, thereby reducing the delay and reducing the signaling overhead of the system.
  • the network side device further includes:
  • a first sending module configured to send a distance threshold to the terminal device
  • the receiving module 710 is specifically configured to:
  • the first sending module is specifically configured to:
  • the distance threshold is sent to the terminal device by broadcast message or signaling.
  • the network side device further includes:
  • a second sending module configured to send, to the terminal device, a reference signal receiving power signal power upper threshold and a signal power lower threshold, where the signal power upper threshold is greater than the signal power lower threshold;
  • the receiving module is specifically configured to:
  • the network side device further includes:
  • a third sending module configured to send, to the terminal device, indication information, where the indication information is used to indicate a predetermined time period
  • the receiving module is specifically configured to:
  • the second sending module is specifically configured to:
  • the signal power upper threshold and the signal power lower threshold are transmitted to the terminal device by broadcast messages or signaling.
  • the network side device 700 may perform the method 300 of transmitting data according to an embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the network side device 700 are respectively implemented to implement the foregoing respective methods.
  • the corresponding process for the sake of brevity, will not be described here.
  • the network side device 700 of the embodiment of the present invention receives data transmitted by the terminal device according to the first TA value when determining that the terminal device meets a preset condition for reusing the first TA value, where the first TA value is the The last data transmission used by the terminal device prevents the network side device from recalculating the new TA value for the terminal device, which can reduce the delay and reduce the signaling overhead of the system.
  • the receiving module 710 is implemented by a receiver, and the first sending module, the second sending module, and the third sending module may be implemented by a transmitter.
  • the network side device 800 may include a processor 801, a receiver 802, a transmitter 803, and a memory 804.
  • the memory 804 can be used to store code and the like executed by the processor 801.
  • the processor 801 is configured to execute the code stored by the memory 804.
  • bus system 805 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • FIG. 9 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 900 of FIG. 9 includes an input interface 910, an output interface 920, at least one processor 930, and a memory 940.
  • the input interface 910, the output interface 920, the processor 930, and the memory 940 are connected.
  • the processor 930 is configured to execute the code in the memory 940, and when the code is executed, the processor 930 implements the method performed by the network side device in FIG.
  • the network side device 700 shown in FIG. 7 or the network side device 800 shown in FIG. 8 or the system chip 900 shown in FIG. 9 can implement the processes implemented by the network side device in the foregoing method embodiment of FIG. 3, in order to avoid duplication. , no longer repeat them here.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor ("DSP"), an application specific integrated circuit (ASIC), or a field programmable gate array (Field Programmable Gate Array). , referred to as "FPGA” or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory (ROM), a programmable read only memory (PROM), or an erasable programmable read only memory (Erasable PROM). , referred to as "EPROM”), electrically erasable programmable read only memory (“EEPROM”) or flash memory.
  • the volatile memory may be a Random Access Memory (“RAM”), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous DRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM Direct Rambus RAM
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提出了一种传输数据的方法、终端设备和网络侧设备。该方法包括:确定终端设备满足重用第一时间提前量TA值的预设条件;根据该第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的。本发明实施例的传输数据的方法、终端设备和网络侧设备,能够降低延时,以及减少系统的信令开销。

Description

传输数据的方法、终端设备和网络侧设备 技术领域
本发明涉及通信技术领域,并且更具体地,涉及一种传输数据的方法、终端设备和网络侧设备。
背景技术
目前,终端设备在传输数据时,需要获取时间提前量(Timing advance,TA)值,然后使用TA值进行数据传输或接入移动通信系统。在第五代移动通信技术5G新空口(New Radio,NR)原型系统中,终端设备要支持大量的支持小包传输的业务,譬如说物联网(Internet Of Things,IOT)中的终端设备。其中,该支持小包传输的业务的特点是需要传输的包都很小,而每次传输完以后,终端设备会释放与基站的连接(connection release)。当终端设备在进行下次数据传输时,还需要重新获取TA值,才能开始传输数据。这样带来的问题是,对于移动性不强的终端设备,重新获取TA值的过程必然会增大延时,而且还增加了系统的信令开销。基于此,亟需提出一种方法来解决该问题。
发明内容
本发明实施例提供了一种传输数据的方法、终端设备和网络侧设备,能够降低延时,以及减少信令开销。
第一方面,提供了一种传输数据的方法,包括:
确定终端设备满足重用第一时间提前量TA值的预设条件;
根据该第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的。
在本发明实施例中,终端设备确定该终端设备满足重用第一TA值的预设条件,并根据该第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的,能够降低延时,以及减少信令开销。
可选地,重用第一TA值的预设条件可以与终端设备的位置变化信息相关。
可选地,预设条件可以根据位置变化信息对应的一些量化值进行设定, 比如位置变化信息对应的地理位置值、移动距离值、或者参考信号接收功率(Reference Signal Receiving Power,RSRP)值等。
在本发明实施例中,位置变化信息可以代表终端设备在位置发生变化时所引起的一些可能会随着位置变化而发生变化的信息,比如,发生变化的距离值、发生变化的RSRP值等等,对此不作限定。
可选地,在一些可能的实现方式中,确定终端设备满足重用第一时间提前量TA值的预设条件,包括:
确定该终端设备的当前位置与该终端设备进行上一次数据传输的位置之间的距离不大于距离阈值。
因此,终端设备确定该终端设备满足重用第一TA值的预设条件,并根据该第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的,能够降低延时,以及减少信令开销。进一步地,终端设备所满足的预设条件可以通过比较终端设备的移动距离与距离阈值之间的关系来确定。
可选地,在本发明实施例中,“不大于距离阈值”也可以变换为“小于距离阈值”,其大小关系可以按照需要进行设定或调整,对此不作限定。
可选地,在一些可能的实现方式中,该方法还包括:
接收网络侧设备发送的该距离阈值。
这里,该距离阈值可以是接收网络侧设备发送的,也可以是协议里约定好的。
可选地,在一些可能的实现方式中,接收网络侧设备发送的该距离阈值,包括:
接收网络侧设备通过广播消息或信令发送的该距离阈值。
在本发明实施例中,终端设备可以接收基站通过广播消息或专用信令等形式发送的距离阈值,例如,专用信令可以为无线资源控制(Radio Resource Control,RRC)信令,对此不作限定。
可选地,在一些可能的实现方式中,确定终端设备满足重用第一时间提前量TA值的预设条件,包括:
确定该终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值,其中,该信号功率上限阈值大于该信号功率下限阈值。
可选地,在一些可能的实现方式中,该信号功率值可以是参考信号接收 功率RSRP值,其对应的信号功率上限阈值为RSRP上限阈值,其对应的信号功率下限阈值为RSRP下限阈值。可选地,下面出现的信号功率值亦然。
在本发明实施例中,RSRP值代表终端设备在LTE网络中无线信号强度的关键参数,反应了终端设备所测得的基站信号强度,可以用来描述终端设备的位置变化信息。
因此,终端设备确定该终端设备满足重用第一TA值的预设条件,并根据该第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的,能够降低延时,以及减少系统的信令开销。进一步地,终端设备所满足的预设条件可以通过比较终端设备的信号功率值与信号功率上限阈值和信号功率下限阈值来确定。
可选地,在一些可能的实现方式中,该方法还包括:
接收网络侧设备发送的该信号功率上限阈值和该信号功率下限阈值。
可选地,在一些可能的实现方式中,接收网络侧设备发送的该信号功率上限阈值和该信号功率下限阈值,包括:
接收基站通过广播消息或信令发送的该信号功率上限阈值和该信号功率下限阈值。
在本发明实施例中,终端设备可以接收基站通过广播消息或专用信令等形式发送的该信号功率上限阈值和该信号功率下限阈值,对此不作限定。
可选地,在本发明实施例中,该信号功率上限阈值和该信号功率下限阈值也可以是终端设备和网络侧设备在协议里约定好的,对此不作限定。
可选地,在一些可能的实现方式中,确定终端设备满足重用第一时间提前量TA值的预设条件,包括:
在预定时间段内,确定该终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值,其中,该信号功率上限阈值大于该信号功率下限阈值。
可选地,在一些可能的实现方式中,该方法还包括:
接收该网络侧设备发送的指示信息,该指示信息用于指示该预定时间段。
可选地,在一些可能的实现方式中,网络侧设备发送的用于指示终端设备的预定时间段的指示信息,也可以携带于广播消息或信令中。
第二方面,提供了一种传输数据的方法,包括:
接收终端设备在确定该终端设备满足重用第一时间提前量TA值的预设条件时根据该第一TA值传输的数据,其中,该第一TA值是该终端设备上一次数据传输所使用的。
在本发明实施例中,网络侧设备可以接收终端设备根据第一TA值发送的数据,该第一TA值是终端设备上一次传输所使用的。并且,终端设备是在确定其满足重用第一TA值的预设条件时,重用该第一TA值的。这样,网络侧设备无需重新为终端设备计算新的TA值,从而降低了时延,减少了系统的信令开销。
可选地,在一些可能的实现方式中,重用第一TA值的预设条件可以与终端设备的位置变化信息相关。
可选地,在一些可能的实现方式中,在接收终端设备在确定该终端设备满足重用第一TA值的预设条件时根据该第一TA值传输的数据之前,该方法还包括:
向该终端设备发送距离阈值;
其中,接收终端设备在确定该终端设备满足重用第一TA值的预设条件时根据第一时间提前量TA值传输的数据,包括:
接收该终端设备在确定该终端设备的当前位置与该终端设备进行上一次数据传输的位置之间的距离不大于该距离阈值时,根据该第一TA值传输的数据。
可选地,向该终端设备发送距离阈值,包括:
通过广播消息或信令向该终端设备发送该距离阈值。
因此,网络侧设备可以接收终端设备在确定该终端设备满足重用第一TA值的预设条件时根据该第一TA值传输的数据,其中,该第一TA值是该终端设备上一次数据传输所使用的,避免了网络侧设备重新为终端设备计算新的TA值,能够降低延时,减少系统的信令开销。进一步地,网络侧设备可以向终端设备发送距离阈值,以便于终端设备根据距离阈值确定其满足重用第一TA值的预设条件。
可选地,在一些可能的实现方式中,在接收终端设备在确定该终端设备满足重用第一TA值的预设条件时根据该第一TA值传输的数据之前,该方法还包括:
向该终端设备发送信号功率上限阈值和信号功率下限阈值,其中,该信 号功率上限阈值大于该信号功率下限阈值;
其中,接收终端设备在确定该终端设备满足重用第一TA值的预设条件时根据该第一TA值传输的数据,包括:
接收该终端设备在确定该终端设备的参考信号接收功率信号功率值大于信号功率下限阈值,且小于信号功率上限阈值时,根据该第一TA值传输的数据。
可选地,在一些可能的实现方式中,信号功率值可以是参考信号接收功率RSRP值。
可选地,在一些可能的实现方式中,向该终端设备发送信号功率上限阈值和信号功率下限阈值,包括:
通过广播消息或信令向该终端设备发送该信号功率上限阈值和该信号功率下限阈值。
可选地,在一些可能的实现方式中,该方法还包括:
向该终端设备发送指示信息,该指示信息用于指示预定时间段;
其中,该接收终端设备在确定该终端设备满足重用第一TA值的预设条件时根据该第一TA值传输的数据,包括:
接收该终端设备在该预定时间段内,在确定该终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值时,根据该第一TA值传输的数据。
可选地,在具体实现时,该预定时间段可以理解为网络侧设备为终端设备设定的定时器,譬如在多少分钟内,只要终端设备测得基站信号强度不大于一个范围,则重用第一TA值。
因此,网络侧设备可以接收终端设备在确定该终端设备满足重用第一TA值的预设条件时根据该第一TA值传输的数据,其中,该第一TA值是该终端设备上一次数据传输所使用的,避免了网络侧设备重新为终端设备计算新的TA值,能够降低延时,减少系统的信令开销。进一步地,网络侧设备可以向终端设备发送信号功率上下限阈值,以便于终端设备根据信号功率上下限阈值确定其满足重用第一TA值的预设条件。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种网络侧设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备。该终端设备包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络侧设备。该网络侧设备包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得终端设备执行上述第一方面,及其各种实现方式中的任一种传输数据的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得终端设备执行上述第二方面,及其各种实现方式中的任一种传输数据的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是一个应用场景的示意图。
图2是根据本发明实施例的传输数据的方法的示意性流程图。
图3是根据本发明另一实施例的传输数据的方法的示意性流程图。
图4是根据本发明实施例提供的终端设备的示意性框图。
图5是根据本发明实施例的终端设备的结构框图。
图6是根据本发明实施例的系统芯片的示意性结构图。
图7是根据本发明实施例提供的网络侧设备的示意性框图。
图8是根据本发明实施例提供的网络侧设备的结构框图。
图9是根据本发明实施例的系统芯片的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、等目前的通信系统,以及,尤其应用于未来的5G系统或5G新空口(New Radio,NR)原型系统。
还应理解,本发明实施例中,网络侧设备也可以称为网络设备或基站等,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是未来5G网络中的基站设备等,本发明对此并不限定。
还应理解,在本发明实施例中,终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network)进行通信,终端设备可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处 理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备等。
图1是一个场景示意图。应理解,为了便于理解,这里引入图1中的场景为例进行说明,但并不对本发明构成限制。图1中示出了终端设备11、终端设备12、终端设备13和基站21。
如图1所示,终端设备11可以与基站21进行通信,终端设备12可以与基站21进行通信,终端设备13与基站21进行通信。或者,终端设备12也可以与终端设备11进行通信。或者,作为另一种情形,终端设备13与基站12进行通信。终端设备在接入移动通信系统或进行数据传输时,需要获取时间提前量(Timing Advance,TA)。其中,该TA值可以表示终端设备与基站的距离,或者,引入TA值是为了上行同步的,便于之后发送上行数据。
TA值的获取过程为:终端设备向基站发送一个已知序列,例如非竞争接入场景或竞争接入场景中的随机接入前导序列(random access preamble),基站根据该已知序列计算出TA值,并将该TA值发送给终端设备,其中,该TA值可以携带于基站给终端设备发送的随机接入响应消息(Random Access Response,RAR)中。例如,终端设备可以接收基站发送的RAR消息,该RAR消息中包括TA值。可选地,该RAR消息中还可以包括上行授权(UL grant),其中,该上行授权指示上行传输资源,用于该终端设备发送上行数据;小区临时标识(Temporary C-RNTI,TC-RNTI)信息,用于小区内标识终端设备。
然而,在现有技术中,当终端设备的位置变化范围比较小时,TA值仍然需要在每次进行数据传输时重新计算,重复所述“TA值的获取过程”,然后才能根据获取的TA值开始数据传输,这样会导致一定的延时。此外,由于需要重复所述“TA值的获取过程”,还增加了系统的信令开销。基于此,本专利的终端设备或网络侧设备试图使得终端设备在满足某些条件的情况下,沿用上次数据传输的TA值进行数据传输,以达到降低延时,以及减少信令开销的目的。
图2示出了根据本发明实施例的传输数据的方法200的示意性流程图。该方法200可以由终端设备执行,例如,该终端设备可以是图1中的终端设备11、终端设备12或终端设备13。如图2所示,该方法200包括:
S210,确定终端设备满足重用第一时间提前量TA值的预设条件;
可选地,预设条件可以根据终端设备的位置变化信息对应的一些量化值 进行设定,比如位置变化信息对应的地理位置值、移动距离值、或者参考信号接收功率(Reference Signal Receiving Power,RSRP)值等,对此不作限定。
比如,可选地,可以在协议里约定好RSRP门限值,只要终端设备的RSRP值处于该RSRP门限值内,终端设备就可以确定其位置变化信息满足预设条件。可选地,RSRP门限值也可以是基站指示给终端设备的。
需要说明的是,在本发明实施例中,位置变化信息可以代表终端设备在位置发生变化时所引起的一些可能会随着位置变化而发生变化的信息,比如,发生变化的距离值、发生变化的RSRP值等等,对此不作限定。
S220,根据该第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的。
具体而言,在终端设备判断其(比如,位置变化信息)满足重用第一TA值的预设条件时,可以根据该第一TA值进行数据传输,并且,该第一TA值是终端设备在上一次数据传输时所使用的TA值。这样,终端设备可以跳过向网络侧设备发送已知序列的过程,直接使用上一次数据传输的TA值,避免了等待网络侧设备重新计算TA值的过程,能够降低延时,以及减少信令开销。
换言之,终端设备在确定其满足重用第一TA值的预设条件时,可以直接重用上一次传输的TA值。譬如,终端设备在与基站的一次连接建立中获得了TA值,完成数据传输后释放与基站的连接;当下一次终端设备进行接入系统或数据传输时,若终端设备判断其位置变化信息符合预设条件,则可以跳过发送随机接入前导序列(preamble)的过程,直接使用上次获得的TA值接入系统或发送数据,其中,发送数据的所使用的资源可以是基站预先调度(pre-scheduling)的上行授权(UL grant)资源,或者是基于竞争(contention based)随机接入时基站发送的上行授权资源。
可选地,第一TA值可以是终端设备在开机进行初始接入时获取的,例如,在小区附着(attach)时,终端设备会获得第一TA值。
可选地,终端设备与基站建立连接后,在进行数据发送时,可以根据基站的指示对TA值进行更改,从而获取第一TA值。
可选地,第一TA值也可以是终端设备在越区切换(即小区切换)过程中获得的。比如,终端设备在切换到目标小区后,可以获得目标小区的新的 TA值,例如第一TA值。
应理解,在本发明实施例中,终端设备的第一TA值可以通过多种方式进行获取,上述只是举例进行描述,并不对本发明构成限制。
还应理解,在本发明实施例中,不论终端设备是通过哪种方式获取的第一TA值,只要终端设备的位置变化信息满足预设条件,均可以重用该第一TA值。换言之,本发明并不限定第一TA值的获取方式。
在本发明实施例中,终端设备确定该终端设备满足重用第一TA值的预设条件,并根据第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的,能够降低延时,以及减少信令开销。
应理解,“第一TA值”引入“第一”只是为了描述方便,并不对本发明构成具体限定。
可选地,作为一个实施例,S210可以包括:
确定该终端设备的当前位置与该终端设备进行上一次数据传输的位置之间的距离不大于距离阈值。
具体而言,终端设备确定位置变化信息满足预设条件可以是:终端设备确定其当前位置与其上一次数据传输的位置之间的距离不大于距离阈值。在满足这个预设条件时,终端设备就可以沿用上一次数据传输的TA值进行数据传输。
例如,若终端设备获取到第一TA值时对应的位置是A,移动后终端设备的位置是B,而B到A的距离小于一个预设的门限值,则终端设备可以重复使用该第一TA值。
应理解,在本发明实施例中,“不大于距离阈值”也可以变换为“小于距离阈值”,其大小关系可以按照需要进行设定或调整,对此不作限定。
需要说明的是,可选地,该距离阈值不限于是终端设备的移动距离对应的距离阈值,也可以表示终端设备移动后所在位置的对应距离的距离阈值。例如,终端设备当前位置B所对应的距离是k,距离阈值为n,而k小于n,则终端设备也可以确定其位置变化信息是满足预设条件的。
可选地,作为一个实施例,该方法200还可以包括:
接收网络侧设备发送的该距离阈值。
具体而言,终端设备可以接收网络侧设备发送的该距离阈值或距离门限值。然后,终端设备在根据该距离阈值判断其移动距离满足预设条件时,根 据第一TA值进行数据传输。
可选地,终端设备在与网络侧设备建立连接后,可以向网络侧设备汇报自己的地理位置信息。网络侧设备可以向终端设备配置地理位置信息范围(比如距离阈值),使得终端设备的地理位置信息在满足地理位置信息范围时,可以重用TA值。
可选地,接收网络侧设备发送的该距离阈值,包括:
接收网络侧设备通过广播消息或信令发送的该距离阈值。
在本发明实施例中,终端设备可以接收网络侧设备通过广播消息或专用信令等形式发送的距离阈值,例如,专用信令可以为无线资源控制(Radio Resource Control,RRC)信令,对此不作限定。
可选地,在本发明实施例中,该距离阈值也可以是终端设备和网络侧设备在协议里约定好的,对此不作限定。
因此,本发明实施例的传输数据的方法,终端设备确定该终端设备满足重用第一TA值的预设条件,并根据该第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的,能够降低延时,以及减少信令开销。进一步地,终端设备所满足的预设条件可以通过比较终端设备的移动距离与距离阈值之间的关系来确定。
可选地,作为一个实施例,S210可以包括:
确定该终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值,其中,该信号功率上限阈值大于该信号功率下限阈值。
比如,可选地,作为一个实施例,S210可以包括:
确定该终端设备的参考信号接收功率RSRP值大于RSRP下限阈值,且小于RSRP上限阈值,其中,该RSRP上限阈值大于该RSRP下限阈值。
具体而言,终端设备确定位置变化信息满足预设条件可以是:终端设备确定其参考信号接收功率RSRP值大于RSRP下限阈值,且小于RSRP上限阈值,其中,该RSRP上限阈值大于该RSRP下限阈值。在满足这个预设条件时,终端设备也可以沿用上一次数据传输的TA值进行数据传输。
应理解,在本发明实施例中,信号功率值不限于RSRP值,也可以是其他合理的可以表征终端设备重用第一TA值的预设条件的功率值,对此不作限定。
在本发明实施例中,RSRP值代表终端设备在LTE网络中无线信号强度 的关键参数,反应了终端设备测得的基站信号强度,可用来描述终端设备的位置变化信息。
例如,在终端设备根据第一TA值进行上一次数据传输时,终端设备对应的RSRP值为100分贝db,RSRP下限阈值为95db,RSRP上限阈值为105db。那么,只要终端设备对应的RSRP值在95-105db内,均可以采用100db对应的第一TA值进行数据传输。或者,换一种情形,也可以认为,当终端设备的变化值在正负5db之间,均可以重用该第一TA值。
又例如,终端设备可以以基站为中心,进行弧形移动,终端设备所在的位置会有对应的RSRP值。其中,若终端设备在该弧形区域范围内进行移动,则终端设备均可以重用TA值。
可选地,作为一个实施例,该方法200还可以包括:
接收网络侧设备发送的该信号功率上限阈值和该信号功率下限阈值。
比如,可选地,作为一个实施例,该方法200还可以包括:
接收网络侧设备发送的该RSRP上限阈值和该RSRP下限阈值。
具体而言,终端设备可以接收网络侧设备发送的该RSRP上限阈值和该RSRP下限阈值,然后在根据该RSRP上限阈值和该RSRP下限阈值判断终端设备的RSRP值满足预设条件时,根据第一TA值进行数据传输。
可选地,接收网络侧设备发送的该RSRP上限阈值和该RSRP下限阈值,包括:
接收网络侧设备通过广播消息或信令发送的该RSRP上限阈值和该RSRP下限阈值。
在本发明实施例中,终端设备可以接收网络侧设备通过广播消息或专用信令等形式发送的该RSRP上限阈值和该RSRP下限阈值,对此不作限定。
可选地,在本发明实施例中,该RSRP上限阈值和该RSRP下限阈值也可以是终端设备和网络侧设备在协议里约定好的,对此不作限定。
可选地,作为一个实施例,S210还包括:
在预定时间段内,确定该终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值,其中,该信号功率上限阈值大于该信号功率下限阈值。
比如,可选地,作为一个实施例,S210还包括:
在预定时间段内,确定该终端设备的RSRP值大于RSRP下限阈值,且 小于RSRP上限阈值,其中,该RSRP上限阈值大于该RSRP下限阈值。
具体而言,在预定时间段内,如果终端设备确定其RSRP值大于RSRP下限阈值,且小于RSRP上限阈值,其中,该RSRP上限阈值大于该RSRP下限阈值,那么终端设备可以在该预定时间段内重用第一TA值进行数据传输。
可选地,该方法200还包括:
接收该网络侧设备发送的指示信息,该指示信息用于指示该预定时间段。
具体而言,终端设备可以接收网络侧设备发送的指示信息,该指示信息用于指示该预定时间段。比如,在具体实现时,该预定时间段可以是基站为终端设备设定的定时器,譬如在多少分钟内,只要终端设备测得基站信号强度不大于一个范围,则重用第一TA值。其中,信号强度即可以用终端设备的RSRP值表示,范围可以用RSRP上限阈值和RSRP下限阈值表示。
可选地,在本发明实施例中,网络侧设备发送的用于指示终端设备的预定时间段的指示信息,也可以携带于广播消息或信令中。
应理解,在本发明实施例中,本发明仅以距离阈值、RSRP上限阈值和RSRP下限阈值为例进行说明,终端设备还可以根据其他可以表征终端设备的位置变化范围的合理的信息或指标,对预设条件进行判断,对此不作具体限定。
因此,本发明实施例的传输数据的方法,终端设备确定该终端设备满足重用第一TA值的预设条件,并根据该第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的,能够降低延时,以及减少系统的信令开销。进一步地,终端设备所满足的预设条件可以通过比较终端设备的RSRP值与RSRP上限阈值和RSRP下限阈值来确定。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
前面从终端设备的角度描述了根据本发明实施例的传输数据的方法,下面将从网络侧设备的角度描述根据本发明实施例的传输数据的方法。应理解,为了简洁,对于与终端设备侧的一些重复的概念或者内容将不作赘述。
图3示出了根据本发明另一实施例的传输数据的方法300的示意性流程 图。该方法300可以由网络侧设备执行,例如,该网络侧设备可以是图1中的基站21。如图3所示,该方法300包括:
S310,接收终端设备在确定该终端设备满足重用第一时间提前量TA值的预设条件时根据该第一TA值传输的数据,其中,该第一TA值是该终端设备上一次数据传输所使用的。
在本发明实施例中,网络侧设备可以接收终端设备根据第一TA值发送的数据,该第一TA值是终端设备上一次传输所使用的。并且,终端设备是在确定其位置变化信息满足预设条件时,重用该第一TA值的。这样,网络侧设备无需重新为终端设备计算新的TA值,从而降低了时延,减少了系统的信令开销。
可选地,作为一个实施例,在S310之前,该方法300还包括:
向该终端设备发送距离阈值;
其中,S310包括:
接收该终端设备在确定该终端设备的当前位置与该终端设备进行上一次数据传输的位置之间的距离不大于该距离阈值时,根据该第一TA值传输的数据。
具体而言,网络侧设备可以向终端设备发送距离阈值,使得终端设备可以根据该距离阈值来判断其是否满足预设条件。当终端设备确定其当前位置与该终端设备进行上一次数据传输的位置之间的距离,不大于该终端设备的距离阈值时,网络侧设备可以接收终端设备重用该第一TA值向网络侧设备发送的数据。
可选地,向该终端设备发送距离阈值,包括:
通过广播消息或信令向该终端设备发送该距离阈值。
具体而言,网络侧设备向终端设备发送距离阈值时,可以通过广播消息或专用信令(比如,RRC信令)等多种形式进行发送,对此不作限定。
因此,网络侧设备可以接收终端设备在确定该终端设备满足重用第一TA值的预设条件时根据该第一TA值传输的数据,其中,该第一TA值是该终端设备上一次数据传输所使用的,避免了网络侧设备重新为终端设备计算新的TA值,能够降低延时,减少系统的信令开销。进一步地,网络侧设备可以向终端设备发送距离阈值,以便于终端设备根据距离阈值确定其满足重用第一TA值的预设条件。
可选地,作为一个实施例,在S310之前,该方法300还包括:
向该终端设备发送信号功率上限阈值和信号功率下限阈值,其中,该信号功率上限阈值大于该信号功率下限阈值;
其中,S310包括:
接收该终端设备在确定该终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值时,根据该第一TA值传输的数据。
比如,可选地,作为一个实施例,在S310之前,该方法300还包括:
向该终端设备发送参考信号接收功率RSRP上限阈值和RSRP下限阈值,其中,该RSRP上限阈值大于该RSRP下限阈值;
其中,S310包括:
接收该终端设备在确定该终端设备的参考信号接收功率RSRP值大于RSRP下限阈值,且小于RSRP上限阈值时,根据该第一TA值传输的数据。
具体而言,网络侧设备可以向终端设备发送RSRP上限阈值和RSRP下限阈值,使得终端设备可以根据该RSRP上限阈值和该RSRP下限阈值来判断其是否满足预设条件。当终端设备确定其RSRP值大于RSRP下限阈值,且小于RSRP上限阈值时,网络侧设备可以接收该终端设备重用该第一TA值向网络侧设备发送的数据。
可选地,向该终端设备发送RSRP上限阈值和RSRP下限阈值,包括:
通过广播消息或信令向该终端设备发送该RSRP上限阈值和该RSRP下限阈值。
具体而言,网络侧设备向终端设备发送RSRP上限阈值和RSRP下限阈值时,可以通过广播消息或专用信令(比如,RRC信令)等多种形式进行发送,对此不作限定。
可选地,该方法300还包括:
向该终端设备发送指示信息,该指示信息用于指示预定时间段;
其中,该接收终端设备在确定该终端设备的位置变化信息满足预设条件时根据第一时间提前量TA值传输的数据,包括:
接收该终端设备在该预定时间段内,在确定该终端设备的参考信号接收功率RSRP值大于RSRP下限阈值,且小于RSRP上限阈值时,根据该第一TA值传输的数据。
具体而言,网络侧设备可以向终端设备发送指示信息,该指示信息用于 指示终端设备的预定时间段,以便于终端设备在该预定时间段内,在确定该终端设备的RSRP值大于RSRP下限阈值,且小于RSRP上限阈值时,根据该第一TA值向网络侧设备发送数据。
可选地,在具体实现时,该预定时间段可以理解为网络侧设备为终端设备设定的定时器,譬如在多少分钟内,只要终端设备测得基站信号强度不大于一个范围,则重用第一TA值。
因此,网络侧设备可以接收终端设备在确定该终端设备满足重用第一TA值的预设条件时根据该第一TA值传输的数据,其中,该第一TA值是该终端设备上一次数据传输所使用的,避免了网络侧设备重新为终端设备计算新的TA值,能够降低延时,减少系统的信令开销。进一步地,网络侧设备可以向终端设备发送RSRP上下限阈值,以便于终端设备根据RSRP上下限阈值确定其位置变化信息满足重用第一TA值的预设条件。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文从终端设备和网络侧设备详细描述了根据本发明实施例的传输数据的方法,下面将描述根据本发明实施例的终端设备和网络侧设备。
图4示出了根据本发明实施例的终端设备400的示意性框图。如图4所示,该终端设备400包括:
确定模块410,用于确定终端设备满足重用第一时间提前量TA值的预设条件;
传输模块420,用于根据该第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的。
在本发明实施例中,终端设备确定该终端设备满足重用第一TA值的预设条件,并根据该第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的,能够降低延时,以及减少信令开销。
可选地,作为一个实施例,该确定模块410具体用于:
确定该终端设备的当前位置与该终端设备进行上一次数据传输的位置之间的距离不大于距离阈值。
可选地,该终端设备400还包括:
第一接收模块,用于接收网络侧设备发送的该距离阈值。
可选地,作为一个实施例,该确定模块410具体用于:
确定该终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值,其中,该信号功率上限阈值大于该信号功率下限阈值。
可选地,该终端设备400还包括:
第二接收模块,用于接收网络侧设备发送的该信号功率上限阈值和该信号功率下限阈值。
可选地,该确定模块410具体用于:
在预定时间段内,确定该终端设备的参考信号接收功率信号功率值大于信号功率下限阈值,且小于信号功率上限阈值,其中,该信号功率上限阈值大于该信号功率下限阈值。
可选地,该终端设备400还包括:
第三接收模块,用于接收该网络侧设备发送的指示信息,该指示信息用于指示该预定时间段。
可选地,该第一接收模块具体用于:
接收网络侧设备通过广播消息或信令发送的该距离阈值。
可选地,该第二接收模块具体用于:
接收网络侧设备通过广播消息或信令发送的该信号功率上限阈值和该信号功率下限阈值。
根据本发明实施例的终端设备400可执行根据本发明实施例的传输数据的方法200,并且该终端设备400中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的终端设备400,通过确定该终端设备满足重用第一TA值的预设条件,并根据第一TA值进行数据传输,其中,该第一TA值是该终端设备上一次数据传输所使用的,能够降低延时,以及减少系统的信令开销。
应注意,本发明实施例中,传输模块420可以由发送器实现,接收模块420可以由接收器实现,确定模块410可以由处理器实现。如图5所示,终端设备500可以包括处理器501、接收器502、发送器503和存储器504。其中,存储器504可以用于存储处理器501执行的代码等。处理器501用于执行存储器504所存储的代码。
终端设备500中的各个组件通过总线系统505耦合在一起,其中总线系 统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图6是本发明一个实施例的系统芯片的示意性结构图。图6的系统芯片600包括输入接口610、输出接口620、至少一个处理器630、存储器640,该输入接口610、输出接口620、该处理器630以及存储器640之间通过总线650相连,该处理器630用于执行该存储器640中的代码,当该代码被执行时,该处理器630实现图2中由终端设备执行的方法。
图4所示的终端设备400或图5所示的终端设备500或图6所示的系统芯片600能够实现前述图2方法实施例中由终端设备所实现的各个过程,为避免重复,这里不再赘述。
图7示出了根据本发明实施例的网络侧设备700的示意性框图。如图7所示,该网络侧设备700包括:
接收模块710,用于接收终端设备在确定该终端设备满足重用第一时间提前量TA值的预设条件时根据该第一TA值传输的数据,其中,该第一TA值是该终端设备上一次数据传输所使用的。
在本发明实施例中,网络侧设备可以接收终端设备根据第一TA值发送的数据,该第一TA值是终端设备上一次传输所使用的。并且,终端设备是在确定其满足重用第一TA值的预设条件时,重用该第一TA值的。这样,网络侧设备无需重新为终端设备计算新的TA值,从而降低了时延,减少了系统的信令开销。
可选地,作为一个实施例,该网络侧设备还包括:
第一发送模块,用于向该终端设备发送距离阈值;
其中,该接收模块710具体用于:
接收该终端设备在确定该终端设备的当前位置与该终端设备进行上一次数据传输的位置之间的距离,不大于该第一发送模块发送的该距离阈值时,根据该第一TA值传输的数据。
可选地,该第一发送模块具体用于:
通过广播消息或信令向该终端设备发送该距离阈值。
可选地,作为一个实施例,该网络侧设备还包括:
第二发送模块,用于向该终端设备发送参考信号接收功率信号功率上限阈值和信号功率下限阈值,其中,该信号功率上限阈值大于该信号功率下限阈值;
其中,该接收模块具体用于:
接收该终端设备在确定该终端设备的参考信号接收功率信号功率值大于该第二发送模块发送的该信号功率下限阈值,且小于该第二发送模块发送的该信号功率上限阈值时,根据该第一TA值传输的数据。
可选地,作为一个实施例,该网络侧设备还包括:
第三发送模块,用于向该终端设备发送指示信息,该指示信息用于指示预定时间段;
其中,该接收模块具体用于:
接收该终端设备在该预定时间段内,在确定该终端设备的参考信号接收功率信号功率值大于信号功率下限阈值,且小于信号功率上限阈值时,根据该第一TA值传输的数据。
可选地,该第二发送模块具体用于:
通过广播消息或信令向该终端设备发送该信号功率上限阈值和该信号功率下限阈值。
根据本发明实施例的网络侧设备700可执行根据本发明实施例的传输数据的方法300,并且该网络侧设备700中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的网络侧设备700,接收终端设备在确定该终端设备满足重用第一TA值的预设条件时根据该第一TA值传输的数据,其中,该第一TA值是该终端设备上一次数据传输所使用的,避免了网络侧设备重新为终端设备计算新的TA值,能够降低延时,减少系统的信令开销。
应注意,本发明实施例中,接收模块710由接收器实现,第一发送模块、第二发送模块、第三发送模块可以由发送器实现。如图8所示,网络侧设备800可以包括处理器801、接收器802、发送器803和存储器804。其中,存储器804可以用于存储处理器801执行的代码等。处理器801用于执行存储器804所存储的代码。
网络侧设备800中的各个组件通过总线系统805耦合在一起,其中总线系统805除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
图9是本发明实施例的系统芯片的一个示意性结构图。图9的系统芯片900包括输入接口910、输出接口920、至少一个处理器930、存储器940,所述输入接口910、输出接口920、所述处理器930以及存储器940之间通 过总线950相连,所述处理器930用于执行所述存储器940中的代码,当所述代码被执行时,所述处理器930实现图3中由网络侧设备执行的方法。
图7所示的网络侧设备700或图8所示的网络侧设备800或图9所示的系统芯片900能够实现前述图3方法实施例中由网络侧设备所实现的各个过程,为避免重复,这里不再赘述。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,简称“DSP”)、专用集成电路(Application Specific Integrated Circuit,简称“ASIC”)、现成可编程门阵列(Field Programmable Gate Array,简称“FPGA”)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称“ROM”)、可编程只读存储器(Programmable ROM,简称“PROM”)、可擦除可编程只读存储器(Erasable PROM,简称“EPROM”)、电可擦除可编程只读存储器(Electrically EPROM,简称“EEPROM”)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称“RAM”),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称“SRAM”)、动态随机存取存储器(Dynamic RAM,简称“DRAM”)、同步动态随机存取存储器(Synchronous DRAM,简称“SDRAM”)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称“DDR SDRAM”)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称 “ESDRAM”)、同步连接动态随机存取存储器(Synchlink DRAM,简称“SLDRAM”)和直接内存总线随机存取存储器(Direct Rambus RAM,简称“DR RAM”)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种传输数据的方法,其特征在于,包括:
    确定终端设备满足重用第一时间提前量TA值的预设条件;
    根据所述第一TA值进行数据传输,其中,所述第一TA值是所述终端设备上一次数据传输所使用的。
  2. 根据权利要求1所述的方法,其特征在于,所述确定终端设备满足第一重用时间提前量TA值的预设条件,包括:
    确定所述终端设备的当前位置与所述终端设备进行上一次数据传输的位置之间的距离不大于距离阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收网络侧设备发送的所述距离阈值。
  4. 根据权利要求1所述的方法,其特征在于,所述确定终端设备满足重用第一时间提前量TA值的预设条件,包括:
    确定所述终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值,其中,所述信号功率上限阈值大于所述信号功率下限阈值。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收网络侧设备发送的所述信号功率上限阈值和所述信号功率下限阈值。
  6. 根据权利要求4或5所述的方法,其特征在于,所述确定终端设备满足重用第一时间提前量TA值的预设条件,还包括:
    在预定时间段内,确定所述终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值,其中,所述信号功率上限阈值大于所述信号功率下限阈值。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收所述网络侧设备发送的指示信息,所述指示信息用于指示所述预定时间段。
  8. 根据权利要求3所述的方法,其特征在于,所述接收网络侧设备发送的所述距离阈值包括:
    接收所述网络侧设备通过广播消息或信令发送的所述距离阈值。
  9. 根据权利要求5至7中任一项所述的方法,其特征在于,所述接收网络侧设备发送的所述信号功率上限阈值和所述信号功率下限阈值,包括:
    接收所述网络侧设备通过广播消息或信令发送的所述信号功率上限阈值和所述信号功率下限阈值。
  10. 一种传输数据的方法,其特征在于,包括:
    接收终端设备在确定所述终端设备满足重用第一时间提前量TA值的预设条件时根据所述第一TA值传输的数据,其中,所述第一TA值是所述终端设备上一次数据传输所使用的。
  11. 根据权利要求10所述的方法,其特征在于,在所述接收终端设备在确定所述终端设备满足重用第一时间提前量TA值的预设条件时根据所述第一TA值传输的数据之前,所述方法还包括:
    向所述终端设备发送距离阈值;
    其中,所述接收终端设备在确定所述终端设备满足重用第一时间提前量TA值的预设条件时根据所述第一TA值传输的数据,包括:
    接收所述终端设备在确定所述终端设备的当前位置与所述终端设备进行上一次数据传输的位置之间的距离不大于所述距离阈值时,根据所述第一TA值传输的数据。
  12. 根据权利要求11所述的方法,其特征在于,所述向所述终端设备发送距离阈值,包括:
    通过广播消息或信令向所述终端设备发送所述距离阈值。
  13. 根据权利要求10所述的方法,其特征在于,在所述接收终端设备在确定所述终端设备满足重用第一时间提前量TA值的预设条件时根据所述第一TA值传输的数据之前,所述方法还包括:
    向所述终端设备发送信号功率上限阈值和信号功率下限阈值,其中,所述信号功率上限阈值大于所述信号功率下限阈值;
    其中,所述接收终端设备在确定所述终端设备满足重用第一时间提前量TA值的预设条件时根据所述第一TA值传输的数据,包括:
    接收所述终端设备在确定所述终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值时,根据所述第一TA值传输的数据。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送指示信息,所述指示信息用于指示预定时间段;
    其中,所述接收终端设备在确定所述终端设备的位置变化信息满足预设条件时根据第一时间提前量TA值传输的数据,包括:
    接收所述终端设备在所述预定时间段内,在确定所述终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值时,根据所述第一TA值传输的数据。
  15. 根据权利要求13或14所述的方法,其特征在于,所述向所述终端设备发送信号功率上限阈值和信号功率下限阈值,包括:
    通过广播消息或信令向所述终端设备发送所述信号功率上限阈值和所述信号功率下限阈值。
  16. 一种终端设备,其特征在于,包括:
    确定模块,用于确定终端设备满足重用第一时间提前量TA值的预设条件;
    传输模块,用于根据所述第一TA值进行数据传输,其中,所述第一TA值是所述终端设备上一次数据传输所使用的。
  17. 根据权利要求16所述的终端设备,其特征在于,所述确定模块具体用于:
    确定所述终端设备的当前位置与所述终端设备进行上一次数据传输的位置之间的距离不大于距离阈值。
  18. 根据权利要求17所述的终端设备,其特征在于,所述终端设备还包括:
    第一接收模块,用于接收网络侧设备发送的所述距离阈值。
  19. 根据权利要求16所述的终端设备,其特征在于,所述确定模块具体用于:
    确定所述终端设备的参考信号接收功率信号功率值大于信号功率下限阈值,且小于信号功率上限阈值,其中,所述信号功率上限阈值大于所述信号功率下限阈值。
  20. 根据权利要求19所述的终端设备,其特征在于,所述终端设备还包括:
    第二接收模块,用于接收网络侧设备发送的所述信号功率上限阈值和所述信号功率下限阈值。
  21. 根据权利要求19或20所述的终端设备,其特征在于,所述确定模块具体用于:
    在预定时间段内,确定所述终端设备的信号功率值大于信号功率下限阈 值,且小于信号功率上限阈值,其中,所述信号功率上限阈值大于所述信号功率下限阈值。
  22. 根据权利要求21所述的终端设备,其特征在于,所述终端设备还包括:
    第三接收模块,用于接收所述网络侧设备发送的指示信息,所述指示信息用于指示所述预定时间段。
  23. 根据权利要求18所述的终端设备,其特征在于,所述第一接收模块具体用于:
    接收所述网络侧设备通过广播消息或信令发送的所述距离阈值。
  24. 根据权利要求20至22中任一项所述的终端设备,其特征在于,所述第二接收模块具体用于:
    接收所述网络侧设备通过广播消息或信令发送的所述信号功率上限阈值和所述信号功率下限阈值。
  25. 一种网络侧设备,其特征在于,包括:
    接收模块,用于接收终端设备在确定所述终端设备满足重用第一时间提前量TA值的预设条件时根据所述第一TA值传输的数据,其中,所述第一TA值是所述终端设备上一次数据传输所使用的。
  26. 根据权利要求25所述的网络侧设备,其特征在于,所述网络侧设备还包括:
    第一发送模块,用于向所述终端设备发送距离阈值;
    其中,所述接收模块具体用于:
    接收所述终端设备在确定所述终端设备的当前位置与所述终端设备进行上一次数据传输的位置之间的距离,不大于所述第一发送模块发送的所述距离阈值时,根据所述第一TA值传输的数据。
  27. 根据权利要求26所述的网络侧设备,其特征在于,所述第一发送模块具体用于:
    通过广播消息或信令向所述终端设备发送所述距离阈值。
  28. 根据权利要求25所述的网络侧设备,其特征在于,所述网络侧设备还包括:
    第二发送模块,用于向所述终端设备发送参考信号接收功率信号功率上限阈值和信号功率下限阈值,其中,所述信号功率上限阈值大于所述信号功 率下限阈值;
    其中,所述接收模块具体用于:
    接收所述终端设备在确定所述终端设备的信号功率值大于所述第二发送模块发送的所述信号功率下限阈值,且小于所述第二发送模块发送的所述信号功率上限阈值时,根据所述第一TA值传输的数据。
  29. 根据权利要求28所述的网络侧设备,其特征在于,所述网络侧设备还包括:
    第三发送模块,用于向所述终端设备发送指示信息,所述指示信息用于指示预定时间段;
    其中,所述接收模块具体用于:
    接收所述终端设备在所述预定时间段内,在确定所述终端设备的信号功率值大于信号功率下限阈值,且小于信号功率上限阈值时,根据所述第一TA值传输的数据。
  30. 根据权利要求28或29所述的网络侧设备,其特征在于,所述第二发送模块具体用于:
    通过广播消息或信令向所述终端设备发送所述信号功率上限阈值和所述信号功率下限阈值。
PCT/CN2016/096066 2016-08-19 2016-08-19 传输数据的方法、终端设备和网络侧设备 WO2018032508A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680088488.5A CN109565696B (zh) 2016-08-19 2016-08-19 传输数据的方法、终端设备和网络侧设备
EP16913264.4A EP3490275B1 (en) 2016-08-19 2016-08-19 Method for transmitting data, terminal device and network-side device
US16/326,110 US10849146B2 (en) 2016-08-19 2016-08-19 Method for transmitting data, terminal device and network-side device
JP2019510345A JP6900464B2 (ja) 2016-08-19 2016-08-19 データ伝送方法、端末デバイス及びネットワーク側デバイス
PCT/CN2016/096066 WO2018032508A1 (zh) 2016-08-19 2016-08-19 传输数据的方法、终端设备和网络侧设备
KR1020197007755A KR20190039288A (ko) 2016-08-19 2016-08-19 데이터 전송 방법, 단말기 디바이스 및 네트워크측 디바이스
TW106123102A TWI737767B (zh) 2016-08-19 2017-07-10 傳輸數據的方法、終端設備和網絡側設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096066 WO2018032508A1 (zh) 2016-08-19 2016-08-19 传输数据的方法、终端设备和网络侧设备

Publications (1)

Publication Number Publication Date
WO2018032508A1 true WO2018032508A1 (zh) 2018-02-22

Family

ID=61196290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096066 WO2018032508A1 (zh) 2016-08-19 2016-08-19 传输数据的方法、终端设备和网络侧设备

Country Status (7)

Country Link
US (1) US10849146B2 (zh)
EP (1) EP3490275B1 (zh)
JP (1) JP6900464B2 (zh)
KR (1) KR20190039288A (zh)
CN (1) CN109565696B (zh)
TW (1) TWI737767B (zh)
WO (1) WO2018032508A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447648A (zh) * 2019-01-16 2020-07-24 华为技术有限公司 一种数据传输方法、相关设备以及系统
WO2021258369A1 (zh) * 2020-06-24 2021-12-30 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836351B (zh) * 2019-04-22 2023-06-23 普天信息技术有限公司 一种功率分配方法及装置
WO2021022496A1 (zh) * 2019-08-06 2021-02-11 Oppo广东移动通信有限公司 随机接入的方法和设备
KR20230144081A (ko) 2021-03-31 2023-10-13 애플 인크. 2차 셀 그룹에서의 업링크 타이밍 동기화 유지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1744464A (zh) * 2004-08-31 2006-03-08 西门子(中国)有限公司 时分-同步码分多址接入系统中用户设备测量报告的修正方法
CN102651908A (zh) * 2011-02-28 2012-08-29 华为技术有限公司 一种传输数据的方法及设备
EP2827660A1 (en) * 2013-07-16 2015-01-21 Alcatel Lucent Mobile terminal and base station
CN104703120A (zh) * 2015-04-01 2015-06-10 北京佰才邦技术有限公司 移动通信方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050053099A1 (en) * 2003-09-05 2005-03-10 Spear Stephen L. Timing advance determinations in wireless communications devices and methods
FI20065197A0 (fi) 2006-03-27 2006-03-27 Nokia Corp Nousevan siirtotien synkronointiparametrin voimassaolon päättely pakettiradiojärjestelmässä
EP3755075A3 (en) * 2010-03-12 2021-03-31 BlackBerry Limited Timing advance enhancements for cellular communications
EP2469942A1 (en) * 2010-12-21 2012-06-27 Research in Motion UK Limited RACH procedures and power level for MTC devices
CN102547836B (zh) * 2010-12-23 2014-07-02 中国移动通信集团设计院有限公司 一种确定移动终端的运动轨迹的方法、装置及系统
JP2013021496A (ja) 2011-07-11 2013-01-31 Fujitsu Ltd 移動局、及び送信制御方法
EP3101823B1 (en) 2014-01-28 2021-10-27 LG Electronics Inc. Method and apparatus for device-to-device terminal for tranceiving signal in wireless communication system
JP2015207951A (ja) 2014-04-22 2015-11-19 株式会社Jvcケンウッド 端末装置、基地局装置、通信システム、通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1744464A (zh) * 2004-08-31 2006-03-08 西门子(中国)有限公司 时分-同步码分多址接入系统中用户设备测量报告的修正方法
CN102651908A (zh) * 2011-02-28 2012-08-29 华为技术有限公司 一种传输数据的方法及设备
EP2827660A1 (en) * 2013-07-16 2015-01-21 Alcatel Lucent Mobile terminal and base station
CN104703120A (zh) * 2015-04-01 2015-06-10 北京佰才邦技术有限公司 移动通信方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447648A (zh) * 2019-01-16 2020-07-24 华为技术有限公司 一种数据传输方法、相关设备以及系统
WO2021258369A1 (zh) * 2020-06-24 2021-12-30 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN109565696B (zh) 2021-03-19
US10849146B2 (en) 2020-11-24
TWI737767B (zh) 2021-09-01
JP6900464B2 (ja) 2021-07-07
EP3490275A4 (en) 2019-05-29
JP2019531009A (ja) 2019-10-24
TW201808040A (zh) 2018-03-01
US20190191449A1 (en) 2019-06-20
KR20190039288A (ko) 2019-04-10
CN109565696A (zh) 2019-04-02
EP3490275B1 (en) 2021-03-31
EP3490275A1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
CN110366868B (zh) 随机接入的方法、终端设备、网络设备和计算机可读介质
US20220386184A1 (en) Mobility management method, terminal, and base station
TWI737767B (zh) 傳輸數據的方法、終端設備和網絡側設備
TWI752978B (zh) 發送和接收尋呼消息的方法、接入網設備和終端設備
CN111869306B (zh) 随机接入的方法、终端设备和网络设备
US9942910B2 (en) Method for transmitting data on wireless local area network, user equipment, and access point
US20210176796A1 (en) Random Access Method, Terminal Apparatus, and Network Apparatus
WO2021087929A1 (zh) 一种随机接入的方法和装置
WO2020107429A1 (zh) 随机接入的方法和设备
EP3565366B1 (en) Method for random access, and terminal device and network device
TWI749312B (zh) 一種擁塞控制方法、設備及裝置
WO2020057519A1 (zh) 调度方法、设备与计算机可读存储介质
WO2020024616A1 (zh) 一种随机接入方法及相关设备
WO2020087476A1 (zh) 传输系统信息的方法和设备
TW201822571A (zh) 用於隨機接入的方法和設備
WO2020206643A1 (zh) 一种随机接入方法、设备及存储介质
CN108882388B (zh) 一种随机接入方法及基站
EP3606181B1 (en) Method for terminal device to access network and terminal device
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2018119612A1 (zh) 用于随机接入的方法和装置
US20210204327A1 (en) Method for controlling power ramp counter, and terminal device
TWI676381B (zh) 發送隨機接入前導的方法和終端設備
US20220225433A1 (en) Wireless communication method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510345

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016913264

Country of ref document: EP

Effective date: 20190221

ENP Entry into the national phase

Ref document number: 20197007755

Country of ref document: KR

Kind code of ref document: A