WO2021131994A1 - 三次元造形用パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法 - Google Patents

三次元造形用パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法 Download PDF

Info

Publication number
WO2021131994A1
WO2021131994A1 PCT/JP2020/047076 JP2020047076W WO2021131994A1 WO 2021131994 A1 WO2021131994 A1 WO 2021131994A1 JP 2020047076 W JP2020047076 W JP 2020047076W WO 2021131994 A1 WO2021131994 A1 WO 2021131994A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
dimensional
acrylate compound
examples
Prior art date
Application number
PCT/JP2020/047076
Other languages
English (en)
French (fr)
Inventor
裕二郎 原
正和 吉澤
高輔 井川
押尾 篤
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020227021026A priority Critical patent/KR20220115574A/ko
Priority to CN202080087115.2A priority patent/CN114845826A/zh
Priority to JP2021567351A priority patent/JP7315031B2/ja
Priority to EP20906970.7A priority patent/EP4082688A4/en
Publication of WO2021131994A1 publication Critical patent/WO2021131994A1/ja
Priority to US17/846,448 priority patent/US20220325023A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/305Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/306Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and polyethylene oxide chain in the alcohol moiety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • B22C7/023Patterns made from expanded plastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • C08F222/1025Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate of aromatic dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a pattern material for three-dimensional modeling, a cured product, a three-dimensional model, and a method for manufacturing a mold using the three-dimensional model.
  • a curable resin composition is selectively polymerized and cured by an active energy ray such as an ultraviolet laser based on three-dimensional shape data designed by a three-dimensional design system such as three-dimensional CAD. Therefore, an optical three-dimensional modeling method (stereolithography) for producing a three-dimensional object is used.
  • This optical three-dimensional modeling method can handle complicated shapes that are difficult to cut, shortens the manufacturing time, and is easy to handle. Therefore, it is possible to manufacture prototype models of industrial products as well as resin molded products. It has come to be widely used in.
  • the problem to be solved by the present invention is to provide a three-dimensional pattern material capable of forming a cured product having excellent hardness and castability, a cured product, a three-dimensional model, and a method for producing a mold using the three-dimensional model. It is to be.
  • the present inventors have made a three-dimensional pattern material composed of a curable resin composition containing a specific (meth) acrylate compound and an aliphatic (meth) acrylate compound.
  • the present invention has been completed by finding that the above problems can be solved by using a cured product containing the specific (meth) acrylate compound in a specific amount.
  • the present invention is a three-dimensional molding comprising a curable resin composition containing a (meth) acrylate compound (A) represented by the following structural formula (1) and an aliphatic (meth) acrylate compound (B).
  • the content of the (meth) acrylate compound (A) is 50% by mass in the total mass of the (meth) acrylate compound (A) and the (meth) acrylate compound (B).
  • the present invention relates to a pattern material for three-dimensional modeling, a cured product, a three-dimensional model, and a method for producing a mold using the three-dimensional model, which is characterized by the above.
  • R 1 is an independent hydrogen atom or methyl group
  • R 2 is an independent hydrogen atom or methyl group
  • R 3 is an independent hydrogen atom or methyl group. It is a methyl group.
  • X is -O-, -SO 2- , a structure represented by the following structural formula (2), or a structure represented by the following structural formula (3), and m is an integer of 0 or 1 to 30. Yes, n is an integer of 0 or 1 to 30, and m + n is an integer of 10 or more.
  • R 4 and R 5 are hydrogen atoms or hydrocarbon groups having 1 to 10 carbon atoms.
  • the cured product of the present invention has excellent hardness and excellent castability, it can be used for medical materials, composite resins, bonding materials, resin cements, resin blocks for CAD / CAM, and the like. Among them, among the above, it can be suitably used for dental hard resin materials such as surgical guides for dental treatment, provisional teeth, bridges, orthodontic appliances.
  • excellent in castability means that a three-dimensional model of a photocurable resin obtained by an optical three-dimensional modeling method is used as a vanishing model, and the periphery thereof is heated in a state of being covered with a buried material such as plaster.
  • a mold made of a buried material such as plaster is manufactured by eliminating the three-dimensional model, the buried material does not crack or crack, and no residue and soot of a cured product remain in the mold. Or it means very few.
  • R 1 is an independent hydrogen atom or methyl group
  • R 2 is an independent hydrogen atom or methyl group
  • R 3 is an independent hydrogen atom or methyl group. It is a methyl group.
  • X is -O-, -SO 2- , a structure represented by the following structural formula (2), or a structure represented by the following structural formula (3), and m is an integer of 0 or 1 to 30. Yes, n is an integer of 0 or 1 to 30, and m + n is an integer of 10 or more.
  • R 4 and R 5 are hydrogen atoms or hydrocarbon groups having 1 to 10 carbon atoms.
  • (meth) acrylate means acrylate and / or methacrylate.
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • (meth) acrylic means acrylic and / or methacryl.
  • (meth) acrylate compound (A) a (meth) acrylate compound represented by the following structural formula (1) is used.
  • R 1 is an independent hydrogen atom or methyl group
  • R 2 is an independent hydrogen atom or methyl group
  • R 3 is an independent hydrogen atom or methyl group. It is a methyl group.
  • X is -O-, -SO 2- , a structure represented by the following structural formula (2), or a structure represented by the following structural formula (3), and m is an integer of 0 or 1 to 30. Yes, n is an integer of 0 or 1 to 30, and m + n is an integer of 10 or more.
  • R 4 and R 5 are hydrogen atoms or hydrocarbon groups having 1 to 10 carbon atoms.
  • the content of the (meth) acrylate compound (A) is 50% by mass or more in the total mass of the (meth) acrylate compound (A) and the (meth) acrylate compound (B), and excellent curing is achieved.
  • the range of 70% by mass to 90% by mass is more preferable because it is possible to form a pattern material for three-dimensional modeling having properties and castability.
  • Examples of the aliphatic (meth) acrylate compound (B) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, and sec-butyl ( Meta) acrylate, isobutyl (meth) acrylate, 2-ethylbutyl (meth) acrylate, n-pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, n-octyl (meth) Meta) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, 3-methylbutyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth)
  • EO-modified glycerol tri (meth) acrylate PO-modified glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, EO-modified phosphate tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, caprolactone-modified trimethylolpropane Tri (meth) acrylate, HPA-modified trimethylolpropantri (meth) acrylate, (EO) or (PO) -modified trimethylolpropanthry (meth) acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, tris (acryloxyethyl) ) Trifunctional (meth) acrylates such as isocyanurate;
  • Tetrafunctional (meth) acrylates such as ditrimethylolpropane tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, and pentaerythritol tetra (meth) acrylate;
  • Five-functional (meth) acrylates such as dipentaerythritol hydroxypenta (meth) acrylate and alkyl-modified dipentaerythritol penta (meth) acrylate;
  • Examples thereof include hexafunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate.
  • hexafunctional (meth) acrylates such as dipentaerythritol hexa (meth) acrylate.
  • These aliphatic (meth) acrylate compounds (B) can be used alone or in combination of two or more. Further, among these, an acrylate compound having a bifunctional or higher functional (meth) acryloyl group is preferable because a three-dimensional pattern material capable of forming a cured product having excellent hardness and castability can be obtained.
  • the curable resin composition includes, if necessary, the (meth) acrylate compound (A) and the fat, in addition to the (meth) acrylate compound (A) and the aliphatic (meth) acrylate compound (B).
  • Other (meth) acrylate compounds other than the group (meth) acrylate compound (B) can also be used.
  • the total content of the (meth) acrylate compound (A) and the aliphatic (meth) acrylate compound (B) is a three-dimensional pattern capable of forming a cured product having excellent hardness and castability. Since a material can be obtained, the curable component of the curable resin composition is preferably 80% by mass or more, more preferably 90% by mass or more.
  • examples of the other (meth) acrylate compound include urethane (meth) acrylate and epoxy (meth) acrylate.
  • the urethane (meth) acrylate generally has a polyurethane chain formed by polycondensation of a polyisocyanate compound and a polyol compound.
  • a (meth) acryloyl group or a (meth) acryloyloxy group may be introduced at both ends of the polyurethane chain.
  • urethane (meth) acrylate for example, a polyol compound and a polyisocyanate compound are reacted at a ratio of an isocyanate group in excess of a hydroxyl group to prepare a urethane resin having an isocyanate group at the molecular end, and then this is used.
  • examples thereof include those obtained by a method of reacting a radically polymerizable monomer having a hydroxyl group and a (meth) acryloyl group (or (meth) acryloyloxy group).
  • the equivalent ratio [(NCO) / (OH)] of the hydroxyl group (OH) of the polyol compound to the isocyanate group (NCO) of the polyisocyanate compound is 1.5 to The range of 2 is preferable.
  • polyol compound examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, dipropylene glycol, and tri.
  • polyester polyol obtained by ring-opening polymerization of lactones such as ⁇ -caprolactone.
  • Examples of ⁇ , ⁇ -unsaturated polycarboxylic acids and their acid anhydrides that condense with the polyols to produce polyester polyols include maleic acid, fumaric acid, itaconic acid, citraconic acid, and chlorinated maleic acid. Examples include various ⁇ , ⁇ -unsaturated polycarboxylic acids or anhydrides thereof.
  • saturated polycarboxylic acids and their acid anhydrides that condense with the polyols to produce polyester polyols include phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, monochlorophthalic acid, dichlorophthalic acid, trichlorophthalic acid, Het acid, chlorendic acid, dimer acid, adipic acid, pimelli acid, succinic acid, alkenyl succinic acid, sebatic acid, azelaic acid, 2,2,4-trimethyladic acid, terephthalic acid, dimethyl terephthalic acid, 2-sodium Sulfoterephthalic acid, 2-potassium sulfoterephthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, 5-potassium sulfoisophthalic acid, orthophthalic acid, 4-sulfophthalic acid, 1,10-decamethylenedicarboxylic acid, muconic acid,
  • polyisocyanate compound examples include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornan diisocyanate and isophorone diisocyanate.
  • Alicyclic diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalenedisocyanate, 4,4'-diisocyanato-3 , 3'-Aromatic diisocyanate compounds such as dimethylbiphenyl and o-trizine diisocyanate; polymethylene polyphenyl polyisocyanate having a repeating structure represented by the following structural formula (1); these isocyanurate modified products, biuret modified products, Examples thereof include a modified allophanate. Further, these polyisocyanate compounds may be used alone or in combination of two or more.
  • a urethanization catalyst may be used for the reaction between the polyol compound and the polyisocyanate compound, and the urethanization catalyst includes amines such as pyridine, pyrrole, triethylamine, diethylamine, and dibutylamine.
  • Examples of the radically polymerizable monomer having a hydroxyl group and a (meth) acryloyl group include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, pentaerythritol triacrylate, and isocyanul.
  • Hydroxyl-containing (meth) acrylate such as acid ethylene oxide-modified diacrylate, ethylene oxide adduct of the hydroxyl group-containing (meth) acrylate, propylene oxide adduct of the hydroxyl group-containing (meth) acrylate, tetra of the hydroxyl group-containing (meth) acrylate.
  • Examples thereof include a methylene glycol adduct and a lactone adduct of the hydroxyl group-containing (meth) acrylate.
  • These radically polymerizable monomers having a hydroxyl group and a (meth) acryloyl group can be used alone or in combination of two or more.
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy resin with (meth) acrylic acid or an anhydride thereof.
  • epoxy resin examples include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin.
  • Bisphenol novolac type epoxy resin 1,3-bisphenol novolac type epoxy resin, 1,3-bisphenol novolac type epoxy resin, 1,3-bisphenol co-shrink novolak type epoxy resin, naphthol-cresol co-shrink novolak type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition Examples thereof include a reaction type epoxy resin, a biphenyl aralkyl type epoxy resin, a fluorene type epoxy resin, a xanthene type epoxy resin, a dihydroxybenzene type epoxy resin, and a trihydroxybenzene type epoxy resin. These epoxy resins can be used alone or in combination of two or more.
  • the method for producing the curable resin composition is not particularly limited, and any method may be used for producing the curable resin composition.
  • Examples of the photopolymerization initiator include 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and 1- [4- (2-hydroxyethoxy) phenyl] -2-. Hydroxy-2-methyl-1-propane-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethane-1-one, 2,4,6-trimethylbenzoyldiphenylphosphenyl oxide, bis (2,4,6-trimethylbenzoyl) Phenylphosphenyl oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one, 2-benzyl-2-dimethylamino-1- (4) -Morphorinophenyl) -1-butanone and the like can be mentioned.
  • phosphorus is excellent in reactivity with (meth) acrylate compounds, few unreacted (meth) acrylate compounds in the obtained cured product, and excellent biological safety can be obtained.
  • the compound is preferable, and specifically, 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide are preferable.
  • these photopolymerization initiators can be used alone or in combination of two or more.
  • Examples of commercially available products of the other photopolymerization initiator include “Omnirad-1173”, “Omnirad-184", “Omnirad-127”, “Omnirad-2959”, “Omnirad-369”, and “Omnirad-379".
  • the amount of the photopolymerization initiator added is preferably 0.1% by mass or more and 4.5% by mass or less, and 0.5% by mass or more and 3% by mass or less, for example, in the curable resin composition. It is more preferable to use it in a range.
  • the curable resin composition can be further improved in curability by adding a photosensitizer, if necessary.
  • Examples of the photosensitizer include amine compounds such as aliphatic amines and aromatic amines, urea compounds such as o-tolylthiourea, sodium diethyldithiophosphate, and sulfur such as s-benzylisothiuronium-p-toluenesulfonate. Examples include compounds.
  • UV absorber examples include 2- [4- ⁇ (2-hydroxy-3-dodecyloxypropyl) oxy ⁇ -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1. , 3,5-Triazine, 2- [4- ⁇ (2-Hydroxy-3-tridecyloxypropyl) oxy ⁇ -2-hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1, Triazine derivatives such as 3,5-triazine, 2- (2'-xanthencarboxy-5'-methylphenyl) benzotriazole, 2- (2'-o-nitrobenzyloxy-5'-methylphenyl) benzotriazole, 2 Examples thereof include -xanthenecarboxy-4-dodecyloxybenzophenone and 2-o-nitrobenzyloxy-4-dodecyloxybenzophenone. These UV absorbers can be used alone or in combination of two or more.
  • antioxidants examples include hindered phenol-based antioxidants, hindered amine-based antioxidants, organic sulfur-based antioxidants, phosphoric acid ester-based antioxidants, and the like. These antioxidants can be used alone or in combination of two or more.
  • polymerization inhibitor examples include hydroquinone, methquinone, di-t-butylhydroquinone, p-methoxyphenol, butylhydroxytoluene, nitrosamine salt and the like.
  • silicon-based additive examples include dimethylpolysiloxane, methylphenylpolysiloxane, cyclic dimethylpolysiloxane, methylhydrogenpolysiloxane, polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, and fluorine-modified.
  • Polyorganosiloxane having an alkyl group or phenyl group such as a dimethylpolysiloxane copolymer or an amino-modified dimethylpolysiloxane copolymer, polydimethylsiloxane having a polyether-modified acrylic group, polydimethylsiloxane having a polyester-modified acrylic group, etc. Can be mentioned.
  • These silicon-based additives can be used alone or in combination of two or more.
  • fluorine-based additive examples include the "Megaface” series manufactured by DIC Corporation. These fluorine-based additives can be used alone or in combination of two or more.
  • silane coupling agent examples include vinyl trichlorosilane, vinyl trimethoxysilane, vinyl triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3 -Glysidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyl Methyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl
  • Styrene-based silane coupling agent such as p-styryltrimethoxysilane
  • (Meta) such as 3-methacryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane Acryloxy-based silane coupling agent;
  • Amino-based silane coupling agent is
  • 3-Ureido-based silane coupling agent such as ureidopropyltriethoxysilane
  • a chloropropyl-based silane coupling agent such as 3-chloropropyltrimethoxysilane
  • a mercapto-based silane coupling agent such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxinesilane;
  • Sulfide-based silane coupling agent such as bis (triethoxysilylpropyl) tetrasulfide
  • silane coupling agents such as 3-isocyanatepropyltriethoxysilane. These silane coupling agents can be used alone or in combination of two or more.
  • organic filler examples include plant-derived solvent-insoluble substances such as cellulose, lignin, and cellulose nanofibers, polymethylmethacrylate beads, polycarbonate beads, polystyrene beads, polyacrylic styrene beads, silicone beads, and glass beads.
  • examples thereof include acrylic beads, benzoguanamine-based resin beads, melamine-based resin beads, polyolefin-based resin beads, polyester-based resin beads, polyamide resin beads, polyimide-based resin beads, polyfluoroethylene resin beads, and organic beads such as polyethylene resin beads.
  • These organic fillers can be used alone or in combination of two or more.
  • the inorganic filler examples include inorganic fine particles such as silica, alumina, zirconia, titania, barium titanate, and antimony trioxide. These inorganic fillers can be used alone or in combination of two or more.
  • the average particle size of the inorganic machine fine particles is preferably in the range of 95 to 250 nm, and more preferably in the range of 100 to 180 nm.
  • a dispersion aid When the inorganic fine particles are contained, a dispersion aid can be used.
  • the dispersion aid include phosphate ester compounds such as isopropyl acid phosphate, triisodecyl phosphite, and ethylene oxide-modified dimethacrylate phosphate. These dispersion aids can be used alone or in combination of two or more. Examples of commercially available products of the dispersion aid include "Kajama PM-21" and “Kajama PM-2” manufactured by Nippon Kayaku Co., Ltd., and "Light Ester P-2M” manufactured by Kyoeisha Chemical Co., Ltd. ..
  • rheology control agent examples include amide waxes such as "Disparon 6900” manufactured by Kusumoto Kasei Co., Ltd .; urea-based rheology control agents such as "BYK410” manufactured by Big Chemie Co., Ltd .; "Disparon 4200” manufactured by Kusumoto Kasei Co., Ltd. , Etc.; examples thereof include cellulose acetate butyrate such as “CAB-381-2" and "CAB 32101” manufactured by Eastman Chemical Company.
  • the defoaming agent examples include an oligomer containing fluorine or a silicon atom, an oligomer such as a higher fatty acid or an acrylic polymer, and the like.
  • Examples of the colorant include pigments and dyes.
  • pigment known and commonly used inorganic pigments and organic pigments can be used.
  • examples of the inorganic pigment include titanium oxide, antimony red, red iron oxide, cadmium red, cadmium yellow, cobalt blue, prussian blue, ultramarine blue, carbon black, graphite and the like.
  • organic pigments examples include quinacridone pigments, quinacridone quinone pigments, dioxazine pigments, phthalocyanine pigments, anthrapyrimidine pigments, anthanthrone pigments, indanslon pigments, flavanthron pigments, perylene pigments, diketopyrrolopyrrole pigments, perinone pigments, and the like.
  • examples thereof include quinophthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments, and azo pigments. These pigments can be used alone or in combination of two or more.
  • the dye examples include azo dyes such as monoazo and disuazo, metal complex salt dyes, naphthol dyes, anthraquinone dyes, indigo dyes, carbonium dyes, quinoimine dyes, cyanine dyes, quinoline dyes, nitro dyes, nitroso dyes, benzoquinone dyes, and naphthoquinone.
  • azo dyes such as monoazo and disuazo, metal complex salt dyes, naphthol dyes, anthraquinone dyes, indigo dyes, carbonium dyes, quinoimine dyes, cyanine dyes, quinoline dyes, nitro dyes, nitroso dyes, benzoquinone dyes, and naphthoquinone.
  • azo dyes such as monoazo and disuazo
  • metal complex salt dyes such as monoazo and disuazo
  • naphthol dyes such as monoazo and disuazo
  • anthraquinone dyes such as anth
  • the pattern material for three-dimensional modeling of the present invention comprises the curable resin composition.
  • the cured product of the present invention can be obtained by irradiating the three-dimensional modeling pattern material made of the curable resin composition with active energy rays.
  • active energy ray include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • ultraviolet rays When ultraviolet rays are used as the active energy rays, they may be irradiated in an atmosphere of an inert gas such as nitrogen gas or in an air atmosphere in order to efficiently carry out the curing reaction by ultraviolet rays.
  • an ultraviolet lamp As an ultraviolet source, an ultraviolet lamp is generally used from the viewpoint of practicality and economy. Specific examples thereof include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, gallium lamps, metal halide lamps, sunlight, and LEDs. Among these, it is preferable to use an LED as a light source because stable illuminance can be obtained over a long period of time.
  • the irradiation of the active energy rays may be performed in one step or may be divided into two or more steps.
  • the three-dimensional model of the present invention can be produced by a known optical three-dimensional modeling method.
  • optical stereolithography method examples include a stereolithography (SLA) method, a digital stereolithography (DLP) method, and an inkjet method.
  • SLA stereolithography
  • DLP digital stereolithography
  • inkjet method examples include a stereolithography (SLA) method, a digital stereolithography (DLP) method, and an inkjet method.
  • the stereolithography (SLA) method is a method in which a tank of a liquid curable resin composition is irradiated with active energy rays such as a laser beam at points and cured layer by layer while moving the modeling stage to perform three-dimensional modeling. ..
  • the digital light processing (DLP) method is a method in which a tank of a liquid curable resin composition is irradiated with active energy rays such as LEDs on a surface and cured layer by layer while moving the modeling stage to perform three-dimensional modeling. is there.
  • the inkjet stereolithography method is a method of forming a cured thin film by irradiating ultraviolet rays after ejecting minute droplets of a curable resin composition for stereolithography from a nozzle so as to draw a predetermined shape pattern. ..
  • the DLP method is preferable because high-speed modeling by surface is possible.
  • the DLP-type three-dimensional modeling method is not particularly limited as long as it is a method using a DLP-type optical modeling system, but the modeling conditions are such that the modeling accuracy of the three-dimensional modeled object is good.
  • the stacking pitch is in the range of 0.01 to 0.2 mm
  • the irradiation wavelength is in the range of 350 to 410 nm
  • the light intensity is in the range of 0.5 to 50 mW / cm 2
  • the integrated light amount per layer is 1. It is necessary to have a range of about 100 mJ / cm 2 , and in particular, the stacking pitch of optical modeling is in the range of 0.02 to 0.1 mm because the modeling accuracy of the three-dimensional model is further improved.
  • the combustion rate of the three-dimensional model is 90% or more under the condition of 450 ° C. under a nitrogen atmosphere, and the maximum expansion from 25 ° C. to 200 ° C.
  • the force is preferably 10 MPa or less.
  • the combustion rate is a value calculated by [(initial weight at 25 ° C.-weight at each temperature) / (initial weight at 25 ° C.)] in thermogravimetric differential thermal measurement (TG-DTA).
  • the maximum expansion force is a value calculated from the maximum value of [(storage elastic modulus at each temperature) ⁇ (elongation rate at each temperature based on elongation at 25 ° C.)] from 25 ° C. to 200 ° C. Is.
  • the three-dimensional model of the present invention can be used, for example, for automobile parts, aerospace-related parts, electrical and electronic parts, building materials, interiors, jewelry, medical materials, etc., has excellent hardness, and is excellent in castability. Therefore, it can be suitably used in the application of medical materials.
  • the medical material examples include a dental hard resin material such as a surgical guide for dental treatment, a provisional tooth, a bridge, and an orthodontic appliance.
  • the three-dimensional model of the present invention has excellent hardness and castability, it is also suitable for manufacturing a mold using the three-dimensional model.
  • Examples of the method for producing the mold include a step of burying a part or all of the three-dimensional model of the present invention with an embedding material (1), a step of hardening or solidifying the embedding material (2), and the three-dimensional object. , A method having a step (3) of melt removal, decomposition removal, and / or incineration removal.
  • Examples of the burial material include gypsum-based burial materials and phosphate-based burial materials, and examples of the gypsum-based burial material include silica burial materials, quartz burial materials, and cristobalite burial materials.
  • the step (1) is a step of burying a part or all of the three-dimensional model of the present invention with an embedding material.
  • the buried material is kneaded with an appropriate amount of water. If the mixing ratio is too large, the curing time will be long, and if it is too small, the fluidity will be poor and it will be difficult to pour the investment material. Further, it is preferable to apply a surfactant to the three-dimensional model because the investment material gets wet well and fits well, so that the surface of the casting is less likely to be roughened. Further, when burying the three-dimensional model, it is preferable to bury it so that air bubbles do not adhere to the surface of the casting.
  • the step (2) is a step of hardening or solidifying the buried material.
  • the temperature at which the buried material is solidified is preferably in the range of 200 to 400 ° C., and it is preferable that the three-dimensional model is allowed to stand for about 10 to 60 minutes after being buried to solidify. ..
  • the step (3) is a step of melting and removing, disassembling and removing, and / or incinerating and removing the three-dimensional object.
  • the firing temperature is preferably in the range of 400 to 1000 ° C, more preferably in the range of 600 to 800 ° C.
  • the metal casting of the present invention is obtained by pouring a metal material into a mold obtained through the steps (1) to (3) and solidifying the metal material [step (4)]. is there. This makes it possible to manufacture a metal casting corresponding to the prototype of the three-dimensional model.
  • Example 1 Preparation of pattern material (1) for three-dimensional modeling
  • a container equipped with a stirrer 80 parts by mass of bisphenol A ethylene oxide-modified (10 mol added) dimethacrylate, 20 parts by mass of neopentyl glycol dimethacrylate, and a photopolymerization initiator (IGM "Omnirad TPO"; 2,4 , 6-trimethylbenzoyldiphenylphosphine oxide) 2 parts by mass, stirred and mixed for 1 hour while controlling the liquid temperature to 60 ° C., and uniformly dissolved to obtain a pattern material (1) for three-dimensional modeling. ..
  • IGM "Omnirad TPO" 2,4 , 6-trimethylbenzoyldiphenylphosphine oxide
  • Example 2 to 8 Preparation of pattern materials (2) to (8) for three-dimensional modeling
  • Pattern materials (2) to (8) for three-dimensional modeling were obtained in the same manner as in Example 1 with the compositions and blending ratios shown in Table 2.
  • Pattern materials (9) to (14) for three-dimensional modeling were obtained in the same manner as in Example 1 with the compositions and blending ratios shown in Table 2.
  • Example 9 Preparation of three-dimensional model (E1))
  • a three-dimensional modeling pattern material (1) obtained in Example 1 with a digital light processing (DLP) stereolithography system (3Delight's "DLP printer VITTRO")
  • DLP digital light processing
  • a three-dimensional model (E1') is formed.
  • the stacking pitch of stereolithography was 0.05 to 0.1 mm
  • the irradiation wavelength was 380 to 390 nm
  • the light irradiation time was 2 to 6 seconds per layer.
  • Example 10 to 16 Preparation of three-dimensional objects (E2) to (E8)) Except that the three-dimensional modeling pattern materials (2) to (8) obtained in Examples 2 to 8 were used instead of the three-dimensional modeling pattern material (1) used in Example 9, the same as in Example 9. In the same manner, three-dimensional shaped objects (E2) to (E8) were obtained.
  • Comparative Examples 6 to 12 Preparation of three-dimensional objects (C1) to (C5)) Except that the three-dimensional modeling pattern materials (9) to (14) obtained in Comparative Examples 1 to 6 were used instead of the three-dimensional modeling pattern material (1) used in Example 9, the same as in Example 9. In the same manner, three-dimensional shaped objects (C1) to (C6) were obtained.
  • thermomechanical machine 200 ° C.
  • elongation rate is determined by a thermomechanical machine. It was calculated by an analyzer (TMA: "SS-6100” manufactured by Seiko Instruments Co., Ltd.) at each temperature based on the elongation at 25 ° C. The maximum value of the product of each value was taken as the maximum expansion force.
  • There are no cracks or cracks on the outside or inside of the mold, there is no residue or soot of the three-dimensional model inside the mold, and the transferability of the three-dimensional model to the mold is good.
  • Although there are cracks and cracks inside the mold, there are no cracks or cracks outside the mold, there is no residue or soot of the three-dimensional model inside the mold, and the transferability of the three-dimensional model to the mold is good.
  • X At least one of cracks and cracks outside the mold, residue of the three-dimensional model inside the mold, soot residue, and poor transfer of the three-dimensional model to the mold has occurred, and the mold cannot be used.
  • Table 2 shows the compositions of the three-dimensional modeling pattern materials (9) to (14) prepared in 1) and the evaluation results of the three-dimensional shaped objects (C1) to (C6) prepared in Comparative Examples 7 to 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明は優れた硬度及び鋳造性を有する硬化物を形成可能な三次元パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法を提供することを目的とし、構造式(1)で表される(メタ)アクリレート化合物(A)と、脂肪族(メタ)アクリレート化合物(B)とを含有する硬化性樹脂組成物からなる三次元造形用パターン材料であって、前記(メタ)アクリレート化合物(A)の含有量が、前記(メタ)アクリレート化合物(A)と、前記(メタ)アクリレート化合物(B)との合計質量中に50質量%以上であることを特徴とする三次元造形用パターン材料を用いる。

Description

三次元造形用パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法
 本発明は、三次元造形用パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法に関する。
 近年、樹脂成型品の製造方法として、3次元CAD等の立体デザインシステムにより設計した立体形状データをもとに、硬化性樹脂組成物を紫外線レーザー等の活性エネルギー線によって選択的に重合硬化させることにより、立体造形物を作製する光学的立体造形法(光造形法)が用いられている。この光学的立体造形法は、切削加工では困難な複雑な形状にも対応が可能であり、製造時間も短く、取扱いも容易であることから、樹脂成型品の他、工業製品の試作モデルの製造に幅広く用いられるようになってきている。
 光学的立体造形法の代表的な例としては、容器に入れた液状光硬化性樹脂にコンピューターで制御されたスポット状の紫外線レーザーを上から照射して所定厚みの1層を硬化させ、その造形物を1層分だけ下げることで層上に液状樹脂を供給し、同様に紫外線レーザー光で前記と同様に照射硬化させ積層する、この操作の繰り返しにより立体造形物を得る方法が挙げられる。また、最近では、スポット状の紫外線レーザーを用いる上記の点描方式に加えて、LED等のレーザー以外の光源を用い、複数のデジタルマイクロミラーシャッターを面状に配置したDMD(デジタルマイクロミラーデバイス)と呼ばれる面状描画マスクを介して、光硬化性樹脂を入れた透明容器を通して紫外光を下から照射して所定の断面形状パターンの1層を硬化させ、その造形物を1層分だけ上に引き上げて、前記と同様に次の1層を照射硬化させ、順次積層して立体造形物を得る面露光方式が増加している。
 また、近年、金属鋳造において、従来のロストワックス法に代わり、光学立体造形法により得られた光硬化型樹脂の立体造形物を消失模型とし、この周囲を石膏等で覆った状態で加熱し、前記立体造形物を消失させることで石膏等からなる鋳型を製造する方法が検討されているが(例えば、特許文献1参照。)、消失模型として用いる立体造形物を消失させるためには、高温で加熱する必要があり、立体造形物の体積膨張により、周囲の石膏等に割れが生じるなどの問題があった。さらに、消失する際に残渣が残るなどして意図した形状の鋳型をえることができない等の問題もあった。
 そこで、優れた硬化性を有し、鋳造性に優れた硬化物を形成可能な材料が求められていた。
国際公開第2016/125758号
 本発明が解決しようとする課題は、優れた硬度及び鋳造性を有する硬化物を形成可能な三次元パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法を提供することである。
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、特定の(メタ)アクリレート化合物と、脂肪族(メタ)アクリレート化合物とを含有する硬化性樹脂組成物からなる三次元パターン材料であって、前記特定の(メタ)アクリレート化合物を特定量含有するものであることを特徴とする硬化物を用いることによって、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、下記構造式(1)で表される(メタ)アクリレート化合物(A)と、脂肪族(メタ)アクリレート化合物(B)とを含有する硬化性樹脂組成物からなる三次元造形用パターン材料であって、前記(メタ)アクリレート化合物(A)の含有量が、前記(メタ)アクリレート化合物(A)と、前記(メタ)アクリレート化合物(B)との合計質量中に50質量%以上であることを特徴とする三次元造形用パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法に関するものである。
Figure JPOXMLDOC01-appb-C000004
[式(1)中、Rは、それぞれ独立して水素原子またはメチル基であり、Rは、それぞれ独立して水素原子またはメチル基であり、Rは、それぞれ独立して水素原子またはメチル基である。Xは、-O-、-SO-、下記構造式(2)で表される構造、または下記構造式(3)で表される構造であり、mは、0または1~30の整数であり、nは、0または1~30の整数であり、m+nは、10以上の整数である。]
Figure JPOXMLDOC01-appb-C000005
[式(2)中、R、Rは、水素原子または炭素原子数1~10の炭化水素基である。]
Figure JPOXMLDOC01-appb-C000006
 本発明の硬化物は、優れた硬度を有し、鋳造性に優れることから、医療用材料、コンポジットレジン、ボンディング材、レジンセメント、CAD/CAM用レジンブロック等に用いることができ、前記医療材料の中でも、前記の中でも、歯科治療用のサージカルガイド、仮歯、ブリッジ、歯列矯正器具等の歯科用の硬質レジン材料に好適に用いることができる。なお、本発明において、「鋳造性に優れる」とは、光学立体造形法により得られた光硬化型樹脂の立体造形物を消失模型とし、この周囲を石膏等の埋没材で覆った状態で加熱し、前記立体造形物を消失させることで石膏等の埋没材からなる鋳型を製造する際に、前記埋没材に割れまたは亀裂が発生せず、鋳型内に硬化物の残渣及び煤が残らない、または極めて少ないことを意味する。
 本発明の三次元造形用パターン材料は、下記構造式(1)で表される(メタ)アクリレート化合物(A)と、脂肪族(メタ)アクリレート化合物(B)とを含有する硬化性樹脂組成物からなるものであることを特徴とする。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、Rは、それぞれ独立して水素原子またはメチル基であり、Rは、それぞれ独立して水素原子またはメチル基であり、Rは、それぞれ独立して水素原子またはメチル基である。Xは、-O-、-SO-、下記構造式(2)で表される構造、または下記構造式(3)で表される構造であり、mは、0または1~30の整数であり、nは、0または1~30の整数であり、m+nは、10以上の整数である。]
Figure JPOXMLDOC01-appb-C000008
[式(2)中、R、Rは、水素原子または炭素原子数1~10の炭化水素基である。]
Figure JPOXMLDOC01-appb-C000009
 なお、本発明において、「(メタ)アクリレート」とは、アクリレート及び/またはメタクリレートを意味する。また、「(メタ)アクリロイル」とは、アクリロイル及び/またはメタクリロイルを意味する。さらに、「(メタ)アクリル」とは、アクリル及び/またはメタクリルを意味する。
 前記(メタ)アクリレート化合物(A)としては、下記構造式(1)で表される(メタ)アクリレート化合物を用いる。
Figure JPOXMLDOC01-appb-C000010
[式(1)中、Rは、それぞれ独立して水素原子またはメチル基であり、Rは、それぞれ独立して水素原子またはメチル基であり、Rは、それぞれ独立して水素原子またはメチル基である。Xは、-O-、-SO-、下記構造式(2)で表される構造、または下記構造式(3)で表される構造であり、mは、0または1~30の整数であり、nは、0または1~30の整数であり、m+nは、10以上の整数である。]
Figure JPOXMLDOC01-appb-C000011
[式(2)中、R、Rは、水素原子または炭素原子数1~10の炭化水素基である。]
Figure JPOXMLDOC01-appb-C000012
 前記(メタ)アクリレート化合物(A)の含有量は、前記(メタ)アクリレート化合物(A)と、前記(メタ)アクリレート化合物(B)との合計質量中に50質量%以上であり、優れた硬化性及び鋳造性を有する三次元造形用パターン材料を形成可能なことから、70質量%~90質量%の範囲がより好ましい。
 前記脂肪族(メタ)アクリレート化合物(B)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、3-メチルブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、トリシクロデカン(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジオキサングリコール(メタ)アクリレート等の単官能(メタ)アクリレート;
 1,6-ヘキサンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性1,6-ヘキサンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、プロピレンオキシド変性ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、グリセリンのプロピレンオキシド変性トリ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、3-メチル-1,5ペンタンジオールジ(メタ)アクリレート、2,3-[(メタ)アクリロイルオキシメチル]ノルボルナン、2,5-[(メタ)アクリロイルオキシメチル]ノルボルナン、2,6-[(メタ)アクリロイルオキシメチル]ノルボルナン、1,3-アダマンチルジ(メタ)アクリレート、1,3-ビス[(メタ)アクリロイルオキシメチル]アダマンタン、トリス(ヒドロキシエチル)イソシアヌル酸ジ(メタ)アクリレート、3,9-ビス[1,1-ジメチル-2-(メタ)アクリロイルオキシエチル]-2,4,8,10-テトラオキソスピロ[5.5]ウンデカン、ジオキサングリコールジ(メタ)アクリレート等の2官能(メタ)アクリレート;
 EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、EO変性リン酸トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、HPA変性トリメチロールプロパントリ(メタ)アクリレート、(EO)或いは(PO)変性トリメチロールプロパントリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等の3官能(メタ)アクリレート;
 ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能(メタ)アクリレート;
 ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能(メタ)アクリレート;
 ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能(メタ)アクリレートが挙げられる。これらの脂肪族(メタ)アクリレート化合物(B)は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れた硬度及び鋳造性を有する硬化物を形成可能な三次元パターン材料が得られることから、2官能以上の(メタ)アクリロイル基を有するアクリレート化合物が好ましい。
 前記硬化性樹脂組成物としては、前記(メタ)アクリレート化合物(A)及び前記脂肪族(メタ)アクリレート化合物(B)以外に、必要に応じて、前記(メタ)アクリレート化合物(A)及び前記脂肪族(メタ)アクリレート化合物(B)以外のその他の(メタ)アクリレート化合物を用いることもできる。なお、この際、前記(メタ)アクリレート化合物(A)及び前記脂肪族(メタ)アクリレート化合物(B)の合計の含有率は、優れた硬度及び鋳造性を有する硬化物を形成可能な三次元パターン材料が得られることから、前記硬化性樹脂組成物の硬化性成分中に、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 また、前記その他の(メタ)アクリレート化合物としては、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
 前記ウレタン(メタ)アクリレートとしては、一般に、ポリイソシアネート化合物とポリオール化合物との重縮合によって生成したポリウレタン鎖を有する。このポリウレタン鎖の両末端に(メタ)アクリロイル基、または(メタ)アクリロイルオキシ基が導入されていてもよい。
 前記ウレタン(メタ)アクリレートとしては、例えば、ポリオール化合物とポリイソシアネート化合物とを、イソシアネート基が水酸基よりも過剰となる比率で反応させて分子末端がイソシアネート基であるウレタン樹脂を調製した後、これに水酸基及び(メタ)アクリロイル基(または(メタ)アクリロイルオキシ基)を有するラジカル重合性単量体を反応させる方法により得られるものが挙げられる。
 前記ポリオール化合物と前記ポリイソシアネート化合物との反応は、ポリオール化合物が有する水酸基(OH)とポリイソシアネート化合物が有するイソシアネート基(NCO)の当量比[(NCO)/(OH)]が、1.5~2の範囲が好ましい。
 前記ポリオール化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ネオペンチルグリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオ-ル、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、3-メチル-1,5-ペンタンジオール、ジクロロネオペンチルグリコール、ジブロモネオペンチルグリコール、ヒドロキシピバリン酸ネオペンチルグリコールエステル、シクロヘキサンジメチロール、1,4-シクロヘキサンジオール、ハイドロキノンのエチレンオキサイド付加物、ハイドロキノンのプロピレンオキサイド付加物、スピログリコール、トリシクロデカンジメチロール、水添ビスフェノールA、及び1,6-ヘキサンジオール系ポリカーボネートジオール等のポリオール類;前記ポリオール類とα,β-不飽和ポリカルボン酸、飽和ポリカルボン酸類またはそれらの酸無水物等とを縮合させて得られるポリエステルポリオール;並びに、β-プロピオラクトン、β-ブチロラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、及びε-カプロラクトン等のラクトン類を開環重合して得られるポリエステルポリオールなどが挙げられる。これらのポリオール化合物は、単独で用いることも2種以上を併用することもできる。
 前記ポリオール類と縮合してポリエステルポリオールを生成するα,β-不飽和ポリカルボン酸及びその酸無水物の例としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸、及び塩素化マレイン酸等の種々のα,β-不飽和ポリカルボン酸またはそれらの無水物が挙げられる。前記ポリオール類と縮合してポリエステルポリオールを生成する飽和ポリカルボン酸類及びその酸無水物の例としては、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、モノクロロフタル酸、ジクロロフタル酸、トリクロロフタル酸、ヘット酸、クロレンディック酸、ダイマー酸、アジピン酸、ピメリン酸、こはく酸、アルケニルこはく酸、セバチン酸、アゼライン酸、2,2,4-トリメチルアジピン酸、テレフタル酸、ジメチルテレフタル酸、2-ナトリウムスルホテレフタル酸、2-カリウムスルホテレフタル酸、イソフタル酸、5-ナトリウムスルホイソフタル酸、5-カリウムスルホイソフタル酸、オルソフタル酸、4-スルホフタル酸、1,10-デカメチレンジカルボン酸、ムコン酸、しゅう酸、マロン酸、グルタン酸、ヘキサヒドロフタル酸、及びテトラブロムフタル酸等の飽和ポリカルボン酸類またはそれらの酸無水物が挙げられる。これらは単独で用いることも2種以上を併用することもできる。
 前記ポリイソシアネート化合物としては、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、o-トリジンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(1)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体等が挙げられる。また、これらのポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。
 前記ポリオール化合物と前記ポリイソシアネート化合物との反応は、必要に応じて、ウレタン化触媒を用いてもよく、前記ウレタン化触媒としては、例えば、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン等のアミン類、トリフェニルホスフィン、トリエチルホスフィン等のホスフィン類、ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジオクチル錫ジアセテート、ジオクチル錫ジネオデカノエート、ジブチル錫ジアセテート、オクチル酸錫、1,1,3,3-テトラブチル-1,3-ドデカノイルジスタノキサン等の有機錫化合物、オクチル酸亜鉛、オクチル酸ビスマス等の有機金属化合物、オクタン酸錫等の無機錫化合物、無機金属化合物などが挙げられる。これらのウレタン化触媒は、単独で用いることも、2種以上を併用することもできる。
 前記水酸基及び(メタ)アクリロイル基を有するラジカル重合性単量体としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、ペンタエリスリトールトリアクリレート、及びイソシアヌル酸エチレンオキサイド変性ジアクリレート等の水酸基含有(メタ)アクリレート、前記水酸基含有(メタ)アクリレートのエチレンオキサイド付加物、前記水酸基含有(メタ)アクリレートのプロピレンオキサイド付加物、前記水酸基含有(メタ)アクリレートのテトラメチレングリコール付加物、並びに、前記水酸基含有(メタ)アクリレートのラクトン付加物等が挙げられる。これらの水酸基及び(メタ)アクリロイル基を有するラジカル重合性単量体は、単独で用いることも2種以上を併用することもできる。
 前記エポキシ(メタ)アクリレートとしては、例えば、エポキシ樹脂に、(メタ)アクリル酸またはその無水物を反応させて得られるものが挙げられる。
 前記エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂、トリヒドロキシベンゼン型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、単独で用いることも2種以上を併用することもできる。
 前記硬化性樹脂組成物の製造方法としては、特に制限されず、どのような方法にて製造してもよい。
 前記硬化性樹脂組成物は、必要に応じて、光重合開始剤、紫外線吸収剤、酸化防止剤、重合禁止剤、シリコン系添加剤、フッ素系添加剤、シランカップリング剤、リン酸エステル化合物、有機フィラー、無機フィラー、レオロジーコントロール剤、脱泡剤、着色剤等の各種添加剤を含有することもできる。
 前記光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン等が挙げられる。これらの中でも、(メタ)アクリレート化合物との反応性に優れ、得られた硬化物中の未反応(メタ)アクリレート化合物が少なく、生物学的安全性に優れた硬化物が得られることから、リン化合物が好ましく、具体的には、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシドが好ましい。また、これらの光重合開始剤は、単独で用いることも2種以上を併用することもできる。
 前記その他の光重合開始剤の市販品としては、例えば、「Omnirad-1173」、「Omnirad-184」、「Omnirad-127」、「Omnirad-2959」、「Omnirad-369」、「Omnirad-379」、「Omnirad-907」、「Omnirad-4265」、「Omnirad-1000」、「Omnirad-651」、「Omnirad-TPO」、「Omnirad-819」、「Omnirad-2022」、「Omnirad-2100」、「Omnirad-754」、「Omnirad-784」、「Omnirad-500」、「Omnirad-81」(IGM社製)、「カヤキュア-DETX」、「カヤキュア-MBP」、「カヤキュア-DMBI」、「カヤキュア-EPA」、「カヤキュア-OA」(日本化薬株式会社製)、「バイキュア-10」、「バイキュア-55」(ストウファ・ケミカル社製)、「トリゴナルP1」(アクゾ社製)、「サンドレイ1000」(サンドズ社製)、「ディープ」(アプジョン社製)、「クオンタキュア-PDO」、「クオンタキュア-ITX」、「クオンタキュア-EPD」(ワードブレンキンソップ社製)、「Runtecure-1104」(Runtec社製)等が挙げられる。これらの中でも、(メタ)アクリレート化合物との反応性に優れ、得られた硬化物中の未反応(メタ)アクリレート化合物が少なく、生物学的安全性に優れた硬化物が得られることから、「Omnirad-TPO」、「Omnirad-819」が好ましい。
 前記光重合開始剤の添加量は、例えば、前記硬化性樹脂組成物中に、0.1質量%以上4.5質量%以下で用いることが好ましく、0.5質量%以上3質量%以下の範囲で用いることがより好ましい。
 また、前記硬化性樹脂組成物は、必要に応じて、さらに光増感剤を添加して、硬化性を向上することもできる。
 前記光増感剤としては、例えば、脂肪族アミン、芳香族アミン等のアミン化合物、o-トリルチオ尿素等の尿素化合物、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物などが挙げられる。
 前記紫外線吸収剤としては、例えば、2-[4-{(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-{(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等のトリアジン誘導体、2-(2’-キサンテンカルボキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-o-ニトロベンジロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-キサンテンカルボキシ-4-ドデシロキシベンゾフェノン、2-o-ニトロベンジロキシ-4-ドデシロキシベンゾフェノン等が挙げられる。これらの紫外線吸収剤は、単独で用いることも2種以上を併用することもできる。
 前記酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、有機硫黄系酸化防止剤、リン酸エステル系酸化防止剤等が挙げられる。これらの酸化防止剤は、単独で用いることも2種以上を併用することもできる。
 前記重合禁止剤としては、例えば、ハイドロキノン、メトキノン、ジ-t-ブチルハイドロキノン、p-メトキシフェノール、ブチルヒドロキシトルエン、ニトロソアミン塩等が挙げられる。
 前記シリコン系添加剤としては、例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン、環状ジメチルポリシロキサン、メチルハイドロゲンポリシロキサン、ポリエーテル変性ジメチルポリシロキサン共重合体、ポリエステル変性ジメチルポリシロキサン共重合体、フッ素変性ジメチルポリシロキサン共重合体、アミノ変性ジメチルポリシロキサン共重合体等のアルキル基やフェニル基を有するポリオルガノシロキサン、ポリエーテル変性アクリル基を有するポリジメチルシロキサン、ポリエステル変性アクリル基を有するポリジメチルシロキサンなどが挙げられる。これらのシリコン系添加剤は、単独で用いることも2種以上を併用することもできる。
 前記フッ素系添加剤としては、例えば、DIC株式会社製「メガフェース」シリーズ等が挙げられる。これらのフッ素系添加剤は、単独で用いることも2種以上を併用することもできる。
 前記シランカップリング剤としては、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル・ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、特殊アミノシラン、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン等のビニル系のシランカップリング剤;
 ジエトキシ(グリシジルオキシプロピル)メチルシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ系のシランカップリング剤;
 p-スチリルトリメトキシシラン等のスチレン系のシランカップリング剤;
 3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等の(メタ)アクリロキシ系のシランカップリング剤;
 N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ系のシランカップリング剤;
 3-ウレイドプロピルトリエトキシシラン等のウレイド系のシランカップリング剤;
 3-クロロプロピルトリメトキシシラン等のクロロプロピル系のシランカップリング剤;
 3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキンシラン等のメルカプト系のシランカップリング剤;
 ビス(トリエトキシシリルプロピル)テトラスルファイド等のスルフィド系のシランカップリング剤;
 3-イソシアネートプロピルトリエトキシシラン等のイソシアネート系のシランカップリング剤などが挙げられる。これらのシランカップリング剤は、単独で用いることも2種以上を併用することもできる。
 前記リン酸エステル化合物としては、例えば、分子構造中に(メタ)アクリロイル基を有するものが挙げられ、市販品としては、例えば、日本化薬株式会社製「カヤマーPM-2」、「カヤマーPM-21」、共栄社化学株式会社製「ライトエステルP-1M」「ライトエステルP-2M」、「ライトアクリレートP-1A(N)」、SOLVAY社製「SIPOMER PAM 100」、「SIPOMER PAM 200」、「SIPOMER PAM 300」、「SIPOMER PAM 4000」、大阪有機化学工業社製「ビスコート#3PA」、「ビスコート#3PMA」、第一工業製薬社製「ニューフロンティア S-23A」;分子構造中にアリルエーテル基を有するリン酸エステル化合物であるSOLVAY社製「SIPOMER PAM 5000」等が挙げられる。
 前記有機フィラーとしては、例えば、セルロース、リグニン、及びセルロースナノファイバー等の植物由来の溶剤不溶性物質、ポリメタクリル酸メチルビーズ、ポリカーボネートビーズ、ポリスチレンビーズ、ポリアクリルスチレンビーズ、シリコーンビ-ズ、ガラスビーズ、アクリルビーズ、ベンゾグアナミン系樹脂ビーズ、メラミン系樹脂ビーズ、ポリオレフィン系樹脂ビーズ、ポリエステル系樹脂ビーズ、ポリアミド樹脂ビーズ、ポリイミド系樹脂ビーズ、ポリフッ化エチレン樹脂ビーズ、ポリエチレン樹脂ビーズ等の有機ビーズなどが挙げられる。これらの有機フィラーは、単独で用いることも2種以上を併用することもできる。
 前記無機フィラーとしては、例えば、シリカ、アルミナ、ジルコニア、チタニア、チタン酸バリウム、三酸化アンチモン等の無機微粒子などが挙げられる。これらの無機フィラーは、単独で用いることも2種以上を併用することもできる。また、前記無機機微粒子の平均粒径は、95~250nmの範囲であることが好ましく、特に100~180nmの範囲であることがより好ましい。
 前記無機微粒子を含有する場合には、分散補助剤を用いることができる。前記分散補助剤としては、例えば、イソプロピルアシッドホスフェート、トリイソデシルホスファイト、エチレンオキサイド変性リン酸ジメタクリレート等のリン酸エステル化合物等が挙げられる。これらの分散補助剤は、単独で用いることも2種以上を併用することもできる。また、前記分散補助剤の市販品としては、例えば、日本化薬株式会社製「カヤマーPM-21」、「カヤマーPM-2」、共栄社化学株式会社製「ライトエステルP-2M」等が挙げられる。
 前記レオロジーコントロール剤としては、例えば、楠本化成株式会社製「ディスパロン6900」等のアマイド・ワックス類;ビッグ・ケミー社製「BYK410」等の尿素系レオロジーコントロール剤類;楠本化成株式会社製「ディスパロン4200」等のポリエチレン・ワックス;イーストマン・ケミカル・プロダクツ社製「CAB-381-2」、「CAB 32101」等のセルロース・アセテート・ブチレートなどが挙げられる。
 前記脱泡剤としては、例えば、フッ素或いは、硅素原子を含んだオリゴマー、または高級脂肪酸、アクリル重合体等のオリゴマー等が挙げられる。
 前記着色剤としては、例えば、顔料、染料等が挙げられる。
 前記顔料としては、公知慣用の無機顔料や有機顔料を使用することができる。
 前記無機顔料としては、例えば、酸化チタン、アンチモンレッド、ベンガラ、カドミウムレッド、カドミウムイエロー、コバルトブルー、紺青、群青、カーボンブラック、黒鉛等が挙げられる。
 前記有機顔料としては、例えば、キナクリドン顔料、キナクリドンキノン顔料、ジオキサジン顔料、フタロシアニン顔料、アントラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラバンスロン顔料、ペリレン顔料、ジケトピロロピロール顔料、ペリノン顔料、キノフタロン顔料、アントラキノン顔料、チオインジゴ顔料、ベンツイミダゾロン顔料、アゾ顔料等が挙げられる。これらの顔料は、単独で用いることも2種以上を併用することもできる。
 前記染料としては、例えば、モノアゾ・ジスアゾ等のアゾ染料、金属錯塩染料、ナフトール染料、アントラキノン染料、インジゴ染料、カーボニウム染料、キノイミン染料、シアニン染料、キノリン染料、ニトロ染料、ニトロソ染料、ベンゾキノン染料、ナフトキノン染料、ナフタルイミド染料、ペリノン染料、フタロシアニン染料、トリアリルメタン系染料等が挙げられる。これらの染料は、単独で用いることも2種以上を併用することもできる。
 本発明の三次元造形用パターン材料としては、前記硬化性樹脂組成物からなるものである。
 本発明の硬化物は、前記硬化性樹脂組成物からなる前記三次元造形用パターン材料に、活性エネルギー線を照射することで得ることができる。前記活性エネルギー線としては、例えば、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。また、前記活性エネルギー線として、紫外線を用いる場合、紫外線による硬化反応を効率よく行う上で、窒素ガス等の不活性ガス雰囲気下で照射してもよく、空気雰囲気下で照射してもよい。
 紫外線発生源としては、実用性、経済性の面から紫外線ランプが一般的に用いられている。具体的には、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ、太陽光、LED等が挙げられる。これらの中でも、長時間に渡り、安定した照度が得られることから、LEDを光源とすることが好ましい。
 前記活性エネルギー線の波長は、安定した照度が得られることから、350~410nmの範囲が好ましい。
 前記活性エネルギー線の積算光量は、特に制限されないが、50~50,000mJ/cmであることが好ましく、300~50,000mJ/cmであることがより好ましい。積算光量が上記範囲であると、未硬化部分の発生の防止または抑制ができることから好ましい。
 なお、前記活性エネルギー線の照射は、一段階で行ってもよいし、二段階以上に分けて行ってもよい。
 本発明の立体造形物は、公知の光学的立体造形法により作製することができる。
 前記光学的立体造形法としては、例えば、ステレオリソグラフィー(SLA)方式、デジタルライトプロセッシング(DLP)方式、インクジェット方式が挙げられる。
 前記ステレオリソグラフィー(SLA)方式とは、液状の硬化性樹脂組成物の槽にレーザー光線等の活性エネルギー線を点で照射し、造形ステージを移動させながら一層ずつ硬化して立体造形を行う方式である。
 前記デジタルライトプロセッシング(DLP)方式とは、液状の硬化性樹脂組成物の槽にLED等の活性エネルギー線を面で照射し、造形ステージを移動させながら一層ずつ硬化して立体造形を行う方式である。
 前記インクジェット光造形法とは、光造形用硬化性樹脂組成物の微小液滴を、ノズルから所定の形状パターンを描画するよう吐出してから、紫外線を照射して硬化薄膜を形成する方法である。
 これらの光学的立体造形法のなかでも、面による高速造形が可能なことからDLP方式が好ましい。
 前記DLP方式の立体造形方法としては、DLP方式の光造形システムを用いた方法であれば特に制限されないが、その造形条件としては、立体造形物の造形精度が良好となることから、光造形の積層ピッチが0.01~0.2mmの範囲であり、照射波長が350~410nmの範囲であり、光強度が0.5~50mW/cmの範囲であり、1層当たりの積算光量が1~100mJ/cmの範囲であることを要し、なかでも、より一層立体造形物の造形精度が良好となることから、光造形の積層ピッチが、0.02~0.1mmの範囲であり、照射波長が、380~410nmの範囲であり、光強度が、5~15mW/cmの範囲であり、1層当たりの積算光量が、5~15mJ/cmの範囲であることが好ましい。
 本発明の立体造形物は、優れた鋳造性を有することから、前記立体造形物の燃焼率が、窒素雰囲気下、450℃の条件において90%以上であり、25℃から200℃までの最大膨張力が10MPa以下であることが好ましい。なお、本発明において、燃焼率は、熱重量示差熱測定(TG-DTA)での[(25℃における初期重量-各温度における重量)/(25℃における初期重量)]で算出した値であり、前記最大膨張力は、25℃から200℃における[(各温度での貯蔵弾性率)×(25℃での伸度を基準とした各温度での伸び率)]の最大値より算出した値である。
 本発明の立体造形物は、例えば、自動車部品、航空・宇宙関連部品、電気電子部品、建材、インテリア、宝飾、医療材料等に用いることができ、優れた硬度を有し、鋳造性に優れることから、医療材料の用途において好適に用いることができる。
 前記医療材料としては、例えば、歯科治療用のサージカルガイド、仮歯、ブリッジ、歯列矯正器具等の歯科用の硬質レジン材料が挙げられる。
 また、本発明の立体造形物は、優れた硬度及び鋳造性を有することから、前記立体造形物を用いた鋳型の製造にも好適である。
 前記鋳型の製造方法としては、例えば、本発明の立体造形物を埋没材で一部または全部を埋没させる工程(1)、前記埋没材を硬化または固化させる工程(2)、前記立体造形物を、溶融除去、分解除去、及び/または焼却除去させる工程(3)を有する方法等が挙げられる。
 前記埋没材としては、例えば、石膏系埋没材、リン酸塩系埋没材等が挙げられ、前記石膏系埋没材としては、例えば、シリカ埋没材、石英埋没材、クリストバライト埋没材等が挙げられる。
 前記工程(1)としては、本発明の立体造形物を埋没材で一部または全部を埋没させる工程である。この際、前記埋没材は、適量の水と練和させることが好ましい。混水比が多すぎると硬化時間が長くなり、少なすぎると流動性が悪くなり埋没材の流し込みが困難となる。また、前記立体造形物に界面活性剤を塗布すると埋没材が良く濡れてなじむため、鋳造物の表面に粗が出にくくなり好ましい。さらに、前記立体造形物を埋没する際は、鋳造物表面に気泡が付着しないように埋没することが好ましい。
 前記工程(2)としては、前記埋没材を硬化または固化させる工程である。前記埋没材として、石膏系埋没材を用いる場合、埋没材を固化させる温度は、200~400℃の範囲が好ましく、立体造形物を埋没後10~60分程度静置して固化させることが好ましい。
 前記工程(3)としては、前記立体造形物を、溶融除去、分解除去、及び/または焼却除去させる工程である。前記立体造形物を焼却除去する場合、焼成温度は、400~1000℃の範囲が好ましく、600~800℃の範囲がより好ましい。
 また、本発明の金属鋳造物は、前記工程(1)~(3)を経て得られた鋳型に、金属材料を流し込み、前記金属材料を固化させて[工程(4)]、得られるものである。これにより、前記立体造形物の原型に対応する金属鋳造物を製造することができる。
 以下、実施例と比較例とにより、本発明を具体的に説明する。
(実施例1:三次元造形用パターン材料(1)の調製)
 攪拌機を備えた容器に、ビスフェノールAエチレンオキサイド変性(10モル付加)ジメタクリレート80質量部と、ネオペンチルグリコールジメタクリレート20質量部と、光重合開始剤(IGM社製「Omnirad TPO」;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド)2質量部とを配合し、液温度60℃に制御しながら1時間攪拌混合し、均一に溶解することで、三次元造形用パターン材料(1)を得た。
(実施例2~8:三次元造形用パターン材料(2)~(8)の調製)
 表2に示す組成及び配合比率で実施例1と同様の方法にて、三次元造形用パターン材料(2)~(8)を得た。
(比較例1~6:三次元造形用パターン材料(9)~(14)の調製)
 表2に示す組成及び配合比率で実施例1と同様の方法にて、三次元造形用パターン材料(9)~(14)を得た。
(実施例9:立体造形物(E1)の作製)
 実施例1で得られた三次元造形用パターン材料(1)をデジタルライトプロセッシング(DLP)方式の光造形システム(3Delight社製「DLPプリンターVITTRO」)を用いて、立体造形物(E1’)を作製した。この際、光造形の積層ピッチは0.05~0.1mm、照射波長380~390nm、光照射時間は1層当たり2~6秒とした。前記立体造形物(E1’)を、エタノール中で超音波洗浄した後、LED光源を備えた後硬化装置を用いて、前記立体造形物(E1’)の表面及び裏面よりそれぞれ10分ずつ光照射を行って後硬化させ、目的とする立体造形物(E1)を得た。
(実施例10~16:立体造形物(E2)~(E8)の作製)
 実施例9で用いた三次元造形用パターン材料(1)に代えて、実施例2~8で得た三次元造形用パターン材料(2)~(8)を用いた以外は、実施例9と同様にして、立体造形物(E2)~(E8)を得た。
(比較例6~12:立体造形物(C1)~(C5)の作製)
 実施例9で用いた三次元造形用パターン材料(1)に代えて、比較例1~6で得た三次元造形用パターン材料(9)~(14)を用いた以外は、実施例9と同様にして、立体造形物(C1)~(C6)を得た。
 上記の実施例及び比較例で得られた立体造形物(E1)~(E8)及び(C1)~(C6)を用いて、下記の評価を行った。
[硬度の評価方法]
 実施例及び比較例で得られた立体造形物について、JIS K 6253-3:2012「加硫ゴム及び熱可塑性ゴム―硬さの求め方―第3部:デュロメータ硬さ」に記載された測定方法に準じて測定を行った。
[燃焼率の測定方法]
 実施例及び比較例で得られた立体造形物を5~6mg片に粉砕したものを試験片とし、示差熱熱重量同時測定装置(TG-DTA:メトラートレド社製TGA/DSC1)を用い、窒素雰囲気下で25℃から600℃まで10℃/分で昇温させた時の質量減少を測定し、450℃における燃焼率を[(25℃における初期重量-450℃における重量)/(25℃における初期重量)]から算出した。
[最大膨張力の測定方法]
 実施例及び比較例で得られた3次元造形用パターン材料を用いて、厚さ1mm、幅5mm、長さ50mmの立体造形物を作製し、前記立体造形物について、25℃から200℃における[(各温度での貯蔵弾性率)×(25℃での伸度を基準とした各温度での伸び率)]の最大値より算出した。なお、前記貯蔵弾性率は動的粘弾性測定装置(DMA:日立ハイテクサイエンス社製「DMS6100」)により、25℃から200℃での貯蔵弾性率の測定値を用い、前記伸び率は、熱機械分析装置(TMA:セイコーインスツルメント社製「SS-6100」)により、25℃での伸度を基準とした各温度における伸び率にて算出した。それぞれの値の積の最大値を最大膨張力とした。
[鋳造性の評価方法]
 クリストバライト埋没材(吉野石膏販売株式会社、サクラクイック30)と水を質量比100:33で混合した埋没材で実施例及び比較例で得られた立体造形物を埋没させ、25℃で30分間静置し埋没材を固化させた。次いで、700℃に加熱した電気炉で1時間加熱し、前記立体造形物を焼却させ鋳型を作製した。この際の鋳造性を、目視にて下記の基準に従い評価した。なお、鋳型の内部においては、鋳型を切断し、目視にて、ひび、亀裂の有無、立体造形物の残渣、煤の有無、鋳型への立体造形物の転写性の良・不良を判断したものである。
 ○:鋳型外部及び内部にひび割れや亀裂がなく、鋳型内部に立体造形物の残渣、煤がなく、鋳型への立体造形物の転写性が良好である。
 △:鋳型内部にひび割れや亀裂があるものの、鋳型外部にはひび割れや亀裂はなく、鋳型内部に立体造形物の残渣、煤がなく、鋳型への立体造形物の転写性が良好である。
 ×:鋳型外部のひび割れや亀裂、鋳型内部の立体造形物の残渣、煤残り、鋳型への立体造形物の転写不良の少なくとも1つを生じており、鋳型として使用不可である。
 実施例1~8で調製した三次元造形用パターン材料(1)~(8)の組成、及び実施例9~16で作成した立体造形物(E1)~(E8)、並びに比較例1~6で調製した三次元造形用パターン材料(9)~(14)の組成、及び比較例7~12で作成した立体造形物(C1)~(C6)の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014

Claims (9)

  1.  下記構造式(1)で表される(メタ)アクリレート化合物(A)と、
    脂肪族(メタ)アクリレート化合物(B)とを含有する硬化性樹脂組成物からなる三次元造形用パターン材料であって、
    前記(メタ)アクリレート化合物(A)の含有量が、前記(メタ)アクリレート化合物(A)と、前記(メタ)アクリレート化合物(B)との合計質量中に50質量%以上であることを特徴とする三次元造形用パターン材料。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは、それぞれ独立して水素原子またはメチル基であり、Rは、それぞれ独立して水素原子またはメチル基であり、Rは、それぞれ独立して水素原子またはメチル基である。Xは、-O-、-SO-、下記構造式(2)で表される構造、または下記構造式(3)で表される構造であり、mは、0または1~30の整数であり、nは、0または1~30の整数であり、m+nは、10以上の整数である。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R、Rは、水素原子または炭素原子数1~10の炭化水素基である。]
    Figure JPOXMLDOC01-appb-C000003
  2.  前記硬化性樹脂組成物が、さらに、光重合開始剤(C)を含有するものである請求項1記載の三次元造形用パターン材料。
  3.  前記硬化性樹脂組成物が、さらに、顔料(D)を含有するものである請求項1記載の三次元造形用パターン材料。
  4.  前記脂肪族(メタ)アクリレート化合物(B)が、2官能以上の(メタ)アクリロイル基を有するアクリレート化合物である請求項1~3のいずれか1項記載の三次元造形用パターン材料。
  5.  請求項1~4のいずれか1項記載の三次元造形用パターン材料の硬化反応物であることを特徴とする硬化物。
  6.  請求項5記載の硬化物からなることを特徴とする立体造形物。
  7.  前記立体造形物の燃焼率が、窒素雰囲気下、450℃の条件において90%以上であり、25℃から200℃までの最大膨張力が10MPa以下である請求項6記載の立体造形物。
  8.  請求項6または7記載の立体造形物を埋没材で一部または全部を埋没させる工程(1)、
    前記埋没材を硬化または固化させる工程(2)
    前記立体造形物を、溶融除去、分解除去、及び/または焼却除去させる工程(3)、
    を有することを特徴とする鋳型の製造方法。
  9.  請求項8記載の製造方法で得られた鋳型に金属材料を流し込み、前記金属材料を固化させる工程(4)を有することを特徴とする金属鋳造物の製造方法。
PCT/JP2020/047076 2019-12-23 2020-12-17 三次元造形用パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法 WO2021131994A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227021026A KR20220115574A (ko) 2019-12-23 2020-12-17 3차원 조형용 패턴 재료, 경화물, 입체 조형물, 및 상기 입체 조형물을 이용한 주형의 제조 방법
CN202080087115.2A CN114845826A (zh) 2019-12-23 2020-12-17 三维造型用图案材料、固化物、立体造型物、及使用所述立体造型物的铸模的制造方法
JP2021567351A JP7315031B2 (ja) 2019-12-23 2020-12-17 三次元造形用パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法
EP20906970.7A EP4082688A4 (en) 2019-12-23 2020-12-17 THREE-DIMENSIONAL MODELING STRUCTURAL MATERIAL, HARDENED PRODUCT, CUBIC MOLDING AND METHOD FOR MAKING A MOLD USING SUCH CUBIC MOLDING
US17/846,448 US20220325023A1 (en) 2019-12-23 2022-06-22 Three-dimensional modeling pattern material, cured product, cubic molded article, and method for producing mold by using said cubic molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-231479 2019-12-23
JP2019231479 2019-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/846,448 Continuation US20220325023A1 (en) 2019-12-23 2022-06-22 Three-dimensional modeling pattern material, cured product, cubic molded article, and method for producing mold by using said cubic molded article

Publications (1)

Publication Number Publication Date
WO2021131994A1 true WO2021131994A1 (ja) 2021-07-01

Family

ID=76575930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047076 WO2021131994A1 (ja) 2019-12-23 2020-12-17 三次元造形用パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法

Country Status (7)

Country Link
US (1) US20220325023A1 (ja)
EP (1) EP4082688A4 (ja)
JP (1) JP7315031B2 (ja)
KR (1) KR20220115574A (ja)
CN (1) CN114845826A (ja)
TW (1) TW202140587A (ja)
WO (1) WO2021131994A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166781A1 (ja) * 2022-03-03 2023-09-07 Dic株式会社 光硬化性樹脂組成物、硬化物、立体造形物、及び鋳型の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208217A (ja) * 2007-02-26 2008-09-11 Denki Kagaku Kogyo Kk 樹脂組成物と接着剤
JP2017502965A (ja) * 2013-12-31 2017-01-26 デンツプライ インターナショナル インコーポレーテッド アップコンバージョン蛍光体を含有する歯科用組成物及び使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969000A (en) * 1997-01-17 1999-10-19 Jeneric Pentron Incorporated Dental resin materials
DE102004034416A1 (de) * 2004-07-15 2006-02-02 "Stiftung Caesar" (Center Of Advanced European Studies And Research) Flüssige, strahlunghärtende Zusammensetzungen
US10709530B2 (en) 2015-02-03 2020-07-14 Mitsui Chemicals, Inc. Photocurable composition, denture base, and plate denture
DE102016225208A1 (de) * 2016-12-15 2018-06-21 Ivoclar Vivadent Ag Ausbrennbares Material auf Polymerbasis für die Lost-Wax Technik

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208217A (ja) * 2007-02-26 2008-09-11 Denki Kagaku Kogyo Kk 樹脂組成物と接着剤
JP2017502965A (ja) * 2013-12-31 2017-01-26 デンツプライ インターナショナル インコーポレーテッド アップコンバージョン蛍光体を含有する歯科用組成物及び使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Rubber, vulcanized or thermoplastic - Determination of hardness - Part 3: Durometer method", JIS K 6253-3: 2012
See also references of EP4082688A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166781A1 (ja) * 2022-03-03 2023-09-07 Dic株式会社 光硬化性樹脂組成物、硬化物、立体造形物、及び鋳型の製造方法

Also Published As

Publication number Publication date
KR20220115574A (ko) 2022-08-17
JPWO2021131994A1 (ja) 2021-07-01
TW202140587A (zh) 2021-11-01
JP7315031B2 (ja) 2023-07-26
EP4082688A1 (en) 2022-11-02
EP4082688A4 (en) 2024-01-31
US20220325023A1 (en) 2022-10-13
CN114845826A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
JP7268354B2 (ja) 光学的立体造形用光硬化性樹脂組成物
WO2018143305A1 (ja) 光造形用インクセット、光造形品、及び、光造形品の製造方法
JP7327682B2 (ja) 光硬化性樹脂組成物、硬化物、樹脂造形物、及び鋳型の製造方法
JP7395830B2 (ja) 医療用立体造形物、立体造形物及び医療用立体造形物の製造方法
JP7315031B2 (ja) 三次元造形用パターン材料、硬化物、立体造形物、及び前記立体造形物を用いた鋳型の製造方法
WO2021205954A1 (ja) 立体造形用光硬化性樹脂組成物
EP3858876B1 (en) Curable resin composition, cured product, and three-dimensional object
JP2004059601A (ja) 光学的立体造形用樹脂組成物、及び立体造形物
JP7463718B2 (ja) 硬化性樹脂組成物、硬化物及び立体造形物
JP7458574B2 (ja) 硬化性樹脂組成物、硬化物及び立体造形物
JP4007704B2 (ja) 光学的立体造形用の光硬化性樹脂組成物
KR20220146612A (ko) 광개시제 에멀젼
JP7495021B2 (ja) 光硬化性樹脂組成物、硬化物、立体造形物、及び鋳型の製造方法
JP7231119B2 (ja) 光造形用硬化性樹脂組成物、硬化物及び立体造形物
WO2023188464A1 (ja) 硬化性樹脂組成物、硬化物及び立体造形物
JP2021130199A (ja) 光造形用インクセット
WO2022009880A1 (ja) 光硬化性組成物、立体造形物、及び歯科用製品
JP2020050702A (ja) 硬化物及び立体造形物
JP2004300298A (ja) 立体造形用組成物、及び立体造形物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567351

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227021026

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020906970

Country of ref document: EP

Effective date: 20220725