WO2021132634A1 - 合金 - Google Patents

合金 Download PDF

Info

Publication number
WO2021132634A1
WO2021132634A1 PCT/JP2020/048927 JP2020048927W WO2021132634A1 WO 2021132634 A1 WO2021132634 A1 WO 2021132634A1 JP 2020048927 W JP2020048927 W JP 2020048927W WO 2021132634 A1 WO2021132634 A1 WO 2021132634A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
alloy
content
thermal expansion
coefficient
Prior art date
Application number
PCT/JP2020/048927
Other languages
English (en)
French (fr)
Inventor
貴代子 竹田
大塚 俊一
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to AU2020413417A priority Critical patent/AU2020413417B2/en
Priority to US17/755,689 priority patent/US20220380872A1/en
Priority to JP2021567706A priority patent/JP7284433B2/ja
Priority to EP20907786.6A priority patent/EP4083249A4/en
Priority to CA3159934A priority patent/CA3159934A1/en
Publication of WO2021132634A1 publication Critical patent/WO2021132634A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present disclosure relates to alloys, and more particularly to alloys having a low coefficient of thermal expansion.
  • Austenitic stainless steel which does not easily become brittle even at low temperatures, is used as a material for transportation pipes and storage tanks for low-temperature substances such as LNG (liquefied natural gas).
  • LNG liquefied natural gas
  • the temperature drops when the cryogenic substances are flowing, and when the cryogenic substances are stored, and when the cryogenic substances are not flowing, and when the cryogenic substances are stored.
  • the temperature rises when not stored.
  • the above-mentioned austenitic stainless steel material has a high coefficient of thermal expansion. Therefore, thermal expansion and contraction due to temperature changes occur in the piping for transporting low-temperature substances and the tank for storage. Therefore, as a mechanism for absorbing such thermal expansion and contraction, loop pipes are arranged at predetermined lengths in the pipes for transporting low-temperature substances.
  • the loop piping absorbs deformation of the transportation piping due to thermal expansion and contraction.
  • the loop piping increases the total length of the piping and increases the manufacturing cost. Therefore, alloys having a lower coefficient of thermal expansion than austenitic stainless steel are required as materials for transportation pipes and storage tanks for low-temperature substances.
  • Invar alloy is known as an alloy with a small coefficient of thermal expansion.
  • the Invar alloy can maintain a low coefficient of thermal expansion against temperature changes due to spontaneous volume magnetostriction (Invar effect). Therefore, the dimensions are unlikely to change even under the influence of heat.
  • the coefficient of thermal expansion of Invar alloy is much smaller than the coefficient of thermal expansion of austenitic stainless steel. Therefore, if Invar alloy is used as a material for transportation pipes and storage tanks for low-temperature substances, deformation of the transportation pipes and storage tanks due to thermal expansion and contraction can be suppressed.
  • Patent Document 1 Invar alloys used for transportation pipes and storage tanks for low-temperature substances represented by LNG are disclosed in Japanese Patent Application Laid-Open No. 2017-512899 (Patent Document 1).
  • the alloys disclosed in Patent Document 1 are 35 wt% ⁇ Ni ⁇ 37 wt%, Mn ⁇ 0.6 wt%, C ⁇ 0.07 wt%, Si ⁇ 0.35 wt%, Cr ⁇ 0.5 wt%, Co ⁇ 0.
  • Patent Document 1 states that the alloys disclosed in this document are used in tanks or pipes for receiving liquefied gas.
  • the Invar alloy has a low coefficient of thermal expansion, but its strength is low. If the strength of the alloy having a low coefficient of thermal expansion is high, the thickness of the transportation pipe can be reduced, and the structural stability of the transportation pipe and the storage tank is also improved. Therefore, an Invar alloy having high strength is required.
  • the Inver alloy disclosed in Patent Document 2 has C: 0.015 to 0.10%, Si: 0.35% or less, Mn: 1.0% or less, P: 0.015% or less in terms of weight ratio. , S: 0.0010% or less, Cr: 0.3% or less, Ni: 35 to 37%, Mo: 0 to 0.5%, V: 0 to 0.05%, Al: 0.01% or less, It is characterized by containing Nb: 0.15% or more and less than 1.0%, Ti: 0.003% or less, N: 0.005% or less, and the balance consisting of Fe and unavoidable impurities. As a result, Patent Document 2 describes that a high-strength Invar alloy having excellent hot workability can be obtained.
  • the method for producing an amber alloy disclosed in Patent Document 3 is a method for producing an Fe—Ni-based amber alloy containing Ni: 30 to 45% and C: 0.001 to 0.04% in weight%.
  • the alloy was heated to 900 ⁇ 1150 ° C., at T R ° C. below the temperature shown by the following equation (1), and performing hot rolling of more than 5% cumulative rolling reduction.
  • T R (°C) 2,500 ⁇ C% + 750 ⁇ (1)
  • the strength of the Invar alloy can be increased by the techniques disclosed in Patent Documents 2 and 3 described above.
  • the coefficient of thermal expansion may increase. Therefore, there is a demand for an alloy having a sufficiently high strength and a sufficiently low coefficient of thermal expansion.
  • An object of the present disclosure is to provide an alloy having high strength and a low coefficient of thermal expansion.
  • the alloys according to the present disclosure are The chemical composition is mass%, C: 0.10% or less, Si: 0.50% or less, Mn: 0.15 to 0.60%, P: 0.015% or less, S: 0.0030% or less, Ni: 30.0-40.0%, Cr: 0.50% or less, Mo: 0.50% or less, Co: 0.250% or less, Al: 0.0150% or less, Ca: 0.0050% or less, Mg: 0.0300% or less, N: 0.0100% or less, O: 0.0300% or less, Pb: 0.0040% or less, Zn: 0.020% or less, Total of one or more selected from the group consisting of Nb: 0 to less than 0.145%, Ti: 0 to less than 0.145%, and V: 0 to less than 0.145%: 0.015 to 0.
  • the alloy according to the present disclosure has high strength and a low coefficient of thermal expansion.
  • FIG. 1A is a transmission electron microscope (TEM) photograph of the alloy of test number 4.
  • FIG. 1B is a schematic view of the TEM photograph of FIG. 1A.
  • FIG. 2 is a diagram showing the relationship between the equation (1) and the coefficient of thermal expansion.
  • the present inventors investigated and examined an alloy having high strength and a low coefficient of thermal expansion.
  • Precipitation strengthening is one of the methods for increasing the strength of alloys.
  • carbides, nitrides and / or carbonitrides are precipitated to strengthen the alloy.
  • the coefficient of thermal expansion of the alloy increases due to the thermal expansion of the precipitates.
  • Ni—Fe-based alloys having a Ni content of 30.0 to 40.0% by mass it has been studied to increase the strength while suppressing the coefficient of thermal expansion, so that the increase in strength due to precipitation strengthening can be avoided. I came. Therefore, conventionally, it has been attempted to increase the strength of the alloy by solid solution strengthening, fine graining of crystal grain size, or cold working instead of precipitation strengthening.
  • Patent Document 2 the strength is increased by containing 0.15% or more of Nb as an alloy element in the alloy (paragraphs [0012] and [0023] of Patent Document 2).
  • the C content in the alloy is kept low. Therefore, in Patent Document 2, a large amount of Nb is dissolved in a solid solution, and the strength of the alloy is increased by solid solution strengthening.
  • Patent Document 3 the residual strain of the alloy is adjusted by adjusting the rolling conditions to increase the strength of the alloy (paragraph [0011] of Patent Document 3). That is, in Patent Document 2 and Patent Document 3, the strength of the alloy is increased by a method other than precipitation strengthening.
  • FIG. 1A is a transmission electron microscope (TEM) photograph of the alloy of test number 4 (example of the present invention) in the examples described later.
  • FIG. 1B is a schematic view of the TEM photograph of FIG. 1A.
  • the precipitate contained 86.3% of Nb in the composition excluding C. That is, the black spots in the TEM photograph of FIG. 1 are precipitates (carbonitrides) containing Nb.
  • the TEM photograph of FIG. 1 is a transmission electron microscope
  • nanocarbonitrides by precipitating nano-sized fine carbonitrides (hereinafter, also simply referred to as nanocarbonitrides), a lower coefficient of thermal expansion can be obtained while increasing the strength. Nanocarbonitrides fix dislocations. Therefore, the alloy can be strengthened. Nanocarbonitrides are also very small in volume, so their volume expansion with temperature changes is small. Therefore, the present inventors have considered that the strength of the Ni—Fe-based alloy should be increased by precipitation strengthening of nanocarbon nitrides instead of solid solution strengthening by solid solution Nb. It is considered that this makes it possible to reduce the amount of solid solution Nb and further reduce the coefficient of thermal expansion.
  • carbonitride includes carbides, nitrides and / or carbonitrides.
  • the present inventors have studied to specify the size and number density of nanocarbonitrides that can achieve both low coefficient of thermal expansion and high strength of the alloy.
  • the nanocarbonitride is very small, and it is difficult to accurately specify the appropriate size and number density. Therefore, the present inventors have investigated the chemical composition of a Ni—Fe-based alloy capable of finely dispersing such nanocarbonitrides.
  • the present inventors can precipitate nanocarbonitrides as long as they contain one or more of Nb, Ti and V that form carbonitrides and have a chemical composition with an increased C content and N content. I thought it might be.
  • C 0.10% or less
  • Si 0.50% or less
  • Mn 0.15 to 0.60%
  • P 0.015% or less
  • S 0.0030%
  • Cr 0.50% or less
  • Mo 0.50% or less
  • Co 0.250% or less
  • Al 0.0150% or less
  • Ca 0.0050
  • Mg 0.0300% or less
  • N 0.0100% or less
  • O 0.0300% or less
  • Pb 0.0040% or less
  • Sn 0 to 0.100%
  • W 0 to 0.200%
  • B 0 to 0.0040%
  • the balance is an alloy composed of Fe and impurities, in place of a part of Fe.
  • Nb 0 to less than 0.145%
  • Ti 0 to less than 0.145%
  • V 0 to less than 0.145%. It was considered that if the alloy contains less than .145%, nanocarbon nitride can be precipitated, and as a result, the coefficient of thermal expansion can be further reduced while increasing the strength.
  • the present inventors investigated the cause in detail. As a result, it was found that the carbonitride may be excessively precipitated only by having the above chemical composition. Therefore, the present inventors further investigated an alloy capable of precipitating nanocarbonitride in an appropriate amount. As a result, the following findings were obtained.
  • FIG. 2 is a diagram showing the relationship between the equation (1) and the coefficient of thermal expansion.
  • FIG. 2 shows the relationship between the formula (1) and the coefficient of thermal expansion in an alloy in which the content of each element in the chemical composition is within the above range in the examples described later.
  • the content of each element in the chemical composition of the alloy is substituted in% by mass for each element symbol.
  • the vertical axis of FIG. 2 is the coefficient of thermal expansion of the alloy. The coefficient of thermal expansion of the alloy was measured by the measuring method described later.
  • Formula (1) is a formula that defines the relationship between the contents of Nb, Ti and V forming nanocarbonitrides and C and N. If the total content of Nb, Ti and V is limited to less than 0.145% and Fn1 is 6.00 or less, the nanocarbonitride is finely dispersed and excess nanocarbonitride is precipitated. Can be suppressed. Therefore, the coefficient of thermal expansion of the alloy can be further reduced while increasing the strength.
  • the total amount of one or more selected from the group consisting of Nb: 0 to less than 0.145%, Ti: 0 to less than 0.145%, and V: 0 to less than 0.145% is 0. Limit to less than 015 to 0.145%.
  • the Nb content, the Ti content and the V content, and the C content and the N content are adjusted so as to satisfy the formula (1).
  • the equation (1) is as shown below. (Nb + 3 ⁇ Ti + V) / (C + N) ⁇ 6.00 (1)
  • the content of each element in the chemical composition of the alloy is substituted in% by mass for each element symbol in the formula (1).
  • the alloy according to this embodiment was completed based on an idea completely different from the conventional technology.
  • the alloy according to this embodiment has the following constitution.
  • the chemical composition is mass%, C: 0.10% or less, Si: 0.50% or less, Mn: 0.15 to 0.60%, P: 0.015% or less, S: 0.0030% or less, Ni: 30.0-40.0%, Cr: 0.50% or less, Mo: 0.50% or less, Co: 0.250% or less, Al: 0.0150% or less, Ca: 0.0050% or less, Mg: 0.0300% or less, N: 0.0100% or less, O: 0.0300% or less, Pb: 0.0040% or less, Zn: 0.020% or less, Total of one or more selected from the group consisting of Nb: 0 to less than 0.145%, Ti: 0 to less than 0.145%, and V: 0 to less than 0.145%: 0.015 to 0.
  • the alloy of [1] has high strength and a lower coefficient of thermal expansion.
  • the alloy according to [1] contains 0.020% or more in total of one or more selected from the group consisting of Cu: 0 to 0.300%, Sn: 0 to 0.100%, and W: 0 to 0.200%. alloy.
  • the alloy of [2] has high strength, a low coefficient of thermal expansion, and further has excellent corrosion resistance.
  • the alloy is either a pipe material, a plate material, or a bar material.
  • % in the chemical composition means mass% unless otherwise specified.
  • C 0.10% or less Carbon (C) is inevitably contained. That is, the C content is more than 0%. C deoxidizes the alloy in the steelmaking process. C further increases the strength of the alloy. If C is contained even in a small amount, the above effect can be obtained to some extent. However, if the C content exceeds 0.10%, the corrosion resistance of the alloy is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the C content is 0.10% or less.
  • the upper limit of the C content is preferably 0.09%, more preferably 0.08%, still more preferably 0.06%, still more preferably 0.05%.
  • the lower limit of the C content is preferably 0.01%, more preferably 0.02%.
  • Si Silicon
  • Si Silicon
  • the upper limit of the Si content is preferably 0.40%, more preferably 0.30%, still more preferably 0.25%, still more preferably 0.20%.
  • the lower limit of the Si content is preferably 0.01%, more preferably 0.05%.
  • Mn 0.15 to 0.60%
  • Mn Manganese
  • S sulfur
  • Mn content 0.15 to 0.60%
  • Mn content is 0.15 to 0.60%.
  • the preferable lower limit of the Mn content is 0.16%, more preferably 0.17%, still more preferably 0.19%, still more preferably 0.20%, still more preferably 0.21. %.
  • the preferred upper limit of the Mn content is 0.55%, more preferably 0.50%, still more preferably 0.45%.
  • Phosphorus (P) is an impurity that is inevitably contained. That is, the P content is more than 0%. P lowers the weldability and hot workability of the alloy. If the P content exceeds 0.015%, the weldability and hot workability of the alloy will be significantly reduced even if the content of other elements is within the range of the present embodiment. Therefore, the P content is 0.015% or less.
  • the preferred upper limit of the P content is 0.012%, more preferably 0.010%, still more preferably 0.008%.
  • the P content is preferably as low as possible. However, excessive reduction of P content increases manufacturing costs. Therefore, when industrial production is taken into consideration, the preferable lower limit of the P content is 0.001%, and more preferably 0.002%.
  • S 0.0030% or less Sulfur (S) is an impurity that is inevitably contained. That is, the S content is more than 0%. S lowers the weldability and hot workability of the alloy. If the S content exceeds 0.0030%, the weldability and hot workability of the alloy will be significantly reduced even if the content of other elements is within the range of the present embodiment. Therefore, the S content is 0.0030% or less.
  • the preferred upper limit of the S content is 0.0025%, more preferably 0.0020%, still more preferably 0.0015%, still more preferably 0.0010%.
  • the S content is preferably as low as possible. However, excessive reduction of S content increases manufacturing cost. Therefore, when industrial production is taken into consideration, the preferable lower limit of the S content is 0.0001%, and more preferably 0.0002%.
  • Ni 30.0-40.0%
  • Nickel (Ni) increases the spontaneous volume magnetostriction of the alloy, resulting in a decrease in the coefficient of thermal expansion of the alloy.
  • Ni also enhances the corrosion resistance of the alloy. If the Ni content is less than 30.0%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ni content exceeds 40.0%, the coefficient of thermal expansion of the alloy will rather increase even if the content of other elements is within the range of this embodiment. Therefore, the Ni content is 30.0 to 40.0%.
  • the lower limit of the Ni content is preferably 31.0%, more preferably 32.0%, still more preferably 33.0%, still more preferably 34.0%.
  • the preferred upper limit of the Ni content is 39.0%, more preferably 38.0%, still more preferably 37.0%.
  • Chromium (Cr) is inevitably contained. That is, the Cr content is more than 0%. Cr enhances the corrosion resistance of the alloy. If even a small amount of Cr is contained, the above effect can be obtained to some extent. However, if the Cr content exceeds 0.50%, the hot workability of the alloy is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Cr content is 0.50% or less.
  • the preferred upper limit of the Cr content is 0.45%, more preferably 0.40%, still more preferably 0.35%, still more preferably 0.30%, still more preferably 0.25. %, More preferably 0.20%, still more preferably 0.15%, still more preferably 0.10%.
  • the preferable lower limit of the Cr content is 0.01%.
  • Mo Molybdenum
  • Mo Molybdenum
  • the preferred upper limit of the Mo content is 0.45%, more preferably 0.40%, still more preferably 0.35%, still more preferably 0.30%, still more preferably 0.25. %, More preferably 0.20%, still more preferably 0.15%, still more preferably 0.10%.
  • the preferable lower limit of the Mo content is 0.01%.
  • Co 0.250% or less Cobalt (Co) is inevitably contained. That is, the Co content is more than 0%. Co, like Ni, increases the strength of the alloy. If even a small amount of Co is contained, the above effect can be obtained to some extent. However, if the Co content exceeds 0.250%, the coefficient of thermal expansion of the alloy will rather increase even if the content of other elements is within the range of this embodiment. Therefore, the Co content is 0.250% or less.
  • the preferred upper limit of the Co content is 0.200%, more preferably 0.150%, still more preferably 0.100%, still more preferably 0.080%.
  • the lower limit of the Co content is preferably 0.001%, more preferably 0.005%, still more preferably 0.010%, still more preferably 0.020%.
  • Al 0.0150% or less
  • Aluminum (Al) is inevitably contained. That is, the Al content is more than 0%. Al deoxidizes the alloy. If Al is contained even in a small amount, the above effect can be obtained to some extent. However, if the Al content exceeds 0.0150%, the spontaneous volume magnetostriction of the alloy will decrease even if the other element content is within the range of this embodiment. As a result, the coefficient of thermal expansion of the alloy increases. Therefore, the Al content is 0.0150% or less.
  • the preferred upper limit of the Al content is 0.0120%, more preferably 0.0100%, still more preferably 0.0090%, still more preferably 0.0080%, still more preferably 0.0070.
  • the Al content is the total Al (Total-Al) content.
  • Ca 0.0050% or less Calcium (Ca) is inevitably contained. That is, the Ca content is more than 0%. Ca refines MnS and enhances the hot workability of the alloy. If even a small amount of Ca is contained, the above effect can be obtained to some extent. However, if the Ca content exceeds 0.0050%, even if the content of other elements is within the range of the present embodiment, an excessively large amount of coarse inclusions are generated, and the hot workability of the alloy is improved. descend. Therefore, the Ca content is 0.0050% or less.
  • the preferred upper limit of the Ca content is 0.0040%, more preferably 0.0030%, still more preferably 0.0020%.
  • the preferable lower limit of the Ca content is 0.0001%, more preferably 0.0003%, still more preferably 0.0005%.
  • Mg 0.0300% or less Magnesium (Mg) is inevitably contained. That is, the Mg content is more than 0%. Similar to Ca, Mg refines MnS and enhances the hot workability of the alloy. If even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content exceeds 0.0300%, even if the content of other elements is within the range of this embodiment, an excessively large amount of coarse inclusions are generated, and the hot workability of the alloy is improved. descend. Therefore, the Mg content is 0.0300% or less.
  • the preferred upper limit of the Mg content is 0.0200%, more preferably 0.0100%, even more preferably 0.0050%, even more preferably 0.0020%, still more preferably 0.0010. %.
  • the preferable lower limit of the Mg content is 0.0001%, more preferably 0.0002%.
  • N 0.0100% or less Nitrogen (N) is an impurity that is inevitably contained. That is, the N content is more than 0%. N lowers the hot workability of the alloy. When the N content exceeds 0.0100%, even if the content of other elements is within the range of the present embodiment, an excessively large amount of nitride is formed, the coefficient of thermal expansion of the alloy increases, and the coefficient of thermal expansion of the alloy increases. The corrosion resistance of the alloy is reduced. Therefore, the N content is 0.0100% or less.
  • the preferred upper limit of the N content is 0.0095%, more preferably 0.0090%.
  • the N content is preferably as low as possible. However, excessive reduction of N increases manufacturing costs. Therefore, when industrial production is taken into consideration, the preferable lower limit of the N content is 0.0001%, more preferably 0.0003%, still more preferably 0.0005%.
  • Oxygen (O) is an impurity that is inevitably contained. That is, the O content is more than 0%. O produces coarse inclusions and reduces the hot workability of the alloy. If the O content exceeds 0.0300%, the hot workability of the alloy will be significantly reduced even if the content of other elements is within the range of the present embodiment. Therefore, the O content is 0.0300% or less.
  • the preferred upper limit of the O content is 0.0200%, more preferably 0.0180%, still more preferably 0.0150%.
  • the O content is preferably as low as possible. However, excessive reduction of O content increases manufacturing costs. Therefore, when industrial production is taken into consideration, the preferable lower limit of the O content is 0.0001%, and more preferably 0.0005%.
  • Pb 0.0040% or less
  • Lead (Pb) is an impurity that is inevitably contained. That is, the Pb content is more than 0%.
  • Pb is a metal having a low melting point, which lowers the hot workability of the alloy. If the Pb content exceeds 0.0040%, the hot workability of the alloy will be significantly reduced even if the content of other elements is within the range of the present embodiment. Therefore, the Pb content is 0.0040% or less.
  • the preferred upper limit of the Pb content is 0.0030%, more preferably 0.0025%, even more preferably 0.0020%, even more preferably 0.0015%, even more preferably 0.0010. %.
  • the Pb content is preferably as low as possible. However, excessive reduction of Pb content increases manufacturing costs. Therefore, when industrial production is taken into consideration, the preferable lower limit of the Pb content is 0.0001%.
  • Zinc (Zn) is an impurity that is inevitably contained. That is, the Zn content is more than 0%. Zn is a metal having a low melting point, which lowers the hot workability of the alloy. If the Zn content exceeds 0.020%, the hot workability of the alloy will be significantly reduced even if the other element content is within the range of the present embodiment. Therefore, the Zn content is 0.020% or less.
  • the preferred upper limit of the Zn content is 0.018%, more preferably 0.016%, even more preferably 0.015%, still more preferably 0.010%.
  • the Zn content is preferably as low as possible. However, excessive reduction of Zn content increases the manufacturing cost. Therefore, when industrial production is taken into consideration, the preferable lower limit of the Zn content is 0.001%.
  • Niobium (Nb), Titanium (Ti) and Vanadium (V) all increase the strength of the alloy.
  • Nb, Ti and V form nano-level carbonitrides.
  • the strength of the alloy is increased by the fine dispersion precipitation of nano-level carbonitrides.
  • the total content of one or more selected from the group consisting of Nb: 0 to less than 0.145%, Ti: 0 to less than 0.145%, and V: 0 to less than 0.145% is 0.015%. If it is less than, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, the total content of one or more selected from the group consisting of Nb: 0 to less than 0.145%, Ti: 0 to less than 0.145%, and V: 0 to less than 0.145% is 0. If it is 145% or more, nano-level carbonitrides are excessively produced even if the content of other elements is within the range of this embodiment.
  • the total content of one or more selected from the group consisting of Nb: 0 to less than 0.145%, Ti: 0 to less than 0.145%, and V: 0 to less than 0.145% is 0. It is 015 to less than 0.145%.
  • the preferable lower limit of the total content of Nb, Ti and V is 0.016%, more preferably 0.017%, further preferably 0.020%, still more preferably 0.030%.
  • the preferred upper limit of the total content of Nb, Ti and V is 0.140%, more preferably 0.135%, still more preferably 0.120%.
  • the rest of the chemical composition of the alloy of this embodiment is Fe and impurities.
  • the impurities are those mixed from ore, scrap, or the manufacturing environment as a raw material when the alloy is industrially manufactured, and are allowed as long as they do not adversely affect the alloy of the present embodiment. Means what is done.
  • the chemical composition of the low thermal expansion alloy of the present embodiment may further contain one or more selected from the group consisting of Cu, Sn, and W instead of a part of Fe. All of these elements enhance the corrosion resistance of the alloy.
  • Cu 0 to 0.300% Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When Cu is contained, that is, when the Cu content is more than 0%, Cu enhances the corrosion resistance of the alloy. If even a small amount of Cu is contained, the above effect can be obtained to some extent. However, if the Cu content exceeds 0.300%, the hot workability of the alloy is lowered even if the content of other elements is within the range of this embodiment. Therefore, the Cu content is 0 to 0.300%.
  • the lower limit of the Cu content is preferably 0.001%, more preferably 0.005%, still more preferably 0.010%.
  • the preferred upper limit of the Cu content is 0.250%, more preferably 0.200%, still more preferably 0.150%, still more preferably 0.120%, still more preferably 0.100. %, More preferably 0.070%.
  • Tin (Sn) is an optional element and may not be contained. That is, the Sn content may be 0%.
  • Sn When Sn is contained, that is, when the Sn content is more than 0%, Sn enhances the corrosion resistance of the alloy. If Sn is contained even in a small amount, the above effect can be obtained to some extent. However, if the Sn content exceeds 0.100%, the hot workability of the alloy is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Sn content is 0 to 0.100%.
  • the preferred lower limit of the Sn content is 0.001%, more preferably 0.002%, still more preferably 0.003%.
  • the preferred upper limit of the Sn content is 0.080%, more preferably 0.070%, still more preferably 0.050%, still more preferably 0.030%, still more preferably 0.020. %.
  • W 0 to 0.200%
  • Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%.
  • W When W is contained, that is, when the W content is more than 0%, W enhances the corrosion resistance of the alloy. If W is contained even in a small amount, the above effect can be obtained to some extent. However, if the W content exceeds 0.200%, the hot workability of the alloy is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the W content is 0 to 0.200%.
  • the lower limit of the W content is preferably 0.001%, more preferably 0.003%, still more preferably 0.005%.
  • the preferable upper limit of the W content is 0.150%, more preferably 0.100%, further preferably 0.050%, still more preferably 0.030%, still more preferably 0.020. %.
  • Preferable total content of Cu, Sn and W Preferable total content of Cu, Sn and W
  • Cu, Sn and W all enhance the corrosion resistance of the alloy.
  • the total content of one or more selected from the group consisting of Cu: 0 to 0.300%, Sn: 0 to 0.100%, and W: 0 to 0.200% is 0.020% or more.
  • the corrosion resistance of the alloy is significantly increased.
  • the preferable lower limit of the total content of Cu, Sn and W is 0.025%, more preferably 0.030%, still more preferably 0.040%.
  • the preferable upper limit of the total content of Cu, Sn and W is 0.600, more preferably 0.300%, further preferably 0.250%, still more preferably 0.200%, and further. It is preferably 0.180%.
  • the chemical composition of the low thermal expansion alloy of the present embodiment may further contain B instead of a part of Fe.
  • B 0 to 0.0040%
  • Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When it is contained, that is, when the B content is more than 0%, B enhances the hot workability of the alloy. If B is contained even in a small amount, the above effect can be obtained to some extent. However, if the B content exceeds 0.0040%, the hot workability of the alloy is rather lowered even if the content of other elements is within the range of the present embodiment. Therefore, the B content is 0 to 0.0040%.
  • the preferable lower limit of the B content is 0.0001%, more preferably 0.0002%, still more preferably 0.0008%, still more preferably 0.0012%.
  • the preferred upper limit of the B content is 0.0035%, more preferably 0.0030.
  • Fn1 (Nb + 3 ⁇ Ti + V) / (C + N).
  • the chemical composition satisfies the content of each of the above-mentioned elements and the total content of Nb, Ti and V is less than 0.015 to 0.145%, and Fn1 When is 6.00 or less, the nanocarbonitride is finely dispersed in the alloy in an appropriate amount. Therefore, high strength can be obtained and the coefficient of thermal expansion can be maintained low.
  • Fn1 is 6.00 or less.
  • the upper limit of Fn1 is preferably 5.20, more preferably 4.20, and even more preferably 3.20.
  • the lower limit of Fn1 is not particularly limited, but is, for example, 0.13.
  • the shape of the alloy of this embodiment is not particularly limited.
  • the shape of the alloy is, for example, a pipe material, a plate material, and a bar material.
  • the alloy is used as a material for a pipe for transporting a low-temperature substance represented by LNG and a tank for storing a low-temperature substance.
  • alloy pipes, alloy plates, and alloy rods are used as materials to be incorporated into piping for transporting low-temperature substances and tanks for storing low-temperature substances by welding or the like.
  • the alloy of the present embodiment having the above constitution has the content of each element in the chemical composition within the above range, and the total content of one or more selected from the group consisting of Nb, Ti, and V.
  • the amount is 0.015 to less than 0.145%, and the formula (1) is satisfied. Therefore, the alloy of the present embodiment can have both a sufficiently low coefficient of thermal expansion and high strength.
  • the alloy of this embodiment further has a total content of one or more selected from the group consisting of Cu, Sn and W of 0.020% or more. In this case, the alloy of the present embodiment has a low coefficient of thermal expansion and high strength, and further has excellent corrosion resistance.
  • the alloy manufacturing method of the present embodiment includes a material preparation step, a hot working step, a cold working step carried out as necessary (that is, an arbitrary step), and a cold working step as needed. It is provided with a heat treatment step to be performed (that is, an arbitrary step).
  • a material preparation step that is, a hot working step
  • a cold working step carried out as necessary that is, an arbitrary step
  • a cold working step as needed. It is provided with a heat treatment step to be performed (that is, an arbitrary step).
  • a heat treatment step to be performed that is, an arbitrary step.
  • a material having the above-mentioned chemical composition is prepared.
  • the material may be supplied by a third party or may be manufactured.
  • the material may be ingot, slab, bloom, billet.
  • the material is manufactured by the following method.
  • a molten alloy having the above-mentioned chemical composition is produced.
  • An ingot is manufactured by a lump formation method using the manufactured molten alloy.
  • the slab, bloom, and billet (cylindrical material) may be produced by a continuous casting method using the produced molten alloy.
  • the billets may be manufactured by performing hot working on the manufactured ingots, slabs, and blooms.
  • the ingot may be hot forged to produce a cylindrical billet, and this billet may be used as a material (cylindrical material).
  • the temperature of the material immediately before the start of hot forging is not particularly limited, but is, for example, 900 to 1300 ° C.
  • the method of cooling the material after hot forging is not particularly limited.
  • the material prepared in the material preparing step is hot-worked to produce an intermediate material.
  • the intermediate material may be, for example, a pipe material, a plate material, or a bar material.
  • the intermediate material is a pipe material (alloy pipe)
  • the following processing is performed in the hot processing process.
  • An intermediate material (alloy tube) is manufactured by performing hot extrusion represented by the Eugene Sejurne method on a cylindrical material having through holes.
  • the temperature of the material immediately before hot extrusion is not particularly limited.
  • the temperature of the material immediately before hot extrusion is, for example, 900 to 1300 ° C.
  • a hot punching pipe manufacturing method may be carried out.
  • perforation rolling by the Mannesmann method may be carried out to manufacture an alloy tube.
  • the columnar material is drilled and rolled by a drilling machine.
  • the perforated round billet is further hot-rolled by a mandrel mill, reducer, sizing mill or the like to produce an intermediate material (alloy tube).
  • the cumulative surface reduction rate in the hot working process is not particularly limited, but is, for example, 20 to 80%.
  • the hot working process uses, for example, one or a plurality of rolling mills provided with a pair of work rolls.
  • An alloy plate is manufactured by hot rolling a material such as a slab using a rolling mill.
  • the temperature of the material immediately before hot rolling is, for example, 800 to 1300 ° C.
  • the hot working process includes, for example, a rough rolling process and a finish rolling process.
  • the material is hot-processed to produce billets.
  • a bulk rolling mill is used for the rough rolling process. Billets are manufactured by performing slab rolling on the material with a slab rolling mill.
  • a continuous rolling mill is installed downstream of the ingot rolling mill, hot rolling is further performed on the billet after the ingot rolling using the continuous rolling mill to produce a smaller billet. You may.
  • a continuous rolling mill for example, horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a row.
  • the material temperature immediately before the rough rolling step is not particularly limited, but is, for example, 900 to 1300 ° C.
  • the finish rolling process the billet is first heated.
  • the billet after heating is hot-rolled using a continuous rolling mill to produce a bar.
  • the heating temperature in the heating furnace in the finish rolling step is not particularly limited, but is, for example, 800 to 1300 ° C.
  • the cold working process is carried out as needed. That is, the cold working process is an arbitrary process and does not have to be carried out.
  • the intermediate material is descaled and then cold-worked.
  • the descale treatment is, for example, shot blasting and / or pickling.
  • the intermediate material is a pipe or bar
  • the cold working is, for example, cold drawing or cold Pilger rolling.
  • the intermediate material is a plate material
  • the cold working is, for example, cold rolling.
  • strain is applied to the intermediate material before the heat treatment step. As a result, recrystallization and sizing can be performed during the heat treatment step.
  • the surface reduction rate in the cold working process is not particularly limited, but is, for example, 10 to 70%.
  • the heat treatment step is carried out as needed. That is, the heat treatment step is an arbitrary step and does not have to be carried out.
  • heat treatment for the purpose of recrystallization is carried out on the intermediate material after the hot working step or the cold working step.
  • the heat treatment temperature is 750 to 950 ° C.
  • the holding time at the heat treatment temperature is not particularly limited, but is, for example, 5 to 30 minutes. After the holding time has elapsed, the intermediate material is water-cooled to produce an alloy as a product.
  • the alloy of this embodiment can be manufactured by the above manufacturing process.
  • the method for producing the alloy is not particularly limited as long as the chemical composition of the present embodiment is satisfied.
  • the effects of the alloy of this embodiment will be described more specifically by way of examples.
  • the conditions in the following examples are one condition example adopted for confirming the feasibility and effect of the alloy of this embodiment. Therefore, the alloy of this embodiment is not limited to this one condition example.
  • the molten alloys of each test number in Table 1 were produced by vacuum melting, and the columnar ingots having the chemical compositions shown in Table 1 were produced using the molten alloys.
  • the outer diameter of the ingot was 250 mm.
  • a blank column in Table 1 means that the corresponding element content was below the detection limit. That is, the blank portion means that the minimum digit of the corresponding element content was below the detection limit. For example, in the case of Ti content in Table 1, the smallest digit is the third decimal place. Therefore, the Ti content of test number 1 means that it was not detected in the number of digits up to the third decimal place (the significant figure was 0% in the content up to the third decimal place).
  • the ingot was heated to 1200 ° C. Hot forging was carried out on the heated ingot to produce a material having a thickness of 40 mm and a width of 100 mm.
  • the material was hot-rolled to produce an intermediate material (alloy plate).
  • the heating temperature of the material in hot rolling was 1200 ° C.
  • Cold rolling was carried out on the intermediate material to obtain an intermediate material (alloy plate) having a thickness of 15 mm and a width of 100 mm.
  • the intermediate material after cold rolling was heat-treated at a heat treatment temperature of 850 ° C.
  • the holding time at the heat treatment temperature was 30 minutes. After the holding time had elapsed, the intermediate material was water-cooled to produce alloys (alloy plates) of each test number.
  • the surface reduction rate in hot rolling and the surface reduction rate in cold rolling were the same for all test numbers.
  • Table 2 shows the drawing values (%) of the intermediate materials of each test number at 900 ° C. When the drawing value at 900 ° C. was less than 70%, it was determined that the hot workability was low. For intermediate materials with test numbers that had low hot workability, the following evaluation tests (coefficient of thermal expansion evaluation test, tensile strength evaluation test, corrosion resistance evaluation test) were performed without performing the steps after the hot work process. Not performed (indicated by "-" in the "linear expansion coefficient” column, "tensile strength” column, and “corrosion rate” column in Table 2).
  • Test piece was taken from the center position of the plate width of the alloy of each test number and the center position of the plate thickness.
  • the test piece was a tensile test piece having a parallel portion length of 65 mm and a parallel portion diameter of 6 mm.
  • the length of the parallel part was parallel to the longitudinal direction of the alloy.
  • the central axis of the tensile test piece almost coincided with the center position of the thickness of the alloy plate.
  • a tensile test was carried out in the air at room temperature in accordance with JIS Z 2241 (2011) to determine the tensile strength (MPa).
  • Table 2 shows the tensile strength (MPa) of the alloy of each test number.
  • the test piece was immersed in a 6% ferric chloride solution. The temperature of the solution during immersion was 35 ⁇ 1 ° C. After soaking for 24 hours, the test piece was removed from the solution. After removing the corrosion products adhering to the test piece, the test piece was washed and dried. The mass of the test piece after drying was measured, and the weight loss was determined. Based on the obtained weight loss, the corrosion rate (mg / cm 2 / h)) was determined. Based on the determined corrosion rate, the corrosion resistance of the alloys of each test number was evaluated as follows.
  • Evaluation A Corrosion rate is 0.90 times or less of the corrosion rate of the reference material
  • Evaluation B Corrosion rate is more than 0.90 times to 1.00 times the corrosion rate of the reference material
  • Evaluation X Corrosion rate is the reference material When the evaluation A was more than 1.00 times the corrosion rate of A, it was judged that particularly excellent corrosion resistance was obtained. The obtained evaluation results are shown in the "corrosion rate" column in Table 2.
  • the corrosion rate of test number 12 (reference material) was 6.5 mg / cm 2 / h.
  • test numbers 1 to 11 test numbers 1 to 3, 5, 7, 9 and 11 further had a total content of Nb, Ti and V of 0.030% or more. Therefore, the tensile strength was 504 MPa or more, and further excellent strength was obtained as compared with Test Nos. 4, 6, 8 and 10 in which the total content of Nb, Ti and V was less than 0.030%.
  • the total content of Cu, Sn and W was 0.020% or more. Therefore, not only high strength and a lower coefficient of thermal expansion were obtained, but also the corrosion resistance was evaluated as A, and excellent corrosion resistance was obtained ( corrosion rate of 5.9 mg / cm 2 / h or less).
  • test number 12 the total content of Nb, Ti and V was less than 0.015%. Therefore, the strength was too low.
  • test number 13 the Nb content was too high. Therefore, the total content of Nb, Ti and V exceeded 0.145%. Therefore, the coefficient of thermal expansion was too high. In addition, the corrosion resistance was low.
  • test number 14 the Ti content was too high. Therefore, the total content of Nb, Ti and V exceeded 0.145%. Therefore, the coefficient of thermal expansion was too high. In addition, the corrosion resistance was low.
  • test number 15 the V content was too high. Therefore, the total content of Nb, Ti and V exceeded 0.145%. Therefore, the coefficient of thermal expansion was too high. In addition, the corrosion resistance was low.
  • test numbers 16 to 18 the total content of Nb, Ti and V was less than 0.015%. Therefore, the strength was too low.
  • test number 19 the V content was too high. Therefore, the total content of Nb, Ti and V exceeded 0.145%. Therefore, the coefficient of thermal expansion was too high. In addition, the corrosion resistance was low.
  • test number 20 the Nb content was too high. Therefore, the total content of Nb, Ti and V exceeded 0.145%. Therefore, the coefficient of thermal expansion was too high. In addition, the corrosion resistance was low.
  • test number 21 the Sn content was too high. Therefore, cracks were confirmed in the intermediate material after hot rolling, and the hot workability was low.
  • test number 22 the Ti content was high, and the total content of Nb, Ti, and V exceeded 0.145%. In addition, the N content was too high. Therefore, the coefficient of thermal expansion was too high. In addition, the corrosion resistance was low.
  • test number 23 the Pb content was too high. Therefore, cracks were confirmed in the intermediate material after hot rolling, and the hot workability was low.
  • test number 24 the B content was too high. Therefore, cracks were confirmed in the intermediate material after hot rolling, and the hot workability was low.
  • test number 25 the Cu content was too high. Therefore, cracks were confirmed in the intermediate material after hot rolling, and the hot workability was low.
  • test number 26 the W content was too high. Therefore, cracks were confirmed in the intermediate material after hot rolling, and the hot workability was low.
  • test number 27 the Nb content and Ti content were too high. Therefore, the total content of Nb, Ti and V exceeded 0.145%. Therefore, the coefficient of thermal expansion was too high. In addition, the corrosion resistance was low.
  • test number 30 the total content of Nb, Ti and V was 0.145% or more. Therefore, the coefficient of thermal expansion was too high. In addition, the corrosion resistance was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

高強度を有し、低い熱膨張係数を有する合金を提供する。本開示による合金は、化学組成が、質量%で、C:0.10%以下、Si:0.50%以下、Mn:0.15~0.60%、P:0.015%以下、S:0.0030%以下、Ni:30.0~40.0%、Cr:0.50%以下、Mo:0.50%以下、Co:0.250%以下、Al:0.0150%以下、Ca:0.0050%以下、Mg:0.0300%以下、N:0.0100%以下、O:0.0300%以下、Pb:0.0040%以下、Zn:0.020%以下、を含有し、さらに、Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上の合計:0.015~0.145%未満、を含有し、残部はFe及び不純物からなり、式(1)を満たす。 (Nb+3×Ti+V)/(C+N)≦6.00 (1)

Description

合金
 本開示は、合金に関し、さらに詳しくは、熱膨張係数の低い合金に関する。
 LNG(液化天然ガス)のような低温物質の輸送用配管や貯蔵用タンクの材料として、低温でも脆化しにくいオーステナイト系ステンレス鋼材が利用されている。
 低温物質の輸送用配管や貯蔵用タンクでは、低温物質が流れている場合、及び、低温物質を貯蔵している場合には温度が低下し、低温物質が流れていない場合、及び、低温物質を貯蔵していない場合には温度が上昇する。上述のオーステナイト系ステンレス鋼材の熱膨張係数は高い。そのため、低温物質の輸送用配管や貯蔵用タンクでは、温度変化に伴う熱膨張及び熱収縮が生じる。そこで、このような熱膨張及び熱収縮を吸収する機構として、低温物質の輸送用配管では、所定の長さ毎に、ループ配管を配置する。ループ配管は、熱膨張及び熱収縮による輸送用配管の変形を吸収する。しかしながら、ループ配管により配管の総長さは長くなり、製造コストが高くなる。そこで、低温物質の輸送用配管や貯蔵用タンクの材料として、オーステナイト系ステンレス鋼材よりも熱膨張係数の低い合金が求められている。
 熱膨張係数の小さい合金として、インバー合金が知られている。インバー合金は、自発体積磁歪(インバー効果)により、温度変化に対して、低い熱膨張係数を維持できる。そのため、熱の影響を受けても寸法が変化しにくい。インバー合金の熱膨張係数は、オーステナイト系ステンレス鋼材の熱膨張係数よりもはるかに小さい。そのため、低温物質の輸送用配管や貯蔵用タンク用途の材料として、インバー合金を用いれば、熱膨張及び熱収縮による輸送用配管や貯蔵用タンクの変形が抑えられる。
 LNGに代表される低温物質の輸送用配管及び貯蔵用タンクに用いられるインバー合金が特表2017-512899号公報(特許文献1)に開示されている。
 特許文献1に開示された合金は、35wt%≦Ni≦37wt%、Mn≦0.6wt%、C≦0.07wt%、Si≦0.35wt%、Cr≦0.5wt%、Co≦0.5wt%、P≦0.01wt%、Mo<0.5wt%、S≦0.0035wt%、O≦0.0025wt%、0.011wt%≦[(3.138×Al+6×Mg+13.418×Ca)-(3.509×O+1.770×S)]≦0.038wt%、0.0003wt%<Ca≦0.0015wt%、0.0005wt%<Mg≦0.0035wt%、0.0020wt%<Al≦0.0085wt%を含み、残部が鉄及び精錬から生じた残留元素であることを特徴とする。この文献に開示された合金は、液化ガスを受けるためのタンク又は配管に使用される、と特許文献1には記載されている。
 ところで、インバー合金は、低い熱膨張係数を有するものの、強度が低い。低い熱膨張係数を有する合金の強度が高ければ、輸送用配管の薄肉化が可能となり、輸送用配管及び貯蔵用タンクの構造安定性も高まる。そのため、高強度を有するインバー合金が求められている。
 インバー合金の強度を高める技術がたとえば、特開平10-017997号公報(特許文献2)及び特開平10-195531号公報(特許文献3)に開示されている。
 特許文献2に開示されたインバー合金は、重量割合にて、C:0.015~0.10%、Si:0.35%以下、Mn:1.0%以下、P:0.015%以下、S:0.0010%以下、Cr:0.3%以下、Ni:35~37%、Mo:0~0.5%、V:0~0.05%、Al:0.01%以下、Nb:0.15%以上1.0%未満、Ti:0.003%以下、N:0.005%以下を含有すると共に残部がFe及び不可避的不純物より成ることを特徴とする。これにより、熱間加工性に優れた高強度のインバー合金が得られる、と特許文献2に記載されている。
 特許文献3に開示されたアンバー合金の製造方法は、重量%で、Ni:30~45%と、C:0.001~0.04%とを含むFe-Ni系アンバー合金を製造する方法において、合金を900~1150℃に加熱し、下記(1)式で表されるT℃以下の温度で、累積圧下率5%以上の熱間圧延を行うことを特徴とする。これにより、強度及び靱性に優れたアンバー合金が得られる、と特許文献3に記載されている。
(℃)=2,500×C%+750・・・(1)
特表2017-512899号公報 特開平10-017997号公報 特開平10-195531号公報
 上述の特許文献2及び特許文献3に開示された技術により、インバー合金の強度を高めることができる。しかしながら、従前の技術では、インバー合金の強度を高めることはできるものの、熱膨張係数が増加する場合があった。そのため、十分に高い強度を有しつつ、熱膨張係数も十分に低い合金が求められている。
 本開示の目的は、高強度を有し、低い熱膨張係数を有する合金を提供することである。
 本開示による合金は、
 化学組成が、質量%で、
 C:0.10%以下、
 Si:0.50%以下、
 Mn:0.15~0.60%、
 P:0.015%以下、
 S:0.0030%以下、
 Ni:30.0~40.0%、
 Cr:0.50%以下、
 Mo:0.50%以下、
 Co:0.250%以下、
 Al:0.0150%以下、
 Ca:0.0050%以下、
 Mg:0.0300%以下、
 N:0.0100%以下、
 O:0.0300%以下、
 Pb:0.0040%以下、
 Zn:0.020%以下、
 Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上の合計:0.015~0.145%未満、
 Cu:0~0.300%、
 Sn:0~0.100%、
 W:0~0.200%、及び、
 B:0~0.0040%、を含有し、
 残部はFe及び不純物からなり、
 式(1)を満たす。
 (Nb+3×Ti+V)/(C+N)≦6.00 (1)
 ここで、式(1)中の各元素記号には、合金の化学組成中の各元素の含有量が質量%で代入される。
 本開示による合金は、高強度を有し、低い熱膨張係数を有する。
図1Aは、試験番号4の合金の透過型電子顕微鏡(TEM)写真である。 図1Bは、図1AのTEM写真の模式図である。 図2は、式(1)と熱膨張係数との関係を示す図である。
 本発明者らは、高強度を有し、低い熱膨張係数が得られる合金について、調査及び検討を行った。
 Ni含有量が30.0~40.0質量%のNi-Fe系合金であれば、インバー効果により合金の熱膨張係数が低くなることが知られている。このようなNi-Fe系合金はそもそも、熱膨張係数が低いという基本性能を要求される。そのため、Ni含有量が30.0~40.0質量%のNi-Fe系合金においては、高強度化を検討する場合であっても、熱膨張係数の増大を抑制しつつ、高強度化することが求められてきた。
 合金を高強度化する方法の1つに、析出強化がある。析出強化では、炭化物、窒化物及び/又は炭窒化物を析出させて合金を強化する。しかしながら、合金中に炭化物や窒化物等の析出物が生成した場合、析出物が熱膨張することにより、合金の熱膨張係数が増大してしまう。Ni含有量が30.0~40.0質量%のNi-Fe系合金においては、熱膨張係数を抑制しつつ、高強度化することが検討されてきたため、析出強化による高強度化は避けられてきた。そこで、従前では、析出強化に代えて、固溶強化、結晶粒径の細粒化、又は、冷間加工により、合金の強度を高めることが試みられてきた。
 たとえば、上述の特許文献2では、合金に、合金元素としてNbを0.15%以上を含有することで強度を高めている(特許文献2の段落[0012]及び[0023])。特許文献2の実施例では、合金中のC含有量を低く抑えている。したがって、特許文献2では、多量のNbを固溶させ、固溶強化により合金の強度を高めている。また、特許文献3では、圧延条件を調整することにより合金の残留歪を調整して、合金の強度を高めている(特許文献3の段落[0011])。つまり、特許文献2及び特許文献3では、析出強化以外の方法で合金が高強度化されている。
 上述のとおり、熱膨張係数の増大を抑制しつつ、高強度化する場合、従前は、析出強化による高強度化は避けられてきた。また、Nbを使った強化では、0.15%以上のNbを含有しさらにC含有量を低下させて炭化物の生成を抑制し、Nbを固溶させることで固溶強化する技術が提案されている。この技術では、析出物が熱膨張することによって、合金の熱膨張係数が増大するのを回避することを試みている。
 Ni含有量が30.0~40.0質量%のNi-Fe系合金においては、Nbを用いて強化する場合、析出強化ではなく、固溶Nbによる固溶強化が行われてきたことは、上述のとおりである。しかしながら本発明者らの検討の結果、多量の固溶Nbはむしろ、熱膨張係数に影響を与える可能性があることが分かった。
 そこで、本発明者らは、固溶Nb量を低減しても、低い熱膨張係数と高強度とを両立できる合金について検討を行った。図1Aは、後述する実施例における、試験番号4の合金(本発明例)の透過型電子顕微鏡(TEM)写真である。図1Bは、図1AのTEM写真の模式図である。図1(図1A及び図1B)中、矢印で示した黒点部分の成分を分析したところ、Cを除く組成でNbを86.3%含む析出物であることが分かった。つまり、図1のTEM写真中の黒点は、Nbを含む析出物(炭窒化物)である。図1のTEM写真に示すとおり、試験番号4の合金には、ナノサイズの微細な炭窒化物が析出している。従前の検討によれば、炭窒化物は合金の熱膨張係数を増加させる。しかしながら、予想に反して、後述する実施例に記載のとおり、試験番号4の合金の熱膨張係数は低かった。
 本発明者らはこの結果を詳細に検討し、従来の知見とは異なる知見を得た。本発明者らは、ナノサイズの微細炭窒化物(以下、単にナノ炭窒化物とも称する)を析出させることにより、強度を高めつつ、さらに低い熱膨張係数を得られると考えた。ナノ炭窒化物は転位を固着する。そのため、合金を強化できる。ナノ炭窒化物はさらに、体積が非常に小さいため、温度変化に対する体積膨脹が小さい。そのため、本発明者らは、固溶Nbによる固溶強化ではなく、ナノ炭窒化物の析出強化によりNi-Fe系合金を高強度化すれば良いと考えた。これにより、固溶Nb量を低減でき、熱膨張係数をさらに低下できると考えられる。なお、本明細書において「炭窒化物」とは、炭化物、窒化物及び/又は炭窒化物を含む。
 本発明者らは、合金の低い熱膨張係数と高強度とを両立できる、ナノ炭窒化物の大きさや個数密度を特定しようと検討した。しかしながら、図1に示すとおり、ナノ炭窒化物は非常に小さく、適切な大きさや個数密度の正確な特定を行うことは困難であった。そこで本発明者らは、このようなナノ炭窒化物を微細分散できるNi-Fe系合金の化学組成について検討を行った。本発明者らは、炭窒化物を形成するNb、Ti及びVの1種以上を含有し、かつ、C含有量及びN含有量を高めた化学組成であれば、ナノ炭窒化物を析出できるのではないかと考えた。具体的には、質量%で、C:0.10%以下、Si:0.50%以下、Mn:0.15~0.60%、P:0.015%以下、S:0.0030%以下、Ni:30.0~40.0%、Cr:0.50%以下、Mo:0.50%以下、Co:0.250%以下、Al:0.0150%以下、Ca:0.0050以下、Mg:0.0300%以下、N:0.0100%以下、O:0.0300%以下、Pb:0.0040%以下、Zn:0.020%以下、Cu:0~0.300%、Sn:0~0.100%、W:0~0.200%、及び、B:0~0.0040%を含有し、残部はFe及び不純物からなる合金において、Feの一部に代えて、Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上を合計で0.015~0.145%未満含有する合金であれば、ナノ炭窒化物を析出でき、その結果、強度を高めつつ、熱膨張係数をさらに小さくできる可能性があると考えた。
 しかしながら、上記の化学組成を有するだけの合金では、強度を高めることはできても、熱膨張係数をさらに小さくすることはできなかった。本発明者らは、その原因を詳細に調査した。その結果、上記の化学組成を有するだけでは、炭窒化物が過剰に析出する場合があることが分かった。そこで本発明者らは、ナノ炭窒化物を適切な量で析出できる合金についてさらに検討を行った。その結果、次の知見を得た。
 図2は、式(1)と熱膨張係数との関係を示す図である。図2は後述する実施例のうち、化学組成中の各元素含有量が上述の範囲内である合金における、式(1)と熱膨張係数との関係を示している。図2の横軸は、Fn1=(Nb+3×Ti+V)/(C+N)の値を示す。ここで、各元素記号には、合金の化学組成中の各元素の含有量が質量%で代入される。図2の縦軸は、合金の熱膨張係数である。合金の熱膨張係数は、後述する測定方法により測定した。
 図2を参照して、Fn1が6.00以下であれば、合金の熱膨張係数が著しく低下する。式(1)は、ナノ炭窒化物を形成するNb、Ti及びVと、C及びNとの含有量の関係を規定する式である。Nb、Ti及びVの合計含有量を0.145%未満に制限し、かつ、Fn1が6.00以下であれば、ナノ炭窒化物を微細分散させつつ、過剰なナノ炭窒化物の析出を抑制できる。このため、強度を高めつつ、合金の熱膨脹係数をさらに低下できる。
 以上をまとめると、次のとおりである。合金に、Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上を合計で0.015%以上含有させる。これにより、Nb、Ti及び/又はVのナノ炭窒化物を分散させる。ナノ炭窒化物は転位を固着する。これにより、合金の強度が高まる。一方で、Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上の合計量を0.015~0.145%未満に制限する。さらに、Nb含有量、Ti含有量及びV含有量と、C含有量及びN含有量とが式(1)を満たすよう調整する。これにより、Nb、Ti及び/又はVのナノ炭窒化物の過剰な析出を抑制する。Nb、Ti及び/又はVのナノ炭窒化物は非常に小さいため、ナノ炭窒化物が熱膨張しても体積変化が極めて小さい。そのため、合金の熱膨張係数を低く維持しつつ、高い強度を得る事ができる。なお、式(1)は次に示すとおりである。
 (Nb+3×Ti+V)/(C+N)≦6.00 (1)
 ここで、式(1)中の各元素記号には、合金の化学組成中の各元素の含有量が質量%で代入される。
 以上のとおり、本実施形態による合金は、従前の技術とは全く異なる思想に基づいて完成した。本実施形態による合金は次の構成を有する。
 [1]
 化学組成が、質量%で、
 C:0.10%以下、
 Si:0.50%以下、
 Mn:0.15~0.60%、
 P:0.015%以下、
 S:0.0030%以下、
 Ni:30.0~40.0%、
 Cr:0.50%以下、
 Mo:0.50%以下、
 Co:0.250%以下、
 Al:0.0150%以下、
 Ca:0.0050%以下、
 Mg:0.0300%以下、
 N:0.0100%以下、
 O:0.0300%以下、
 Pb:0.0040%以下、
 Zn:0.020%以下、
 Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上の合計:0.015~0.145%未満、
 Cu:0~0.300%、
 Sn:0~0.100%、
 W:0~0.200%、及び、
 B:0~0.0040%、を含有し、
 残部はFe及び不純物からなり、
 式(1)を満たす、合金。
 (Nb+3×Ti+V)/(C+N)≦6.00 (1)
 ここで、式(1)中の各元素記号には、合金の化学組成中の各元素の含有量が質量%で代入される。
 [1]の合金は、高強度を有し、さらに低い熱膨張係数を有する。
 [2]
 [1]に記載の合金であって、
 前記化学組成は、
 Cu:0~0.300%、Sn:0~0.100%、及び、W:0~0.200%からなる群から選択される1種以上を合計で0.020%以上含有する、
 合金。
 [2]の合金は、高強度と、低い熱膨張係数とを有し、さらに、優れた耐食性を有する。
 [3]
 前記合金は、管材、板材、及び棒材のいずれかである、
 [1]又は[2]に記載の合金。
 以下、本実施形態の合金について詳しく説明する。以下、化学組成における「%」は特に断りがない限り、質量%を意味する。
 [化学組成]
 本実施形態の合金の化学組成は、次の元素を含有する。
 C:0.10%以下
 炭素(C)は不可避に含有される。つまり、C含有量は0%超である。Cは、製鋼工程において、合金を脱酸する。Cはさらに、合金の強度を高める。Cが少しでも含有されれば、上記効果がある程度得られる。しかしながら、C含有量が0.10%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の耐食性が低下する。したがって、C含有量は0.10%以下である。C含有量の好ましい上限は0.09%であり、さらに好ましくは0.08%であり、さらに好ましくは0.06%であり、さらに好ましくは0.05%である。C含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%である。
 Si:0.50%以下
 シリコン(Si)は不可避に含有される。つまり、Si含有量は0%超である。Siは製鋼工程において、合金を脱酸する。Siが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Si含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の自発体積磁歪が減少し、合金の熱膨張係数が高まる。Si含有量が0.50%を超えればさらに、合金の熱間加工性が低下する。Si含有量が0.50%を超えればさらに、介在物が過剰に多く生成して合金の耐食性が低下する。したがって、Si含有量は0.50%以下である。Si含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%であり、さらに好ましくは0.20%である。Si含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%である。
 Mn:0.15~0.60%
 マンガン(Mn)は、製鋼工程において、合金を脱酸する。Mnはさらに、硫黄(S)と結合してMnSを形成し、合金の熱間加工性を高める。Mn含有量が0.15%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mn含有量が0.60%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の自発体積磁歪が減少する。その結果、合金の熱膨張係数が高まる。したがって、Mn含有量は0.15~0.60%である。Mn含有量の好ましい下限は0.16%であり、さらに好ましくは0.17%であり、さらに好ましくは0.19%であり、さらに好ましくは0.20%であり、さらに好ましくは0.21%である。Mn含有量の好ましい上限は0.55%であり、さらに好ましくは0.50%であり、さらに好ましくは0.45%である。
 P:0.015%以下
 燐(P)は不可避に含有される不純物である。つまり、P含有量は0%超である。Pは合金の溶接性及び熱間加工性を低下する。P含有量が0.015%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の溶接性及び熱間加工性が顕著に低下する。したがって、P含有量は0.015%以下である。P含有量の好ましい上限は0.012%であり、さらに好ましくは0.010%であり、さらに好ましくは0.008%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は製造コストを高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%である。
 S:0.0030%以下
 硫黄(S)は不可避に含有される不純物である。つまり、S含有量は0%超である。Sは合金の溶接性及び熱間加工性を低下する。S含有量が0.0030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の溶接性及び熱間加工性が顕著に低下する。したがって、S含有量は0.0030%以下である。S含有量の好ましい上限は0.0025%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%であり、さらに好ましくは0.0010%である。S含有量はなるべく低い方が好ましい。しかしながら、S含有量の過剰な低減は製造コストを高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%である。
 Ni:30.0~40.0%
 ニッケル(Ni)は、合金の自発体積磁歪を高め、その結果、合金の熱膨張係数を低下する。Niはさらに、合金の耐食性を高める。Ni含有量が30.0%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Ni含有量が40.0%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱膨張係数がかえって増大する。したがって、Ni含有量は30.0~40.0%である。Ni含有量の好ましい下限は31.0%であり、さらに好ましくは32.0%であり、さらに好ましくは33.0%であり、さらに好ましくは34.0%である。Ni含有量の好ましい上限は39.0%であり、さらに好ましくは38.0%であり、さらに好ましくは37.0%である。
 Cr:0.50%以下
 クロム(Cr)は不可避に含有される。つまり、Cr含有量は0%超である。Crは合金の耐食性を高める。Crが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cr含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱間加工性が低下する。したがって、Cr含有量は0.50%以下である。Cr含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%であり、さらに好ましくは0.20%であり、さらに好ましくは0.15%であり、さらに好ましくは0.10%である。Cr含有量の好ましい下限は0.01%である。
 Mo:0.50%以下
 モリブデン(Mo)は不可避に含有される。つまり、Mo含有量は0%超である。Moは合金の強度を高める。Moが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mo含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱間加工性が低下する。したがって、Mo含有量は0.50%以下である。Mo含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%であり、さらに好ましくは0.20%であり、さらに好ましくは0.15%であり、さらに好ましくは0.10%である。Mo含有量の好ましい下限は0.01%である。
 Co:0.250%以下
 コバルト(Co)は不可避に含有される。つまり、Co含有量は0%超である。Coは、Niと同様に、合金の強度を高める。Coが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Co含有量が0.250%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱膨張係数がかえって高まってしまう。したがって、Co含有量は0.250%以下である。Co含有量の好ましい上限は0.200%であり、さらに好ましくは0.150%であり、さらに好ましくは0.100%であり、さらに好ましくは0.080%である。Co含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%である。
 Al:0.0150%以下
 アルミニウム(Al)は不可避に含有される。つまり、Al含有量は0%超である。Alは合金を脱酸する。Alが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Al含有量が0.0150%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の自発体積磁歪が減少する。その結果、合金の熱膨張係数が高まる。したがって、Al含有量は0.0150%以下である。Al含有量の好ましい上限は0.0120%であり、さらに好ましくは0.0100%であり、さらに好ましくは0.0090%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0070%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0035%未満である。Al含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0012%である。本実施形態において、Al含有量とは、全Al(Total-Al)の含有量である。
 Ca:0.0050%以下
 カルシウム(Ca)は不可避に含有される。つまり、Ca含有量は0%超である。CaはMnSを微細化して、合金の熱間加工性を高める。Caが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ca含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な介在物が過剰に多く生成して、合金の熱間加工性を低下する。したがって、Ca含有量は0.0050%以下である。Ca含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%である。Ca含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。
 Mg:0.0300%以下
 マグネシウム(Mg)は不可避に含有される。つまり、Mg含有量は0%超である。MgはCaと同様に、MnSを微細化して、合金の熱間加工性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mg含有量が0.0300%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な介在物が過剰に多く生成して、合金の熱間加工性が低下する。したがって、Mg含有量は0.0300%以下である。Mg含有量の好ましい上限は0.0200%であり、さらに好ましくは0.0100%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0010%である。Mg含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%である。
 N:0.0100%以下
 窒素(N)は不可避に含有される不純物である。つまり、N含有量は0%超である。Nは、合金の熱間加工性を低下する。N含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、窒化物を過剰に多く形成して、合金の熱膨張係数が増大し、かつ、合金の耐食性が低下する。したがって、N含有量は0.0100%以下である。N含有量の好ましい上限は0.0095%であり、さらに好ましくは0.0090%である。N含有量はなるべく低い方が好ましい。しかしながら、Nの過剰な低減は製造コストを高める。したがって、工業生産を考慮した場合、N含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。
 O:0.0300%以下
 酸素(O)は不可避に含有される不純物である。つまり、O含有量は0%超である。Oは粗大な介在物を生成し、合金の熱間加工性を低下する。O含有量が0.0300%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱間加工性が顕著に低下する。したがって、O含有量は0.0300%以下である。O含有量の好ましい上限は0.0200%であり、さらに好ましくは0.0180%であり、さらに好ましくは0.0150%である。O含有量はなるべく低い方が好ましい。しかしながら、O含有量の過剰な低減は、製造コストを高める。したがって、工業生産を考慮した場合、O含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%である。
 Pb:0.0040%以下
 鉛(Pb)は不可避に含有される不純物である。つまり、Pb含有量は0%超である。Pbは低融点の金属であり、合金の熱間加工性を低下する。Pb含有量が0.0040%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱間加工性が顕著に低下する。したがって、Pb含有量は0.0040%以下である。Pb含有量の好ましい上限は0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%であり、さらに好ましくは0.0010%である。Pb含有量はなるべく低い方が好ましい。しかしながら、Pb含有量の過剰な低減は製造コストを高くする。したがって、工業生産を考慮した場合、Pb含有量の好ましい下限は0.0001%である。
 Zn:0.020%以下
 亜鉛(Zn)は不可避に含有される不純物である。つまり、Zn含有量は0%超である。Znは低融点の金属であり、合金の熱間加工性を低下する。Zn含有量が0.020%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱間加工性が顕著に低下する。したがって、Zn含有量は0.020%以下である。Zn含有量の好ましい上限は0.018%であり、さらに好ましくは0.016%であり、さらに好ましくは0.015%であり、さらに好ましくは0.010%である。Zn含有量はなるべく低い方が好ましい。しかしながら、Zn含有量の過剰な低減は製造コストを高くする。したがって、工業生産を考慮した場合、Zn含有量の好ましい下限は0.001%である。
 Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上の合計:0.015~0.145%未満
 ニオブ(Nb)、チタン(Ti)及びバナジウム(V)はいずれも、合金の強度を高める。合金の化学組成中の各元素の含有量が上述の範囲内であり、かつ、後述する式(1)を満たす場合、Nb、Ti及びVはいずれも、ナノレベルの炭窒化物を形成し、ナノレベルの炭窒化物の微細分散析出により、合金の強度を高める。Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上の合計含有量が0.015%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上の合計含有量が0.145%以上であれば、他の元素含有量が本実施形態の範囲内であっても、ナノレベルの炭窒化物が過剰に生成する。この場合、合金の熱膨張係数が高まり、かつ、合金の耐食性が低下する。したがって、Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上の合計含有量は0.015~0.145%未満である。Nb、Ti及びVの合計含有量の好ましい下限は0.016%であり、さらに好ましくは0.017%であり、さらに好ましくは0.020%であり、さらに好ましくは0.030%である。Nb、Ti及びVの合計含有量の好ましい上限は0.140%であり、さらに好ましくは0.135%であり、さらに好ましくは0.120%である。
 本実施形態の合金の化学組成の残部はFe及び不純物である。ここで、不純物とは、合金を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態の合金に悪影響を与えない範囲で許容されるものを意味する。
 [任意元素について]
 [任意元素第1群(Cu、Sn、W)]
 本実施形態の低熱膨張合金の化学組成はさらに、Feの一部に代えて、Cu、Sn、及び、Wからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも、合金の耐食性を高める。
 Cu:0~0.300%
 銅(Cu)は任意元素であり、含有されなくてもよい。つまり、Cu含有量は0%であってもよい。Cuが含有される場合、つまり、Cu含有量が0%超である場合、Cuは、合金の耐食性を高める。Cuが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cu含有量が0.300%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱間加工性が低下する。したがって、Cu含有量は0~0.300%である。Cu含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。Cu含有量の好ましい上限は0.250%であり、さらに好ましくは0.200%であり、さらに好ましくは0.150%であり、さらに好ましくは0.120%であり、さらに好ましくは0.100%であり、さらに好ましくは0.070%である。
 Sn:0~0.100%
 錫(Sn)は任意元素であり、含有されなくてもよい。つまり、Sn含有量は0%であってもよい。Snが含有される場合、つまり、Sn含有量が0%超である場合、Snは、合金の耐食性を高める。Snが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Sn含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱間加工性が低下する。したがって、Sn含有量は0~0.100%である。Sn含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%であり、さらに好ましくは0.003%である。Sn含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%であり、さらに好ましくは0.050%であり、さらに好ましくは0.030%であり、さらに好ましくは0.020%である。
 W:0~0.200%
 タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。Wが含有される場合、つまり、W含有量が0%超である場合、Wは、合金の耐食性を高める。Wが少しでも含有されれば、上記効果がある程度得られる。しかしながら、W含有量が0.200%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱間加工性が低下する。したがって、W含有量は0~0.200%である。W含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%であり、さらに好ましくは0.005%である。W含有量の好ましい上限は0.150%であり、さらに好ましくは0.100%であり、さらに好ましくは0.050%であり、さらに好ましくは0.030%であり、さらに好ましくは0.020%である。
 [好ましいCu、Sn及びWの合計含有量]
 好ましくは、本実施形態の合金の化学組成では、Cu:0~0.300%、Sn:0~0.100%、及び、W:0~0.200%からなる群から選択される1種以上を合計で0.020%以上含有する。
 Cu、Sn及びWはいずれも、合金の耐食性を高める。Cu:0~0.300%、Sn:0~0.100%、及び、W:0~0.200%からなる群から選択される1種以上の合計含有量が0.020%以上であれば、合金の耐食性が顕著に高まる。Cu、Sn及びWの合計含有量の好ましい下限は0.025%であり、さらに好ましくは0.030%であり、さらに好ましくは0.040%である。Cu、Sn及びWの合計含有量の好ましい上限は0.600であり、さらに好ましくは0.300%であり、さらに好ましくは0.250%であり、さらに好ましくは0.200%であり、さらに好ましくは0.180%である。
 [任意元素第2群(B)]
 本実施形態の低熱膨張合金の化学組成はさらに、Feの一部に代えて、Bを含有してもよい。
 B:0~0.0040%
 ボロン(B)は任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。含有される場合、つまり、B含有量が0%超である場合、Bは合金の熱間加工性を高める。Bが少しでも含有されれば、上記効果がある程度得られる。しかしながら、B含有量が0.0040%を超えれば、他の元素含有量が本実施形態の範囲内であっても、合金の熱間加工性がかえって低下する。したがって、B含有量は0~0.0040%である。B含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0008%であり、さらに好ましくは0.0012%である。B含有量の好ましい上限は0.0035%であり、さらに好ましくは0.0030である。
 [式(1)について]
 本実施形態の合金の化学組成は、式(1)を満たす。
 (Nb+3×Ti+V)/(C+N)≦6.00 (1)
 ここで、式(1)中の各元素記号には、合金の化学組成中の各元素の含有量が質量%で代入される。
 Fn1=(Nb+3×Ti+V)/(C+N)と定義する。本実施形態の合金では、化学組成が、上述の各元素の含有量を満たし、かつ、Nb、Ti及びVの合計含有量が0.015~0.145%未満であることを前提として、Fn1が6.00以下であれば、合金中において、ナノ炭窒化物が適切な量で微細分散する。そのため、高強度が得られ、かつ、熱膨張係数も低く維持することができる。一方、化学組成が上述の各元素の含有量を満たし、かつ、Nb、Ti及びVの合計含有量が0.015~0.145%未満であっても、Fn1が6.00を超えれば、ナノ炭窒化物が過剰に多く析出する。この場合、合金の強度を高めることはできても、合金の熱膨張係数が高くなってしまう。したがって、Fn1は6.00以下である。Fn1の上限は好ましくは5.20、さらに好ましくは4.20、さらに好ましくは3.20である。Fn1の下限は特に限定されないが、たとえば0.13である。
 [合金の形状について]
 本実施形態の合金の形状は特に限定されない。合金の形状はたとえば、管材、板材、及び棒材である。合金は、LNGに代表される低温物質の輸送用配管、及び、低温物質の貯蔵用タンクの素材として使用される。具体的には、合金管、合金板、合金棒は、低温物質の輸送用配管及び低温物質の貯蔵用タンクに、溶接等により組み込まれる素材として使用される。
 以上の構成を有する本実施形態の合金は、化学組成中の各元素含有量が上述の範囲内であり、かつ、Nb、Ti、及び、Vからなる群から選択される1種以上の合計含有量が0.015~0.145%未満であり、かつ、式(1)を満たす。そのため、本実施形態の合金は、十分に低い熱膨張係数と高い強度とを両立できる。好ましくは、本実施形態の合金はさらに、Cu、Sn及びWからなる群から選択される1種以上の合計含有量が0.020%以上である。この場合、本実施形態の合金は、低い熱膨張係数と、高い強度とを有し、さらに、優れた耐食性を有する。
 [製造方法]
 本実施形態の合金の製造方法の一例を以下に説明する。なお、本実施形態の合金は、以下の製造方法に限定されない。以下に説明する製造方法は、本実施形態の合金の製造方法の好ましい一例である。
 本実施形態の合金の製造方法は、一例として、素材準備工程と、熱間加工工程と、必要に応じて実施される(つまり任意の工程である)冷間加工工程と、必要に応じて実施される(つまり任意の工程である)熱処理工程とを備える。以下、各工程について説明する。
 [素材準備工程]
 素材準備工程では、上述の化学組成を有する素材を準備する。素材は第三者から供給されてもよいし、製造してもよい。素材はインゴットであってもよいし、スラブ、ブルーム、ビレットであってもよい。素材を製造する場合、次の方法により、素材を製造する。上述の化学組成を有する溶融合金を製造する。製造された溶融合金を用いて、造塊法によりインゴットを製造する。製造された溶融合金を用いて、連続鋳造法によりスラブ、ブルーム、ビレット(円柱素材)を製造してもよい。製造されたインゴット、スラブ、ブルームに対して熱間加工を実施して、ビレットを製造してもよい。たとえば、インゴットに対して熱間鍛造を実施して、円柱状のビレットを製造し、このビレットを素材(円柱素材)としてもよい。この場合、熱間鍛造開始直前の素材の温度は特に限定されないが、たとえば、900~1300℃である。熱間鍛造後の素材の冷却方法は特に限定されない。
 [熱間加工工程]
 熱間加工工程では、素材準備工程において準備された素材に対して熱間加工を実施して、中間材を製造する。中間材はたとえば管材であってもよいし、板材であってもよいし、棒材であってもよい。
 中間材が管材(合金管)である場合、熱間加工工程では、次の加工を実施する。初めに、円柱素材を準備する。機械加工により、円柱素材の中心軸に沿った貫通孔を形成する。貫通孔が形成された円柱素材に対して、ユジーンセジュルネ法に代表される熱間押出を実施して、中間材(合金管)を製造する。熱間押出直前の素材の温度は特に限定されない。熱間押出直前の素材の温度はたとえば、900~1300℃である。熱間押出法に代えて、熱間押抜き製管法を実施してもよい。
 熱間押出に代えて、マンネスマン法による穿孔圧延を実施して、合金管を製造してもよい。この場合、穿孔機により円柱素材を穿孔圧延する。穿孔圧延された丸ビレットをさらに、マンドレルミル、レデューサ、サイジングミル等により熱間圧延して中間材(合金管)を製造する。熱間加工工程での累積の減面率は特に限定されないが、たとえば、20~80%である。
 中間材が板材(合金板)である場合、熱間加工工程はたとえば、一対のワークロールを備える1又は複数の圧延機を用いる。スラブ等の素材に対して圧延機を用いて熱間圧延を実施して、合金板を製造する。熱間圧延直前の素材の温度はたとえば、800~1300℃である。
 中間材が棒材である場合、熱間加工工程はたとえば、粗圧延工程と、仕上げ圧延工程とを含む。粗圧延工程では、素材を熱間加工してビレットを製造する。粗圧延工程はたとえば、分塊圧延機を用いる。分塊圧延機により素材に対して分塊圧延を実施して、ビレットを製造する。分塊圧延機の下流に連続圧延機が設置されている場合、分塊圧延後のビレットに対してさらに、連続圧延機を用いて熱間圧延を実施して、さらにサイズの小さいビレットを製造してもよい。連続圧延機では、たとえば、一対の水平ロールを有する水平スタンドと、一対の垂直ロールを有する垂直スタンドとが交互に一列に配列される。粗圧延工程直前の素材温度は特に限定されないが、たとえば、900~1300℃である。仕上げ圧延工程では、初めにビレットを加熱する。加熱後のビレットに対して、連続圧延機を用いて熱間圧延を実施して、棒材を製造する。仕上げ圧延工程での加熱炉での加熱温度は特に限定されないが、たとえば、800~1300℃である。
 [冷間加工工程]
 冷間加工工程は必要に応じて実施する。つまり、冷間加工工程は任意の工程であり、実施しなくてもよい。実施する場合、中間材に対して、脱スケール処理を実施した後、冷間加工を実施する。脱スケール処理はたとえば、ショットブラスト及び/又は酸洗である。中間材が管材又は棒材である場合、冷間加工はたとえば、冷間抽伸又は冷間ピルガー圧延である。中間材が板材である場合、冷間加工はたとえば、冷間圧延である。冷間加工工程を実施することにより、熱処理工程前に、中間材に歪を付与する。これにより、熱処理工程時において再結晶の発現及び整粒化を行うことができる。冷間加工工程における減面率は特に限定されないが、たとえば、10~70%である。
 [熱処理工程]
 熱処理工程は必要に応じて実施する。つまり、熱処理工程は任意の工程であり、実施しなくてもよい。実施する場合、熱間加工工程後又は冷間加工工程後の中間材に対して、再結晶を目的とした熱処理を実施する。熱処理温度は750~950℃である。熱処理温度での保持時間は特に限定されないが、たとえば、5~30分である。保持時間経過後の中間材を水冷して、製品である合金を製造する。
 以上の製造工程により、本実施形態の合金を製造できる。なお、本実施形態の化学組成を満たせば、合金の製造方法は特に限定されない。
 以下、実施例により本実施形態の合金の効果をさらに具体的に説明する。以下の実施例での条件は、本実施形態の合金の実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態の合金は、この一条件例に限定されない。
 表1中の各試験番号の溶融合金を真空溶解により製造し、溶融合金を用いて、表1に示す化学組成の円柱状のインゴットを製造した。インゴットの外径は250mmであった。
Figure JPOXMLDOC01-appb-T000001
 表1中の空白欄は、対応する元素含有量が検出限界未満であったことを意味する。つまり、空白部分は、対応する元素含有量の最小桁において、検出限界未満であったことを意味する。たとえば、表1中のTi含有量の場合、最小桁は小数第3位である。したがって、試験番号1のTi含有量は、小数第3位までの桁数において、検出されなかった(有効数字が小数第3位までの含有量において、0%であった)ことを意味する。
 インゴットを1200℃に加熱した。加熱後のインゴットに対して熱間鍛造を実施して、厚さ40mm、幅100mmの素材を製造した。素材に対して熱間圧延を実施して、中間材(合金板)を製造した。熱間圧延での素材の加熱温度は1200℃であった。中間材に対して冷間圧延を実施して、厚さ15mm、幅100mmの中間材(合金板)とした。冷間圧延後の中間材に対して、850℃の熱処理温度で熱処理を実施した。熱処理温度での保持時間は30分であった。保持時間経過後の中間材を水冷して、各試験番号の合金(合金板)を製造した。なお、熱間圧延での減面率、冷間圧延での減面率は、いずれの試験番号でも同じとした。
 [評価試験]
 [グリーブル試験]
 各試験番号の合金の熱間加工性を、グリーブル試験によって評価した。各試験番号の熱間鍛造後のインゴットから、外径10mm、長さ130mmの棒状試験片を採取し、900℃の絞り値を求めた。具体的には、グリーブル試験機(DYNAMIC SYSTEM Inc.社製 Gleeble 3500-GTC)に棒状試験片を設置した。棒状試験片を、直接通電により1200℃に加温して1分間保持した。その後、1分間で900℃まで降温し、歪み速度10/秒で破断まで引っ張り、断面の絞り値(試験後の棒状試験片の破断面積/試験前の棒状試験片の長手方向に垂直な断面積)を算出した。各試験番号の中間材の900℃での絞り値(%)を表2に示す。なお、900℃での絞り値が70%未満であった場合、熱間加工性が低いと判定した。熱間加工性が低かった試験番号の中間材については、熱間加工工程以降の工程を実施せず、以下に示す評価試験(熱膨張係数評価試験、引張強さ評価試験、耐食性評価試験)を実施しなかった(表2中の「線膨張係数」欄、「引張強さ」欄、「腐食速度」欄において「-」で表記)。
Figure JPOXMLDOC01-appb-T000002
 [熱膨張係数評価試験]
 各試験番号の合金板の板幅中央位置であって、板厚中心位置から、直径5mm、長さ20mmの試験片を採取した。試験片の長手方向は、合金板の長手方向と平行であった。試験片の中心軸は、合金板の板厚中心位置とほぼ一致した。試験片を用いて、JIS Z 2285(2003)に基づいて、熱膨張係数を求めた。熱膨張係数の測定には、水平型示差膨張式機械分析装置(NETZSCH社 DIL402 Expedis Supreme)を用いた。具体的には、試験片を5℃/minの速度で昇温し、30~100℃の熱膨張係数を1℃ピッチで求めた。求めた熱膨張係数の平均を、線膨張係数(×10-6/K)とした。各試験番号の合金の線膨張係数(×10-6/K)を表2に示す。
 [引張強さ評価試験]
 各試験番号の合金の板幅中央位置であって、板厚中心位置から、試験片を採取した。試験片は、平行部長さ65mm、平行部の直径6mmの引張試験片とした。平行部長さは、合金の長手方向と平行であった。引張試験片の中心軸は、合金板の板厚中心位置とほぼ一致した。得られた試験片を用いて、JIS Z 2241(2011)に準拠して、常温大気中にて、引張試験を実施して、引張強さ(MPa)を求めた。各試験番号の合金の引張強さ(MPa)を表2に示す。
 [耐食性評価試験]
 各試験番号の合金の板幅中央位置であって、板厚中心位置から、厚さ1mm、幅10mm、長さ55mmの試験片を採取した。試験片の長手方向は、合金板の長手方向と平行であった。試験片の長手方向に垂直な断面の中心位置は、合金板の板厚中心位置とほぼ一致した。試験片を用いて、JIS G 0578(2000)に準拠した塩化第二鉄腐食試験を実施した。具体的には、試験片を表面研磨した。表面研磨後の試験片を脱脂した後、乾燥した。試験前の試験片の質量を測定した。質量を測定後、試験片を、6%塩化第二鉄溶液中へ浸漬した。浸漬中の溶液の温度は35±1℃とした。24時間浸漬した後、試験片を溶液から取り出した。試験片に付着している腐食生成物を除去した後、試験片を洗浄及び乾燥した。乾燥後の試験片の質量を測定し、減量を求めた。求めた減量に基づいて、腐食速度(mg/cm/h))を求めた。求めた腐食速度に基づいて、各試験番号の合金の耐食性を次のとおり評価した。
 評価A:腐食速度が、基準材の腐食速度の0.90倍以下
 評価B:腐食速度が、基準材の腐食速度の0.90倍超~1.00倍
 評価X:腐食速度が、基準材の腐食速度の1.00倍超
 評価Aの場合、特に優れた耐食性が得られたと判断した。得られた評価結果を表2中の「腐食速度」欄に示す。なお、試験番号12(基準材)の腐食速度は、6.5mg/cm/hであった。
 [評価結果]
 表1及び表2を参照して、試験番号1~11の合金の化学組成は適切であり、かつ、Nb、Ti及びVの合計含有量が0.015~0.145%未満であり、式(1)を満たした。そのため、試験番号1~11の合金の引張強さは472MPa以上であった。また、試験番号1~11の合金の熱膨張係数は1.00×10-6/K以下であった。なお、試験番号1~11の合金の900℃での絞り値は70%以上であった。
 試験番号1~11のうち、試験番号1~3、5、7、9及び11はさらに、Nb、Ti及びVの合計含有量が0.030%以上であった。そのため、引張強さは504MPa以上であり、Nb、Ti及びVの合計含有量が0.030%未満の試験番号4、6、8及び10と比較してさらに優れた強度が得られた。
 さらに、試験番号1~11のうち、試験番号1、2、4、5、8及び9ではさらに、Cu、Sn及びWの合計含有量が0.020%以上であった。そのため、高い強度、及びさらに低い熱膨張係数が得られるだけでなく、耐食性は評価Aであり、優れた耐食性が得られた(5.9mg/cm/h以下の腐食速度)。
 一方、試験番号12では、Nb、Ti及びVの合計含有量が0.015%未満であった。そのため、強度が低すぎた。
 試験番号13では、Nb含有量が高すぎた。そのため、Nb、Ti及びVの合計含有量が0.145%を超えた。そのため、熱膨張係数が高すぎた。さらに、耐食性が低かった。
 試験番号14では、Ti含有量が高すぎた。そのため、Nb、Ti及びVの合計含有量が0.145%を超えた。そのため、熱膨張係数が高すぎた。さらに、耐食性が低かった。
 試験番号15では、V含有量が高すぎた。そのため、Nb、Ti及びVの合計含有量が0.145%を超えた。そのため、熱膨張係数が高すぎた。さらに、耐食性が低かった。
 試験番号16~18では、Nb、Ti及びVの合計含有量が0.015%未満であった。そのため、強度が低すぎた。
 試験番号19では、V含有量が高すぎた。そのため、Nb、Ti及びVの合計含有量が0.145%を超えた。そのため、熱膨張係数が高すぎた。さらに、耐食性が低かった。
 試験番号20では、Nb含有量が高すぎた。そのため、Nb、Ti及びVの合計含有量が0.145%を超えた。そのため、熱膨張係数が高すぎた。さらに、耐食性が低かった。
 試験番号21では、Sn含有量が高すぎた。そのため、熱間圧延後の中間材に割れが確認され、熱間加工性が低かった。
 試験番号22では、Ti含有量が高く、Nb、Ti及びVの合計含有量が0.145%を超えた。さらに、N含有量が高すぎた。そのため、熱膨張係数が高すぎた。さらに、耐食性が低かった。
 試験番号23では、Pb含有量が高すぎた。そのため、熱間圧延後の中間材に割れが確認され、熱間加工性が低かった。
 試験番号24では、B含有量が高すぎた。そのため、熱間圧延後の中間材に割れが確認され、熱間加工性が低かった。
 試験番号25では、Cu含有量が高すぎた。そのため、熱間圧延後の中間材に割れが確認され、熱間加工性が低かった。
 試験番号26では、W含有量が高すぎた。そのため、熱間圧延後の中間材に割れが確認され、熱間加工性が低かった。
 試験番号27では、Nb含有量及びTi含有量が高すぎた。そのため、Nb、Ti及びVの合計含有量が0.145%を超えた。そのため、熱膨張係数が高すぎた。さらに、耐食性が低かった。
 試験番号28では、各元素の含有量、及び、Nb、Ti及びVの合計含有量は適切であったものの、式(1)を満たさなかった。そのため、熱膨張係数が高すぎた。さらに、耐食性が低かった。
 試験番号29では、各元素の含有量、及び、Nb、Ti及びVの合計含有量は適切であったものの、式(1)を満たさなかった。そのため、熱膨張係数が高すぎた。
 試験番号30では、Nb、Ti及びVの合計含有量が0.145%以上であった。そのため、熱膨張係数が高すぎた。さらに、耐食性が低かった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定さることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。

Claims (3)

  1.  化学組成が、質量%で、
     C:0.10%以下、
     Si:0.50%以下、
     Mn:0.15~0.60%、
     P:0.015%以下、
     S:0.0030%以下、
     Ni:30.0~40.0%、
     Cr:0.50%以下、
     Mo:0.50%以下、
     Co:0.250%以下、
     Al:0.0150%以下、
     Ca:0.0050%以下、
     Mg:0.0300%以下、
     N:0.0100%以下、
     O:0.0300%以下、
     Pb:0.0040%以下、
     Zn:0.020%以下、
     Nb:0~0.145%未満、Ti:0~0.145%未満、及び、V:0~0.145%未満からなる群から選択される1種以上の合計:0.015~0.145%未満、
     Cu:0~0.300%、
     Sn:0~0.100%、
     W:0~0.200%、及び、
     B:0~0.0040%、を含有し、
     残部はFe及び不純物からなり、
     式(1)を満たす、合金。
     (Nb+3×Ti+V)/(C+N)≦6.00 (1)
     ここで、式(1)中の各元素記号には、合金の化学組成中の各元素の含有量が質量%で代入される。
  2.  請求項1に記載の合金であって、
     前記化学組成は、
     Cu:0~0.300%、Sn:0~0.100%、及び、W:0~0.200%からなる群から選択される1種以上を合計で0.020%以上含有する、
     合金。
  3.  前記合金は、管材、板材、及び棒材のいずれかである、
     請求項1又は請求項2に記載の合金。
PCT/JP2020/048927 2019-12-27 2020-12-25 合金 WO2021132634A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2020413417A AU2020413417B2 (en) 2019-12-27 2020-12-25 Alloy
US17/755,689 US20220380872A1 (en) 2019-12-27 2020-12-25 Alloy
JP2021567706A JP7284433B2 (ja) 2019-12-27 2020-12-25 合金
EP20907786.6A EP4083249A4 (en) 2019-12-27 2020-12-25 ALLOY
CA3159934A CA3159934A1 (en) 2019-12-27 2020-12-25 Alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-238842 2019-12-27
JP2019238842 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132634A1 true WO2021132634A1 (ja) 2021-07-01

Family

ID=76574721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048927 WO2021132634A1 (ja) 2019-12-27 2020-12-25 合金

Country Status (6)

Country Link
US (1) US20220380872A1 (ja)
EP (1) EP4083249A4 (ja)
JP (1) JP7284433B2 (ja)
AU (1) AU2020413417B2 (ja)
CA (1) CA3159934A1 (ja)
WO (1) WO2021132634A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7423852B1 (ja) 2023-11-10 2024-01-29 日本冶金工業株式会社 Fe-Ni合金、合金管、及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314842A (ja) * 1986-07-04 1988-01-22 Nippon Mining Co Ltd シヤドウマスク材及びシヤドウマスク
JPH0472037A (ja) * 1990-07-10 1992-03-06 Sumitomo Metal Ind Ltd 高強度低熱膨張合金およびその製造方法
JPH05195160A (ja) * 1992-01-21 1993-08-03 Nkk Corp 黒化処理性に優れたシャドウマスク用Fe−Ni合金
JPH09263891A (ja) * 1996-03-29 1997-10-07 Nippon Yakin Kogyo Co Ltd 打ち抜き性に優れた高強度低熱膨張性Fe−Ni系合金材料およびその製造方法
JPH1017997A (ja) 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd 熱間加工性に優れた高強度インバ−合金
JPH10140288A (ja) * 1996-11-07 1998-05-26 Nkk Corp 溶接性に優れたFe−Ni系アンバー合金
JPH10195531A (ja) 1997-01-10 1998-07-28 Nkk Corp 強度、靱性に優れたアンバー合金の製造方法
JP2001179486A (ja) * 1999-12-22 2001-07-03 Nkk Corp 低熱膨張合金用溶接材料、溶接管の製造方法、及び溶接管の円周溶接方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2117399B (en) * 1982-01-25 1986-07-09 Nisshin Steel Co Ltd Low thermal expansion alloys
JP2001303200A (ja) * 2000-04-21 2001-10-31 Hitachi Metals Ltd 高強度低熱膨張Fe−Ni系合金および、シャドウマスクとこれを用いたブラウン管、リードフレームとこれを用いた半導体素子
JP3854121B2 (ja) * 2001-10-22 2006-12-06 日本冶金工業株式会社 耐食性に優れるシャドウマスク素材用Fe−Ni系合金およびシャドウマスク材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314842A (ja) * 1986-07-04 1988-01-22 Nippon Mining Co Ltd シヤドウマスク材及びシヤドウマスク
JPH0472037A (ja) * 1990-07-10 1992-03-06 Sumitomo Metal Ind Ltd 高強度低熱膨張合金およびその製造方法
JPH05195160A (ja) * 1992-01-21 1993-08-03 Nkk Corp 黒化処理性に優れたシャドウマスク用Fe−Ni合金
JPH09263891A (ja) * 1996-03-29 1997-10-07 Nippon Yakin Kogyo Co Ltd 打ち抜き性に優れた高強度低熱膨張性Fe−Ni系合金材料およびその製造方法
JPH1017997A (ja) 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd 熱間加工性に優れた高強度インバ−合金
JPH10140288A (ja) * 1996-11-07 1998-05-26 Nkk Corp 溶接性に優れたFe−Ni系アンバー合金
JPH10195531A (ja) 1997-01-10 1998-07-28 Nkk Corp 強度、靱性に優れたアンバー合金の製造方法
JP2001179486A (ja) * 1999-12-22 2001-07-03 Nkk Corp 低熱膨張合金用溶接材料、溶接管の製造方法、及び溶接管の円周溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083249A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7423852B1 (ja) 2023-11-10 2024-01-29 日本冶金工業株式会社 Fe-Ni合金、合金管、及びその製造方法

Also Published As

Publication number Publication date
EP4083249A4 (en) 2023-11-29
AU2020413417A1 (en) 2022-05-26
EP4083249A1 (en) 2022-11-02
JP7284433B2 (ja) 2023-05-31
JPWO2021132634A1 (ja) 2021-07-01
CA3159934A1 (en) 2021-07-01
AU2020413417B2 (en) 2024-02-01
US20220380872A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6787483B2 (ja) マルテンサイトステンレス鋼材
EP1342807B1 (en) Austenitic stainless steel tube and manufacturing method thereof
JP6966006B2 (ja) マルテンサイトステンレス鋼材
KR102172891B1 (ko) 오스테나이트계 스테인리스 강재
JP5097017B2 (ja) 高Crフェライト系耐熱鋼材の製造方法
US20190284666A1 (en) NiCrFe Alloy
JP7114998B2 (ja) オーステナイト系ステンレス鋼
US11555232B2 (en) Austenitic stainless steel material
US20190127832A1 (en) Austenitic Stainless Steel
WO2021039431A1 (ja) サワー環境での使用に適した鋼材
WO2018146783A1 (ja) オーステナイト系耐熱合金およびその製造方法
CN108431246B (zh) 油井用不锈钢管的制造方法及油井用不锈钢管
JP6981527B2 (ja) サワー環境での使用に適した鋼材
JP2021066928A (ja) オーステナイト系ステンレス鋼材
WO2021132634A1 (ja) 合金
JP7397391B2 (ja) Fe-Cr-Ni合金材
WO2020067444A1 (ja) オーステナイト系合金
JP2018162507A (ja) 高強度油井用鋼材および油井管
CN108138295B (zh) 新型奥氏体不锈合金
JP7425299B2 (ja) オーステナイト系ステンレス鋼材
CN110430954B (zh) 粉末和hip的制品及其制造
JP6627662B2 (ja) オーステナイト系ステンレス鋼
JP2021066904A (ja) オーステナイト系ステンレス鋼材の製造方法
JP7417180B1 (ja) 鋼材
JP7417181B1 (ja) 鋼材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567706

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3159934

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020413417

Country of ref document: AU

Date of ref document: 20201225

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907786

Country of ref document: EP

Effective date: 20220727