WO2021134501A1 - 环形磁芯、环形变压器和电感器及其自动化制造方法 - Google Patents

环形磁芯、环形变压器和电感器及其自动化制造方法 Download PDF

Info

Publication number
WO2021134501A1
WO2021134501A1 PCT/CN2019/130565 CN2019130565W WO2021134501A1 WO 2021134501 A1 WO2021134501 A1 WO 2021134501A1 CN 2019130565 W CN2019130565 W CN 2019130565W WO 2021134501 A1 WO2021134501 A1 WO 2021134501A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
magnetic
toroidal
core
magnetic block
Prior art date
Application number
PCT/CN2019/130565
Other languages
English (en)
French (fr)
Inventor
季杨平
庞雷宇
张冲
Original Assignee
深圳市高斯博电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市高斯博电子科技有限公司 filed Critical 深圳市高斯博电子科技有限公司
Priority to PCT/CN2019/130565 priority Critical patent/WO2021134501A1/zh
Publication of WO2021134501A1 publication Critical patent/WO2021134501A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the invention relates to the technical field of electronic information, in particular to a toroidal magnetic core, a toroidal transformer, an inductor and an automated manufacturing method thereof.
  • Toroidal magnetic cores are widely used in power grids, high-power power supplies, photovoltaic inverters, UPS, vehicle-mounted or large-scale charging equipment, such as flat vertical winding toroidal inductors and transformers. They have simple and firm structure, easy production, uniform magnetic field distribution, and leakage. Advantages such as small magnetism.
  • the invention mainly provides a toroidal magnetic core, a toroidal transformer and an inductor that produce stable electrical parameters, and a manufacturing method thereof.
  • an embodiment provides a toroidal magnetic core, including a first magnetic core and a second magnetic core;
  • the first magnetic core includes a first magnetic block and a second magnetic block superimposed from a height direction or a thickness direction, and at least part of the surface of the first magnetic block and at least part of the surface of the second magnetic block are attached to Together, and make the ends of the first magnetic block and the second magnetic block stagger at a certain angle to form a step;
  • the second magnetic core includes a third magnetic block and a fourth magnetic block superimposed from a height direction or a thickness direction, and at least part of the surface of the third magnetic block and at least part of the surface of the fourth magnetic block are attached to Together, and make the ends of the third magnetic block and the fourth magnetic block stagger at a certain angle to form a step, which matches the step formed by the end of the first magnetic core;
  • the two ends of the first magnetic core and the two ends of the second magnetic core are respectively butted to form an annular magnetic core.
  • the toroidal magnetic core is composed of two ends of the first magnetic core and two ends of the second magnetic core respectively fixedly butted by dispensing glue in the horizontal direction of the step.
  • first magnetic block and the second magnetic block have the same geometric center of gravity
  • third magnetic block and the fourth magnetic block have the same geometric center of gravity
  • all the outer surfaces of the first magnetic core and the second magnetic core except the bonding surface are attached with an insulating layer.
  • edges of the first magnetic core and the second magnetic core are both chamfered.
  • the toroidal magnetic core may have a toroidal or lip-shaped structure.
  • an embodiment provides a toroidal inductor including a toroidal core and a coil, the coil being wound on the toroidal core.
  • an embodiment provides a toroidal transformer including a toroidal core, and a primary coil and a secondary coil;
  • the number of turns of the primary coil and the secondary coil are different.
  • an embodiment provides an automated manufacturing method of a toroidal inductor, including the following steps:
  • the first magnetic core includes a first magnetic block and a second magnetic block superimposed from a height direction or a thickness direction, at least a part of the surface of the first magnetic block and the second magnetic block At least part of the surfaces are attached together, and the ends of the first magnetic block and the second magnetic block are staggered by a certain angle to form a step;
  • the second magnetic core includes a third magnetic block and a fourth magnetic block superimposed from the height direction or the thickness direction, at least part of the surface of the third magnetic block and the fourth magnetic block At least part of the surfaces are attached together, and the ends of the third magnetic block and the fourth magnetic block are staggered by a certain angle to form a step, which matches the step formed by the end of the first magnetic core;
  • the two ends of the first magnetic core and the two ends of the second magnetic core are respectively glued to butt and fixed to form a toroidal inductor.
  • steps are formed at the two ends of the first magnetic core and the second magnetic core respectively.
  • the two ends of the two magnetic cores respectively form a toroidal core by dispensing glue in the horizontal direction of the step, and the dispensing position is not on the magnetic circuit of the toroidal core, so that the electrical parameters of the toroidal core are not affected, so that the toroidal magnetic
  • the core, toroidal inductor or transformer has stable electrical parameters.
  • FIG. 1 is a schematic structural diagram of an inductor with a toroidal structure magnetic core according to an embodiment
  • FIG. 2 is a schematic diagram of a specific structure of a first magnetic core or a second magnetic core according to an embodiment
  • FIG. 3 is a schematic diagram of a specific structure of a first magnetic core or a second magnetic core according to another embodiment
  • FIG. 4 is a schematic diagram of a specific structure of the winding coil wound on the first magnetic core or the second magnetic core;
  • Figure 5 is a schematic diagram of the first magnetic core or the second magnetic core being sprayed with insulating varnish
  • Fig. 6(a) is a schematic diagram of the specific structure of the first and/or second magnetic core of the toroidal core with a square-shaped structure of an embodiment
  • Fig. 6(b) is a schematic diagram of the toroidal core with a square-shaped structure of an embodiment Schematic;
  • Fig. 7(a) is a schematic diagram of the specific structure of the first and/or second magnetic cores of the toroidal core with the word-shaped structure in another embodiment
  • Fig. 7(b) is the toroidal magnetic core with the word-shaped structure in another embodiment Schematic diagram of the core structure
  • Figure 8 is a flow chart of an automated manufacturing method of a toroidal inductor
  • Fig. 9(a) is a structural diagram of a toroidal core with openings
  • Fig. 9(b) is a structural diagram of a coil
  • Fig. 9(c) is a schematic diagram of a structure after the coil is assembled on the toroidal core.
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • Figure 9 is a structural diagram of an existing toroidal core, in which Figure 9(a) is a toroidal core with openings, Figure 9(b) is a coil, and Figure 9(c) is an assembly of the coil to The schematic diagram of the structure after the toroidal core is assembled.
  • the toroidal coil needs to be cut an opening with a cutting machine, and then the coil is assembled to the toroidal core with the opening through the opening.
  • the cut magnetic core is glued to the opening through the adhesive glue on the end surface of the magnetic core to obtain a complete annular magnetic core. Since the glue is glued to the end face of the opening, it is located on the magnetic circuit of the magnetic core.
  • the air gap in the glue is larger than that of the magnetic core, which leads to a decrease in inductance and a different amount of glue. , which also makes the inductance unstable.
  • the material of the magnetic core is mainly ferrite, alloy powder, amorphous and silicon steel, and its density and hardness are relatively high, which makes it very difficult to cut the opening, low cutting efficiency and high cost, and high requirements for cutting equipment.
  • the toroidal magnetic core is formed by butting the two ends of the first magnetic core and the two ends of the second magnetic core respectively, and the two ends of the first and/or second magnetic core have With matching steps, after assembling the coils on the first and/or second cores, glue the two ends of the first core and the two ends of the second core by dispensing glue in the horizontal direction of the steps. Fixed butt together, so that the dispensing is not on the magnetic circuit of the magnetic core, and does not affect its electrical parameters, and realizes the stability of the electrical parameters of the toroidal core.
  • this embodiment uses an inductor with a toroidal core structure as an example for description.
  • FIG. 1 is a schematic structural diagram of an inductor with a toroidal structure magnetic core according to an embodiment, which includes: a toroidal core 2 and a coil 1, the coil 1 being wound on the toroidal core 2 .
  • the toroidal magnetic core includes a first magnetic core and a second magnetic core, as shown in Figures 2 and 5, where the first magnetic core includes a first magnetic block 201 and a second magnetic block that are superimposed from the height direction or the thickness direction. 203. At least part of the surface of the first magnetic block 201 and at least part of the surface of the second magnetic block 203 are bonded together, wherein FIG. 2 shows the first magnetic block 201 and the second magnetic block 203 stacked together in a height direction.
  • the height direction in this embodiment refers to the direction from top to bottom or bottom to top in FIG. 2, and FIG.
  • the thickness direction in this embodiment refers to the direction from left to right or from right to left in FIG.
  • the block 201 and the second magnetic block 203 are superimposed and bonded together; similarly, the second magnetic core includes a third magnetic block and a fourth magnetic block that are superimposed from the height direction or the thickness direction, and the third magnetic block At least part of the surface and at least part of the surface of the fourth magnetic block are attached together, and the ends of the third magnetic block and the fourth magnetic block are staggered to form a step, which matches the step formed by the end of the first magnetic core , It also superimposes and adheres the third magnetic block and the fourth magnetic block by dispensing glue.
  • the winding coil 1 Before the two ends of the first magnetic core and the second magnetic core are respectively connected, the winding coil 1 needs to be wound on the first magnetic core and/or the second magnetic core, as shown in Figure 4, if the toroidal inductance is Toroidal filter inductors, toroidal boost inductors and other toroidal inductors, it only needs to wind the winding coil 1 on either of the first magnetic core and the second magnetic core; if the toroidal inductor is a common-mode inductor, it needs two sets of turns The winding coils 1 of the same number are respectively wound on the first magnetic core and the second magnetic core, and the winding directions are opposite; if the toroidal core is used in a toroidal transformer, it is necessary to wind two sets of winding coils 1 with different turns on the first magnetic core. One magnetic core and a second magnetic core.
  • the structures of the first magnetic core and the second magnetic core in this embodiment are symmetrically matched.
  • glue is dispensed in the horizontal direction of the step 202 to form the annular magnetic core 2.
  • FIG. In the first and/or second magnetic core of the structure shown, it is fixed and docked by dispensing glue on the upper and lower surfaces of the step 202.
  • the first and/or second magnetic core of the structure shown in FIG. 3 the The glue dispensing is fixed on the inner and outer surfaces of the step 202. Since the magnetic circuit of the toroidal core 2 is in the circumferential direction, the position of glue dispensing in this embodiment is not on the magnetic circuit of the toroidal core. Does not affect the inductance of the inductor.
  • the butt surfaces of the steps at the two ends of the first and/or second magnetic core are polished to form a polished surface, so that the first magnetic core and the second magnetic core There is no gap between the two magnetic cores, the connection is tighter, and the inductance is improved.
  • All edges of the first magnetic core and the second magnetic core are provided with chamfers, that is, the circular edges on the magnetic core of the toroidal structure are all chamfered, which can be straight chamfered or round chamfered , In order to prevent the magnetic core edge from being too sharp and damaging the winding coil assembled on the magnetic core.
  • All the outer surfaces of the first magnetic core and the second magnetic core except the bonding surface are attached with an insulating layer, which can be sprayed with a layer of insulating paint 3.
  • the spraying can be performed separately before the first magnetic block 201 and the second magnetic block 203 are laminated and bonded.
  • all surfaces of the first magnetic block 201 and the second magnetic block 203 except the bonding surface are sprayed with insulating varnish 3. After the first magnetic block 201 and the second magnetic block 203 are sprayed separately, the insulation is to be completed.
  • the outer surface of the first and/or second magnetic core obtained after the dispense is fixed is sprayed with the insulating varnish 3, and the first magnetic block 201 and the second magnetic block 203 are sprayed on the outer surface.
  • both the first magnet block 201 and the second magnet block 203 have a surface (the bonding surface) that does not need to be sprayed, so that the surface that is not sprayed will be in contact with the carrier during spraying. Spraying the rest of the surface eliminates the need for flipping secondary spraying, which simplifies the spraying process.
  • the arc length of the first magnetic core and/or the second magnetic core in this embodiment is half of the circumference of the toroidal magnetic core, that is, the first magnetic core and the second magnetic core are both semi-circular ring structures, so only One mold can produce the first magnetic core and the second magnetic core at the same time, with low cost, high production efficiency, and easy realization of automated production.
  • the first magnetic block and the second magnetic block have the same geometric center of gravity
  • the third magnetic block and the fourth magnetic block have the same geometric center of gravity
  • the toroidal core is With a circular ring structure
  • the first magnetic block and the second magnetic block have the same center
  • the third magnetic block and the fourth magnetic block have the same center.
  • the toroidal core 2 may also have a lip-shaped structure, please refer to FIG. 6, wherein FIG. 6(a) is an example of the first and/or the first and/or of the lip-shaped structure of the toroidal core.
  • FIG. 6(b) is a schematic structural diagram of a toroidal magnetic core with a square-shaped structure in one embodiment
  • FIG. 7 is a schematic structural diagram of a toroidal magnetic core with a square-shaped structure in another embodiment 7(a) is a schematic diagram of the specific structure of the first and/or second magnetic core of the toroidal core with a square structure in another embodiment
  • Fig. 7(b) is a diagram of the square structure in another embodiment Schematic diagram of the structure of the toroidal core.
  • the specific implementation of the first and/or second magnetic core has been described in detail in the toroidal structure magnetic core, and will not be repeated here.
  • FIG. 8 shows an automated manufacturing method of a toroidal inductor in an embodiment, including the following steps:
  • the first magnetic core includes a first magnetic block and a second magnetic block superimposed from a height direction or a thickness direction, and at least a part of the surface of the first magnetic block and the second magnetic block At least part of the surfaces of the blocks are attached together, and the ends of the first magnetic block and the second magnetic block are staggered by a certain angle to form a step.
  • both the first magnetic block and the second magnetic block can be set as semi-circular magnetic blocks with the same shape and size. If the first magnetic block and the second magnetic block For a semicircular ring shape, the ends of the first magnet block and the second magnet block are staggered by 15° to 45° according to the size of the ring core to form a step.
  • the second magnetic core includes a third magnetic block and a fourth magnetic block superimposed from a height direction or a thickness direction. At least a part of the surface of the third magnetic block and the fourth magnetic block At least part of the surfaces of the blocks are attached together, and the ends of the third magnetic block and the fourth magnetic block are staggered by a certain angle to form a step, which matches the step formed by the end of the first magnetic core;
  • the molds of the three magnetic blocks and the fourth magnetic block are arranged in a semicircular ring structure with the same size and shape.
  • S3 Winding winding coils on the first magnetic core and/or the second magnetic core respectively; for toroidal inductors of different purposes, the number of turns of the winding coils is different, and the winding methods are also different, such as common mode toroidal inductors, which need to be separately Winding coils with the same number of turns and opposite directions are wound on the first magnetic core and the second magnetic core.
  • a toroidal magnetic core with a toroidal structure is used for testing.
  • the existing FeSi-based magnetic powder core PF158060 is used as a sample, and the external dimension is ⁇ 40* ⁇ 22*17 (outer diameter*inner diameter*height), and the mold is pressed into half
  • the ring (first and/or second magnetic core) in order to reduce the mold, the height of the first magnetic block and the second magnetic block of this embodiment are the same, and the outer dimensions are both ⁇ 40* ⁇ 22*8.5, respectively.
  • the coil is made by a vertical winding machine with a 0.8*6mm F-class flat wire, the number of turns is 24 ,
  • the flat vertical winding coil is wound around the first magnetic core or the second magnetic core by rotating, or the first magnetic core or the second magnetic core is rotated into the internal cavity of the flat vertical winding coil.
  • Glue glue on the upper or lower surface, and then assemble the other half of the bonded first magnetic core or second magnetic core to form a toroidal magnetic core with a complete magnetic circuit structure. Finally, the glue is cured, and the coil is processed. Foot position. After assembling the inductor as described above, test the inductor. The test structure is shown in Table 1.
  • This embodiment provides a toroidal transformer, including a toroidal core, and a primary coil and a secondary coil; wherein the toroidal core is any one of the toroidal cores provided in the first embodiment, and the specific toroidal core is The implementation has been described in detail in the first embodiment, and will not be repeated here.
  • the number of turns of the primary coil and the secondary coil are different; the primary coil and the secondary coil are both wound on the toroidal core to form a primary winding and a secondary winding respectively.
  • the toroidal transformer set the number of turns on the primary winding and the secondary winding respectively.
  • the number of turns of the primary winding is less than the number of turns of the secondary winding.
  • Voltage transformer the number of turns of the primary winding is greater than the number of turns of the secondary winding.
  • Coupled refers to physical connection, electrical connection, magnetic connection, optical connection, communication connection, functional connection and/or any other connection.

Abstract

一种环形磁芯、环形变压器和电感器及其自动化制造方法,其中环形磁芯(2)包括第一磁芯和第二磁芯,第一磁芯通过第一磁块(201)和第二磁块(203)的端部错开一定角度形成台阶(202),第二磁芯通过第三磁块和第四磁块的端部错开一定角度形成台阶(202),第一磁芯的两个端部与第二磁芯的两个端部分别通过在台阶(202)的水平方向上点胶对接构成环形磁芯(2),由于其点胶位置不在环形磁芯(2)的磁路上,从而不影响环形磁芯(2)的电性参数,使得环形磁芯、环形电感器或变压器具有稳定的电性参数。

Description

环形磁芯、环形变压器和电感器及其自动化制造方法 技术领域
本发明涉及电子信息技术领域,具体涉及一种环形磁芯、环形变压器和电感器及其自动化制造方法。
背景技术
环形磁芯广泛应用于电网、大功率电源、光伏逆变器、UPS、车载或大型充电设备中,例如扁平立绕环形电感器和变压器,其具有结构简单牢固、生产简便、磁场分布均匀、漏磁小等优点。
对于扁平立绕环形电感器或变压器,其提高了器件功率,使工作电流更大、散热性能更优异,然而在往环形磁芯上装配线圈时,其需将环形磁芯切开一个开口才能装入线圈,装配好线圈后再将开口通过在其端面上粘接胶进行补上,导致端面处的气隙增大,使得电感器或电压器的电性参数发生变化,例如电感量降低,同时胶量不易控制也会造成电性参数不稳定,另外,磁芯的材质密度和硬度均比较高,使得切割磁芯较为困难,切割效率低且成本高,对切割设备要求较高。
发明内容
本发明主要提供一种产生稳定电性参数的环形磁芯、环形变压器和电感器及其制造方法。
根据第一方面,一种实施例中提供一种环形磁芯,包括第一磁芯和第二磁芯;
所述第一磁芯包括从高度方向或厚度方向叠合在一起的第一磁块和第二磁块,所述第一磁块的至少部分表面和第二磁块的至少部分表面贴合在一起,并使得第一磁块和第二磁块的端部错开一定角度形成台阶;
所述第二磁芯包括从高度方向或厚度方向叠合在一起的第三磁块和第四磁块,所述第三磁块的至少部分表面和第四磁块的至少部分表面贴合在一起,并使得第三磁块和第四磁块的端部错开一定角度形成台阶,且与第一磁芯端部所形成的台阶相匹配;
所述第一磁芯的两个端部与第二磁芯的两个端部分别对接构成环形 磁芯。
进一步地,所述环形磁芯由第一磁芯的两个端部与第二磁芯的两个端部分别通过在台阶水平方向上点胶固定对接构成。
进一步地,所述第一磁块和第二磁块具有相同的几何重心,所述第三磁块和第四磁块具有相同的几何重心。
进一步地,所述第一磁芯和第二磁芯除贴合面外的所有外表面均附有绝缘层。
进一步地,所述第一磁芯和第二磁芯的棱边均设有倒角。
进一步地,所述环形磁芯可以为圆环形或口字形结构。
根据第二方面,一种实施例提供了一种环形电感器,包括环形磁芯和线圈,所述线圈缠绕在所述环形磁芯上。
根据第三方面,一种实施例提供了一种环形变压器,包括环形磁芯、以及一次线圈和二次线圈;
所述一次线圈与二次线圈的绕线匝数不相同。
根据第四方面,一种实施例提供了一种环形电感器的自动化制造方法,包括以下步骤:
获取第一磁芯,所述第一磁芯包括从高度方向或厚度方向叠合在一起的第一磁块和第二磁块,所述第一磁块的至少部分表面和第二磁块的至少部分表面贴合在一起,并使得第一磁块和第二磁块的端部错开一定角度形成台阶;
获取第二磁芯,所述第二磁芯包括从高度方向或厚度方向叠合在一起的第三磁块和第四磁块,所述第三磁块的至少部分表面和第四磁块的至少部分表面贴合在一起,并使得第三磁块和第四磁块的端部错开一定角度形成台阶,且与第一磁芯端部所形成的台阶相匹配;
在第一磁芯和/或第二磁芯上分别缠绕绕组线圈;
将第一磁芯的两个端部与第二磁芯的两个端部分别进行点胶对接固定,形成环形电感器。
依据上述实施例的环形磁芯、环形变压器和电感器及其制造方法,在第一磁芯和第二磁芯的两个端部分别形成台阶,由于第一磁芯的两个端部与第二磁芯的两个端部分别通过在台阶的水平方向上点胶对接构成环形磁芯,其点胶位置不在环形磁芯的磁路上,从而不影响环形磁芯的 电性参数,使得环形磁芯、环形电感器或变压器具有稳定的电性参数。
附图说明
图1为一种实施例的圆环形结构磁芯的电感器的结构示意图;
图2为一种实施例的第一磁芯或第二磁芯的具体结构示意图;
图3为另一种实施例的第一磁芯或第二磁芯的具体结构示意图;
图4为第一磁芯或第二磁芯缠绕绕组线圈的具体结构示意图;
图5为第一磁芯或第二磁芯喷涂绝缘漆的示意图;
图6(a)为一种实施例的口字形结构环形磁芯的第一和/或第二磁芯的具体结构示意图,图6(b)为一种实施例的口字形结构环形磁芯的结构示意图;
图7(a)为另一种实施例的口字形结构环形磁芯的第一和/或第二磁芯的具体结构示意图,图7(b)为另一种实施例的口字形结构环形磁芯的结构示意图;
图8为一种环形电感器的自动化制造方法的流程图;
图9(a)为带有开口的环形磁芯结构图,图9(b)为线圈结构图,图9(c)为将线圈装配到环形磁芯上后的结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味 着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
请参考图9,图9为现有环形磁芯的结构图,其中图9(a)为带有开口的环形磁芯,图9(b)为线圈,图9(c)为将线圈装配到环形磁芯上后的结构示意图,在装配线圈时,需先将环形线圈采用切割机切一个开口,然后将线圈通过开口处装配至带有开口的环形磁芯上,装配好线圈后,在开口的端面上通过粘接胶将切割掉的磁芯粘接在开口处以得到完整的环形磁芯。由于将胶粘接在开口的端面上,其位于磁芯的磁路上,装配好线圈后由于胶中的气隙比磁芯的气隙大,故导致感量降低,而且粘接胶量的不同,也使得电感量不稳定。此外,磁芯的材质主要为铁氧体、合金粉、非晶和硅钢,其密度和硬度都比较高,导致切割开口非常困难,切割效率低且成本高,对切割设备要求较高。
在本发明实施例中,环形磁芯由第一磁芯的两个端部和第二磁芯的两个端部分别对接构成,且第一和/或第二磁芯的两个端部具有相匹配的台阶,将线圈装配在第一和/或第二磁芯上后,通过在台阶的水平方向上点胶将第一磁芯的两个端部和第二磁芯的两个端部固定对接在一起,使得点胶不处于磁芯的磁路上,不对其电性参数产生影响,实现了环形磁芯电性参数的稳定。
为了方便说明,本实施例以圆环形结构磁芯的电感器为例进行阐述。
实施例一:
请参考图1,图1为一种实施例的圆环形结构磁芯的电感器的结构示意图,其包括:环形磁芯2和线圈1,所述线圈1缠绕在所述环形磁芯2上。
其中环形磁芯包括第一磁芯和第二磁芯,如图2、5所示,其中第一磁芯包括从高度方向或厚度方向叠合在一起的第一磁块201和第二磁块203,所述第一磁块201的至少部分表面和第二磁块203的至少部分表面贴合在一起,其中图2为高度方向叠合在一起的第一磁块201和第二磁块203,本实施例中的高度方向是指图2中由上至下或由下至上的方向,图3为厚度方向叠合在一起的第一磁块201和第二磁块203,并使得第一磁块201和第二磁块203的端部错开形成台阶,本实施例中的厚度方 向是指图3中由左至右或由右至左的方向,本实施例通过点胶将第一磁块201和第二磁块203叠合粘接在一起;同样地,第二磁芯包括从高度方向或厚度方向叠合在一起的第三磁块和第四磁块,所述第三磁块的至少部分表面和第四磁块的至少部分表面贴合在一起,并使得第三磁块和第四磁块的端部错开形成台阶,且与第一磁芯端部所形成的台阶相匹配,其同样通过点胶将第三磁块和第四磁块叠合粘接在一起。
在将第一磁芯和第二磁芯的两端分别进行对接之前,需先将绕组线圈1缠绕在第一磁芯和/或第二磁芯上,如图4所示,若环形电感为环形滤波电感、环形升压电感等环形电感,其只需将绕组线圈1缠绕在第一磁芯和第二磁芯的任一个即可;若环形电感为共模电感,其需将两组匝数相同的绕组线圈1分别缠绕在第一磁芯和第二磁芯上,且缠绕方向相反;若环形磁芯用于环形变压器,其需将两组匝数不同的绕组线圈1分别缠绕在第一磁芯和第二磁芯上。
本实施例中的第一磁芯和第二磁芯的结构是对称匹配的,在进行对接时,在台阶202的水平方向上点胶固定对接构成环形磁芯2,具体地,在图2所示结构的第一和/或第二磁芯中,其是在台阶202的上表面、下表面进行点胶固定对接,在图3所示结构的第一和/或第二磁芯中,其是在台阶202的内侧面和外侧面上进行点胶固定对接,由于环形磁芯2的磁路在其周长方向上,故本实施例中点胶对接的位置不在环形磁芯的磁路上,不影响电感器的感量。
为了便于第一磁芯和第二磁芯的粘接,将第一和/或第二磁芯两端的台阶中用于对接的表面进行了抛光处理,形成抛光面,使得第一磁芯和第二磁芯的连接处没有缝隙,连接更紧密,提高电感量。
所述第一磁芯和第二磁芯的全部棱边上设有倒角,即圆环形结构磁芯上的圆环边均进行了倒角处理,其可以为直倒角或圆倒角,以防止磁芯棱边过于锋利将装配在磁芯上的绕组线圈损坏。
所述第一磁芯和第二磁芯除贴合面外的所有外表面均附有绝缘层,其可以喷附一层绝缘漆3。具体地,在对第一和/或第二磁芯除贴合面外的外表面喷涂绝缘漆3时,可以在第一磁块201和第二磁块203叠合粘接之前分别进行喷涂,如图5所示,将第一磁块201和第二磁块203除贴合面以外的所有表面进行绝缘漆3喷涂,第一磁块201和第二磁块203分开喷涂完成后,待绝缘漆3晾干后再进行点胶固定,点胶固定后所得 的第一和/或第二磁芯的外表面均喷涂了绝缘漆3,而且在对第一磁块201和第二磁块203喷涂绝缘漆3时,第一磁块201和第二磁块203中均有一个表面(贴合面)是不用进行喷涂的,这样在喷涂时,将不进行喷涂的表面与承载物相接触,对其余表面进行喷涂,无需再进行翻转二次喷涂,简化了喷涂工艺。
本实施例中的第一磁芯和/或第二磁芯的弧长为环形磁芯周长的一半,即第一磁芯和第二磁芯均为半圆环形结构,这样在生产时只需一种模具即可同时生产第一磁芯和第二磁芯,成本低、生产效率高,易实现自动化生产。
本实施例中所述第一磁块和第二磁块具有相同的几何重心,所述第三磁块和第四磁块具有相同的几何重心,在一种具体实施方式下,环形磁芯为圆环形结构,则第一磁块和第二磁块具有相同的圆心,第三磁块和第四磁块具有相同的圆心。
在另一种具体实施方式中,所述环形磁芯2还可以为口字形结构,请参考图6,其中图6(a)为一种实施例的口字形结构环形磁芯的第一和/或第二磁芯的具体结构示意图,图6(b)为一种实施例的口字形结构环形磁芯的结构示意图;图7为另一种实施例的口字形结构的环形磁芯的结构示意图,其中图7(a)为另一种实施例的口字形结构环形磁芯的第一和/或第二磁芯的具体结构示意图,图7(b)为另一种实施例的口字形结构环形磁芯的结构示意图。其中第一和/或第二磁芯的具体实施方式已在圆环形结构磁芯中进行了详细阐述,此处不在赘述。
基于上述环形电感器,请参考图8,图8示出了一种实施例下环形电感器的自动化制造方法,包括以下步骤:
S1,获取第一磁芯,所述第一磁芯包括从高度方向或厚度方向叠合在一起的第一磁块和第二磁块,所述第一磁块的至少部分表面和第二磁块的至少部分表面贴合在一起,并使得第一磁块和第二磁块的端部错开一定角度形成台阶。本实施例中的圆环形磁芯,为了便于生成,可将第一磁块和第二磁块均设置为形状、尺寸相同的半圆环形结构磁块,若第一磁块和第二磁块为半圆环形状,则将第一磁块和第二磁块的端部根据环形磁芯的大小错开15°至45°来形成台阶。
S2,获取第二磁芯,所述第二磁芯包括从高度方向或厚度方向叠合在一起的第三磁块和第四磁块,所述第三磁块的至少部分表面和第四磁 块的至少部分表面贴合在一起,并使得第三磁块和第四磁块的端部错开一定角度形成台阶,且与第一磁芯端部所形成的台阶相匹配;同理可将第三磁块和第四磁块的模具设置为相同尺寸、形状的半圆环形结构。
S3,在第一磁芯和/或第二磁芯上分别缠绕绕组线圈;对于不同用途的环形电感,其绕组线圈的匝数不相同,缠绕方式也不同,例如共模环形电感,其需要分别在第一磁芯和第二磁芯上缠绕匝数相同且方向相反的绕组线圈。
S4,在绕组线圈缠绕在第一磁芯和/或第二磁芯上后,将第一磁芯的两个端部与第二磁芯的两个端部分别进行对接,形成环形电感器。
本实施例以圆环形结构的环形磁芯进行测试,其以现有的FeSi系磁粉芯PF158060为样板,外形尺寸为φ40*φ22*17(外径*内径*高度),开模压制为半圆环(第一和/或第二磁芯),为了减少模具,本实施例的第一磁块和第二磁块高度相等,其外形尺寸均为φ40*φ22*8.5,分别对第一磁块和第二磁块喷涂绝缘漆后将第一磁块和第二磁块叠加粘接,并错开30°角度,采用0.8*6mm F级扁平线通过立绕机打好线圈,匝数为24,将打好的扁平立绕线圈通过旋转的方式套在第一磁芯或第二磁芯外或将第一磁芯或第二磁芯旋转入扁平立绕线圈的内部空腔,在台阶的上表面或下表面粘接胶,然后将另一半粘接好的第一磁芯或第二磁芯组合装配,形成完整磁路结构的环型磁芯,最后使粘接胶固化,处理线圈出脚位置。按照上述装配好电感器后,对电感器进行测试,测试结构如表1所示。
表1测试结果
Figure PCTCN2019130565-appb-000001
Figure PCTCN2019130565-appb-000002
通过表1中的测试结果可知,本实施例与现有技术相比,电感器的电感量比现有技术要高,只比理论值70uH小5.7%,并且其他电性参数以及抗拉强度都与现有技术中的电感器相同。
实施例二:
本实施例提供了一种环形变压器,包括环形磁芯、以及一次线圈和二次线圈;其中环形磁芯为实施例一中所提供的环形磁芯中的任一种,且环形磁芯的具体实施方式已在实施例一中进行了详细说明,此处不再赘述。
所述一次线圈与二次线圈的绕线匝数不相同;所述一次线圈和二次线圈均缠绕在环形磁芯上并分别形成一次绕组和二次绕组。根据环形变压器的应用场合,分别设置一次绕组和二次绕组上线圈的匝数,一般来说,若为升压变压器,则一次绕组的线圈匝数小于二次绕组的线圈匝数,若为降压变压器,则一次绕组的线圈匝数大于二次绕组的线圈匝数。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解 决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应根据以下权利要求确定。

Claims (9)

  1. 一种环形磁芯,其特征在于,包括第一磁芯和第二磁芯;
    所述第一磁芯包括从高度方向或厚度方向叠合在一起的第一磁块和第二磁块,所述第一磁块的至少部分表面和第二磁块的至少部分表面贴合在一起,并使得第一磁块和第二磁块的端部错开一定角度形成台阶;
    所述第二磁芯包括从高度方向或厚度方向叠合在一起的第三磁块和第四磁块,所述第三磁块的至少部分表面和第四磁块的至少部分表面贴合在一起,并使得第三磁块和第四磁块的端部错开一定角度形成台阶,且与第一磁芯端部所形成的台阶相匹配;
    所述第一磁芯的两个端部与第二磁芯的两个端部分别对接构成环形磁芯。
  2. 如权利要求1所述的环形磁芯,其特征在于,所述环形磁芯由第一磁芯的两个端部与第二磁芯的两个端部分别通过在台阶水平方向上点胶固定对接构成。
  3. 如权利要求1或2所述的环形磁芯,其特征在于,所述第一磁块和第二磁块具有相同的几何重心,所述第三磁块和第四磁块具有相同的几何重心。
  4. 如权利要求1或2所述的环形磁芯,其特征在于,所述第一磁芯和第二磁芯除贴合面外的所有外表面均附有绝缘层。
  5. 如权利要求1或2所述的环形磁芯,其特征在于,所述第一磁芯和第二磁芯的棱边均设有倒角。
  6. 如权利要求1或2所述的环形磁芯,其特征在于,所述环形磁芯可以为圆环形或口字形结构。
  7. 一种环形电感器,其特征在于,包括如权利要求1至6任一项所述的环形磁芯和线圈,所述线圈缠绕在所述环形磁芯上。
  8. 一种环形变压器,其特征在于,包括如权利要求1至6任一项所述环形磁芯、以及一次线圈和二次线圈;所述一次线圈和二次线圈缠绕在所述环形磁芯上,所述一次线圈与二次线圈的绕线匝数不相同。
  9. 一种环形电感器的自动化制造方法,其特征在于,包括以下步骤:
    获取第一磁芯,所述第一磁芯包括从高度方向或厚度方向叠合在一起的第一磁块和第二磁块,所述第一磁块的至少部分表面和第二磁块的 至少部分表面贴合在一起,并使得第一磁块和第二磁块的端部错开一定角度形成台阶;
    获取第二磁芯,所述第二磁芯包括从高度方向或厚度方向叠合在一起的第三磁块和第四磁块,所述第三磁块的至少部分表面和第四磁块的至少部分表面贴合在一起,并使得第三磁块和第四磁块的端部错开一定角度形成台阶,且与第一磁芯端部所形成的台阶相匹配;
    在第一磁芯和/或第二磁芯上分别缠绕绕组线圈;
    将第一磁芯的两个端部与第二磁芯的两个端部分别进行点胶对接固定,形成环形电感器。
PCT/CN2019/130565 2019-12-31 2019-12-31 环形磁芯、环形变压器和电感器及其自动化制造方法 WO2021134501A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130565 WO2021134501A1 (zh) 2019-12-31 2019-12-31 环形磁芯、环形变压器和电感器及其自动化制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130565 WO2021134501A1 (zh) 2019-12-31 2019-12-31 环形磁芯、环形变压器和电感器及其自动化制造方法

Publications (1)

Publication Number Publication Date
WO2021134501A1 true WO2021134501A1 (zh) 2021-07-08

Family

ID=76686802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130565 WO2021134501A1 (zh) 2019-12-31 2019-12-31 环形磁芯、环形变压器和电感器及其自动化制造方法

Country Status (1)

Country Link
WO (1) WO2021134501A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349617A (ja) * 2003-05-26 2004-12-09 System Giken:Kk リアクトル用圧粉鉄心
CN1808643A (zh) * 2006-02-15 2006-07-26 张长增 分段式铁心结构变压器/电抗器
CN203406147U (zh) * 2013-08-08 2014-01-22 韩宝华 双开口磁路电力设备铁心器身
CN205542300U (zh) * 2016-01-28 2016-08-31 机械工业北京电工技术经济研究所 一种卷叠式非晶合金变压器铁心及含有该铁心的变压器
CN205645434U (zh) * 2016-06-01 2016-10-12 湖口健诚电子电器有限公司 环形差模电感器
CN205789422U (zh) * 2016-05-26 2016-12-07 贵阳顺络迅达电子有限公司 一种卡扣式的磁芯结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349617A (ja) * 2003-05-26 2004-12-09 System Giken:Kk リアクトル用圧粉鉄心
CN1808643A (zh) * 2006-02-15 2006-07-26 张长增 分段式铁心结构变压器/电抗器
CN203406147U (zh) * 2013-08-08 2014-01-22 韩宝华 双开口磁路电力设备铁心器身
CN205542300U (zh) * 2016-01-28 2016-08-31 机械工业北京电工技术经济研究所 一种卷叠式非晶合金变压器铁心及含有该铁心的变压器
CN205789422U (zh) * 2016-05-26 2016-12-07 贵阳顺络迅达电子有限公司 一种卡扣式的磁芯结构
CN205645434U (zh) * 2016-06-01 2016-10-12 湖口健诚电子电器有限公司 环形差模电感器

Similar Documents

Publication Publication Date Title
JP5953541B2 (ja) 立体三角形構造のアモルファス合金変圧器鉄心の製造方法
TWI584313B (zh) 具有高飽和電流與低磁芯損耗之磁性裝置
US8686820B2 (en) Reactor
TWI459414B (zh) 耦合電感
US11842839B2 (en) Magnetic coupling coil component
JP6340805B2 (ja) 電子部品
EP3026683B1 (en) Transformer, power supply device, and method for manufacturing transformer
US9287030B2 (en) Multi gap inductor core
US20060103496A1 (en) Electric component having a variable air gap effect
CN206271494U (zh) 一种叠层式平面电感器
WO2021134501A1 (zh) 环形磁芯、环形变压器和电感器及其自动化制造方法
WO2023185146A1 (zh) 电感的制作方法及电感
JP2020178122A (ja) チョークコイル及びその製造方法
CN211350331U (zh) 环形磁芯、环形变压器和电感器
EP2528069A1 (en) Multi gap inductor core, multi gap inductor, transformer and corresponding manufacturing method and winding
JP2008131811A (ja) モータ用分割コア
CN211788543U (zh) 一种环形电感器和变压器
JP6539024B2 (ja) コイル、及びコイル部品
TWM505045U (zh) 快速組裝式變壓器及其不對稱雙切型卷鐵心結構
CN111009392A (zh) 环形磁芯、环形变压器和电感器及其自动化制造方法
JP2015204406A (ja) リアクトル
US20190057807A1 (en) Electromagnetic induction device and method for manufacturing same
KR101729101B1 (ko) 트랜스포머 제조 방법
KR20200014834A (ko) 초박형 변압기 그 생산 방법
JP2016219839A (ja) インダクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958402

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19958402

Country of ref document: EP

Kind code of ref document: A1