WO2021132596A1 - プライマーセット及びそれを用いて標的核酸を検出する方法 - Google Patents

プライマーセット及びそれを用いて標的核酸を検出する方法 Download PDF

Info

Publication number
WO2021132596A1
WO2021132596A1 PCT/JP2020/048826 JP2020048826W WO2021132596A1 WO 2021132596 A1 WO2021132596 A1 WO 2021132596A1 JP 2020048826 W JP2020048826 W JP 2020048826W WO 2021132596 A1 WO2021132596 A1 WO 2021132596A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
polynucleotide
nucleic acid
target nucleic
tag
Prior art date
Application number
PCT/JP2020/048826
Other languages
English (en)
French (fr)
Inventor
重彦 宮本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US17/789,131 priority Critical patent/US20230067733A1/en
Priority to EP20908327.8A priority patent/EP4083202A1/en
Priority to CN202080090734.7A priority patent/CN114901817A/zh
Priority to JP2021567690A priority patent/JPWO2021132596A1/ja
Publication of WO2021132596A1 publication Critical patent/WO2021132596A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • One or more embodiments of the present invention relate to a primer set for preparing an amplification product of a target nucleic acid that can be detected on a solid phase carrier by a nucleic acid amplification reaction.
  • One or more embodiments of the invention also relate to kits for detecting target nucleic acids, including said primer sets.
  • One or more embodiments of the present invention also relate to a method for detecting a target nucleic acid, which comprises carrying out a nucleic acid amplification reaction using the primer set.
  • One or more embodiments of the present invention also relate to a multiplex primer set comprising two or more of the primer sets.
  • a target nucleic acid is amplified by a nucleic acid amplification reaction using a polynucleotide primer to which a polynucleotide tag independent of the nucleic acid amplification reaction is added to generate a target nucleic acid fragment to which the polynucleotide tag is added.
  • a probe that binds to the polynucleotide tag (for example, a complementary polynucleotide of the polynucleotide tag) is previously immobilized on a test strip for chromatography. Then, a sample containing the tagged target nucleic acid fragment is applied to this test strip, expanded in the test strip using the capillary phenomenon, and the target nucleic acid fragment is captured and detected by the probe.
  • the polynucleotide tag for example, a complementary polynucleotide of the polynucleotide tag
  • an isothermal nucleic acid amplification method that amplifies a target gene at an isothermal temperature has been developed, unlike the PCR method that requires a thermal cycler to change the temperature of a sample.
  • the isothermal nucleic acid amplification method has characteristics suitable for application to a POC (Point of Care) test, such as being feasible with a simple device, having a short reaction time, and having high detection sensitivity.
  • POC Point of Care
  • RPA method Recombinase Polymerase Amplification
  • TRIAmp method Tandem Repeat-mediated Isothermal Amplification
  • LAMP method Loop-mediated Isothermal
  • Patent Document 2 and Patent Document 3 are examples of prior art documents that disclose the use of a polynucleotide primer with a polynucleotide tag in an isothermal nucleic acid amplification method.
  • Patent Document 2 a tag sequence and a labeling substance binding substance are added to predetermined two of the six primers used in the LAMP method, and the amplified product amplified by using the tag sequence is captured on a solid phase carrier. It is described that it is detected.
  • Patent Document 3 describes that in an isothermal nucleic acid amplification method based on a novel principle, a tag independent of the nucleic acid amplification reaction is added to the primer.
  • the present inventors have performed the nucleic acid amplification reaction when using a primer with a polynucleotide tag as compared with the case of using a primer without a tag. We have found that efficiency may be reduced. It has also been found that in an isothermal amplification reaction using a strand-substituted polymerase, a decrease in the efficiency of the nucleic acid amplification reaction due to the use of a primer to which a polynucleotide tag is added may be particularly remarkable.
  • one or more embodiments of the present invention reduce the reaction efficiency in a nucleic acid amplification reaction using a primer with a polynucleotide tag for preparing an amplification product of a target nucleic acid that can be detected on a solid-phase carrier. , The problem to be solved.
  • a primer set for preparing an amplification product of a target nucleic acid that can be detected on a solid-phase carrier by a nucleic acid amplification reaction includes a first primer, a second primer and a third primer.
  • the first primer contains a first polynucleotide having a polynucleotide A at the 3'end capable of hybridizing with a complementary strand of a partial polynucleotide A'at the 5'end of the target nucleic acid, and a 5'end of the first polynucleotide.
  • the second primer contains a second polynucleotide having a polynucleotide B at the 3'end capable of hybridizing with a partial polynucleotide B'at the 3'end of the target nucleic acid.
  • the third primer contains a third polynucleotide having a polynucleotide C at the 3'end capable of competitively hybridizing with the polynucleotide A of the first primer with respect to the complementary strand of the target nucleic acid, and , Does not contain polynucleotides independent of nucleic acid amplification reaction, The primer set.
  • the polynucleotide C of the third primer can hybridize with a polynucleotide having a base number of 50% or more contained in the complementary strand of the partial polynucleotide A'of the target nucleic acid, according to (1).
  • the 3'end of the first polynucleotide tag and the 5'end of the first polynucleotide are linked via an inhibitor that inhibits the nucleic acid amplification reaction.
  • the primer set according to (6), wherein the labeling substance is biotin, a fluorescent dye or a hapten.
  • the primer set further contains a fourth primer and contains a fourth primer.
  • the second primer further comprises a second polynucleotide tag, which is a polynucleotide independent of the nucleic acid amplification reaction, linked to the 5'end of the second polynucleotide.
  • the fourth primer contains a fourth polynucleotide at the 3'end containing a polynucleotide D capable of competitively hybridizing with the polynucleotide B of the second primer with respect to the target nucleic acid, and nucleic acid amplification.
  • the primer set according to any one of (1) to (5), which does not contain a polynucleotide independent of the reaction.
  • the 3'end of the second polynucleotide tag and the 5'end of the second polynucleotide are linked via an inhibitor that inhibits the nucleic acid amplification reaction.
  • the primer set according to any one of (1) to (7) and a nucleic acid detection device containing a solid-phase carrier are included.
  • the solid phase carrier comprises a trapping material retainer containing a trapping material capable of binding to the first polynucleotide tag.
  • a kit for detecting target nucleic acids are included.
  • the primer set according to any one of (8) to (12) and a nucleic acid detection device containing a solid-phase carrier are included.
  • the solid-phase carrier includes a trapping substance holding portion containing a trapping substance capable of binding to the first polynucleotide tag, and a labeling substance holding portion containing a labeling substance capable of binding to the second polynucleotide tag.
  • a kit for detecting target nucleic acids is included.
  • the kit according to (13) or (14), wherein the nucleic acid detection device further includes a sample receiving unit for receiving a sample containing a nucleic acid amplification product.
  • a nucleic acid amplification step comprising subjecting a test substance that may contain a target nucleic acid to a nucleic acid amplification reaction using the primer set according to any one of (1) to (12), and a nucleic acid amplification step.
  • a detection step of detecting a target nucleic acid in the reaction product obtained in the nucleic acid amplification step is included.
  • a method for detecting a target nucleic acid is included.
  • the method according to (16) wherein in the detection step, the target nucleic acid is detected using a solid-phase carrier.
  • the nucleic acid amplification reaction in the nucleic acid amplification step is carried out using a strand-substituted polymerase.
  • (21) Containing two or more primer sets according to any one of (1) to (12).
  • the target nucleic acids amplified by the nucleic acid amplification reaction using the two or more primer sets are different from each other.
  • Multiplex primer set
  • nucleic acid amplification reaction using the primer set of one or more embodiments of the present invention, it is possible to efficiently prepare an amplification product of a target nucleic acid to which a polynucleotide tag has been added, which can be detected on a solid-phase carrier. Is.
  • FIG. 1-1 (a) schematically shows an example of the test nucleic acid 3, the first primer 10, the second primer 20, and the third primer 30, which contain the target nucleic acid 1 and the complementary strand 2 of the target nucleic acid 1.
  • FIG. 1-1 (b1) schematically shows an isothermal nucleic acid amplification reaction using the first primer 10 and the second primer 20 using the test nucleic acid 3 as a template.
  • FIG. 1-1 (b2) schematically shows an isothermal nucleic acid amplification reaction using the third primer 30 and the second primer 20 using the test nucleic acid 3 as a template.
  • FIG. 1-1 (b1) schematically shows an isothermal nucleic acid amplification reaction using the first primer 10 and the second primer 20 using the test nucleic acid 3 as a template.
  • FIG. 1-1 (b2) schematically shows an isothermal nucleic acid amplification reaction using the third primer 30 and the second primer 20 using the test nucleic acid 3 as a template.
  • FIG. 1-2 (c1) the first primer 10 and the second primer 20 hybridize to the double strand of the target nucleic acid 1 and the complementary strand 2, which are the amplification products of the previous nucleic acid amplification reaction, and the polymerase is extended. Indicates the reaction at which the reaction begins.
  • FIG. 1-2 (c2) schematically shows an isothermal nucleic acid amplification reaction by the third primer 30 and the second primer 20 using the double strand of the target nucleic acid 1 and the complementary strand 2 as a template.
  • FIG. 1-2 (c2) schematically shows an isothermal nucleic acid amplification reaction by the third primer 30 and the second primer 20 using the double strand of the target nucleic acid 1 and the complementary strand 2 as a template.
  • FIG. 2A schematically shows an example of the test nucleic acid 3, the first primer 10, the second primer 20, the third primer 30, and the fourth primer 40 containing the target nucleic acid 1 and the complementary strand 2 of the target nucleic acid 1. Shown in. FIG.
  • FIG. 2B shows a detection of a double-stranded nucleic acid having a target nucleic acid 1 having a first polynucleotide tag 12 linked to the 5'end and a complementary strand 2 having a second polynucleotide tag 22 linked to the 5'end.
  • Nucleic acid 8 for use is shown.
  • FIG. 3 shows a schematic diagram of the lateral flow type nucleic acid detection device 700.
  • 71 Solid phase carrier
  • 72 Conjugate pad (labeled substance holding part)
  • 73 Sample pad (sample receiving part)
  • 74 Absorption pad
  • 75 Base material
  • 76 Captured substance holding part.
  • FIG. 5 shows the primer mix 1 of the forward primer and the reverse primer to which the DNA tag was not added, the primer mix 2 of the DNA tag-added forward primer and the biotin-added reverse primer, and the DNA-tagged forward primer in Example 4.
  • the results of measuring the nucleic acid amplification reaction of the target nucleic acid by the TRIAmp method using the primer mix 3 of the forward primer without the DNA tag and the reverse primer with the biotin addition with a real-time PCR device are shown.
  • nucleic acid and polynucleotide refer to DNA or RNA, typically DNA. Further, the terms nucleic acid and polynucleotide are not particularly limited in the number of bases, and include oligonucleotides.
  • the target nucleic acid, the complementary strand of the target nucleic acid, and the polynucleotide that serve as a template for the nucleic acid amplification reaction are typically polymers of natural nucleotides.
  • Natural nucleotides are nucleotides composed of natural adenine, thymine, guanine, cytosine, uracil bases, deoxyribose or ribose sugars, and phosphate groups, each of which is artificial. A nucleotide that has not undergone any modification. Natural nucleotides are usually D-type nucleotides. The D-type nucleotide indicates a nucleotide in which the sugar moiety is composed of D-type deoxyribose or ribose.
  • the polynucleotide may be a partial polynucleotide contained in a part of a relatively long polynucleotide.
  • polynucleotide P2 containing polynucleotide P1 or "polynucleotide P2 contains polynucleotide P2"
  • the polynucleotide P1 is the entire polynucleotide P2 (that is, the polynucleotide P1 and the polynucleotide P2 correspond to each other). This includes both the case and the case where the polynucleotide P1 is a partial polynucleotide of the polynucleotide P2.
  • the "target nucleic acid” is a nucleic acid containing a base sequence to be detected and / or amplified, or a nucleic acid containing a complementary base sequence of the base sequence to be detected and / or amplified. Point.
  • the target nucleic acid may exist as a double strand together with its complementary strand.
  • One strand of a target nucleic acid existing as a double strand may be referred to as a "target nucleic acid”.
  • Either the nucleic acid to be detected or its complementary strand may be referred to as a "target nucleic acid”.
  • detecting a target nucleic acid or “amplifying a target nucleic acid” means detecting or amplifying the target nucleic acid for the purpose of the target nucleic acid itself and complementary strand of the target nucleic acid. Or both to detect or amplify the target nucleic acid, the complementary strand of the target nucleic acid, or the double-stranded nucleic acid of the target nucleic acid and the complementary strand for the purpose of detecting or amplifying the double-stranded nucleic acid of the target nucleic acid and the complementary strand. Including.
  • the total length of the target nucleic acid in one or more embodiments of the present invention is not particularly limited, and is usually 20 bases or more, 40 bases or more, or 100 bases or more.
  • the upper limit of the total length of the target nucleic acid is not particularly limited, but is usually 1000 bases or less, 500 bases or less, or 400 bases or less.
  • the nucleic acid serving as a template for the nucleic acid amplification reaction may be DNA or RNA as long as it partially contains the target nucleic acid and / or its complementary strand, but is preferable. Is DNA.
  • the nucleic acid that serves as a template for the nucleic acid amplification reaction is a double-stranded DNA consisting of a polynucleotide chain containing at least a part of the target nucleic acid and a complementary strand of the polynucleotide chain.
  • the nucleic acid used as a template may be a natural one or an artificially synthesized one.
  • it may be a natural nucleic acid extracted from a biological sample, a nucleic acid amplified by PCR or the like, a cDNA synthesized by a reverse transcription reaction, or the like.
  • hybridizing means that the polynucleotide X (particularly DNA) hybridizes to the polynucleotide Y (particularly DNA) under stringent conditions. It means that it is soybean and does not hybridize to a polynucleotide that does not have the nucleotide sequence of polynucleotide Y. That is, hybridizing means specifically hybridizing.
  • stringent condition means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed.
  • stringent conditions can be set by the temperature at the time of Southern hybridization and the salt concentration contained in the solution, and the temperature at the time of the washing step of Southern hybridization and the salt concentration contained in the solution. More specifically, as stringent conditions, for example, in the hybridization step, the sodium concentration is 25 to 500 mM, preferably 25 to 300 mM, and the temperature is 40 to 68 ° C, preferably 40 to 65 ° C.
  • hybridization can be performed at 1 to 7 ⁇ SSC (saline-sodium citrate buffer), 0.02 to 3% SDS, and a temperature of 40 ° C to 60 ° C.
  • a washing step may be performed after hybridization, and the washing step can be performed, for example, at 0.1 to 2 ⁇ SSC, 0.1 to 0.3% SDS, and a temperature of 50 to 65 ° C.
  • hybridization between the first polynucleotide tag (immobilization tag) described later and the solid phase carrier to which the polynucleotide is added, and the second polynucleotide tag (labeling tag) described later, and the polynucleotide Hybridization with the added labeling substance does not have to be performed under the stringent conditions mentioned here, but can be performed under the conditions described later.
  • the polynucleotide X hybridizes to the polynucleotide Y
  • the polynucleotide X (particularly DNA) and the polynucleotide Y (particularly DNA) hybridize under the annealing conditions of the nucleic acid amplification reaction to form a stable double strand.
  • the combinations are completely complementary base sequences to each other as long as they are combinations capable of forming sufficient hydrogen bonds.
  • base sequence X base sequence of polynucleotide Y
  • base sequence Y base sequence of polynucleotide Y
  • mismatches there may be some mismatches, such as a mismatch of 1 or less, a mismatch of 1 or less in 20 bases, or a mismatch of 1 or less in 30 bases.
  • the polynucleotide X hybridizes to the polynucleotide Y, it usually satisfies one or more of the following relationships (A) to (C).
  • the complementary base sequence of the base sequence X and the base sequence Y are the same. When one of the complementary base sequence of the base sequence X and the base sequence Y is the base sequence of DNA and the other is the base sequence of RNA, thymine in one and uracil in the other are considered to be the same base.
  • the base sequence Y is a base sequence in which one or several bases are deleted, substituted, added and / or inserted in the complementary sequence of the base sequence X.
  • the base sequence Y is a base sequence having 80% or more identity with the complementary sequence of the base sequence X.
  • “1 or several” preferably refers to 1 to 5, more preferably 1 to 4, more preferably 1 to 3, particularly preferably 1 or 2, and most preferably. It is one.
  • the identity value indicates a value calculated with default settings using software (for example, FASTA, DANASYS, and BLAST) that calculates the identity between a plurality of base sequences.
  • software for example, FASTA, DANASYS, and BLAST
  • the base sequence identity value the number of matching bases when the pair of base sequences are aligned so as to maximize the degree of matching is calculated, and the total number of bases in the compared base sequence of the number of matching bases is calculated. Calculated as a percentage of the number.
  • the total number of bases described above is the number of bases counted with one gap as one base.
  • the identity is more preferably 90% or more, more preferably 95% or more, more preferably 96% or more, more preferably 97% or more, more preferably 98% or more, more preferably 99%.
  • the above identity is particularly preferable.
  • Polynucleotide X hybridizes to polynucleotide Y is used synonymously with the expression "base sequence X hybridizes to base sequence Y”.
  • the method for producing the polynucleotide constituting the primer set is not particularly limited, and the polynucleotide may be produced using a polynucleotide synthesizer or a contract synthesis service. May be good.
  • a polynucleotide "independent of a nucleic acid amplification reaction” can be rephrased as a polynucleotide "not involved in a nucleic acid amplification reaction".
  • a polynucleotide that is "independent of a nucleic acid amplification reaction” is a polynucleotide that is not used as a template for a nucleic acid amplification reaction and is not double-stranded by a nucleic acid amplification reaction.
  • the nucleic acid amplification reaction using the primer set according to one or more embodiments of the present invention may be a nucleic acid amplification reaction using a heat-resistant polymerase or a nucleic acid amplification reaction using a strand-substituted polymerase.
  • the polymerase refers to a nucleic acid polymerase, which is a DNA polymerase or an RNA polymerase, preferably a DNA polymerase.
  • thermostable polymerase As a nucleic acid amplification reaction using a thermostable polymerase, a polymerase chain reaction method (PCR method) can be mentioned.
  • thermostable polymerase a commercially available DNA polymerase can be used, and for example, TakaRa Ex Taq (registered trademark) and the like can be preferably used. Further, the temperature, time, composition of the buffer solution and the like can be appropriately selected according to the DNA polymerase to be used, the concentration of each primer and the like.
  • Each condition such as the time, temperature, buffer composition, substrate nucleotide concentration, and number of cycles of each step of denaturation, annealing, and extension by the PCR method includes the selected DNA polymerase, primer sequence, number of bases of target nucleic acid, template concentration, etc. It can be set appropriately in consideration of the elements.
  • the strand-substituted polymerase is an enzyme that synthesizes a new DNA strand while dissociating the hydrogen bond of the double-stranded nucleic acid including the target nucleic acid by itself.
  • the cleno fragment of ⁇ 29 DNA polymerase, Bst DNA polymerase, and DNA polymerase I. Vent DNA polymerase, Vent (Exo-) DNA polymerase, DeepVent DNA polymerase, DeepVent (Exo-) DNA polymerase, 96-7 DNA polymerase, Aac DNA polymerase, Csa DNA polymerase and the like. Since the strand-substituted polymerase does not require thermal denaturation for double-strand dissociation, nucleic acid amplification at an isothermal temperature is possible.
  • the isothermal nucleic acid amplification method is preferable, and the RPA method (Recombinase Polymerase Amplification), the TRIAmp method (Tandem Repeat-mediated Isothermal Amplification), the LAMP method (Lop-mediated Isothermal) A method such as Helicase-dependent amplification) can be exemplified.
  • At least a pair of primer sets are used to amplify the target nucleic acid.
  • the first primer and the third primer of the primer set are used in one or more embodiments of the present invention, and as another one primer, one or more embodiments of the present invention.
  • the second primer of the primer set, or the second primer and the fourth primer of the primer set can be used for the form.
  • the LAMP method four or more kinds of primers are used to amplify one target nucleic acid.
  • the first primer and the third primer of the primer set are used in one or more embodiments of the present invention, and one or more primers of the present invention are used as another primer.
  • the second primer of the primer set, or the second primer and the fourth primer can be used in the embodiment.
  • one or both of the one primer and the other primer is a loop primer.
  • Isothermal nucleic acid amplification methods using strand-substituted polymerases include template nucleic acids containing the target nucleic acid, primers, strand-substituted polymerases, and substrate nucleotides, and optionally other enzymes (eg, in the RPA method, as other enzymes.
  • a recombinase and a single-stranded DNA-binding protein (SSB) By coexisting with a recombinase and a single-stranded DNA-binding protein (SSB)) and incubating at a temperature at which the amplification primer can form a stable base-pair bond with the template nucleic acid and can exert enzymatic activity. proceed.
  • SSB single-stranded DNA-binding protein
  • Each condition such as the temperature, buffer composition, substrate nucleotide concentration, and reaction time of the nucleic acid amplification reaction by the isothermal nucleic acid amplification method includes factors such as the selected strand-substituted polymerase, primer sequence, number of bases of the target nucleic acid, and template nucleic acid concentration. It can be set as appropriate in consideration.
  • Examples of the recombinase used in the RPA method include UvsX, RecA and their analogs.
  • Primer set of one or more embodiments of the present invention containing the first primer, the second primer and the third primer is tested when the test substance to be analyzed contains a nucleic acid containing the base sequence of the target nucleic acid.
  • the structure of each primer will be described, and subsequently, preferred embodiments of the primer set will be described.
  • the first primer is a first polynucleotide containing a polynucleotide A at the 3'end capable of hybridizing with the complementary strand of the 5'end partial polynucleotide A'of the target nucleic acid, and the 5'end of the first polynucleotide.
  • a first polynucleotide tag that is a ligated polynucleotide independent of the nucleic acid amplification reaction.
  • Partial polynucleotide A' is a partial polynucleotide of the target nucleic acid consisting of a plurality of consecutive bases including the base at the 5'end of the target nucleic acid.
  • the number of bases of the partial polynucleotide A' is not particularly limited, but can be, for example, 8 bases or more, 10 bases or more, 12 bases or more, 15 bases or more, 17 bases or more, or 20 bases or more, and 40 bases or less. It can be 30 bases or less, 27 bases or less, or 25 bases or less.
  • the polynucleotide A may be any polynucleotide that can hybridize with the complementary strand of the partial polynucleotide A'.
  • the 3'end of polynucleotide A has a contiguous 1 or more bases, preferably 2 or more bases, preferably 3 or more bases, more preferably 5 or more bases, and most preferably the entire base sequence.
  • the base sequence of the corresponding portion of the partial polynucleotide A' is the same.
  • the number of bases of the polynucleotide A is not particularly limited and may be appropriately determined depending on the number of bases of the partial polynucleotide A'. For example, 8 bases or more, 10 bases or more, 12 bases or more, 15 bases or more, 17 bases or more, Alternatively, it can be 20 bases or more, 40 bases or less, 30 bases or less, 27 bases or less, or 25 bases or less.
  • the base sequence of the first polynucleotide may include the base sequence of polynucleotide A at the 3'end, and another base sequence is added to the 5'end of the base sequence of polynucleotide A. Or it may consist only of the base sequence of polynucleotide A. That is, the polynucleotide A may be a partial polynucleotide containing the 3'end of the first polynucleotide, or may be the entire first polynucleotide.
  • the number of bases of the first polynucleotide can be appropriately determined according to the number of bases of polynucleotide A, and is, for example, 8 bases or more, 10 bases or more, 12 bases or more, 15 bases or more, 17 bases or more, or 20 bases or more. It can be 40 bases or less, 30 bases or less, 27 bases or less, or 25 bases or less.
  • the first primer contains a first polynucleotide and a first polynucleotide tag linked to the 5'end of the first polynucleotide, which is a polynucleotide independent of the nucleic acid amplification reaction.
  • the first polynucleotide tag may be referred to as a "first tag” or a "fixation tag”.
  • the polynucleotide contained in the first polynucleotide tag is not particularly limited as long as it does not substantially hinder the nucleic acid amplification reaction by the primer set of one or more embodiments of the present invention, but the number of bases is, for example, 5 to 50. , Preferably 10-35 polynucleotides, eg, Anal. Biochem. Polynucleotides containing the nucleotide sequence described in 364 (2007) 78-85 can be exemplified as preferred.
  • the first polynucleotide tag can bind to a trapping substance contained in a solid-phase carrier described later.
  • the detection nucleic acid containing the target nucleic acid to which the first polynucleotide tag is attached can be fixed and detected on the trapping substance holding portion of the solid-phase carrier.
  • the 5'end of the first polynucleotide and the first tag are linked so that the first tag is not double-stranded together with the first polynucleotide that functions as a primer by extension in the nucleic acid amplification reaction.
  • the 5'end of the first polynucleotide and the 3'end of the first tag may be linked, or the 5'end of the first polynucleotide and the 5'end of the first tag may be linked.
  • the 5'end of the first polynucleotide and the 3'end of the first tag are linked.
  • the 5'end of the first polynucleotide and the first tag are linked via an inhibitor that inhibits the nucleic acid amplification reaction (hereinafter sometimes referred to as "spacer").
  • the first tag does not serve as a template for polymerase reactions, such as polynucleotides containing modified nucleic acids such as LNA (Locked Nucleic Acid), L-type nucleic acids, and 2'-O-methylated nucleotides. It can be a polynucleotide that is not double-stranded by extension in a nucleic acid amplification reaction. In this case, the first polynucleotide and the first tag may be directly linked without the above spacer.
  • polymerase reactions such as polynucleotides containing modified nucleic acids such as LNA (Locked Nucleic Acid), L-type nucleic acids, and 2'-O-methylated nucleotides. It can be a polynucleotide that is not double-stranded by extension in a nucleic acid amplification reaction.
  • the first polynucleotide and the first tag may be directly linked without the above spacer.
  • the spacer may be any one that can suppress or stop the progress of the polymerase reaction in the nucleic acid amplification reaction and prevent the double-stranded formation of the first tag, and has, for example, a strong hairpin structure or a pseudo-knot structure.
  • Nucleic acid sequence L-type nucleic acid, peptide nucleic acid (PNA), bridged nucleic acid (Bridged Nucleic Acid (BNA) or Locked Nucleic Acid (LNA)), fluorescein, Cy3, Cy5, azobenzene structure represented by the following formula I.
  • Examples thereof include, but are not limited to, a valence group, a fatty chain (alkylene chain or polyoxyalkylene chain), a divalent group containing an inverted sequence structure such as a 5'-5'bond and a 3'-3' bond. ..
  • a spacer With such a spacer, the first polynucleotide and the first tag can be linked in the same direction. That is, the 3'end of the first tag and the 5'end of the first polynucleotide can be connected via the spacer.
  • the phosphate group at the 3'end of one of the divalent groups is the nucleotide at the 5'end of the one polynucleotide molecule. It refers to a phosphate group, and the oxygen atom at the 5'end of the other forms a phosphate ester bond with the phosphate group of the nucleotide at the 3'end of the other polynucleotide molecule.
  • the spacer of the fat chain include a spacer represented by the following formula (IV).
  • m is preferably 2 or more and 36 or less, and more preferably 3 or more and 16 or less.
  • H in the formula (IV) may be substituted with a substituent, and examples of the substituent include an alkyl group, an alkoxy group, a hydroxyl group and the like.
  • the alkyl group and the alkoxy group as the substituent preferably have 1 to 8 carbon atoms, and more preferably 1 to 4 carbon atoms. When it has two or more substituents, the substituents may be the same or different. Furthermore, it is also preferable that it does not have a substituent.
  • V a spacer represented by the following formula (V)
  • 5'-(OC n H 2n ) L- O-3'Equation (V) (In the formula, 5'represents the oxygen atom of the phosphodiester bond on the 5'side, 3'represents the oxygen atom of the phosphodiester bond on the 3'side, and n represents an integer of 2 or more and 4 or less.
  • L is an integer of 1 or more and represents an integer in which (n + 1) ⁇ L is 40 or less. H may be substituted with a substituent.)
  • (n + 1) ⁇ L is preferably 2 or more and 36 or less, and more preferably 3 or more and 16 or less.
  • substituent of H in the formula (V) the same embodiment as that of the substituent in the formula (IV) is applied.
  • a spacer of a fat chain represented by the above formula (IV) or formula (V) can be used.
  • fat chain spacers examples include the following divalent groups.
  • the phosphate group at one end of each divalent group is the phosphate of the nucleotide at the 3'end or 5'end of one polynucleotide molecule.
  • the second primer contains a second polynucleotide having a polynucleotide B at the 3'end capable of hybridizing with a partial polynucleotide B'at the 3'end of the target nucleic acid.
  • the partial polynucleotide B' is a partial polynucleotide of the target nucleic acid consisting of a plurality of consecutive bases including the base at the 3'end of the target nucleic acid.
  • the number of bases of the partial polynucleotide B' is not particularly limited, but can be, for example, 8 bases or more, 10 bases or more, 12 bases or more, 15 bases or more, 17 bases or more, or 20 bases or more, and 40 bases or less. It can be 30 bases or less, 27 bases or less, or 25 bases or less.
  • the polynucleotide B may be any polynucleotide that can hybridize with the partial polynucleotide B'.
  • the 3'end of polynucleotide B has a contiguous 1 or more bases, preferably 2 or more bases, preferably 3 or more bases, more preferably 5 or more bases, and most preferably the entire base sequence.
  • the base sequence of the corresponding portion of the complementary strand of the partial polynucleotide B' is the same.
  • the number of bases of the polynucleotide B is not particularly limited and may be appropriately determined depending on the number of bases of the partial polynucleotide B', but for example, 8 bases or more, 10 bases or more, 12 bases or more, 15 bases or more, 17 bases or more, Alternatively, it can be 20 bases or more, 40 bases or less, 30 bases or less, 27 bases or less, or 25 bases or less.
  • the base sequence of the second polynucleotide may include the base sequence of polynucleotide B at the 3'end, and another base sequence is added to the 5'end of the base sequence of polynucleotide B. Or it may consist only of the nucleotide sequence of polynucleotide B. That is, the polynucleotide B may be a partial polynucleotide containing the 3'end of the second polynucleotide, or may be the entire second polynucleotide.
  • the number of bases of the second polynucleotide can be appropriately determined according to the number of bases of polynucleotide B, and is, for example, 8 bases or more, 10 bases or more, 12 bases or more, 15 bases or more, 17 bases or more, or 20 bases or more. It can be 40 bases or less, 30 bases or less, 27 bases or less, or 25 bases or less.
  • the second primer may include a second polynucleotide and a labeling substance linked to the second polynucleotide.
  • the detection nucleic acid which is an amplification product of the target nucleic acid by the primer set containing the second primer according to this embodiment, contains a first polynucleotide tag at one end and a labeling substance at the other end. This detection nucleic acid can be captured on a solid phase carrier provided with a capture substance holding portion containing a capture substance that can bind to the first polynucleotide tag, and can be detected using the labeling substance as an index.
  • the labeling substance may be any labeling substance that does not inhibit the nucleic acid amplification reaction. Further, the labeling substance may be a labeling substance that can be detected by itself, or may be a labeling substance that can be bound to another detectable substance by a secondary reaction.
  • labeling substances that do not inhibit the nucleic acid amplification reaction include biotin, dyes, haptens, and radioisotope element-containing substances.
  • the dye include fluorescent dyes (fluoroscein such as fluorescein isothiocyanate (FITC), cyanine, etc.).
  • the hapten include digoxigenin (DIG) and fluorescein isothiocyanate (FITC).
  • Biotin can be detected by a secondary reaction with a detectable substance to which avidin or streptavidin is linked.
  • the hapten can be detected by a secondary reaction with a detectable substance to which the antibody is linked.
  • the detectable substance referred to here may be a dye, a radioactive substance, colored particles, an enzyme (peroxidase, alkaline phosphatase, luciferase, etc.) or the like, and is preferably colored particles.
  • metal for example, gold, silver, copper, platinum, etc.
  • metal rods colored latex particles
  • the binding position of the labeling substance to the second polynucleotide is not particularly limited as long as it does not inhibit the nucleic acid amplification reaction, but is usually the 5'end of the second polynucleotide.
  • the second primer is a second polynucleotide linked to the 5'end of the second polynucleotide and independent of the nucleic acid amplification reaction. Includes polynucleotide tag.
  • the detection nucleic acid which is an amplification product of the target nucleic acid by the primer set containing the second primer according to this embodiment, contains a first polynucleotide tag at one end and a second polynucleotide tag at the other end.
  • This detection nucleic acid is captured on a solid-phase carrier having a capture substance holder containing a capture substance that can bind to the first polynucleotide tag, and is bound to a label substance that can bind to the second polynucleotide tag.
  • the labeling substance can be detected as an index.
  • a labeling substance capable of binding to the second polynucleotide tag is previously contained in the labeling substance holding portion of the solid phase carrier, and a sample containing the detection nucleic acid applied to the solid phase carrier comes into contact with the labeling substance holding portion. It is preferable to bind the second polynucleotide tag of the detection nucleic acid to the labeling substance.
  • the second polynucleotide tag may be referred to as a "second tag” or a "labeling tag".
  • the polynucleotide contained in the second polynucleotide tag is not particularly limited as long as it does not substantially hinder the nucleic acid amplification reaction by the primer set of one or more embodiments of the present invention, but the number of bases is, for example, 5 to 50.
  • the 5'end of the second polynucleotide and the second tag are linked so that the second tag is not double-stranded together with the second polynucleotide that functions as a primer due to the extension in the nucleic acid amplification reaction.
  • the 5'end of the second polynucleotide and the 3'end of the second tag may be linked, or the 5'end of the second polynucleotide and the 5'end of the second tag may be linked.
  • the 5'end of the second polynucleotide and the 3'end of the second tag are linked.
  • the 5'end of the second polynucleotide and the second tag are linked via an inhibitor (spacer) that inhibits the nucleic acid amplification reaction.
  • the spacer connecting the 5'end of the second polynucleotide and the second tag can be selected from the same range as that described as the spacer connecting the 5'end of the first polynucleotide and the first tag. ..
  • the second tag does not serve as a template for polymerase reactions, such as polynucleotides containing modified nucleic acids such as LNA (Locked Nucleic Acid), L-type nucleic acids, and 2'-O-methylated nucleotides. It can be a polynucleotide that is not double-stranded by extension in a nucleic acid amplification reaction. In this case, the second polynucleotide and the second tag may be directly linked without the above spacer.
  • polynucleotides containing modified nucleic acids such as LNA (Locked Nucleic Acid), L-type nucleic acids, and 2'-O-methylated nucleotides.
  • LNA Locked Nucleic Acid
  • L-type nucleic acids L-type nucleic acids
  • 2'-O-methylated nucleotides 2'-O-methylated nucleotides
  • the labeling substance that can bind to the second tag is preferably a labeling substance in which a polynucleotide capable of hybridizing to the second tag (for example, a polynucleotide containing a sequence complementary to the base sequence of the second tag) is linked. is there.
  • the conditions for hybridization between the detection nucleic acid containing the second tag and the labeling substance in which the polynucleotide capable of hybridizing to the second tag is linked are not particularly limited as long as the conditions cause hybridization, but for example. It can be carried out by reacting at 20 ° C. to 40 ° C. in a buffer solution (pH 6 to 7) containing 10 mM to 50 mM phosphoric acid. In order to increase the hybridization efficiency, the buffer solution can further contain a salt such as sodium chloride.
  • labeling substance in which a polynucleotide capable of hybridizing to the second tag is linked, in addition to the above-mentioned labeling substance as a labeling substance linked to the second polynucleotide, colored particles, enzymes (peroxidase, alkaline phosphatase, luciferase, etc.), etc. It may be, preferably a colored particle.
  • the "colored particles” include metal (eg, gold, silver, copper, platinum, etc.) particles, metal rods, colored latex particles, silica nanoparticles including dyes, and the like.
  • the third primer contains a third polynucleotide having a polynucleotide C at the 3'end capable of competitively hybridizing with the polynucleotide A of the first primer with respect to the complementary strand of the target nucleic acid, and a nucleic acid amplification reaction. Does not contain a polynucleotide independent of.
  • the third primer preferably consists of only the third polynucleotide.
  • polynucleotide C capable of competitively hybridizing with the polynucleotide A of the first primer with respect to the complementary strand of the target nucleic acid means that one of the polynucleotide A of the first primer and the polynucleotide C of the third primer is used. When hybridized to the complementary strand of the target nucleic acid, it means that the other cannot hybridize to the complementary strand of the same target nucleic acid.
  • the polynucleotide C of the third primer is contained in the complementary strand of the partial polynucleotide A'of the target nucleic acid (the portion capable of hybridizing with the polynucleotide A of the first primer).
  • the polynucleotide C is a polynucleotide A of the first primer with respect to the complementary strand of the target nucleic acid.
  • the 3'end of polynucleotide C has a contiguous 1 or more bases, preferably 2 or more bases, preferably 3 or more bases, more preferably 5 or more bases, and most preferably the entire base sequence.
  • the base sequence of the corresponding portion of the partial polynucleotide A' is the same.
  • the number of bases of the polynucleotide C is not particularly limited and may be appropriately determined depending on the number of bases of the partial polynucleotide A'.
  • Polynucleotide C is particularly preferably the same as polynucleotide A.
  • the base sequence of the third polynucleotide may include the base sequence of polynucleotide C at the 3'end, and another base sequence is added to the 5'end of the base sequence of polynucleotide C. Or it may consist only of the nucleotide sequence of polynucleotide C. That is, the polynucleotide C may be a partial polynucleotide containing the 3'end of the third polynucleotide, or may be the entire third polynucleotide.
  • the number of bases of the third polynucleotide can be appropriately determined according to the number of bases of polynucleotide C, and is, for example, 8 bases or more, 10 bases or more, 12 bases or more, 15 bases or more, 17 bases or more, or 20 bases or more. It can be 40 bases or less, 30 bases or less, 27 bases or less, or 25 bases or less.
  • the third polynucleotide is particularly preferably the same as the first polynucleotide.
  • Mechanism of nucleic acid amplification reaction using primer set Significance of using a third primer together with a first primer as a forward primer for the target nucleic acid in an example of a reaction for amplifying a target nucleic acid by an isothermal nucleic acid amplification method using the primer set of one or more embodiments of the present invention. Will be described with reference to FIGS. 1-1 and 1-2.
  • FIG. 1-1 (a) schematically shows an example of the test nucleic acid 3, the first primer 10, the second primer 20, and the third primer 30, which contain the target nucleic acid 1 and the complementary strand 2 of the target nucleic acid 1.
  • the test nucleic acid 3 is a double-stranded DNA, and a part thereof contains a target nucleic acid 1 and a complementary strand 2 that are hybridized with each other.
  • Target nucleic acid 1 contains a partial polynucleotide A'4 at the 5'end and a partial polynucleotide B'5 at the 3'end.
  • the complementary strand 2 of the target nucleic acid 1 contains the complementary strand 6 of the partial polynucleotide A'4 at the 3'end.
  • the first primer 10 was ligated to the first polynucleotide 11 containing the polynucleotide A capable of hybridizing with the complementary strand 6 of the partial polynucleotide A'4 at the 3'end and the 5'end of the first polynucleotide 11. , Includes a first polynucleotide tag 12 that is independent of the nucleic acid amplification reaction.
  • the second primer 20 contains a second polynucleotide 21 containing a polynucleotide B hybridizable with the partial polynucleotide B'5 at the 3'end, and a labeling substance 23.
  • the third primer 30 contains a polynucleotide C at the 3'end capable of competitively hybridizing with the polynucleotide A contained in the first polynucleotide 11 of the first primer 11 with respect to the complementary strand 2 of the target nucleic acid 1. It contains a third polynucleotide 31 and does not contain a polynucleotide independent of the nucleic acid amplification reaction.
  • the test nucleic acid 3 shown in FIG. 1-1 (b1) is used as an initial reaction.
  • the first primer 10 contains the first polynucleotide tag 12 that is not involved in the nucleic acid amplification reaction, it hybridizes with the complementary strand 2 of the target nucleic acid 1 in the test nucleic acid 3 as shown in FIG. 1-1 (b1). It is considered that the steric hindrance is large. Moreover, since the nucleic acid amplification reaction using the strand-substituted polymerase does not include the step of dissociating the hydrogen bond of the double-stranded test nucleic acid 3 under high temperature conditions, the effect of the above steric hindrance is larger than that in the PCR method. Conceivable.
  • the third primer 30 does not contain a polynucleotide that is not involved in the nucleic acid amplification reaction, the complementary strand 2 of the target nucleic acid 1 in the test nucleic acid 3 and as shown in FIG. 1-1 (b2). It is considered that it is easy to hybridize. Therefore, in the initial stage of the nucleic acid amplification reaction, the amplification reaction of the target nucleic acid 1 by the third primer 30 and the second primer 20 shown in FIG. 1-1 (b2) is likely to proceed, and FIG. 1-1 (b1). It is considered that the amplification reaction involving the first primer 10 shown in the above is difficult to proceed.
  • the fragmented target nucleic acid 1 which is an amplification product of the previous nucleic acid amplification reaction and its complementary strand 2
  • the amplification reaction using and as a template becomes dominant. Since the effect of steric hindrance of the first primer 10 on the double strand of the fragmented target nucleic acid 1 and its complementary strand 2, which is an amplification product, the effect of steric hindrance is small, the first primer 10 is used as the forward primer.
  • the reaction shown in 1-2 (c1) and the reaction shown in FIG. 1-2 (c2) using the third primer 30 proceed together.
  • an amplification reaction using a fragment of the target nucleic acid 1 in which the first polynucleotide tag 12 is linked to the 5'end as a template also proceeds.
  • the final amplification products include the target nucleic acid 1 in which the first polynucleotide tag 12 is linked to the 5'end and the complementary strand 2 in which the labeling substance 23 is linked to the 5'end shown in FIG. 1-2 (d).
  • the detection nucleic acid 7 can be immobilized on a solid-phase carrier containing a capture substance holding portion that holds a capture substance that binds to the first polynucleotide tag 12, and can be detected using the labeling substance 23 as an index.
  • the amplification product is a double-stranded nucleic acid consisting of a target nucleic acid 1 to which the first polynucleotide tag 12 is not linked to the 5'end and a complementary strand 2 to which the labeling substance 20 is linked to the 5'end. Is also included.
  • the present inventors used only the first primer 10 without using the third primer 30 as the forward primer, and used the second primer 10 as the reverse primer in the PCR method and isothermal nucleic acid amplification. It has been found that the reaction efficiency of the amplification of the target nucleic acid 1 by the method is low, whereas the reaction efficiency is remarkably improved when the first primer 10 and the third primer 30 are used in combination as the forward primers. This tendency was particularly remarkable in the isothermal nucleic acid amplification method using a strand-substituted polymerase method than in the PCR method.
  • the efficiency of the amplification reaction is low when only the first primer 10 is used as the forward primer because the amplification reaction involving the first primer 10 having a large steric hindrance is difficult to proceed in the initial stage of the nucleic acid amplification reaction.
  • the validity of the above estimation was confirmed.
  • the amplification reaction of the target nucleic acid 1 mainly by the third primer 30 and the second primer 20 proceeds at the initial stage of the nucleic acid amplification reaction.
  • the amplification reaction of the target nucleic acid 1 by the first primer 10 and the second primer 20 also proceeds, so that the detection nucleic acid 7 that can be detected by the solid-phase carrier can be efficiently obtained. it can.
  • the amount ratio of the first primer to the third primer is not particularly limited and can be appropriately adjusted.
  • the ratio of the third primer to the total amount of the first primer and the third primer is preferably 1 mol% or more, more preferably 2.5 mol% or more, more preferably 10 mol% or more, and more preferably 25. It can be mol% or more, most preferably 40 mol% or more, preferably 90 mol% or less, and more preferably 75 mol% or less.
  • the second primer in addition to the second polynucleotide, the second primer further contains a second polynucleotide tag, which is a polynucleotide independent of the nucleic acid amplification reaction and linked to the 5'end of the second polynucleotide. You may. When only the second primer containing the second polynucleotide tag is used as the reverse primer, the three-dimensional structure of the second primer containing the second polynucleotide tag has an effect as in the case where only the first primer is used as the forward primer. Therefore, the efficiency of the initial nucleic acid amplification reaction tends to be low.
  • a polynucleotide D capable of competitively hybridizing with the polynucleotide B of the second primer to the target nucleic acid is further added to the 3'end. It is preferable to use a fourth primer containing a fourth polynucleotide containing the nucleotide and not containing a polynucleotide independent of the nucleic acid amplification reaction.
  • the fourth primer preferably consists of only the fourth polynucleotide.
  • Polynucleotide D capable of competitively hybridizing with polynucleotide B of the second primer with respect to the target nucleic acid means that one of polynucleotide B of the second primer and polynucleotide D of the fourth primer is the target nucleic acid. When hybridized, it means that the other cannot hybridize to the same target nucleic acid.
  • the polynucleotide D of the fourth primer is contained in the partial polynucleotide B'(the portion capable of hybridizing with the polynucleotide B of the second primer) of the target nucleic acid, and is contained in 50% or more, 60% or more, 80% or more, When it is possible to hybridize with a polynucleotide having 90% or more, 95% or more, or 100% of the number of bases, the polynucleotide D can competitively hybridize with the polynucleotide B of the second primer with respect to the target nucleic acid. Is.
  • the 3'end of polynucleotide D has a contiguous 1 or more bases, preferably 2 or more bases, preferably 3 or more bases, more preferably 5 or more bases, and most preferably the entire base sequence.
  • the base sequence of the corresponding portion of the complementary strand of the partial polynucleotide B' is the same.
  • the number of bases of the polynucleotide D is not particularly limited and may be appropriately determined depending on the number of bases of the partial polynucleotide B', but for example, 8 bases or more, 10 bases or more, 12 bases or more, 15 bases or more, 17 bases or more, Alternatively, it can be 20 bases or more, 40 bases or less, 30 bases or less, 27 bases or less, or 25 bases or less.
  • Polynucleotide D is particularly preferably the same as polynucleotide B.
  • the base sequence of the fourth polynucleotide may include the base sequence of polynucleotide D at the 3'end, and another base sequence is added to the 5'end of the base sequence of polynucleotide D. Or it may consist only of the base sequence of polynucleotide D. That is, the polynucleotide D may be a partial polynucleotide containing the 3'end of the fourth polynucleotide, or may be the entire fourth polynucleotide.
  • the number of bases of the fourth polynucleotide can be appropriately determined according to the number of bases of polynucleotide D, and is, for example, 8 bases or more, 10 bases or more, 12 bases or more, 15 bases or more, 17 bases or more, or 20 bases or more. It can be 40 bases or less, 30 bases or less, 27 bases or less, or 25 bases or less.
  • the fourth polynucleotide is particularly preferably the same as the second polynucleotide.
  • the amount ratio of the second primer and the fourth primer is not particularly limited and can be adjusted as appropriate.
  • the ratio of the fourth primer to the total amount of the second primer and the fourth primer is preferably 1 mol% or more, more preferably 2.5 mol% or more, more preferably 10 mol% or more, and more preferably 25. It can be mol% or more, most preferably 40 mol% or more, preferably 90 mol% or less, and more preferably 75 mol% or less.
  • FIG. 2A schematically shows an example of the test nucleic acid 3, the first primer 10, the second primer 20, the third primer 30, and the fourth primer 40 containing the target nucleic acid 1 and the complementary strand 2 of the target nucleic acid 1. Shown in. The characteristics of the target nucleic acid 1, the complementary strand 2, the test nucleic acid 3, the first primer 10 and the third primer 30 in the example shown in FIG. 2 are the same as those shown in FIGS. 1-1 and 1-2. The explanation is omitted.
  • the second primer 20 is linked to the second polynucleotide 21 containing the polynucleotide B capable of hybridizing with the partial polynucleotide B'5 at the 3'end and the 5'end of the second polynucleotide 21. It also contains a second polynucleotide tag 22 that is independent of the nucleic acid amplification reaction.
  • the fourth primer 40 contains, at the 3'end, a polynucleotide D capable of competitively hybridizing with the polynucleotide B contained in the second polynucleotide 21 of the second primer 20 with respect to the target nucleic acid 1. It contains 41 and does not contain a polynucleotide independent of the nucleic acid amplification reaction.
  • Amplification products include a target nucleic acid 1 in which a first polynucleotide tag 12 is linked to the 5'end and a complementary strand 2 in which a second polynucleotide tag 22 is linked to the 5'end, as shown in FIG. 2 (b).
  • detection nucleic acid 8 which is a double-stranded nucleic acid.
  • the detection nucleic acid 8 is captured on a solid-phase carrier having a capture substance holding portion containing a capture substance that can bind to the first polynucleotide tag 12, and is bound to a labeling substance that can bind to the second polynucleotide tag 22. Therefore, the labeling substance can be detected as an index.
  • a nucleic acid amplification step comprising subjecting a test substance that may contain a target nucleic acid to a nucleic acid amplification reaction using a primer set according to one or more embodiments of the present invention, and A detection step of detecting a target nucleic acid in the reaction product obtained in the nucleic acid amplification step is included.
  • the present invention relates to a method for detecting a target nucleic acid.
  • the sample to be analyzed containing the test substance is not particularly limited, but is typically a part of a living body (organ, tissue, cell, blood, body fluid) such as food and drink, animals and plants. Etc.), samples containing feces, microorganisms, viruses, etc. can be mentioned.
  • the test substance obtained from the sample to be analyzed can be used for the nucleic acid amplification reaction.
  • the test substance may be a nucleic acid extracted and purified from the sample to be analyzed, or may be a nucleic acid extracted and crudely purified from the sample to be analyzed.
  • the test substance is a nucleic acid, it may be referred to as a test nucleic acid.
  • the sample contains the test nucleic acid at a relatively high concentration such as a part of cells or tissues, the sample to be analyzed itself can be directly subjected to the nucleic acid amplification reaction.
  • cDNA prepared from the sample to be analyzed can also be used as a template.
  • the test substance used as a template is preferably DNA.
  • nucleic acid amplification step Preferred embodiments of the nucleic acid amplification reaction in the nucleic acid amplification step are as described above.
  • the primer set according to one or more embodiments of the present invention in the nucleic acid amplification step, when the target nucleic acid is contained in the test substance, the detection including the target nucleic acid in which the first polynucleotide tag is linked to one end is included. Nucleic acid for use can be obtained.
  • a multiplex primer set which is a combination of two or more of the primer sets designed to amplify two or more target nucleic acids, is used and obtained from the sample to be analyzed.
  • a nucleic acid amplification reaction can be carried out on the test substance.
  • the multiplex primer set will be described later.
  • the detection step is a step of detecting the target nucleic acid in the reaction product obtained in the nucleic acid amplification step, and preferably, the capture substance holding portion containing the capture substance capable of binding the reaction product to the first polynucleotide tag is provided. This is a step of detecting the detection nucleic acid in the trapping substance holding portion of the solid phase carrier by contacting the solid phase carrier containing the substance.
  • the reaction product obtained in the nucleic acid amplification step is a reaction solution for a nucleic acid amplification reaction, which may contain the nucleic acid for detection as an amplification product, or a sample in which the amplification product is further concentrated from the reaction solution. Etc.
  • the primer set used in the nucleic acid amplification step is an embodiment including a second primer to which a labeling substance is linked
  • the labeling substance is linked to the detection nucleic acid, so that the labeling substance is used as an index for detection. Nucleic acid can be detected.
  • the detection nucleic acid is labeled because the second polynucleotide tag is ligated.
  • a labeling step of binding the substance to the second polynucleotide tag can be further performed.
  • the solid phase carrier is not particularly limited, but one made of resin, metal, polysaccharide, mineral, etc. can be used, and can be in the form of a membrane, a film, a non-woven fabric, a plate, a gel, or the like.
  • the solid phase carrier has a porous structure so that the amplification product or the labeling substance in the solution can be developed.
  • Available solid-state carriers include, for example, filter paper, nitrocellulose membranes, polyether sulfone membranes, nylon membranes, various dried gels (silica gel, agarose gel, dextran gel, gelatin gel), silicon, glass, plastics and the like. Can be mentioned.
  • As the size and form of the solid-phase carrier those suitable for various operations and detections can be appropriately selected.
  • the trapping substance retained in the trapping substance holding portion of the solid phase carrier is not particularly limited as long as it can bind to the first polynucleotide tag, but is preferably a poly that can hybridize with the first polynucleotide tag. It is a nucleotide.
  • the polynucleotide capable of hybridizing with the first polynucleotide tag is particularly preferably a polynucleotide containing a complementary base sequence of the first polynucleotide tag. Since the base sequence of the first polynucleotide tag and the base sequence of the polynucleotide used as a capture substance can be easily modified, it is easy to control the binding specificity.
  • a first polynucleotide tag having a different base sequence for each of the plurality of detection nucleic acids is used.
  • the capture substance retention that holds the polynucleotide capable of specifically hybridizing with the first polynucleotide tag of each detection nucleic acid at a plurality of different positions on the solid phase carrier while designing the first primer so that A part can be provided.
  • the trapping substance may be retained in the trapping substance holding portion of the solid phase carrier via a chemical bond, or may be retained by impregnating the trapping substance retaining portion of the porous solid phase carrier.
  • the first polynucleotide tag of the detection nucleic acid is bound to the capture substance holding portion. It may be carried out under conditions appropriately adjusted so as to be possible (for example, the conditions under which the above-mentioned specific hybridization is formed, or the buffer solution conditions having a pH of about 5 to 9).
  • the detection nucleic acid captured in the trapping substance holding portion of the solid-phase carrier contains a labeling substance
  • the detection nucleic acid containing the target nucleic acid may be detected by detecting the labeling substance, preferably by visual detection. it can.
  • the second primer of the primer set contains a second polynucleotide tag, or the second primer of the primer set can be bound to another detectable substance by a secondary reaction.
  • This is a step performed when a substance is contained.
  • a second polynucleotide tag or a labeling substance is added to the detection nucleic acid containing the target nucleic acid.
  • the labeling substance or the detectable substance is bound to the second polynucleotide tag in the detection nucleic acid containing the target nucleic acid by contacting the reaction product with the labeling substance or the detectable substance.
  • the labeling step may be performed before the reaction product is brought into contact with the solid phase carrier, after the contact, or at the same time as the contact.
  • labeling substances that can bind to the second polynucleotide tag are as described in the explanation of the second primer.
  • kits for detecting a target nucleic acid are also kits for detecting a target nucleic acid.
  • the solid phase carrier comprises a trapping material retainer containing a trapping material capable of binding to the first polynucleotide tag. It relates to a kit for detecting a target nucleic acid.
  • the solid phase carrier is a labeling substance that can bind to the second polynucleotide tag in addition to the capture substance holding portion. It is preferable to further include a labeling substance holding portion containing.
  • the kit of one or more embodiments of the present invention can further include PCR buffers, dNTPs, DNA polymerase, nucleic acid chromatography developing solution and the like.
  • the characteristics of the solid phase carrier are as described above.
  • the nucleic acid detection device containing the solid-phase carrier By using the nucleic acid detection device containing the solid-phase carrier, the presence or absence of the detection nucleic acid in the reaction product can be detected and discriminated, and the result can be obtained easily and quickly.
  • FIG. 3 A schematic diagram of one embodiment of the nucleic acid detection device that can be used in one or more embodiments of the present invention is shown in FIG. 3, but the nucleic acid detection device is not limited to this embodiment.
  • the reference numerals attached to the respective members correspond to the reference numerals shown in FIG.
  • the nucleic acid detection device 700 of FIG. 3 has a sample pad 73 which is a sample receiving part for receiving the reaction product of the nucleic acid amplification step and a conjugate which is a labeling substance holding part which holds a labeling substance on the base material 75.
  • the pad 72, the porous solid phase carrier 71 partially containing the capture substance holding portion 76 in which the capture substance capable of binding to the first polynucleotide contained in the detection nucleic acid is retained, and the absorption pad 74 are mutually used. It is formed by arranging them so as to contact each other in order.
  • the trapping substance holding portion 76 of the solid-phase carrier 71 is a portion in which the trapping substance is localized and immobilized.
  • the sample pad 73, the conjugate pad 72, the solid phase carrier 71, and the absorption pad 74 can be made of a member having a porous structure that can be used as the solid phase carrier. These may be composed of the same member or may be composed of different members.
  • the base material 75 may support various members arranged on the base material 75 and may facilitate the operation of the nucleic acid detection device 700. For example, a base material 75 made of paper, resin, metal, mineral or the like is used. be able to.
  • the conjugate pad 72 can be omitted when the labeling substance is mixed in the developing solution or when the amplification product of the primer set of the embodiment containing the second primer to which the labeling substance is pre-added is detected.
  • a part of the nucleic acid detection device 700 may be covered with a film such as polyester in order to prevent contamination and volatilization of the liquid from the surface of the solid phase carrier under test.
  • a sample containing the reaction product of the nucleic acid amplification reaction obtained by the nucleic acid amplification step is added to the sample pad 73.
  • the reaction product of the nucleic acid amplification reaction may be added as it is, or may be added together with an appropriate developing solution (for example, phosphate buffer, Tris buffer, Good's buffer, SSC buffer). If necessary, the developing solution may further contain a surfactant, a salt, a protein, a nucleic acid and the like.
  • the sample added to the sample pad 73 develops by a capillary phenomenon from upstream to downstream in the direction indicated by the arrow in FIG.
  • the sample pad 73 of the nucleic acid detection device 700 is immersed in the detection sample and / or the developing solution contained in a container (for example, PCR tube, Eppen tube, 96-well plate, etc.). You can also do it.
  • a container for example, PCR tube, Eppen tube, 96-well plate, etc.
  • the sample pad 73 can be omitted from the nucleic acid detection device 700 shown in FIG. .. Further, the end portion of the solid phase carrier 71 on the base material 75 on the side where the absorption pad 74 is not arranged may be directly immersed in the sample and / or the developing solution.
  • the detection nucleic acid When detecting the amplification product by the primer set of the embodiment containing the second primer to which the second polynucleotide tag is added, the detection nucleic acid retains a labeling substance capable of binding to the second polynucleotide tag. When passing through the conjugate pad 72, which is a labeling substance holding portion, it is bound to the labeling substance and labeled. Next, when the detection nucleic acid passes through the solid-phase carrier 71, it comes into contact with the trapping substance of the trapping substance holding section 76, and is trapped and bound to the trapping substance holding section 76.
  • the labeling substance bound to the detection nucleic acid captured and bound to the capture substance holding portion 76 of the solid-phase carrier 71 is detected. If the labeling substance can be visually confirmed, the trapping substance holding portion 76 is colored due to the labeling substance.
  • the presence or absence of the detection nucleic acid can be determined using the presence or absence of detection (color development) of the labeling substance as an index, and the presence or absence of the target nucleic acid in the test substance can be determined based on the determination.
  • ⁇ Multiplex primer set> Another embodiment of the present invention Containing two or more primer sets according to one or more embodiments of the present invention described above.
  • the target nucleic acids amplified by the nucleic acid amplification reaction using the two or more primer sets are different from each other.
  • multiplex primer sets are different from each other.
  • the first polynucleotide tag of the first primer contained in two or more primer sets has a different base sequence from each other and binds to a different capturing substance.
  • the solid-phase carrier for detecting the reaction product by the nucleic acid amplification reaction using the multiplex primer set preferably has two or more trapping substance holding portions in which different trapping substances are held at different positions of the solid-phase carrier.
  • each capture substance is a polynucleotide that is hybridizable with one of the first polynucleotide tags of the first primer contained in two or more primer sets.
  • Primer design for the primers used in the TRIAmp reaction refer to the forward primer DRa21 (SEQ ID NO: 1) and the reverse primer DRb19 (SEQ ID NO: 2) using the repetitive sequence of Mycobacterium tuberculosis described in Patent Document 4 as the target nucleic acid. Made in.
  • Tag2 5'-GACAACGGAGACAGAGCCAA-3'(SEQ ID NO: 4)
  • the primers used are shown in Table 1.
  • the thiol group-containing oligonucleotide shown in SEQ ID NO: 5 includes the phosphate group at the 3'position of the cytosine nucleotide at the 3'end and the hydroxyl group of the compound represented by HO- (CH 2 ) m-SH (m is 6). Is bonded by a phosphate ester bond.
  • the polypropylene backing sheet (Lohmann) was prepared as the base material 75, the conjugate pad prepared in the above (2) as the conjugate pad 72, and the solid phase carrier 71 provided with the trapping substance holding portion 76 as the above (3).
  • a membrane provided with a tag trapping substance holder, a glass fiber sample pad as a sample pad 73, and a cellulose absorption pad as an absorption pad 74 are laminated on top of each other as shown in FIG. 7, and are lateral flow type.
  • a nucleic acid detection device 700 was prepared.
  • TRIAmp buffer mix 12.5 ⁇ L of TRIAmp buffer mix, 2 ⁇ L of each primer mix, 8 units of Bst DNA polymerase, and 5 ⁇ L of 10,000-fold diluted SYBR Green I solution were added with 2 ⁇ L of DNA sample to prepare a total volume of 25 ⁇ L of TRIAmp reaction solution. ..
  • a DNA sample a DNA solution (100 pg / ⁇ L) extracted and purified from the Mycobacterium bovis BCG strain was used.
  • the reaction was carried out at 68 ° C. for 1 hour using a real-time PCR device (LightCycler96) manufactured by Roche, and the fluorescence was measured over time.
  • a real-time PCR device LightCycler96 manufactured by Roche
  • Example 2 In Example 1, it was shown that the reaction rate of the TRIAmp reaction was reduced by using the primer to which the DNA tag was added. Furthermore, it was shown that the rate decrease can be suppressed by substituting a part of the primer to which the DNA tag is added with the primer to which the DNA tag is not added. However, in Example 1, since the amount of amplification product was measured by the fluorescence of SYBR Green I, it was confirmed whether the amount of amplification product to which the DNA tag that can be detected by the nucleic acid detection device was actually increased. Absent.
  • a primer without a DNA tag was mixed with a primer with a DNA tag in various proportions, and a lower detection detection test was conducted using a serially diluted solution of DNA extracted from the Mycobacterium bovis BCG strain.
  • the same primer as in Example 1 was used.
  • the experiment in which the DNA sample containing the target nucleic acid was not added was defined as a negative control experiment (Nega).
  • the composition of the primer mix is shown in Table 4.
  • a primer mix (Comparative Example 1) composed of primers to which a total amount of DNA tag was added was prepared.
  • the TRIAmp reaction was carried out in the same manner as in Example 1 except that SYBR GreenI was not added. After the reaction, 5 ⁇ L of the reaction solution was added to the sample pad of the lateral flow type nucleic acid detection device, 80 ⁇ L of the developing solution was added, and the coloring line was visually determined. "+++” when very strong coloring can be confirmed, "++" when coloring can be confirmed, "+” when weak coloring can be confirmed, "-” when coloring cannot be confirmed did.
  • ⁇ Comparative example 2> A primer mix consisting of forward primer DRa21 (SEQ ID NO: 1) and reverse primer DRb19 (SEQ ID NO: 2) to which no DNA tag was added was prepared, and the reaction and fluorescence measurement were carried out with a real-time PCR device in the same manner as in Example 1. ..
  • As the DNA sample a serially diluted solution of DNA extracted from the Mycobacterium bovis BCG strain was used. The experiment in which the DNA sample containing the target nucleic acid was not added was defined as a negative control experiment (Nega).
  • the results are shown in Table 6.
  • the lower limit of detection with the primer to which the DNA tag was not added was 100 fg.
  • the lower limit of detection in the primer mixes 3 to 5 of Example 2 is 5 fg. It has been shown that by using the primer mix having the configuration of one or more embodiments of the present invention, higher sensitivity detection than the conventional method is possible without using a real-time PCR device.
  • Example 3> This was carried out in the same manner as in Example 2 except that the primer mix shown in Table 7 was used.
  • Primer mix 1 having a tag content (ratio of primers to which a DNA tag was added to the total amount of primers) of 99% showed the same lower detection limit as that of Comparative Example 3, but had a line coloring intensity of 5 p, which is the lower limit of detection concentration. The improvement was recognized. With the primer mix having a tag content of 97.5% and 95%, 500 fg could be detected, showing an improvement in the lower limit of detection performance.
  • Example 4 Instead of DRb19-Tag2, DRb19-biotin modified with biotin as a labeling substance was used as a labeling substance at the 5'end of the DRb19 primer by a conventional method, and the primer mix shown in Table 9 was prepared. In addition, streptavidin-bound colloidal gold was used as a detectable substance that binds to biotin in the fabrication of the conjugate pad of the lateral flow-type nucleic acid detection device. Other than that, it was carried out in the same manner as in Example 1.
  • Figure 5 shows the results of fluorescence measurement with a real-time PCR device.
  • the primer mix 2 in which the entire amount of the forward primer was replaced with the primer to which the DNA tag was added delayed the rise of amplification significantly.
  • Primer Mix 3 in which half of the forward primers were replaced with primers without adding a DNA tag, the amplification rate was significantly improved.
  • Example 5 Using the primer mixes 2 and 3 of Example 4, the same lower detection detection test as in Example 3 was performed.
  • Primer design As primers used for the RPA reaction, a forward primer ftsY-1F (SEQ ID NO: 7) and a reverse primer ftsY-1R (SEQ ID NO: 8) that specifically bind to the ftsY gene of Staphylococcus aureus were designed.
  • Tag 3 of the DNA tag sequence (Tag3) for membrane capture in nucleic acid chromatography via a divalent group represented by the above formula I containing an azobenzene structure as a polymerase inhibitor on the 5'terminal side of the forward primer ftsY-1F. 'The ftsY-1F-Tag3 with the terminal sides connected was prepared.
  • Tag 3 5'-TCGAGTGACAGCTAAATTGTGTGAT-3'(SEQ ID NO: 9)
  • DNA tag sequence for colloidal gold labeling (Tag2) (SEQ ID NO: 4) via a divalent group represented by the above formula I containing an azobenzene structure as a polymerase inhibitor on the 5'terminal side of the reverse primer ftsY-1R.
  • FtsY-1R-Tag2 was prepared by linking the two.
  • the primers used in Example 6 are shown in Table 11.
  • the RPA reaction was carried out using the TwistAmp Basic kit manufactured by TwistDx.
  • the primer mix a mixture of a primer with a DNA tag and a primer without a DNA tag at the ratios shown in Table 12 was used.
  • Comparative Example 4 a primer mix consisting of only primers to which a DNA tag was added was prepared.
  • the redissolved solution was added to the tube containing the lyophilized RPA reaction pellets to redissolve the reagents. Then, 2.5 ⁇ L of 280 mM magnesium acetate was added, mixed, and then reacted at 37 ° C. for 20 minutes.
  • the results are shown in Table 13.
  • the lower limit of detection in Comparative Example 4 using a primer mix consisting only of primers to which a DNA tag was added was 10 ng, whereas the primer mixes 1 to 3 can detect from 1 pg to 10 pg, and a DNA tag is added. It was confirmed that the lower limit of detection performance was improved by the coexistence of untreated primers.
  • Primer design As the primer used in the LAMP reaction, a primer set for amplifying the Nuc gene of Staphylococcus aureus described in Non-Patent Document 1 (Frontiers in Microbiology. Vol. 8, Article 192) was used. The primers used are shown in Table 14.
  • Sau-LF-Tag1 was prepared by connecting the 3'end side of (Tag1) (SEQ ID NO: 3).
  • DNA tag sequence for colloidal gold labeling via a divalent group represented by the above formula I containing an azobenzene structure as a polymerase inhibitor on the 5'terminal side of loop primer Sau-LB (SEQ ID NO: 16).
  • Sau-Tag2 in which the 3'end side of (SEQ ID NO: 4) was connected was prepared.
  • a reaction solution using 0.8 ⁇ M Sau-LF and 0.8 ⁇ M Sau-LB as a loop primer for the above reaction solution was prepared. 2 ⁇ L of a DNA sample was added to this reaction solution, and the mixture was reacted at 62 ° C. for 1 hour.
  • the line coloring intensity of the comparative example in which the entire amount of the loop primer was used as a primer with a DNA tag was 25 mAbs, whereas the line coloring intensity was 50 mAbs under the condition that half of the loop primer was replaced with a primer without a DNA tag added. An increase in the amount was confirmed.
  • PCR reaction For the verification of the PCR reaction, the same primers as in Example 6 were used, and the primer mix shown in Table 15 was prepared. As Comparative Example 5, a primer mix consisting of only primers to which a DNA tag was added was prepared.
  • the reaction solution was prepared according to the manual of 2xHSTaq perfect Mix UNG plus (Takara Bio). 10 ⁇ L of 2xHSTaq perfect Mix was mixed with 2 ⁇ L of 1 ⁇ M primer mix, 2 ⁇ L of DNA sample extracted from Staphylococcus aureus (100 pg / ⁇ L to 10 fg / ⁇ L), and 6 ⁇ L of sterile distilled water to prepare 20 ⁇ L of PCR reaction solution.
  • the PCR reaction solution was set in a thermal cycler (Bior, LifeEco), and after reacting at 94 ° C. for 3 minutes, a cycle of 94 ° C.-5 seconds / 58 ° C.-5 seconds / 72 ° C.-15 seconds was performed 35 times.

Abstract

本発明の一以上の実施形態は、固相担体上での検出が可能な標的核酸の増幅産物を調製するための、ポリヌクレオチドタグを付加したプライマーを用いる核酸増幅反応における反応効率の低下を解決する。 本発明の一以上の実施形態は、標的核酸の5'末端の部分ポリヌクレオチドA'の相補鎖とハイブリダイズ可能なポリヌクレオチドAを3'末端に含む第1ポリヌクレオチドと、核酸増幅反応に対して独立なポリヌクレオチドである第1ポリヌクレオチドタグとを含む第1プライマー、標的核酸の3'末端の部分ポリヌクレオチドB'とハイブリダイズ可能なポリヌクレオチドBを3'末端に含む第2ポリヌクレオチドを含む第2プライマー、並びに、標的核酸の相補鎖に対して、前記第1プライマーの前記ポリヌクレオチドAと競合的にハイブリダイズする第3ポリヌクレオチドを含み、且つ、核酸増幅反応に対して独立なポリヌクレオチドを含まない第3プライマーを含む、プライマーセットに関する。

Description

プライマーセット及びそれを用いて標的核酸を検出する方法
 本発明の一以上の実施形態は、固相担体上での検出が可能な標的核酸の増幅産物を核酸増幅反応により調製するためのプライマーセットに関する。
 本発明の一以上の実施形態はまた、前記プライマーセットを含む、標的核酸を検出するためのキットに関する。
 本発明の一以上の実施形態はまた、前記プライマーセットを用いて核酸増幅反応を行うことを含む、標的核酸の検出方法に関する。
 本発明の一以上の実施形態はまた、前記プライマーセットを2以上含む、マルチプレックスプライマーセットに関する。
 近年、操作性に優れ、迅速で簡便な標的核酸の検出方法として、クロマトグラフィーに基づく遺伝子検出方法が注目されている(例えば特許文献1参照)。この方法の概要は次の通りである。核酸増幅反応に対して独立なポリヌクレオチドタグを付加したポリヌクレオチドプライマーを用いる核酸増幅反応により、標的核酸を増幅して、ポリヌクレオチドタグが付加された標的核酸断片を生成する。一方で、クロマトグラフ用のテストストリップに、前記ポリヌクレオチドタグと結合するプローブ(例えば前記ポリヌクレオチドタグの相補ポリヌクレオチド)を予め固定化しておく。そしてこのテストストリップに、タグ付加された標的核酸断片を含む試料をアプライし、毛細管現象を利用してテストストリップ中を展開させ、前記プローブに標的核酸断片を捕捉し、検出する。
 一方で、核酸増幅法として、試料の温度変化のためにサーマルサイクラーを必要とするPCR法と異なり、等温で目的遺伝子を増幅する等温核酸増幅法が開発されている。等温核酸増幅法は、簡便な装置で実施可能であること、反応時間が短く検出感度が高いことなど、POC(Point of Care)検査への応用に適した特性を有する。等温核酸増幅法としては、RPA法(Recombinase Polymerase Amplification)、TRIAmp法(Tandem Repeat-mediated Isothermal Amplification)、LAMP法(Loop-mediated isothermal amplification)、HDA法(Helicase-dependent amplification)等の方法が知られている。
 ポリヌクレオチドタグを付加したポリヌクレオチドプライマーを等温核酸増幅法に用いることを開示する先行技術文献として特許文献2及び特許文献3が挙げられる。
 特許文献2では、LAMP法に用いる6つのプライマーのうち所定の2つにタグ配列と標識物質結合物質を付加すること、並びに、それを用いて増幅された増幅産物を固相担体上で捕捉して検出することが記載されている。
 特許文献3では、新規な原理に基づく等温核酸増幅法において、プライマーに、核酸増幅反応に対して独立であるタグを付加することが記載されている。
特開2016-73312号公報 WO2017/43114 WO2018/038232 特許第5688702号公報
(Frontiers in Microbiology.vol.8、Article192)
 本発明者らは、PCR法、等温核酸増幅法等の核酸増幅反応において、ポリヌクレオチドタグを付加したプライマーを用いる場合、タグを付加していないプライマーを用いる場合と比較して、核酸増幅反応の効率が低下する場合があることを見出した。また、鎖置換型ポリメラーゼを用いる等温増幅反応において、ポリヌクレオチドタグを付加したプライマーを用いることによる核酸増幅反応の効率の低下が特に顕著となる場合があることを見出した。
 そこで本発明の一以上の実施形態は、固相担体上での検出が可能な標的核酸の増幅産物を調製するための、ポリヌクレオチドタグを付加したプライマーを用いる核酸増幅反応における反応効率の低下を、解決すべき課題とする。
 本明細書では、上記課題を解決するための手段として以下の発明を開示する。
(1)固相担体上での検出が可能な標的核酸の増幅産物を核酸増幅反応により調製するためのプライマーセットであって、
 前記プライマーセットは、第1プライマー、第2プライマー及び第3プライマーを含み、
 前記第1プライマーは、標的核酸の5’末端の部分ポリヌクレオチドA’の相補鎖とハイブリダイズ可能なポリヌクレオチドAを3’末端に含む第1ポリヌクレオチドと、前記第1ポリヌクレオチドの5’末端に連結された、核酸増幅反応に対して独立なポリヌクレオチドである第1ポリヌクレオチドタグとを含み、
 前記第2プライマーは、前記標的核酸の3’末端の部分ポリヌクレオチドB’とハイブリダイズ可能なポリヌクレオチドBを3’末端に含む第2ポリヌクレオチドを含み、
 前記第3プライマーは、前記標的核酸の相補鎖に対して、前記第1プライマーの前記ポリヌクレオチドAと競合的にハイブリダイズ可能なポリヌクレオチドCを3’末端に含む第3ポリヌクレオチドを含み、且つ、核酸増幅反応に対して独立なポリヌクレオチドを含まない、
前記プライマーセット。
(2)前記第3プライマーの前記ポリヌクレオチドCは、前記標的核酸の前記部分ポリヌクレオチドA’の相補鎖に含まれる50%以上の塩基数のポリヌクレオチドとハイブリダイズ可能である、(1)に記載のプライマーセット。
(3)前記第1プライマーと前記第3プライマーとの合計量に対する、前記第3プライマーの比率が、1モル%以上、90モル%以下である、(1)又は(2)に記載のプライマーセット。
(4)前記第1プライマーと前記第3プライマーとの合計量に対する、前記第3プライマーの比率が、2.5モル%以上、75モル%以下である、(3)に記載のプライマーセット。
(5)前記第1プライマーにおいて、前記第1ポリヌクレオチドタグの3’末端と、前記第1ポリヌクレオチドの5’末端とが、核酸増幅反応を阻害する阻害物質を介して連結されている、(1)~(4)の何れか一に記載のプライマーセット。
(6)前記第2プライマーは、前記第2ポリヌクレオチドに連結された標識物質を更に含む、(1)~(5)の何れか一に記載のプライマーセット。
(7)前記標識物質が、ビオチン、蛍光色素又はハプテンである、(6)に記載のプライマーセット。
(8)前記プライマーセットは、第4プライマーを更に含み、
 前記第2プライマーは、前記第2ポリヌクレオチドの5’末端に連結された、核酸増幅反応に対して独立なポリヌクレオチドである第2ポリヌクレオチドタグを更に含み、
 前記第4プライマーは、前記標的核酸に対して、前記第2プライマーの前記ポリヌクレオチドBと競合的にハイブリダイズ可能なポリヌクレオチドDを3’末端に含む第4ポリヌクレオチドを含み、且つ、核酸増幅反応に対して独立なポリヌクレオチドを含まない、(1)~(5)の何れか一に記載のプライマーセット。
(9)前記第4プライマーの前記ポリヌクレオチドDは、前記標的核酸の前記部分ポリヌクレオチドB’に含まれる50%以上の塩基数のポリヌクレオチドとハイブリダイズ可能である、(8)に記載のプライマーセット。
(10)前記第2プライマーと前記第4プライマーとの合計量に対する、前記第4プライマーの比率が、1モル%以上、90モル%以下である、(8)又は(9)に記載のプライマーセット。
(11)前記第2プライマーと前記第4プライマーとの合計量に対する、前記第4プライマーの比率が、2.5モル%以上、75モル%以下である、(10)に記載のプライマーセット。
(12)前記第2プライマーにおいて、前記第2ポリヌクレオチドタグの3’末端と、前記第2ポリヌクレオチドの5’末端とが、核酸増幅反応を阻害する阻害物質を介して連結されている、(8)~(11)の何れか一に記載のプライマーセット。
(13)(1)~(7)の何れか一に記載のプライマーセットと、固相担体を含む核酸検出デバイスとを含み、
 前記固相担体は、前記第1ポリヌクレオチドタグと結合可能な捕捉物質を含む捕捉物質保持部を含む、
標的核酸を検出するためのキット。
(14)(8)~(12)の何れか一に記載のプライマーセットと、固相担体を含む核酸検出デバイスとを含み、
 前記固相担体は、前記第1ポリヌクレオチドタグと結合可能な捕捉物質を含む捕捉物質保持部と、前記第2ポリヌクレオチドタグと結合可能な標識物質を含む標識物質保持部とを含む、
標的核酸を検出するためのキット。
(15)前記核酸検出デバイスは、核酸増幅産物を含む試料を受容するための試料受容部を更に含む、(13)又は(14)に記載のキット。
(16)標的核酸を含む可能性のある被検物質を、(1)~(12)の何れか一に記載のプライマーセットを用いた核酸増幅反応に供することを含む核酸増幅工程、及び、
 前記核酸増幅工程にて得られた反応産物中の標的核酸を検出する検出工程を含む、
標的核酸を検出する方法。
(17)前記検出工程において、前記標的核酸の検出を、固相担体を用いて行う、(16)に記載の方法。
(18)前記核酸増幅工程における前記核酸増幅反応が、鎖置換型ポリメラーゼを用いて行われる、(16)又は(17)に記載の方法。
(19)前記核酸増幅工程における前記核酸増幅反応が、RPA法、TRIamp法、LAMP法又はHDA法により行われる、(18)に記載の方法。
(20)前記核酸増幅工程における前記核酸増幅反応が、PCR法により行われる、(16)又は(17)に記載の方法。
(21)(1)~(12)の何れか一に記載のプライマーセットを2以上含み、
 前記2以上のプライマーセットを用いた核酸増幅反応により増幅される標的核酸が互いに異なる、
 マルチプレックスプライマーセット。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2019-239045号の開示内容を包含する。
 本発明の一以上の実施形態のプライマーセットを用いた核酸増幅反応により、固相担体上での検出が可能な、ポリヌクレオチドタグが付加した標的核酸の増幅産物を効率的に調製することが可能である。
図1-1(a)に、標的核酸1と標的核酸1の相補鎖2とを含む被検核酸3、第1プライマー10、第2プライマー20、第3プライマー30の一例を模式的に示す。図1-1(b1)は、被検核酸3を鋳型とする、第1プライマー10と第2プライマー20とによる等温核酸増幅反応を模式的に示す。図1-1(b2)は、被検核酸3を鋳型とする、第3プライマー30と第2プライマー20とによる等温核酸増幅反応を模式的に示す。 図1-2(c1)は、それ以前の核酸増幅反応による増幅産物である標的核酸1と相補鎖2の二本鎖に、第1プライマー10と第2プライマー20とがハイブリダイズしてポリメラーゼ伸長反応が開始する反応を示す。図1-2(c2)は、標的核酸1と相補鎖2の二本鎖を鋳型とする、第3プライマー30と第2プライマー20とによる等温核酸増幅反応を模式的に示す。図1-2(d)は、5’末端に第1ポリヌクレオチドタグ12が連結した標的核酸1と、5’末端に標識物質23が連結した相補鎖2との二本鎖核酸である検出用核酸7を示す。 図2(a)は、標的核酸1と標的核酸1の相補鎖2とを含む被検核酸3、第1プライマー10、第2プライマー20、第3プライマー30、第4プライマー40の一例を模式的に示す。図2(b)は、5’末端に第1ポリヌクレオチドタグ12が連結した標的核酸1と、5’末端に第2ポリヌクレオチドタグ22が連結した相補鎖2との二本鎖核酸である検出用核酸8を示す。 図3はラテラルフロー型核酸検出デバイス700の模式図を示す。71:固相担体、72:コンジュゲートパッド(標識物質保持部)、73:サンプルパッド(試料受容部)、74:吸収パッド、75:基材、76:捕捉物質保持部。 図4は、実施例2においてフォワードプライマー及びリバースプライマーとして、DNAタグを付加したプライマーと付加していないプライマーの比率が異なるプライマーを用い、段階希釈した異なる濃度の標的核酸の、TRIAmp法による核酸増幅を行った結果を示す。 図5は、実施例4での、DNAタグを付加していないフォワードプライマーとリバースプライマーとのプライマーミックス1、DNAタグ付加フォワードプライマーとビオチン付加リバースプライマーとのプライマーミックス2、DNAタグ付加フォワードプライマーとDNAタグを付加していないフォワードプライマーとビオチン付加リバースプライマーとのプライマーミックス3を用いた標的核酸のTRIAmp法による核酸増幅反応をリアルタイムPCR装置で測定した結果を示す。
 以下、本発明の一以上の実施形態を詳細に説明する。
<用語>
 本発明の一以上の実施形態において核酸及びポリヌクレオチドという用語は、DNA又はRNAを指し、典型的にはDNAである。また核酸及びポリヌクレオチドという用語は、塩基数は特に限定するものではなくオリゴヌクレオチドも包含する。本発明の一以上の実施形態において、核酸増幅反応の鋳型となる標的核酸、標的核酸の相補鎖及びポリヌクレオチドは、典型的には、天然のヌクレオチドの重合体である。天然のヌクレオチドとは、天然のアデニン、チミン、グアニン、シトシン、ウラシルの塩基、および、デオキシリボース又はリボースの糖部、および、リン酸基から構成されるヌクレオチドのことであり、各部分が人工的な修飾を受けていないヌクレオチドのことである。天然のヌクレオチドは通常はD型ヌクレオチドである。D型ヌクレオチドとは、糖部分がD型のデオキシリボースもしくはリボースからなるヌクレオチドを示す。
 ポリヌクレオチドとは、相対的に長いポリヌクレオチドの一部に含まれる部分ポリヌクレオチドであってもよい。「ポリヌクレオチドP1を含むポリヌクレオチドP2」或いは「ポリヌクレオチドP2がポリヌクレオチドP2を含む」という場合、ポリヌクレオチドP1がポリヌクレオチドP2の全体(すなわちポリヌクレオチドP1とポリヌクレオチドP2とは一致する)である場合と、ポリヌクレオチドP1がポリヌクレオチドP2の部分ポリヌクレオチドである場合の両方を包含する。
 本発明の一以上の実施形態において「標的核酸」とは、検出及び/又は増幅しようとする塩基配列を含む核酸、或いは、検出及び/又は増幅しようとする塩基配列の相補塩基配列を含む核酸を指す。標的核酸はその相補鎖とともに二本鎖として存在していてもよい。二本鎖として存在する標的核酸の一方の鎖を指して「標的核酸」と称してもよい。検出しようとする核酸と、その相補鎖とのどちらを「標的核酸」と称しても良い。すなわち、本発明の一以上の実施形態において「標的核酸を検出する」又は「標的核酸を増幅する」とは、標的核酸自体を目的として標的核酸を検出又は増幅することと、標的核酸の相補鎖又は標的核酸と相補鎖との二本鎖核酸の検出又は増幅を目的として、標的核酸、標的核酸の相補鎖、又は、標的核酸と相補鎖との二本鎖核酸を検出又は増幅することの両方を包含する。
 本発明の一以上の実施形態における標的核酸の全長は特に限定されず、通常は20塩基以上、40塩基以上、又は100塩基以上の長さである。標的核酸の全長の上限は特に限定されないが通常は1000塩基以下、500塩基以下又は400塩基以下の長さである。
 本発明の一以上の実施形態において核酸増幅反応の鋳型となる核酸は、標的核酸及び/又はその相補鎖を一部に含む限りDNAであってもよいし、RNAであってもよいが、好ましくはDNAである。通常は、核酸増幅反応の鋳型となる核酸は、標的核酸を少なくとも一部に含むポリヌクレオチド鎖と、該ポリヌクレオチド鎖の相補鎖との、二本鎖DNAである。
 鋳型となる核酸は、天然のものであってもよく、人工的に合成されたものであってもよい。例えば、生体試料から抽出された天然の核酸であってもよく、PCR等により増幅されたものや、逆転写反応により合成されたcDNA等であってもよい。
 本発明の一以上の実施形態において、ポリヌクレオチドXがポリヌクレオチドYに「ハイブリダイズする」とは、ポリヌクレオチドX(特にDNA)が、ストリンジェントな条件で、ポリヌクレオチドY(特にDNA)にハイブリダイズし、ポリヌクレオチドYの塩基配列を有していないポリヌクレオチドにはハイブリダイズしないことを意味する。すなわちハイブリダイズするとは、特異的にハイブリダイズすることを指す。ここで、「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件を意味し、例えばGreen and Sambrook, Molecular Cloning, 4th Ed (2012), Cold Spring Harbor Laboratory Press を参照して適宜決定することができる。具体的には、サザンハイブリダイゼーションの際の温度や溶液に含まれる塩濃度、及びサザンハイブリダイゼーションの洗浄工程の際の温度や溶液に含まれる塩濃度によりストリンジェントな条件を設定することができる。より詳細には、ストリンジェントな条件としては、例えば、ハイブリダイゼーション工程では、ナトリウム濃度が25~500mM、好ましくは25~300mMであり、温度が40~68℃、好ましくは40~65℃である。より具体的には、ハイブリダイゼーションは、1~7×SSC(saline-sodium citrate buffer)、0.02~3%SDS、温度40℃~60℃で行うことができる。また、ハイブリダイゼーションの後に洗浄工程を行っても良く、洗浄工程は、例えば0.1~2×SSC、0.1~0.3%SDS、温度50~65℃で行うことができる。ただし、後述する第1ポリヌクレオチドタグ(固定化用タグ)と、ポリヌクレオチドが付加された固相担体とのハイブリダイゼーション、及び、後述する第2ポリヌクレオチドタグ(標識用タグ)と、ポリヌクレオチドが付加された標識物質とのハイブリダイゼーションは、ここで挙げたストリンジェントな条件で行う必要はなく、後述する条件で行うことができる。
 ポリヌクレオチドXがポリヌクレオチドYにハイブリダイズする場合、ポリヌクレオチドX(特にDNA)とポリヌクレオチドY(特にDNA)とが、核酸増幅反応のアニーリング条件においてハイブリダイズして安定な二本鎖を形成するのに十分な水素結合を形成することができる組み合わせであればよく、相互に完全な相補塩基配列である必要はない。例えば、ポリヌクレオチドXの塩基配列(以下の説明で「塩基配列X」と称する)と、ポリヌクレオチドYの塩基配列(以下の説明で「塩基配列Y」と称する)との間に、10塩基中に1以下のミスマッチ、20塩基中に1以下のミスマッチ、または30塩基中に1以下のミスマッチなど、いくつかのミスマッチが存在していてもよい。
 ポリヌクレオチドXがポリヌクレオチドYにハイブリダイズする場合、通常は以下の(A)~(C)の1以上の関係を満たす。
 (A)塩基配列Xの相補塩基配列と塩基配列Yとが同一である。なお、塩基配列Xの相補塩基配列と塩基配列Yの一方がDNAの塩基配列であり、他方がRNAの塩基配列である場合、一方におけるチミンと他方におけるウラシルとは同一の塩基であるとみなす。
 (B)塩基配列Yが、塩基配列Xの相補配列において1若しくは数個の塩基が欠失、置換、付加及び/又は挿入された塩基配列である。
 (C)塩基配列Yが、塩基配列Xの相補配列と80%以上の同一性を有する塩基配列である。
 前記(B)において「1若しくは数個」とは好ましくは1~5個、より好ましくは1~4個、より好ましくは1~3個、特に好ましくは1個又は2個を指し、最も好ましくは1個である。
 前記(C)において、同一性の値は、複数の塩基配列間の同一性を演算するソフトウェア(例えば、FASTA、DANASYS、及びBLAST)を用いてデフォルトの設定で算出した値を示す。塩基配列の同一性の値は、一致度が最大となるように一対の塩基配列をアライメントした際に一致する塩基の数を算出し、当該一致する塩基の数の、比較した塩基配列の全塩基数に対する割合として算出される。ここで、ギャップがある場合、上記の全塩基数は、1つのギャップを1つの塩基として数えた塩基数である。同一性の決定方法の詳細については、例えばAltschul et al, Nuc. Acids. Res. 25, 3389-3402, 1977及びAltschul et al, J. Mol. Biol. 215, 403-410, 1990を参照されたい。
 前記(C)において、同一性は、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上の同一性である。
 前記(A)~(C)のうち前記(A)が特に好ましい。
 「ポリヌクレオチドXがポリヌクレオチドYにハイブリダイズ」は、「塩基配列Xが塩基配列Yにハイブリダイズする」という表現と同義の意味で用いられる。
 本発明の一以上の実施形態においてプライマーセットを構成するポリヌクレオチドの製造方法は特に限定されず、ポリヌクレオチド合成装置を利用して製造してもよいし、受託合成サービスを利用して製造してもよい。
 本明細書において「核酸増幅反応に対して独立な」ポリヌクレオチドとは、「核酸増幅反応に関与しない」ポリヌクレオチドと言い換えることもできる。「核酸増幅反応に対して独立な」ポリヌクレオチドは、核酸増幅反応の鋳型として利用されないポリヌクレオチドであり、核酸増幅反応により二本鎖化されないポリヌクレオチドである。
<核酸増幅反応>
 本発明の一以上の実施形態に係るプライマーセットを用いる核酸増幅反応は、耐熱性ポリメラーゼを用いる核酸増幅反応であってもよいし、鎖置換型ポリメラーゼを用いる核酸増幅反応であってもよい。ポリメラーゼは核酸ポリメラーゼを指し、DNAポリメラーゼ又はRNAポリメラーゼであり、好ましくはDNAポリメラーゼである。
 耐熱性ポリメラーゼを用いる核酸増幅反応としてはポリメラーゼ連鎖反応法(PCR法)が挙げられる。耐熱性ポリメラーゼとしては、市販のDNAポリメラーゼを利用することが可能であり、例えばTaKaRa Ex Taq(登録商標)等を好適に利用することができる。また、温度、時間、緩衝液の組成等は、用いるDNAポリメラーゼや、各プライマーの濃度等に応じて、適宜選択することができる。PCR法での変性、アニーリング、伸長の各工程の時間、温度、緩衝液組成、基質ヌクレオチド濃度、サイクル数等の各条件は選択したDNAポリメラーゼ、プライマー配列、標的核酸の塩基数、鋳型濃度等の要素を考慮して適宜設定することができる。
 鎖置換型ポリメラーゼは、標的核酸を含む二本鎖核酸の水素結合を自ら解離しつつ、新しいDNA鎖を合成する酵素であり、例えば、φ29 DNAポリメラーゼ、Bst DNAポリメラーゼ、DNAポリメラーゼIのクレノウ・フラグメント、Vent DNAポリメラーゼ、Vent(Exo-)DNAポリメラーゼ、DeepVent DNAポリメラーゼ、DeepVent(Exo-)DNAポリメラーゼ、96-7 DNAポリメラーゼ、Aac DNAポリメラーゼ及びCsa DNA ポリメラーゼ等を挙げることができる。鎖置換型ポリメラーゼは、二本鎖の解離のための熱変性を必要としないため、等温での核酸増幅が可能である。
 鎖置換型ポリメラーゼを用いる核酸増幅反応としては、等温核酸増幅法が好ましく、RPA法(Recombinase Polymerase Amplification)、TRIAmp法(Tandem Repeat-mediated Isothermal Amplification)、LAMP法(Loop-mediated isothermal amplification、HDA法(Helicase-dependent amplification)等の方法が例示できる。
 RPA法及びTRIAmp法では標的核酸を増幅するために少なくとも一対のプライマーセットが用いられる。ここで一対のプライマーセットのうちの1つのプライマーとして、本発明の一以上の実施形態にプライマーセットの第1プライマー及び第3プライマーを用い、別の1つのプライマーとして、本発明の一以上の実施形態にプライマーセットの第2プライマー、或いは、第2プライマー及び第4プライマーを用いることができる。
 LAMP法では、1つの標的核酸を増幅するために4種以上のプライマーが用いられる。LAMP法における4種以上のプライマーのうち1つのプライマーとして、本発明の一以上の実施形態にプライマーセットの第1プライマー及び第3プライマーを用い、別の1つのプライマーとして、本発明の一以上の実施形態にプライマーセットの第2プライマー、或いは、第2プライマー及び第4プライマーを用いることができる。好ましくは、前記1つのプライマー及び前記別の1つのプライマーのうち一方又は両方は、ループプライマーである。
 鎖置換型ポリメラーゼを用いる等温核酸増幅法は、標的核酸を含む鋳型核酸、プライマー、鎖置換型ポリメラーゼ、及び、基質ヌクレオチド、並びに、必要に応じて他の酵素(例えばRPA法では、他の酵素としてリコンビナーゼ及び一本鎖DNA結合タンパク質(SSB)を用いる)を共存させ、増幅プライマーが鋳型核酸と安定な塩基対結合を形成することができ、且つ、酵素活性を発揮しうる温度でインキュベートすることで進行する。等温核酸増幅法による核酸増幅反応の温度、緩衝液組成、基質ヌクレオチド濃度、反応時間等の各条件は、選択した鎖置換型ポリメラーゼ、プライマー配列、標的核酸の塩基数、鋳型核酸濃度等の要素を考慮して適宜設定することができる。RPA法に用いるリコンビナーゼとしては、例えば、UvsX、RecAおよびそれらのアナログが挙げられる。
<プライマーセット>
 第1プライマー、第2プライマー及び第3プライマーを含む本発明の一以上の実施形態のプライマーセットは、分析しようとする被検物質が標的核酸の塩基配列を含む核酸含んでいる場合に、被検物質中の標的核酸を鋳型とする核酸増幅反応により、一端に第1ポリヌクレオチドタグが連結した標的核酸を含む検出用核酸を調製することができるプライマーセットである。
 以下、各プライマーの構造について説明し、続いて、プライマーセットの好ましい実施形態について説明する。
(第1プライマー)
 第1プライマーは、標的核酸の5’末端の部分ポリヌクレオチドA’の相補鎖とハイブリダイズ可能なポリヌクレオチドAを3’末端に含む第1ポリヌクレオチドと、前記第1ポリヌクレオチドの5’末端に連結された、核酸増幅反応に対して独立なポリヌクレオチドである第1ポリヌクレオチドタグとを含む。
 部分ポリヌクレオチドA’は、標的核酸の5’末端の塩基を含む、連続した複数の塩基からなる、標的核酸の部分ポリヌクレオチドである。部分ポリヌクレオチドA’の塩基数は特に限定されないが、例えば8塩基以上、10塩基以上、12塩基以上、15塩基以上、17塩基以上、又は、20塩基以上とすることができ、40塩基以下、30塩基以下、27塩基以下、又は、25塩基以下とすることができる。
 ポリヌクレオチドAは、部分ポリヌクレオチドA’の相補鎖とハイブリダイズ可能なポリヌクレオチドであればよい。ポリヌクレオチドAの好ましい実施形態では、ポリヌクレオチドAの3’末端の連続した1塩基以上、好ましくは2塩基以上、好ましくは3塩基以上、より好ましくは5塩基以上、最も好ましくは全体の塩基配列が、部分ポリヌクレオチドA’の対応する部分の塩基配列と同一である。ポリヌクレオチドAの塩基数は特に限定されず、部分ポリヌクレオチドA’の塩基数に応じて適宜決定し得るが、例えば8塩基以上、10塩基以上、12塩基以上、15塩基以上、17塩基以上、又は、20塩基以上とすることができ、40塩基以下、30塩基以下、27塩基以下、又は、25塩基以下とすることができる。
 第1ポリヌクレオチドの塩基配列は、その3’末端に、ポリヌクレオチドAの塩基配列を含んでいればよく、ポリヌクレオチドAの塩基配列の5’末端側に更に他の塩基配列が付加されたものであってもよいし、ポリヌクレオチドAの塩基配列のみからなっていてもよい。すなわち、ポリヌクレオチドAは、第1ポリヌクレオチドの3’末端を含む部分ポリヌクレオチドであってもよいし、第1ポリヌクレオチドの全体であってもよい。第1ポリヌクレオチドの塩基数はポリヌクレオチドAの塩基数に応じて適宜決定し得るが、例えば8塩基以上、10塩基以上、12塩基以上、15塩基以上、17塩基以上、又は、20塩基以上とすることができ、40塩基以下、30塩基以下、27塩基以下、又は、25塩基以下とすることができる。
 第1プライマーは、第1ポリヌクレオチドと、その5’末端に連結された、核酸増幅反応に対して独立なポリヌクレオチドである第1ポリヌクレオチドタグとを含む。第1ポリヌクレオチドタグは、「第1タグ」又は「固定化用タグ」と称する場合がある。第1ポリヌクレオチドタグに含まれるポリヌクレオチドは、本発明の一以上の実施形態のプライマーセットによる核酸増幅反応の実質的な支障とならないものであれば特に限定されないが、塩基数が例えば5~50、好ましくは10~35であるポリヌクレオチドであり、例えば、Anal.Biochem.364(2007)78-85に記載されている塩基配列を含むポリヌクレオチドが好ましいものとして例示できる。
 第1ポリヌクレオチドタグは、後述する固相担体に含まれる捕捉物質と結合することが可能である。第1ポリヌクレオチドタグが付加された標的核酸を含む検出用核酸は、固相担体の捕捉物質保持部に固定され検出することができる。
 第1ポリヌクレオチドの5’末端と第1タグとは、核酸増幅反応での伸長により、第1タグが、プライマーとして機能する第1ポリヌクレオチドと共に二本鎖化されないように連結されている。第1ポリヌクレオチドの5’末端と第1タグの3’末端とが連結されてもよいし、第1ポリヌクレオチドの5’末端と第1タグの5’末端とが連結されていてもよいが、好ましくは、第1ポリヌクレオチドの5’末端と、第1タグの3’末端とが連結されている。
 一以上の実施形態では、第1ポリヌクレオチドの5’末端と、第1タグとは、核酸増幅反応を阻害する阻害物質(以下「スペーサー」と称する場合がある)を介して連結されている。
 別の実施形態では、第1タグは、LNA(Locked Nucleic Acid)、L型核酸、2’-O-メチル化ヌクレオチドなどの修飾核酸を含むポリヌクレオチドのように、ポリメラーゼによる反応の鋳型にならず核酸増幅反応での伸長により二本鎖化されないポリヌクレオチドであることができる。この場合、第1ポリヌクレオチドと第1タグとは上記のスペーサーを介さずに直接連結されていてもよい。
 前記スペーサーとしては、核酸増幅反応におけるポリメラーゼ反応の進行を抑制または停止することができ、第1タグの二本鎖化を防ぐものであればよく、例えば、強固なヘアピン構造やシュードノット構造を有する核酸配列、L型核酸、ペプチド核酸(PNA)、架橋化核酸(Bridged Nucleic Acid(BNA)もしくはLocked Nucleic Acid(LNA))、フルオレセイン、Cy3、Cy5、下記式Iで表されるアゾベンゼン構造を含む二価基、脂肪鎖(アルキレン鎖又はポリオキシアルキレン鎖)、5’-5’結合、3’-3’結合のような逆位配列構造を含む二価基等が挙げられるがこれらに限定はされない。このようなスペーサーにより、第1ポリヌクレオチドと第1タグとは、同一方向に連結することができる。すなわち、第1タグの3’末端と、第1ポリヌクレオチドの5’末端とを前記スペーサーを介して連結できる。
Figure JPOXMLDOC01-appb-C000001
 式Iで表される二価基を介して2つのポリヌクレオチド分子を接続する場合、該二価基の一方の3’末端のリン酸基は、一方のポリヌクレオチド分子の5’末端のヌクレオチドのリン酸基を指し、他方の5’端の酸素原子は、他方のポリヌクレオチド分子の3’末端のヌクレオチドのリン酸基とリン酸エステル結合を形成する。
 脂肪鎖のスペーサーとしては、例えば、以下の式(IV)で表されるスペーサーが挙げられる。
5’-O-C2m-O-3’ 式(IV)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合の酸素原子を表し、mは1以上40以下の整数を表す。Hは、置換基により置換されていてもよい。)
 式(IV)においてmは、好ましくは2以上36以下であり、より好ましくは3以上16以下である。式(IV)中のHは、置換基により置換されていてもよく、置換基としては、典型的には、アルキル基、アルコキシ基、水酸基等が挙げられる。置換基としてのアルキル基及びアルコキシ基の炭素数は1~8であることが好ましく、より好ましくは1~4である。また、2以上の置換基を有する場合には、置換基は同一であっても異なっていてもよい。さらに、置換基を有していないことも好ましい。
 また、他のスペーサーとしては、以下の式(V)で表されるスペーサーが挙げられる。5’-(OC2n-O-3’ 式(V)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合の酸素原子を表し、nは2以上4以下の整数を表し、Lは、1以上の整数であって、(n+1)×Lが40以下となる整数を表す。Hは、置換基により置換されていてもよい。)
 式(V)において(n+1)×Lは、好ましくは2以上36以下であり、より好ましくは3以上16以下である。式(V)中のHの置換基は、式(IV)中の置換基と同様の態様が適用される。
 また、2つのポリヌクレオチド分子が5’-5’結合される場合は上記の式(IV)又は式(V)で表される脂肪鎖のスペーサーを用いることができる。
 他の脂肪鎖のスペーサーとしては、例えば、以下の二価基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 これらの二価基を介して2つのポリヌクレオチド分子を接続する場合、各二価基の一方の端のリン酸基は、一方のポリヌクレオチド分子の3’末端又は5’末端のヌクレオチドのリン酸基を指し、他方の端の酸素原子は、他方のポリヌクレオチド分子の5’末端又は3’末端のヌクレオチドのリン酸基とリン酸エステル結合を形成する。
(第2プライマー)
 第2プライマーは、標的核酸の3’末端の部分ポリヌクレオチドB’とハイブリダイズ可能なポリヌクレオチドBを3’末端に含む第2ポリヌクレオチドを含む。
 部分ポリヌクレオチドB’は、標的核酸の3’末端の塩基を含む、連続した複数の塩基からなる、標的核酸の部分ポリヌクレオチドである。部分ポリヌクレオチドB’の塩基数は特に限定されないが、例えば8塩基以上、10塩基以上、12塩基以上、15塩基以上、17塩基以上、又は、20塩基以上とすることができ、40塩基以下、30塩基以下、27塩基以下、又は、25塩基以下とすることができる。
 ポリヌクレオチドBは、部分ポリヌクレオチドB’とハイブリダイズ可能なポリヌクレオチドであればよい。ポリヌクレオチドBの好ましい実施形態では、ポリヌクレオチドBの3’末端の連続した1塩基以上、好ましくは2塩基以上、好ましくは3塩基以上、より好ましくは5塩基以上、最も好ましくは全体の塩基配列が、部分ポリヌクレオチドB’の相補鎖の対応する部分の塩基配列と同一である。ポリヌクレオチドBの塩基数は特に限定されず、部分ポリヌクレオチドB’の塩基数に応じて適宜決定し得るが、例えば8塩基以上、10塩基以上、12塩基以上、15塩基以上、17塩基以上、又は、20塩基以上とすることができ、40塩基以下、30塩基以下、27塩基以下、又は、25塩基以下とすることができる。
 第2ポリヌクレオチドの塩基配列は、その3’末端に、ポリヌクレオチドBの塩基配列を含んでいればよく、ポリヌクレオチドBの塩基配列の5’末端側に更に他の塩基配列が付加されたものであってもよいし、ポリヌクレオチドBの塩基配列のみからなっていてもよい。すなわち、ポリヌクレオチドBは、第2ポリヌクレオチドの3’末端を含む部分ポリヌクレオチドであってもよいし、第2ポリヌクレオチドの全体であってもよい。第2ポリヌクレオチドの塩基数はポリヌクレオチドBの塩基数に応じて適宜決定し得るが、例えば8塩基以上、10塩基以上、12塩基以上、15塩基以上、17塩基以上、又は、20塩基以上とすることができ、40塩基以下、30塩基以下、27塩基以下、又は、25塩基以下とすることができる。
 本発明の一以上の実施形態では、第2プライマーは、第2ポリヌクレオチドと、第2ポリヌクレオチドに連結された標識物質とを含み得る。この実施形態に係る第2プライマーを含むプライマーセットによる標的核酸の増幅産物である検出用核酸は、一端に第1ポリヌクレオチドタグを含み、他端に標識物質を含む。この検出用核酸は、第1ポリヌクレオチドタグと結合可能な捕捉物質を含む捕捉物質保持部を備える固相担体上に捕捉し、標識物質を指標として検出することができる。
 ここで標識物質としては、核酸増幅反応を阻害しない標識物質であればよい。また、標識物質は、それ自体が検出できる標識物質であってもよいし、二次的な反応により別の検出可能な物質と結合することができる標識物質であってもよい。
 核酸増幅反応を阻害しない標識物質としては、ビオチン、色素、ハプテン、放射性同位体元素含有物質等が挙げられる。色素としては蛍光色素(フルオレセインイソチオシアネート(FITC)等のフルオロセイン、シアニン等)が例示できる。ハプテンとしてはジゴキシゲニン(DIG)、フルオレセインイソチオシアネート(FITC)が例示できる。
 ビオチンは、アビジン又はストレプトアビジンが連結された検出可能な物質との二次的な反応により検出できる。ハプテンは、抗体が連結された検出可能な物質との二次的な反応により検出できる。ここでいう検出可能な物質としては、色素、放射性物質のほか、着色粒子、酵素(ペルオキシダーゼ、アルカリホスファターゼ、ルシフェラーゼ等)等であってもよく、好ましくは着色粒子である。「着色粒子」とは、金属(例えば、金、銀、銅、白金等)粒子、金属ロッド、着色されたラテックス粒子、色素を包含するシリカナノ粒子等が使用できる。
 第2ポリヌクレオチドへの標識物質の結合位置は核酸増幅反応を阻害しない位置であれば特に限定されないが、通常は、第2ポリヌクレオチドの5’末端である。
 本発明の別の一以上の実施形態では、第2プライマーは、第2ポリヌクレオチドと、第2ポリヌクレオチドの5’末端に連結された、核酸増幅反応に対して独立なポリヌクレオチドである第2ポリヌクレオチドタグを含む。この実施形態に係る第2プライマーを含むプライマーセットによる標的核酸の増幅産物である検出用核酸は、一端に第1ポリヌクレオチドタグを含み、他端に第2ポリヌクレオチドタグを含む。この検出用核酸は、第1ポリヌクレオチドタグと結合可能な捕捉物質を含む捕捉物質保持部を備える固相担体上に捕捉し、第2ポリヌクレオチドタグと結合可能な標識物質と結合させることで、標識物質を指標として検出することができる。第2ポリヌクレオチドタグと結合可能な標識物質を、固相担体の標識物質保持部に予め含ませておき、固相担体に適用された検出用核酸を含む試料が標識物質保持部と接触したときに、前記検出用核酸の第2ポリヌクレオチドタグと標識物質とを結合させることが好ましい。
 第2ポリヌクレオチドタグは、「第2タグ」又は「標識用タグ」と称する場合がある。第2ポリヌクレオチドタグに含まれるポリヌクレオチドは、本発明の一以上の実施形態のプライマーセットによる核酸増幅反応の実質的な支障とならないものであれば特に限定されないが、塩基数が例えば5~50、好ましくは10~35であるポリヌクレオチドであり、例えば、Anal.Biochem.364(2007)78-85に記載されている塩基配列を含むポリヌクレオチドが好ましいものとして例示できる。
 第2ポリヌクレオチドの5’末端と第2タグとは、核酸増幅反応での伸長により第2タグが、プライマーとして機能する第2ポリヌクレオチドと共に二本鎖化されないように連結されている。第2ポリヌクレオチドの5’末端と第2タグの3’末端とが連結されてもよいし、第2ポリヌクレオチドの5’末端と第2タグの5’末端とが連結されていてもよいが、好ましくは、第2ポリヌクレオチドの5’末端と第2タグの3’末端とが連結されている。
 一以上の実施形態では、第2ポリヌクレオチドの5’末端と、第2タグとは、核酸増幅反応を阻害する阻害物質(スペーサー)を介して連結されている。第2ポリヌクレオチドの5’末端と第2タグとを連結するスペーサーは、第1ポリヌクレオチドの5’末端と第1タグとを連結するスペーサーとして記載したものと同様の範囲から選択することができる。
 別の実施形態では、第2タグは、LNA(Locked Nucleic Acid)、L型核酸、2’-O-メチル化ヌクレオチドなどの修飾核酸を含むポリヌクレオチドのように、ポリメラーゼによる反応の鋳型にならず核酸増幅反応での伸長により二本鎖化されないポリヌクレオチドであることができる。この場合、第2ポリヌクレオチドと第2タグとは上記のスペーサーを介さずに直接連結されていてもよい。
 第2タグと結合可能な標識物質は、好ましくは、第2タグにハイブリダイズ可能なポリヌクレオチド(例えば、第2タグの塩基配列と相補的な配列を含むポリヌクレオチド)が連結された標識物質である。第2タグを含む検出用核酸と、第2タグにハイブリダイズ可能なポリヌクレオチドが連結された標識物質とのハイブリダイゼーションの条件は、ハイブリダイゼーションが生じる条件であればよく特に限定はされないが、例えば20℃~40℃にて、10mM~50mMのリン酸を含む緩衝液(pH6~7)中で反応させることにより行うことができる。ハイブリダイゼーション効率を高めるべく、緩衝液にはさらに塩化ナトリウム等の塩を含めることができる。
 第2タグにハイブリダイズ可能なポリヌクレオチドが連結された標識物質としては、第2ポリヌクレオチドに連結する標識物質として上記の標識物質のほか、着色粒子、酵素(ペルオキシダーゼ、アルカリホスファターゼ、ルシフェラーゼ等)等であってもよく、好ましくは着色粒子である。「着色粒子」とは、金属(例えば、金、銀、銅、白金等)粒子、金属ロッド、着色されたラテックス粒子、色素を包含するシリカナノ粒子等を包含する。
(第3プライマー)
 第3プライマーは、標的核酸の相補鎖に対して、第1プライマーのポリヌクレオチドAと競合的にハイブリダイズ可能なポリヌクレオチドCを3’末端に含む第3ポリヌクレオチドを含み、且つ、核酸増幅反応に対して独立なポリヌクレオチドを含まない。
 第3プライマーは、好ましくは、第3ポリヌクレオチドのみからなる。
 「標的核酸の相補鎖に対して、第1プライマーのポリヌクレオチドAと競合的にハイブリダイズ可能なポリヌクレオチドC」とは、第1プライマーのポリヌクレオチドA及び第3プライマーのポリヌクレオチドCの一方が標的核酸の相補鎖にハイブリダイズした場合には、他方が同じ標的核酸の相補鎖にハイブリダイズできない関係であることを意味する。例えば、第3プライマーのポリヌクレオチドCが、標的核酸の部分ポリヌクレオチドA’の相補鎖(第1プライマーのポリヌクレオチドAとハイブリダイズ可能な部分)に含まれる、50%以上、60%以上、80%以上、90%以上、95%以上又は100%の塩基数のポリヌクレオチドとハイブリダイズ可能である場合に、ポリヌクレオチドCは、標的核酸の相補鎖に対して、第1プライマーのポリヌクレオチドAと競合的にハイブリダイズ可能である。
 ポリヌクレオチドCの好ましい実施形態では、ポリヌクレオチドCの3’末端の連続した1塩基以上、好ましくは2塩基以上、好ましくは3塩基以上、より好ましくは5塩基以上、最も好ましくは全体の塩基配列が、部分ポリヌクレオチドA’の対応する部分の塩基配列と同一である。ポリヌクレオチドCの塩基数は特に限定されず、部分ポリヌクレオチドA’の塩基数に応じて適宜決定し得るが、例えば8塩基以上、10塩基以上、12塩基以上、15塩基以上、17塩基以上、又は、20塩基以上とすることができ、40塩基以下、30塩基以下、27塩基以下、又は、25塩基以下とすることができる。ポリヌクレオチドCは、特に好ましくは、ポリヌクレオチドAと同一である。
 第3ポリヌクレオチドの塩基配列は、その3’末端に、ポリヌクレオチドCの塩基配列を含んでいればよく、ポリヌクレオチドCの塩基配列の5’末端側に更に他の塩基配列が付加されたものであってもよいし、ポリヌクレオチドCの塩基配列のみからなっていてもよい。すなわち、ポリヌクレオチドCは、第3ポリヌクレオチドの3’末端を含む部分ポリヌクレオチドであってもよいし、第3ポリヌクレオチドの全体であってもよい。第3ポリヌクレオチドの塩基数はポリヌクレオチドCの塩基数に応じて適宜決定し得るが、例えば8塩基以上、10塩基以上、12塩基以上、15塩基以上、17塩基以上、又は、20塩基以上とすることができ、40塩基以下、30塩基以下、27塩基以下、又は、25塩基以下とすることができる。第3ポリヌクレオチドは、特に好ましくは、第1ポリヌクレオチドと同一である。
(プライマーセットを用いた核酸増幅反応の機構)
 本発明の一以上の実施形態のプライマーセットを用いて等温核酸増幅法により標的核酸を増幅する反応の一例において、標的核酸のフォワードプライマーとして、第3プライマーを、第1プライマーとともに併用することの意義を、図1-1及び図1-2を参照して説明する。
 図1-1(a)に、標的核酸1と標的核酸1の相補鎖2とを含む被検核酸3、第1プライマー10、第2プライマー20、第3プライマー30の一例を模式的に示す。
 被検核酸3は、二本鎖DNAであり、その一部に、相互にハイブリダイズした、標的核酸1と、相補鎖2を含む。標的核酸1は5’末端に部分ポリヌクレオチドA’4を含み、3’末端に部分ポリヌクレオチドB’5を含む。標的核酸1の相補鎖2は、3’末端に、部分ポリヌクレオチドA’4の相補鎖6を含む。
 第1プライマー10は、部分ポリヌクレオチドA’4の相補鎖6とハイブリダイズ可能なポリヌクレオチドAを3’末端に含む第1ポリヌクレオチド11と、第1ポリヌクレオチド11の5’末端に連結された、核酸増幅反応に対して独立な第1ポリヌクレオチドタグ12とを含む。
 第2プライマー20は、部分ポリヌクレオチドB’5とハイブリダイズ可能なポリヌクレオチドBを3’末端に含む第2ポリヌクレオチド21と、標識物質23とを含む。
 第3プライマー30は、標的核酸1の相補鎖2に対して、第1プライマー11の第1ポリヌクレオチド11に含まれるポリヌクレオチドAと競合的にハイブリダイズ可能なポリヌクレオチドCを3’末端に含む第3ポリヌクレオチド31を含み、且つ、核酸増幅反応に対して独立なポリヌクレオチドを含まない。
 被検核酸3中の標的核酸1を、上記のプライマーセットと鎖置換型ポリメラーゼを用いる等温核酸増幅法により増幅するとき、初期の反応として、図1-1(b1)に示す、被検核酸3に第1プライマー10と第2プライマー20とがハイブリダイズしてポリメラーゼ伸長反応が開始する反応と、図1-1(b2)に示す、被検核酸3に第3プライマー30と第2プライマー20とがハイブリダイズしてポリメラーゼ伸長反応が開始する反応が生じると推定される。
 第1プライマー10は、核酸増幅反応に関与しない第1ポリヌクレオチドタグ12を含むため、被検核酸3中の標的核酸1の相補鎖2と、図1-1(b1)に示すようにハイブリダイズするには立体障害が大きいと考えられる。しかも、鎖置換型ポリメラーゼを用いる核酸増幅反応は、二本鎖の被検核酸3の水素結合を高温条件により解離する工程を含まないため、上記の立体障害の影響はPCR法におけるものより大きいと考えられる。これに対して、第3プライマー30は、核酸増幅反応に関与しないポリヌクレオチドを含まないため、被検核酸3中の標的核酸1の相補鎖2と、図1-1(b2)に示すようにハイブリダイズし易いと考えられる。このため、核酸増幅反応の初期段階では、図1-1(b2)に示す、第3プライマー30と第2プライマー20とによる標的核酸1の増幅反応が進行し易く、図1-1(b1)に示す、第1プライマー10が関与する増幅反応が進行し難いと考えられる。
 核酸増幅反応が進むと、図1-2(c1)及び図1-2(c2)に示すように、それ以前の核酸増幅反応の増幅産物である断片化された標的核酸1とその相補鎖2とを鋳型とする増幅反応が支配的になる。増幅産物である断片化された標的核酸1とその相補鎖2との二本鎖に対しては、第1プライマー10の立体障害の影響は小さいため、フォワードプライマーとして第1プライマー10を利用する図1-2(c1)に示す反応と、第3プライマー30を利用する図1-2(c2)に示す反応がともに進行する。なお、図示していないが、5’末端に第1ポリヌクレオチドタグ12が連結した標的核酸1の断片が鋳型となる増幅反応も進行する。
 最終的な増幅産物には、図1-2(d)に示す、5’末端に第1ポリヌクレオチドタグ12が連結した標的核酸1と、5’末端に標識物質23が連結した相補鎖2との二本鎖核酸である検出用核酸7が含まれる。この検出用核酸7は、第1ポリヌクレオチドタグ12と結合する捕捉物質を保持する捕捉物質保持部を含む固相担体に固定することができ、標識物質23を指標として検出が可能である。なお、図示しないが、増幅産物には、5’末端に第1ポリヌクレオチドタグ12が連結していない標的核酸1と、5’末端に標識物質20が連結した相補鎖2との二本鎖核酸も含まれる。
 本発明者らは、本明細書に記載する実験において、フォワードプライマーとして第3プライマー30を併用せず第1プライマー10のみを用い、リバースプライマーとして第2プライマー10を用いたPCR法及び等温核酸増幅法による標的核酸1の増幅では、反応効率が低いのに対して、フォワードプライマーとして第1プライマー10と第3プライマー30を併用した場合には反応効率が顕著に向上することを見出した。この傾向は、PCR法よりも、鎖置換型ポリメラーゼを用いる等温核酸増幅法において特に顕著であった。実験結果から、核酸増幅反応の初期の段階では立体障害の大きい第1プライマー10が関与する増幅反応が進行し難いため、フォワードプライマーとして第1プライマー10のみを用いる場合は増幅反応の効率が低いという上記の推定の妥当性が裏付けられた。これに対して、第1プライマー10と第3プライマー30とを併用する本実施形態では、核酸増幅反応の初期に主に第3プライマー30と第2プライマー20とによる標的核酸1の増幅反応が進行し、標的核酸1の生成が進むにつれて第1プライマー10と第2プライマー20とによる標的核酸1の増幅反応も進行するため、固相担体で検出可能な検出用核酸7を効率的に得ることができる。
(第1プライマーと第3プライマーとの量比)
 本発明の一以上の実施形態に係るプライマーセットにおいて、第1プライマーと第3プライマーとの量比は特に限定されず適宜調整できる。例えば、第1プライマーと第3プライマーとの合計量に対する第3プライマーの比率は、好ましくは1モル%以上、より好ましくは2.5モル%以上、より好ましくは10モル%以上、より好ましくは25モル%以上、最も好ましくは40モル%以上であり、好ましくは90モル%以下、より好ましくは75モル%以下であることができる。
(第4プライマーを更に含むプライマーセットの実施形態)
 上記の通り第2プライマーは、第2ポリヌクレオチドに加えて、第2ポリヌクレオチドの5’末端に連結された、核酸増幅反応に対して独立なポリヌクレオチドである第2ポリヌクレオチドタグを更に含んでいてもよい。リバースプライマーとして、第2ポリヌクレオチドタグを含む第2プライマーのみを用いた場合、フォワードプライマーとして第1プライマーのみを用いた場合と同じく、第2ポリヌクレオチドタグを含む第2プライマーの立体構造が影響して初期の核酸増幅反応の効率が低くなる傾向がある。
 そこでリバースプライマーとして第2ポリヌクレオチドタグを含む第2プライマーを用いる場合には、更に、標的核酸に対して第2プライマーのポリヌクレオチドBと競合的にハイブリダイズ可能なポリヌクレオチドDを3’末端に含む第4ポリヌクレオチドを含み、且つ、核酸増幅反応に対して独立なポリヌクレオチドを含まない第4プライマーを併用することが好ましい。
 第4プライマーは、好ましくは、第4ポリヌクレオチドのみからなる。
 「標的核酸に対して、第2プライマーのポリヌクレオチドBと競合的にハイブリダイズ可能なポリヌクレオチドD」とは、第2プライマーのポリヌクレオチドB及び第4プライマーのポリヌクレオチドDの一方が標的核酸にハイブリダイズした場合には、他方が同じ標的核酸にハイブリダイズできない関係であることを意味する。例えば、第4プライマーのポリヌクレオチドDが、標的核酸の部分ポリヌクレオチドB’(第2プライマーのポリヌクレオチドBとハイブリダイズ可能な部分)に含まれる、50%以上、60%以上、80%以上、90%以上、95%以上又は100%の塩基数のポリヌクレオチドとハイブリダイズ可能である場合に、ポリヌクレオチドDは、標的核酸に対して、第2プライマーのポリヌクレオチドBと競合的にハイブリダイズ可能である。
 ポリヌクレオチドDの好ましい実施形態では、ポリヌクレオチドDの3’末端の連続した1塩基以上、好ましくは2塩基以上、好ましくは3塩基以上、より好ましくは5塩基以上、最も好ましくは全体の塩基配列が、部分ポリヌクレオチドB’の相補鎖の対応する部分の塩基配列と同一である。ポリヌクレオチドDの塩基数は特に限定されず、部分ポリヌクレオチドB’の塩基数に応じて適宜決定し得るが、例えば8塩基以上、10塩基以上、12塩基以上、15塩基以上、17塩基以上、又は、20塩基以上とすることができ、40塩基以下、30塩基以下、27塩基以下、又は、25塩基以下とすることができる。ポリヌクレオチドDは、特に好ましくは、ポリヌクレオチドBと同一である。
 第4ポリヌクレオチドの塩基配列は、その3’末端に、ポリヌクレオチドDの塩基配列を含んでいればよく、ポリヌクレオチドDの塩基配列の5’末端側に更に他の塩基配列が付加されたものであってもよいし、ポリヌクレオチドDの塩基配列のみからなっていてもよい。すなわち、ポリヌクレオチドDは、第4ポリヌクレオチドの3’末端を含む部分ポリヌクレオチドであってもよいし、第4ポリヌクレオチドの全体であってもよい。第4ポリヌクレオチドの塩基数はポリヌクレオチドDの塩基数に応じて適宜決定し得るが、例えば8塩基以上、10塩基以上、12塩基以上、15塩基以上、17塩基以上、又は、20塩基以上とすることができ、40塩基以下、30塩基以下、27塩基以下、又は、25塩基以下とすることができる。第4ポリヌクレオチドは、特に好ましくは、第2ポリヌクレオチドと同一である。
 この実施形態において第2プライマーと第4プライマーとの量比は特に限定されず適宜調整できる。例えば、第2プライマーと第4プライマーとの合計量に対する第4プライマーの比率は、好ましくは1モル%以上、より好ましくは2.5モル%以上、より好ましくは10モル%以上、より好ましくは25モル%以上、最も好ましくは40モル%以上であり、好ましくは90モル%以下、より好ましくは75モル%以下であることができる。
 図2(a)に、標的核酸1と標的核酸1の相補鎖2とを含む被検核酸3、第1プライマー10、第2プライマー20、第3プライマー30、第4プライマー40の一例を模式的に示す。図2に示す例での標的核酸1、相補鎖2、被検核酸3、第1プライマー10及び第3プライマー30の特徴は、図1-1及び図1-2に示すものと同一であるから説明を省略する。
 本実施形態では、第2プライマー20は、部分ポリヌクレオチドB’5とハイブリダイズ可能なポリヌクレオチドBを3’末端に含む第2ポリヌクレオチド21と、第2ポリヌクレオチド21の5’末端に連結された、核酸増幅反応に対して独立な第2ポリヌクレオチドタグ22とを含む。
 第4プライマー40は、標的核酸1に対して、第2プライマー20の第2ポリヌクレオチド21に含まれるポリヌクレオチドBと競合的にハイブリダイズ可能なポリヌクレオチドDを3’末端に含む第4ポリヌクレオチド41を含み、且つ、核酸増幅反応に対して独立なポリヌクレオチドを含まない。
 図2(a)に示す実施形態の第1プライマー10、第2プライマー20、第3プライマー30、第4プライマー40を用いて、被検核酸3を鋳型として核酸増幅反応を行い調製される最終的な増幅産物には、図2(b)に示す、5’末端に第1ポリヌクレオチドタグ12が連結した標的核酸1と、5’末端に第2ポリヌクレオチドタグ22が連結した相補鎖2との二本鎖核酸である検出用核酸8が含まれる。この検出用核酸8は、第1ポリヌクレオチドタグ12と結合可能な捕捉物質を含む捕捉物質保持部を備える固相担体上に捕捉し、第2ポリヌクレオチドタグ22と結合可能な標識物質と結合させることで、標識物質を指標として検出することができる。
<標的核酸増幅産物の検出>
 本発明の一以上の実施形態はまた、
 標的核酸を含む可能性のある被検物質を、本発明の一以上の実施形態に係るプライマーセットを用いた核酸増幅反応に供することを含む核酸増幅工程、及び、
 前記核酸増幅工程にて得られた反応産物中の標的核酸を検出する検出工程を含む、
標的核酸を検出する方法に関する。
 本発明の一以上の実施形態において、被検物質を含む分析対象試料は特に限定されないが、典型的には、飲食品、動物植物等の生体の一部(器官、組織、細胞、血液、体液等)、糞便、微生物、ウイルス等を含む試料が挙げられる。
 分析対象試料から取得された被検物質を核酸増幅反応に利用することができる。被検物質は、分析対象試料から抽出され精製された核酸であってもよいし、分析対象試料から抽出され粗精製された核酸であってもよい。被検物質が核酸である場合、被検核酸と称する場合がある。あるいは、細胞や組織の一部等の比較的高濃度で被検核酸を含む試料であれば、分析対象試料自体をそのまま核酸増幅反応に供することもできる。また分析対象試料から調製されたcDNAも鋳型として利用可能である。鋳型として用いる被検物質は好ましくはDNAである。
 以下、前記核酸増幅工程及び前記検出工程、並びに必要に応じて行う標識化工程の好ましい実施形態について説明する。
(1.核酸増幅工程)
 核酸増幅工程における核酸増幅反応の好ましい実施形態は既述の通りである。
 核酸増幅工程において本発明の一以上の実施形態に係るプライマーセットを用いることで、被検物質中に標的核酸が含まれている場合、一端に第1ポリヌクレオチドタグが連結した標的核酸を含む検出用核酸を得ることができる。
 2以上の異なる標的核酸を検出する場合には、2以上の標的核酸を増幅できるように設計された2セット以上の前記プライマーセットの組み合わせであるマルチプレックスプライマーセットを用い、分析対象試料から取得された被検物質に対して、核酸増幅反応を行うことができる。マルチプレックスプライマーセットについては別途後述する。
(2.検出工程)
 検出工程は、核酸増幅工程にて得られた反応産物中の標的核酸を検出する工程であり、好ましくは、反応産物を、第1ポリヌクレオチドタグと結合可能な捕捉物質を含む捕捉物質保持部を含む固相担体に接触させ、固相担体の捕捉物質保持部において、前記検出用核酸を検出する工程である。
 核酸増幅工程にて得られた反応産物とは、増幅産物として前記検出用核酸を含んでいる可能性のある、核酸増幅反応の反応液や、該反応液から増幅産物を更に高濃度化した試料等を指す。
 核酸増幅工程に用いるプライマーセットが、標識物質が連結された第2プライマーを含む実施形態である場合には、前記検出用核酸には標識物質が連結しているため、標識物質を指標として検出用核酸を検出することができる。
 核酸増幅工程に用いるプライマーセットが、第2ポリヌクレオチドタグが連結された第2プライマーを含む実施形態である場合には、前記検出用核酸には第2ポリヌクレオチドタグが連結しているため、標識物質を第2ポリヌクレオチドタグに結合させる標識工程を更に行うことができる。
 固相担体は特に限定はされないが、樹脂、金属、多糖類、鉱物等からなるものを利用することができ、メンブレン、フィルム、不織布、プレート、ゲル等の形状とすることができる。好ましくは固相担体は、溶液中の増幅産物や標識物質が展開できるように多孔質構造を有するものである。利用可能な固相担体としては、例えば、ろ紙、ニトロセルロースメンブレン、ポリエーテルスルフォンメンブレン、ナイロンメンブレン、乾燥させた各種ゲル(シリカゲル、アガロースゲル、デキストランゲル、ゼラチンゲル)、シリコン、ガラス、プラスチック等が挙げられる。固相担体の大きさ及び形態は、各種操作や検出に適切なものを適宜選択することができる。
 固相担体の捕捉物質保持部に保持される捕捉物質としては、第1ポリヌクレオチドタグと結合できるものであれば特に限定されないが、好ましくは、第1ポリヌクレオチドタグとハイブリダイズすることができるポリヌクレオチドである。第1ポリヌクレオチドタグとハイブリダイズすることができるポリヌクレオチドは、特に好ましくは、第1ポリヌクレオチドタグの相補塩基配列を含むポリヌクレオチドである。第1ポリヌクレオチドタグの塩基配列と、捕捉物質として用いるポリヌクレオチドの塩基配列とは容易に改変することができるため、結合特異性を制御することが容易である。例えば、1つの固相担体上で異なる標的核酸を含む複数の検出用核酸を含む試料を展開して検出する場合には、前記複数の検出用核酸毎に、塩基配列の異なる第1ポリヌクレオチドタグが付加されるように第1プライマーを設計するとともに、固相担体上の複数の異なる位置に、各検出用核酸の第1ポリヌクレオチドタグと特異的にハイブリダイズできるポリヌクレオチドを保持する捕捉物質保持部を設けることができる。
 捕捉物質は、化学的結合を介して固相担体の捕捉物質保持部に保持させても良いし、多孔質の固相担体の捕捉物質保持部に含浸させることにより保持させてもよい。
 固相担体の捕捉物質保持部への反応産物の接触は、前記反応産物中に前記検出用核酸が含まれていた場合に前記捕捉物質保持部に前記検出用核酸の第1ポリヌクレオチドタグが結合できるように適宜調節された条件(例えば上述の特異的ハイブリダイゼーションが形成される条件、或いは、pH5~9程度の緩衝液条件)で行えばよい。
 標的核酸を含む検出用核酸の検出は、固相担体の捕捉物質保持部に捕捉された前記検出用核酸が標識物質を含む場合は、標識物質を検出、好ましくは目視検出することにより行うことができる。
(3.標識工程)
 標識工程は、前記プライマーセットの第2プライマーが第2ポリヌクレオチドタグを含む場合、或いは、前記プライマーセットの第2プライマーが二次的な反応により別の検出可能な物質と結合することができる標識物質を含む場合に行う工程である。この場合、標的核酸を含む検出用核酸には、第2ポリヌクレオチドタグ、又は、標識物質が付加されている。標識工程では、反応産物と標識物質又は検出可能な物質とを接触させることで、標的核酸を含む検出用核酸中の第2ポリヌクレオチドタグに標識物質又は検出可能な物質を結合させる。標識工程は、前記反応産物を固相担体に接触させる前に行ってもよいし、接触させた後に行ってもよいし、接触させると同時に行ってもよい。
 第2ポリヌクレオチドタグと結合可能な標識物質の具体例は、第2プライマーの説明のなかで説明した通りである。
<本発明の一以上の実施形態のキット>
 本発明の一以上の実施形態はまた、標的核酸を検出するためのキットであって、
 本発明の一以上の実施形態に係るプライマーセットと、固相担体を含む核酸検出デバイスとを含み、
 前記固相担体は、前記第1ポリヌクレオチドタグと結合可能な捕捉物質を含む捕捉物質保持部を含む、
標的核酸を検出するためのキットに関する。
 前記プライマーセットが、第2ポリヌクレオチドタグが連結された第2プライマーを含む実施形態では、前記固相担体は、前記捕捉物質保持部に加えて、前記第2ポリヌクレオチドタグと結合可能な標識物質を含む標識物質保持部を更に含むことが好ましい。
 本発明の一以上の実施形態のキットにはさらに、PCR用緩衝液、dNTPs、DNAポリメラーゼ、核酸クロマトグラフィー展開溶液等を含めることができる。
 前記固相担体の特徴は上記の通りである。
 前記固相担体を含む核酸検出デバイスを利用することにより、反応産物中の前記検出用核酸の有無を検出・判別することができ、簡便かつ迅速に結果を得ることができる。
 本発明の一以上の実施形態にて利用可能な核酸検出デバイスの一実施形態の模式図を図3に示すが、核酸検出デバイスは本実施形態に限定されるものではない。なお、以下の説明において、各部材に付された符号は、図3中に示される符号に対応する。
 図3の核酸検出デバイス700は、基材75の上に、前記核酸増幅工程の反応産物を受容するための試料受容部であるサンプルパッド73、標識物質を保持する標識物質保持部であるコンジュゲートパッド72、前記検出用核酸に含まれる第1ポリヌクレオチドと結合可能な捕捉物質が保持された捕捉物質保持部76を一部に含む多孔質固相担体71、及び吸収パッド74を、互いがこの順に接触するように配置して形成される。固相担体71の捕捉物質保持部76は、前記捕捉物質が限局して配置・固定化された部分である。サンプルパッド73、コンジュゲートパッド72、固相担体71及び吸収パッド74は上記固相担体として利用可能な多孔質構造を有する部材により構成することができる。これらは同一の部材より構成されていてもよいし、異なる部材より構成されていてもよい。基材75はその上に配置された各種部材を支持することができ、核酸検出デバイス700の操作を容易にするものであればよく、例えば紙、樹脂、金属、鉱物等からなるものを利用することができる。標識物質を展開溶液中に混合する場合や、標識物質が予め付加された第2プライマーを含む実施形態のプライマーセットによる増幅産物を検出する場合には、コンジュゲートパッド72は省略することができる。核酸検出デバイス700一部はコンタミネーションの予防や試験中の固相担体表面からの液体の揮発を防止するため、ポリエステルなどのフィルムで覆われていてもよい。
 核酸増幅工程により得られた核酸増幅反応の反応産物を含む試料をサンプルパッド73に添加する。前記試料としては核酸増幅反応の反応産物をそのまま添加してもよいし、適当な展開溶液(例えば、リン酸緩衝液、Tris緩衝液、グッド緩衝液、SSC緩衝液)と共に添加してもよい。展開溶液には必要に応じて、界面活性剤、塩、タンパク質、核酸等をさらに含めることができる。サンプルパッド73に添加された試料は、図3中の矢印で示す方向に上流から下流に向かってキャピラリー現象により展開する。
 また別の態様としては、容器(例えば、PCRチューブ、エッペンチューブ、96穴プレート等)に収容した前記検出用試料及び/又は展開溶液に、核酸検出デバイス700のサンプルパッド73を浸漬させる方法で展開することもできる。
 また、核酸増幅反応の反応産物を含む試料及び/又は展開溶液を保持した容器に浸漬して用いられる核酸検出デバイスでは、図3に図示する核酸検出デバイス700からサンプルパッド73を省略することができる。更に、基材75上の固相担体71の、吸収パッド74が配置されていない側の端部が前記試料及び/又は展開溶液に直接浸漬される形態としてもよい。
 第2ポリヌクレオチドタグが付加された第2プライマーを含む実施形態のプライマーセットによる増幅産物を検出する場合には、前記検出用核酸は、第2ポリヌクレオチドタグと結合可能な標識物質が保持された標識物質保持部であるコンジュゲートパッド72を通過する際に、標識物質と結合して標識される。
 次いで、前記検出用核酸は、固相担体71を通過する際に、捕捉物質保持部76の捕捉物質と接触し、捕捉物質保持部76に捕捉・結合される。
 前記反応産物に前記検出用核酸が存在する場合には、固相担体71の捕捉物質保持部76に捕捉・結合された前記検出用核酸に結合した標識物質が検出される。標識物質が目視確認できるものであれば、標識物質に起因して捕捉物質保持部76が呈色する。当該標識物質の検出(呈色)の有無を指標にして、前記検出用核酸の有無を判別することができ、それに基づいて、被検物質中の標的核酸の有無を判別することができる。
<マルチプレックスプライマーセット>
 本発明の別の一以上の実施形態は、
 上述した本発明の一以上の実施形態に係るプライマーセットを2以上含み、
 前記2以上のプライマーセットを用いた核酸増幅反応により増幅される標的核酸が互いに異なる、
 マルチプレックスプライマーセットに関する。
 この実施形態では、2以上のプライマーセットに含まれる第1プライマーの第1ポリヌクレオチドタグは塩基配列が互いに異なり、異なる捕捉物質と結合するものであることが好ましい。
 マルチプレックスプライマーセットを用いた核酸増幅反応による反応産物を検出するための固相担体は、好ましくは、固相担体の異なる位置に、互いに異なる捕捉物質が保持された2以上の捕捉物質保持部を有する。この実施形態では、好ましくは、各捕捉物質は、2以上のプライマーセットに含まれる第1プライマーの第1ポリヌクレオチドタグの1つとハイブリダイズ可能なポリヌクレオチドである。
<実施例1>
(1)プライマーの設計
 TRIAmp反応に用いるプライマーは、特許文献4に記載されている結核菌の反復配列を標的核酸としたフォワードプライマーDRa21(配列番号1)とリバースプライマーDRb19(配列番号2)を参考に作製した。
 フォワードプライマーDRa21の5’末端側に、ポリメラーゼ阻害物質としてアゾベンゼン構造を含む上記式Iで表される二価基を介して、核酸クロマトグラフィーのメンブレン捕捉用のDNAタグ配列(Tag1)(配列番号3)の3’末端側を連結したDRa21-Tag1を作製した。
 Tag1:5’-ATGCTACCGTATGCCCAGTG-3’(配列番号3)
 リバースプライマーDRb19の5’末端側に、ポリメラーゼ阻害物質としてアゾベンゼン構造を含む上記式Iで表される二価基を介して、金コロイド標識用のDNAタグ配列(Tag2)(配列番号4)の3’末端側を連結したDRb19-Tag2を作製した。Tag2:5’-GACAACGGAGACAGAGCCAA-3’(配列番号4)
 使用したプライマーを表1に示す。
Figure JPOXMLDOC01-appb-T000003
(2)オリゴヌクレオチド結合金コロイドの作製
 Gold Colloid(40nm,9.0×1010(粒子数/ml)、British Biocell International社製)と下記の配列番号5で表されるチオール基含有オリゴヌクレオチドを混合し、50℃で16時間インキュベートした。6000rpmで15分間遠心分離し、上清を除去し、0.05M塩化ナトリウム、5mMリン酸バッファー(pH7)を添加し混和後、再度50℃で40時間インキュベートした。
 インキュベート後、遠心(6000rpm、15分間)を行い、上清を除去し、5mMリン酸バッファー(pH7)を添加した。このバッファー置換を再度行った。
 調製した金コロイド溶液をグラスファイバー製パッドに均一になるように添加した後、真空乾燥機にて乾燥させ、コンジュゲートパッドとした。
 (チオール基含有オリゴヌクレオチド):5’-TTGGCTCTGTCTCCGTTGTC-SH-3’(配列番号5)
 配列番号5で示すチオール基含有オリゴヌクレオチドは、3’末端のシトシンヌクレオチドの3’位のリン酸基と、HO-(CH-SH(mは6)で表される化合物の水酸基とがリン酸エステル結合により結合したものである。
(3)タグ捕捉物質を保持するメンブレンの作製
 タグ捕捉物質として、下記の配列番号6で表されるオリゴヌクレオチドプローブを含む溶液を、メルクミリポア社製ニトロセルロースメンブレン(Hi-Flow180)に、ディスペンサーを用いて、展開方向と直交する幅1mmのライン状に塗布した。その後40℃で30分間乾燥させることでタグ捕捉物質保持部を備えたメンブレンとした。
 (オリゴヌクレオチドプローブ):5’-CACTGGGCATACGGTAGCAT-3’(配列番号6)
(4)ラテラルフロー型核酸検出デバイスの作製
 作製したラテラルフロー型核酸検出デバイスは、図3の模式図に示される検出デバイスに準拠して作製した。
 すなわち、基材75としてポリプロピレン製バッキングシート(Lohmann社)、コンジュゲートパッド72として上記(2)で作製したコンジュゲートパッド、捕捉物質保持部76を備えた固相担体71として上記(3)で作製したタグ捕捉物質保持部を備えたメンブレン、サンプルパッド73としてグラスファイバー製のサンプルパッド、吸収パッド74としてセルロース製の吸収パッドを、それぞれ図7に示すように互いに重なり合わせて貼り合わせ、ラテラルフロー型核酸検出デバイス700を作製した。
(5)TRIAmp反応
 上記(1)に記載のプライマーを用いて、表2に示すプライマーミックスを作製した。
Figure JPOXMLDOC01-appb-T000004
 次に、40mMトリス緩衝液(pH8.8)、20mM塩化カリウム、20mM硫酸アンモニウム、0.2%ツイーン20、1.8Mベタイン、1.6mMデオキシヌクレオチド3リン酸、12mM硫酸マグネシウムからなる2xTRIAmp緩衝液ミックスを調製した。
 次に、TRIAmp緩衝液ミックス12.5μL、各プライマーミックス2μL、8ユニットのBst DNAポリメラーゼ、1万倍希釈のSYBR GreenI溶液5μLにDNA試料2μLを添加して、全量25μLのTRIAmp反応液を調製した。DNA試料には、Mycobacterium bovis BCG株から抽出、精製したDNA溶液(100pg/μL)を使用した。
 反応は、ロシュ社製リアルタイムPCR装置(LightCycler96)を用いて、68℃で1時間反応を行い、蛍光を経時的に測定した。
 反応後、反応液5μLをラテラルフロー型の核酸検出デバイスのサンプルパッドに添加し、80μLの展開液を添加し、着色ラインを目視にて判定した。非常に強い着色が確認できた場合に「+++」、着色が確認できた場合に「++」、微弱な着色が確認できた場合に「+」、着色が確認できなかった場合に「-」とした。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 全量DNAタグを付加したプライマーを使用したプライマーミックス5を用いた場合、TRIAmp反応は進行するが、DNAタグを付加したプライマーを含まないプライマーミックス1と比較して、反応速度の著しい低下を示した。これに対し、プライマーミックス5のプライマーの一部をDNAタグを付加しないプライマーに置き換えたプライマーミックス2~4では、プライマーミックス5と比較して速い反応速度を示した。特に、全体の半量以上を置きかえたプライマーミックス3および2では、陽性判定に要した時間はプライマーミックス5の約半分に短縮された。DNAタグを付加したプライマーを含むいずれのプライマーミックスでも、ラテラルフロー型の核酸検出デバイスの着色ラインによる検出が可能であった。
 以上の結果から、DNAタグを付加したプライマーを用いるとTRIAmp反応は阻害されるが、ここにDNAタグを付加していないプライマーを添加することでその阻害を大幅に改善可能であることが示された。
<実施例2>
 実施例1にて、DNAタグを付加したプライマーを用いるとTRIAmp反応の反応速度は低下することを示した。さらに、DNAタグを付加したプライマーの一部をDNAタグを付加していないプライマーに置換することで速度低下を抑制できることを示した。しかし、実施例1は、増幅産物量をSYBR GreenIの蛍光にて測定しているため、実際に核酸検出デバイスで検出可能なDNAタグが付加された増幅産物量が増加しているかは確認できていない。
 そこで、DNAタグを付加したプライマーにDNAタグを付加していないプライマーを種々の割合で混合し、Mycobacterium bovis BCG株から抽出したDNAの段階希釈液を用いた検出下限試験を行った。プライマーは実施例1と同じものを使用した。標的核酸を含む前記DNA試料を添加しない実験をネガティブコントロール実験(Nega)とした。プライマーミックスの組成を表4に示す。比較例として、全量DNAタグを付加したプライマーからなるプライマーミックス(比較例1)を調製した。
Figure JPOXMLDOC01-appb-T000006
 TRIAmp反応は、SYBR GreenIを添加しない以外は、実施例1と同様に実施した。反応後、反応液5μLをラテラルフロー型の核酸検出デバイスのサンプルパッドに添加し、80μLの展開液を添加し、着色ラインを目視にて判定した。非常に強い着色が確認できた場合に「+++」、着色が確認できた場合に「++」、微弱な着色が確認できた場合に「+」、着色が確認できなかった場合に「-」とした。
 結果を図4及び表5に示す。DNAタグを付加したプライマーのみからなるプライマーミックスを使用した比較例では、50pgまで検出可能であったのに対し、DNAタグを付加していないプライマーを含有するプライマーミックス1は5pg、プライマーミックス2は500fg、プライマーミックス3~5では5fgまで検出することが可能であった。タグ付加率25%以下のプライマーミックス4及び5では、着色ラインが薄くなる傾向を認めた。タグ付加率50%のプライマーミックス3が、検出下限と着色ラインの濃さの観点で最も良好な性能を示した。
Figure JPOXMLDOC01-appb-T000007
<比較例2>
 DNAタグを付加していないフォワードプライマーDRa21(配列番号1)及びリバースプライマーDRb19(配列番号2)からなるプライマーミックスを調製し、実施例1と同様、リアルタイムPCR装置にて反応と蛍光測定を実施した。DNA試料には、Mycobacterium bovis BCG株から抽出したDNAの段階希釈液を用いた。標的核酸を含む前記DNA試料を添加しない実験をネガティブコントロール実験(Nega)とした。
 結果を表6に示す。DNAタグを付加していないプライマーでの検出下限は100fgであった。上記実施例2のプライマーミックス3~5における検出下限は5fgである。本発明の一以上の実施形態の構成のプライマーミックスを用いることで、リアルタイムPCR装置を使用することなく従来法より高感度検出が可能であることが示された。
Figure JPOXMLDOC01-appb-T000008
<実施例3>
 表7のプライマーミックスを用いた以外は、実施例2と同様に実施した。
Figure JPOXMLDOC01-appb-T000009
 結果を表8に示す。タグ含有率(全プライマー量に占めるDNAタグを付加したプライマーの割合)99%のプライマーミックス1は、比較例3と同等の検出下限を示したが、検出下限濃度である5pのライン着色強度の向上を認めた。タグ含有率97.5%および95%のプライマーミックスでは、500fgの検出が可能であり、検出下限性能の向上を示した。
Figure JPOXMLDOC01-appb-T000010
<実施例4> 
 DRb19-Tag2の代わりに、DRb19プライマーの5’末端に定法により、標識物質としてビオチンを修飾したDRb19-biotinを使用し、表9に示すプライマーミックスを作製した。また、ラテラルフロー型核酸検出デバイスのコンジュゲートパッドの作製には、ビオチンに結合する検出可能な物質としてストレプトアビジン結合金コロイドを使用した。それ以外は、実施例1と同様の方法で実施した。
Figure JPOXMLDOC01-appb-T000011
 リアルタイムPCR装置での蛍光測定の結果を図5に示す。DNAタグを付加しないフォワードプライマーを含むプライマーミックス1と比べて、フォワードプライマーの全量を、DNAタグを付加したプライマーに置き換えたプライマーミックス2では、増幅の立ち上がりが大幅に遅れた。フォワードプライマーの半分をDNAタグを付加しないプライマーに置き換えたプライマーミックス3では、増幅速度が大幅に改善した。
<実施例5>
 実施例4のプライマーミックス2及び3を用いて、実施例3と同様の検出下限試験を実施した。
 結果を表10に示す。タグ付加率100%のプライマーミックス2の検出下限が500fgであるのに対し、タグ付加率50%のプライマーミックス3は50fgを検出可能であった。この実験により、本発明の一以上の実施形態の構成のプライマーミックスの使用による増感効果を確認することができた。
Figure JPOXMLDOC01-appb-T000012
<実施例6>
 本発明の一以上の実施形態の構成のプライマーミックスによる増感効果がRPA法でも得られるか検証を実施した。
(1)プライマーの設計
 RPA反応に用いるプライマーとして、Staphylococcus aureusのftsY遺伝子を特異的に結合するフォワードプライマーftsY-1F(配列番号7)とリバースプライマーftsY-1R(配列番号8)を設計した。
 フォワードプライマーftsY-1Fの5’末端側に、ポリメラーゼ阻害物質としてアゾベンゼン構造を含む上記式Iで表される二価基を介して、核酸クロマトグラフィーのメンブレン捕捉用のDNAタグ配列(Tag3)の3’末端側を連結したftsY-1F-Tag3を作製した。
 Tag3:5’- TCGAGTGACAGCTAATGTGTGAT-3’(配列番号9)
 リバースプライマーftsY-1Rの5’末端側に、ポリメラーゼ阻害物質としてアゾベンゼン構造を含む上記式Iで表される二価基を介して、金コロイド標識用のDNAタグ配列(Tag2)(配列番号4)を連結したftsY-1R-Tag2を作製した。
 実施例6で使用したプライマーを表11に示す。
Figure JPOXMLDOC01-appb-T000013
(2)タグ捕捉物質を保持するメンブレンの作製
 タグ捕捉物質として、下記の配列番号10で表されるオリゴヌクレオチドプローブを含む溶液を、メルクミリポア社製ニトロセルロースメンブレン(Hi-Flow180)に、ディスペンサーを用いて、展開方向と直交する幅1mmのライン状に塗布した。その後40℃で30分間乾燥させることでタグ捕捉物質保持部を備えたメンブレンとした。
 (オリゴヌクレオチドプローブ):5’-ATCACACATTAGCTGTCACTCGA-3’(配列番号10)
(3)ラテラルフロー型核酸検出デバイスの作製
 上記(2)で調製したタグ捕捉物質保持部を備えたメンブレンを固相担体71として用いた以外は、実施例1と同様の方法でラテラルフロー型核酸検出デバイスを作製した。
(4)RPA反応
 RPA反応はTwistDx社のTwistAmp Basicキットを使用して実施した。プライマーミックスには、DNAタグを付加したプライマーと付加していないプライマーを表12に示す割合で混合したものを使用した。また、比較例4として、DNAタグを付加したプライマーのみからなるプライマーミックスを作製した。
 プライマーミックス4.8μL、Primer Free Rehydration Buffer29.5μL、Staphylococcus aureus(ATCC25923)から抽出したDNAの段階希釈液(5ng/μL~50fg/μL)2μL、滅菌蒸留水11.2μLを混合し、再溶解液を調製した。再溶解液を凍結乾燥RPA反応ペレットが入ったチューブに添加し、試薬を再溶解した。その後、280mMの酢酸マグネシウム2.5μLを添加、混合後、37℃で20分間反応を行った。
Figure JPOXMLDOC01-appb-T000014
 反応後、反応液5μLをラテラルフロー型の核酸検出デバイスのサンプルパッドに添加し、80μLの展開液を添加し、着色ラインを目視にて判定した。非常に強い着色が確認できた場合に「+++」、着色が確認できた場合に「++」、微弱な着色が確認できた場合に「+」、着色が確認できなかった場合に「-」とした。
 結果を表13に示す。DNAタグを付加したプライマーのみからなるプライマーミックスを使用した比較例4の検出下限は10ngであったのに対し、プライマーミックス1~3では1pg~10pgまで検出が可能であり、DNAタグを付加していないプライマーの共存による検出下限性能の向上が確認できた。
Figure JPOXMLDOC01-appb-T000015
<実施例7>
 本発明の一以上の実施形態の構成のプライマーミックスによる増感効果がLAMP法でも得られるか検証を実施した。
(1)プライマーの設計
 LAMP反応に用いるプライマーは、非特許文献1(Frontiers in Microbiology.vol.8、Article192)記載のStaphylococcus aureusのNuc遺伝子を増幅するプライマーセットを使用した。使用したプライマーを表14に示す。
Figure JPOXMLDOC01-appb-T000016
 ループプライマーSau-LF(配列番号15)の5’末端側に、ポリメラーゼ阻害物質としてアゾベンゼン構造を含む上記式Iで表される二価基を介して、核酸クロマトグラフィーのメンブレン捕捉用のDNAタグ配列(Tag1)(配列番号3)の3’末端側を連結したSau-LF-Tag1を作製した。
 ループプライマーSau-LB(配列番号16)の5’末端側に、ポリメラーゼ阻害物質としてアゾベンゼン構造を含む上記式Iで表される二価基を介して、金コロイド標識用のDNAタグ配列(Tag2)(配列番号4)の3’末端側を連結したSau-Tag2を作製した。
(2)LAMP反応
 20mMトリス緩衝液(pH8.8)、10mM塩化カリウム、10mM硫酸アンモニウム、0.1%ツイーン20、0.9Mベタイン、0.8mMデオキシヌクレオチド3リン酸、6mM硫酸マグネシウム、8ユニットのBst DNAポリメラーゼ、1.6μMのSau-FIP、1.6μMのSau-BIP、0.8μMのSau-F3、0.8μMのSau-B3、0.4μMのSau-LF、0.4μMのSau-LB、0.4μMのSau-LF-Tag1、0.4μMのSau-LB-Tag2を含む組成の反応液を用いた。比較例として、上記反応液のループプライマーとして、0.8μMのSau-LFおよび0.8μMのSau-LBを用いた反応液を作製した。この反応液に、DNA試料を2μL添加して、62℃で1時間反応させた。
 反応後、反応液5μLを実施例2と同様のラテラルフロー型の核酸検出デバイスのサンプルパッドに添加し、80μLの展開液を添加した。乾燥後、浜松ホトニクス社製のイムノクロマトリーダーにてラインの着色強度を測定した。
 ループプライマー全量をDNAタグを付加したプライマーとした比較例のライン着色強度は25mAbsであったのに対し、ループプライマーの半量をDNAタグを付加していないプライマーに置き換えた条件では50mAbsとタグ付加産物量の増加が確認できた。
<実施例8>
 本発明の一以上の実施形態の構成のプライマーミックスによる増感効果がPCR法でも得られるか検証を実施した。
(1)PCR反応
 PCR反応の検証には、実施例6と同じプライマーを使用し、表15に示すプライマーミックスを調製した。比較例5としてDNAタグを付加したプライマーのみからなるプライマーミックスを調製した。
Figure JPOXMLDOC01-appb-T000017
 2xHSTaq perfect Mix UNG plus(タカラバイオ)のマニュアルに従い反応液を調製した。10μLの2xHSTaq perfect Mixに1μMのプライマーミックスを2μL、Staphylococcus aureusから抽出したDNA試料2μL(100pg/μL~10fg/μL)、滅菌蒸留水6μLを混合し、20μLのPCR反応液を調製した。
 PCR反応液をサーマルサイクラー(Bior社、LifeEco)にセットし、94℃で3分間反応後、94℃-5秒/58℃-5秒/72℃-15秒のサイクルを35回行った。
 反応後、反応液5μLをラテラルフロー型の核酸検出デバイスのサンプルパッドに添加し、80μLの展開液を添加し、着色ラインを目視にて判定した。非常に強い着色が確認できた場合に「+++」、着色が確認できた場合に「++」、微弱な着色が確認できた場合に「+」、着色が確認できなかった場合に「-」とした。
 結果を表16に示す。DNAタグを付加したプライマーのみからなるプライマーミックスを使用した比較例5の検出下限は20pgであったのに対し、プライマーミックス1~3ではいずれも2pgまで検出が可能であり、DNAタグを付加しないプライマーの共存による検出下限性能の向上を認めた。
Figure JPOXMLDOC01-appb-T000018
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (15)

  1.  固相担体上での検出が可能な標的核酸の増幅産物を核酸増幅反応により調製するためのプライマーセットであって、
     前記プライマーセットは、第1プライマー、第2プライマー及び第3プライマーを含み、
     前記第1プライマーは、標的核酸の5’末端の部分ポリヌクレオチドA’の相補鎖とハイブリダイズ可能なポリヌクレオチドAを3’末端に含む第1ポリヌクレオチドと、前記第1ポリヌクレオチドの5’末端に連結された、核酸増幅反応に対して独立なポリヌクレオチドである第1ポリヌクレオチドタグとを含み、
     前記第2プライマーは、前記標的核酸の3’末端の部分ポリヌクレオチドB’とハイブリダイズ可能なポリヌクレオチドBを3’末端に含む第2ポリヌクレオチドを含み、
     前記第3プライマーは、前記標的核酸の相補鎖に対して、前記第1プライマーの前記ポリヌクレオチドAと競合的にハイブリダイズ可能なポリヌクレオチドCを3’末端に含む第3ポリヌクレオチドを含み、且つ、核酸増幅反応に対して独立なポリヌクレオチドを含まない、
    前記プライマーセット。
  2.  前記第3プライマーの前記ポリヌクレオチドCは、前記標的核酸の前記部分ポリヌクレオチドA’の相補鎖に含まれる50%以上の塩基数のポリヌクレオチドとハイブリダイズ可能である、請求項1に記載のプライマーセット。
  3.  前記第1プライマーと前記第3プライマーとの合計量に対する、前記第3プライマーの比率が、1モル%以上、90モル%以下である、請求項1又は2に記載のプライマーセット。
  4.  前記第1プライマーと前記第3プライマーとの合計量に対する、前記第3プライマーの比率が、2.5モル%以上、75モル%以下である、請求項3に記載のプライマーセット。
  5.  前記第2プライマーは、前記第2ポリヌクレオチドに連結された標識物質を更に含む、請求項1~4の何れか一項に記載のプライマーセット。
  6.  前記プライマーセットは、第4プライマーを更に含み、
     前記第2プライマーは、前記第2ポリヌクレオチドの5’末端に連結された、核酸増幅反応に対して独立なポリヌクレオチドである第2ポリヌクレオチドタグを更に含み、
     前記第4プライマーは、前記標的核酸に対して、前記第2プライマーの前記ポリヌクレオチドBと競合的にハイブリダイズ可能なポリヌクレオチドDを3’末端に含む第4ポリヌクレオチドを含み、且つ、核酸増幅反応に対して独立なポリヌクレオチドを含まない、請求項1~4の何れか一項に記載のプライマーセット。
  7.  前記第4プライマーの前記ポリヌクレオチドDは、前記標的核酸の前記部分ポリヌクレオチドB’に含まれる50%以上の塩基数のポリヌクレオチドとハイブリダイズ可能である、請求項6に記載のプライマーセット。
  8.  前記第2プライマーと前記第4プライマーとの合計量に対する、前記第4プライマーの比率が、1モル%以上、90モル%以下である、請求項6又は7に記載のプライマーセット。
  9.  前記第2プライマーと前記第4プライマーとの合計量に対する、前記第4プライマーの比率が、2.5モル%以上、75モル%以下である、請求項8に記載のプライマーセット。
  10.  請求項1~5の何れか一項に記載のプライマーセットと、固相担体を含む核酸検出デバイスとを含み、
     前記固相担体は、前記第1ポリヌクレオチドタグと結合可能な捕捉物質を含む捕捉物質保持部を含む、
    標的核酸を検出するためのキット。
  11.  請求項6~9の何れか一項に記載のプライマーセットと、固相担体を含む核酸検出デバイスとを含み、
     前記固相担体は、前記第1ポリヌクレオチドタグと結合可能な捕捉物質を含む捕捉物質保持部と、前記第2ポリヌクレオチドタグと結合可能な標識物質を含む標識物質保持部とを含む、
    標的核酸を検出するためのキット。
  12.  標的核酸を含む可能性のある被検物質を、請求項1~9の何れか一項に記載のプライマーセットを用いた核酸増幅反応に供することを含む核酸増幅工程、及び、
     前記核酸増幅工程にて得られた反応産物中の標的核酸を検出する検出工程を含む、
    標的核酸を検出する方法。
  13.  前記検出工程において、前記標的核酸の検出を、固相担体を用いて行う、請求項12に記載の方法。
  14.  前記核酸増幅工程における前記核酸増幅反応が、鎖置換型ポリメラーゼを用いて行われる、請求項12又は13に記載の方法。
  15.  請求項1~9の何れか一項に記載のプライマーセットを2以上含み、
     前記2以上のプライマーセットを用いた核酸増幅反応により増幅される標的核酸が互いに異なる、
     マルチプレックスプライマーセット。
PCT/JP2020/048826 2019-12-27 2020-12-25 プライマーセット及びそれを用いて標的核酸を検出する方法 WO2021132596A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/789,131 US20230067733A1 (en) 2019-12-27 2020-12-25 Primer set and method for detecting target nucleic acid using same
EP20908327.8A EP4083202A1 (en) 2019-12-27 2020-12-25 Primer set and method for detecting target nucleic acid using same
CN202080090734.7A CN114901817A (zh) 2019-12-27 2020-12-25 引物组及使用其检测目标核酸的方法
JP2021567690A JPWO2021132596A1 (ja) 2019-12-27 2020-12-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-239045 2019-12-27
JP2019239045 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132596A1 true WO2021132596A1 (ja) 2021-07-01

Family

ID=76574767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048826 WO2021132596A1 (ja) 2019-12-27 2020-12-25 プライマーセット及びそれを用いて標的核酸を検出する方法

Country Status (5)

Country Link
US (1) US20230067733A1 (ja)
EP (1) EP4083202A1 (ja)
JP (1) JPWO2021132596A1 (ja)
CN (1) CN114901817A (ja)
WO (1) WO2021132596A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525037A (ja) * 2004-12-23 2008-07-17 アイ−スタツト・コーポレイシヨン 分子診断システム及び方法
WO2013038534A1 (ja) * 2011-09-14 2013-03-21 日本碍子株式会社 標的核酸の検出方法
WO2013162026A1 (ja) * 2012-04-27 2013-10-31 株式会社カネカ 核酸の増幅方法、および、増幅核酸の検出方法
JP5688702B2 (ja) 2011-03-14 2015-03-25 国立大学法人北海道大学 核酸増幅方法およびその利用
JP2016073312A (ja) 2010-11-24 2016-05-12 株式会社カネカ 増幅核酸検出方法及び検出デバイス
WO2017043114A1 (ja) 2015-09-07 2017-03-16 株式会社ファスマック 等温増幅反応産物の多項目同時検出方法
WO2018038232A1 (ja) 2016-08-24 2018-03-01 国立大学法人東北大学 標的核酸の増幅産物の生産方法及びその利用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201231672A (en) * 2010-09-16 2012-08-01 Toshiba Kk Primer, probe, and method for multi-specimen analysis
JP2014180278A (ja) * 2013-03-21 2014-09-29 Toshiba Corp 核酸の解析方法、そこにおいて使用されるアッセイキット
WO2018003550A1 (ja) * 2016-07-01 2018-01-04 株式会社カネカ 2以上の標的核酸を検出するためのプライマーセット、キット及び方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525037A (ja) * 2004-12-23 2008-07-17 アイ−スタツト・コーポレイシヨン 分子診断システム及び方法
JP2016073312A (ja) 2010-11-24 2016-05-12 株式会社カネカ 増幅核酸検出方法及び検出デバイス
JP5688702B2 (ja) 2011-03-14 2015-03-25 国立大学法人北海道大学 核酸増幅方法およびその利用
WO2013038534A1 (ja) * 2011-09-14 2013-03-21 日本碍子株式会社 標的核酸の検出方法
WO2013162026A1 (ja) * 2012-04-27 2013-10-31 株式会社カネカ 核酸の増幅方法、および、増幅核酸の検出方法
WO2017043114A1 (ja) 2015-09-07 2017-03-16 株式会社ファスマック 等温増幅反応産物の多項目同時検出方法
WO2018038232A1 (ja) 2016-08-24 2018-03-01 国立大学法人東北大学 標的核酸の増幅産物の生産方法及びその利用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
ALTSCHUL ET AL., NUC. ACIDS RES., vol. 25, 1977, pages 3389 - 3402
ANAL. BIOCHEM., vol. 364, 2007, pages 78 - 85
FRONTIERS IN MICROBIOLOGY, vol. 8
GREENSAMBROOK: "Molecular Cloning", 2012, COLD SPRING HARBOR LABORATORY PRESS

Also Published As

Publication number Publication date
JPWO2021132596A1 (ja) 2021-07-01
US20230067733A1 (en) 2023-03-02
EP4083202A1 (en) 2022-11-02
CN114901817A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
JP6783590B2 (ja) 増幅核酸検出方法及び検出デバイス
JP5299981B1 (ja) プライマーセット及びそれを用いた標的核酸配列の増幅方法並びに変異核酸の検出方法
EA005577B1 (ru) Продукт, содержащий иммобилизованную нуклеиновую кислоту, полученный способом с участием химерного олигонуклеотидного праймера, днк-полимеразы и эндонуклеазы
EP2494073B1 (de) Konjugate von nukleotiden und methoden zu deren anwendung
KR20010012175A (ko) 폴리뉴클레오티드의 2단계 혼성화 및 포획법
JP2010500044A (ja) 酵素反応における試料中のcDNAの合成方法
US11274339B2 (en) Primer set, kit and method for detecting two or more target nucleic acids
WO2015076356A1 (ja) 短鎖rnaの検出方法
JP4196236B2 (ja) 核酸増幅用試薬および配列特異的な核酸増幅法
JP7068469B2 (ja) 大麻草dnaを検出するためのプライマー対、キット及び方法
WO2019073049A1 (en) ISOTHERMIC AMPLIFICATION IN SOLID PHASE
CN107002147B (zh) 用于俘获核酸的方法
WO2021132596A1 (ja) プライマーセット及びそれを用いて標的核酸を検出する方法
EP2625285A1 (en) Method for cell lysis and pcr within the same reaction vessel
WO2017006859A1 (ja) 標的核酸の検出法
JP7068468B2 (ja) 大麻草dnaを検出するためのプライマー混合物、キット及び方法
JP2005160387A (ja) 核酸の増幅法および核酸増幅用プライマーセット
JP7125060B2 (ja) マイコバクテリウム・カンサシイを検出するためのプライマーセット、プローブ、キット及び方法
JP2021159023A (ja) マイコバクテロイデス・アブセッサス亜種を検出するためのプライマーセット、キット及び方法
WO2023170144A1 (en) Method of detection of a target nucleic acid sequence
JP2017158523A (ja) リステリア・モノサイトゲネスを検出するためのプライマーセット、キット及び方法
WO2024062126A1 (en) Method of detection of a target nucleic acid sequence
CN115427567A (zh) 判断属于脓肿分枝杆菌复合群的抗酸菌的erm(41)基因的单碱基突变的方法、该方法所使用的引物组及探针
JPH1014572A (ja) プローブライブラリーの製造方法、該製造方法により得られたプローブライブラリー、該プローブライブラリーから他のdnaまたはrnaとハイブリッドするプローブを精製する方法、及び該方法により精製したプローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567690

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020908327

Country of ref document: EP

Effective date: 20220727