WO2021131808A1 - 半導体素子の製造方法及び半導体装置 - Google Patents

半導体素子の製造方法及び半導体装置 Download PDF

Info

Publication number
WO2021131808A1
WO2021131808A1 PCT/JP2020/046353 JP2020046353W WO2021131808A1 WO 2021131808 A1 WO2021131808 A1 WO 2021131808A1 JP 2020046353 W JP2020046353 W JP 2020046353W WO 2021131808 A1 WO2021131808 A1 WO 2021131808A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
layer
mask
manufacturing
gan
Prior art date
Application number
PCT/JP2020/046353
Other languages
English (en)
French (fr)
Inventor
東 克典
知央 平山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US17/785,447 priority Critical patent/US20230022774A1/en
Priority to CN202080086808.XA priority patent/CN114846589A/zh
Priority to JP2021567247A priority patent/JPWO2021131808A1/ja
Priority to EP20907611.6A priority patent/EP4086941A4/en
Publication of WO2021131808A1 publication Critical patent/WO2021131808A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02642Mask materials other than SiO2 or SiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • This application relates to a method for manufacturing a semiconductor element and a semiconductor device.
  • Patent Document 1 describes a method for manufacturing a semiconductor element in which a GaN-based semiconductor is manufactured by an ELO (Epitaxial Lateral OverGrowth) method using a mask made of SiO 2.
  • ELO Epiaxial Lateral OverGrowth
  • a method for manufacturing a semiconductor element includes a step of covering the surface of a substrate to form a partially open mask, and epitaxially growing the semiconductor element from the surface of the substrate exposed from the opening along the mask. , A step of forming a semiconductor layer containing a predetermined semiconductor material, and the surface of the mask on the side close to the semiconductor layer does not contain an element serving as a donor or acceptor in the predetermined semiconductor material, and is amorphous. Formed from quality first material.
  • the semiconductor device includes a plurality of semiconductor elements including a semiconductor layer containing a predetermined semiconductor material, a first electrode arranged on one surface of the semiconductor layer, and the plurality of semiconductor elements.
  • a support substrate that supports one surface of the semiconductor layer is provided, and the semiconductor layer is laminated with an n ⁇ GaN layer located on the other surface and an n + GaN layer located on one surface.
  • a low doping concentration of 10 16 / cm 3 units or less can be realized.
  • FIG. 1 is a cross-sectional view for explaining a method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 2 is a schematic view for explaining the semiconductor device according to the first embodiment.
  • FIG. 3 is a process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 4 is a cross-sectional view for explaining a method for manufacturing a semiconductor element according to the first embodiment.
  • FIG. 5 is a process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 6 is a cross-sectional view for explaining a method of manufacturing a semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view for explaining a method for manufacturing a semiconductor element according to the second embodiment.
  • FIG. 1 is a cross-sectional view for explaining a method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 2 is a schematic view for explaining the semiconductor device according to the first embodiment.
  • FIG. 3 is a process diagram
  • FIG. 8 is a process diagram for explaining a method for manufacturing a semiconductor element according to the third embodiment.
  • FIG. 9 is a process diagram for explaining a method for manufacturing a semiconductor element according to the fourth embodiment.
  • FIG. 10 is a cross-sectional view for explaining a method for manufacturing a semiconductor element according to the fifth embodiment.
  • FIG. 1 is a cross-sectional view for explaining a method for manufacturing a semiconductor element according to the first embodiment.
  • FIG. 2 is a schematic view for explaining the semiconductor device according to the first embodiment.
  • a plurality of semiconductor elements 1 are connected in parallel or in series to form a semiconductor device 2.
  • the semiconductor device 2 is, for example, a power semiconductor device such as a Schottky barrier diode (SBD) and a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • SBD Schottky barrier diode
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the mask 21 is formed on the surface 11a of the base substrate (board) 11 and the semiconductor layer 31 is formed on the surface 21a of the mask 21 in the manufacturing process.
  • the semiconductor layer 31 has an n ⁇ GaN layer 32 and an n + GaN layer 33.
  • the semiconductor element 1 includes a Schottky electrode (second electrode) 41 arranged on the other surface 31a of the semiconductor layer 31 and an ohmic electrode (first electrode) 61 arranged on the side of one surface 31b of the semiconductor layer 31. And have.
  • n - donor density of the GaN layer 32 is, for example, 10 17 or fewer.
  • the donor density of the n + GaN layer 33 is, for example, 10 18 or more.
  • the base substrate 11 is a substrate made of a nitride semiconductor.
  • the base substrate 11 is, for example, a C-plane GaN substrate cut out from a gallium nitride (GaN) single crystal ingot.
  • the base substrate 11 is, for example, a C-plane sapphire substrate.
  • the base substrate 11 may be, for example, a substrate in which a semiconductor layer such as a GaN layer is grown in the (0001) plane orientation on a C-plane sapphire substrate or a Si substrate having a (111) plane orientation. In the present embodiment, the base substrate 11 will be described as being formed of GaN of C-plane sapphire.
  • the base substrate 11 is peeled off from the semiconductor layer 31 in the manufacturing process. The peeled base substrate 11 can be reused in the manufacturing process of the other semiconductor element 1.
  • the mask 21 covers the surface 11a of the base substrate 11 and is arranged in a partially opened state.
  • the mask 21 has a plurality of strip-shaped openings 22.
  • the surface 21a of the mask 21 on the side closer to the semiconductor layer 31 is formed of an amorphous first material that does not contain an element that serves as a donor or acceptor in a predetermined semiconductor material.
  • the predetermined semiconductor material is the material of the semiconductor layer 31, for example, GaN.
  • the first material is, for example, aluminum oxide (AlOx) as a material containing an element that does not become a donor.
  • AlOx aluminum oxide
  • the mask 21 will be described as being formed of AlOx.
  • all peripheral surfaces of the mask 21 including the surface 21a are formed of AlOx.
  • the predetermined semiconductor material is GaN
  • the element that becomes a donor is a Group 14 element.
  • the predetermined semiconductor material is GaN, the element that becomes an acceptor is a Group 12 element.
  • the mask 21 is formed by forming an AlOx film on the surface 11a of the base substrate 11 and then patterning the mask 21 to partially provide an opening.
  • the method for forming the AlOx film is, for example, atomic layer deposition (ALD) or sputtering.
  • the patterning method is, for example, photolithography and etching using a photomask.
  • the method of forming the AlOx film and the method of patterning are not limited.
  • the mask 21 is removed by etching in the manufacturing process.
  • the thickness of the mask 21 in the stacking direction may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the semiconductor layer 31 is a layer containing a predetermined semiconductor material, which is epitaxially grown along the mask 21.
  • the semiconductor layer 31 includes a laminated n - GaN layer 32 located on the other surface 31a and an n + GaN layer 33 located on one surface 31b.
  • the n - GaN layer 32 is located near the surface 21a of the mask 21.
  • One surface 31b of the semiconductor layer 31 is the surface 33a of the n + GaN layer 33.
  • the n + GaN layer 33 is located on the side far from the surface 21a of the mask 21, in other words, on the surface 32a of the n ⁇ GaN layer 32.
  • the concentration of n-type impurities contained in the semiconductor layer 32 is 10 16 / cm 3 units or less.
  • the concentration of n-type impurities contained in the layer of the semiconductor layer 31 near the surface 21a of the mask 21 is 10 16 / cm 3 units or less.
  • n of the semiconductor layer 31 - the n-type impurity contained in the GaN layer 32 concentration is less than three 10 16 / cm.
  • the n-type impurity is Al.
  • the thickness of the semiconductor layer 31 in the stacking direction may be 2.0 ⁇ m or more and 17 ⁇ m or less.
  • the thickness of the n ⁇ GaN layer 32 in the stacking direction may be thicker than the thickness of the n + GaN layer 33 in the stacking direction.
  • the thickness of the n ⁇ GaN layer 32 in the stacking direction may be 2.0 ⁇ m or more and 12 ⁇ m or less.
  • the thickness of the n + GaN layer 33 in the stacking direction may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the Schottky electrode 41 is arranged on the other surface 31a of the semiconductor layer 31.
  • the Schottky electrode 41 is formed in a band shape.
  • the insulating film 42 is an insulating film for forming a field plate structure.
  • the insulating film 42 is arranged so as to cover the peripheral edge of the other surface 31a of each exposed semiconductor layer 31 and the peripheral edge of the Schottky electrode 41.
  • the insulating film 42 is formed in a tubular shape and has an opening 42a in the central portion.
  • a metal 43 is arranged on the surface 41a of the Schottky electrode 41 exposed from the opening 42a of the insulating film 42 so as to partially cover the insulating film 42, forming a field plate structure.
  • the Schottky electrode 41 is the anode of the semiconductor element 1.
  • the support substrate 51 supports one surface 31b of the plurality of semiconductor elements 1.
  • the plurality of semiconductor elements 1 supported by the support substrate 51 are connected in parallel or in series.
  • the support substrate 51 has an adhesive layer formed on one surface 51a.
  • a conductive adhesive may be appropriately used.
  • the adhesive layer is nano Ag paste, nano Cu paste, high temperature solder, or the like. Alternatively, it may be directly bonded without using a bonding material.
  • the support substrate 51 may be, for example, an n + Si substrate having a small electrical resistance.
  • the support substrate 51 may be, for example, a compound semiconductor substrate such as GaAs, GaP, or GaN, a metal substrate, or the like.
  • One surface 51a of such a support substrate 51 and one surface 31b of the semiconductor layer 31 are attached and joined in a state of facing each other. The joining may be performed under conditions such as pressure welding, heating, N 2 gas atmosphere, and H 2 gas atmosphere.
  • the ohmic electrode 61 is arranged on one surface 31b side of the semiconductor layer 31. More specifically, the ohmic electrode 61 is arranged on the other surface 51b of the support substrate 51.
  • the ohmic electrode 61 is the cathode of the semiconductor element 1.
  • the ohmic electrode 61 is laminated with aluminum, titanium, nickel, gold, or the like as an external electrode in the order of proximity to the other surface 51b.
  • FIG. 3 is a process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 4 is a cross-sectional view for explaining a method for manufacturing a semiconductor element according to the first embodiment.
  • a partially open mask 21 is formed by covering the surface 11a of the base substrate 11 (step ST11). More specifically, an AlOx film is formed on the surface 11a of the base substrate 11 by, for example, atomic layer deposition, sputtering, CVD, or the like. Then, the AlOx film is patterned by photolithography and etching using a photomask to form a mask 21 having a plurality of openings 22.
  • step ST11 the surface 11a of the base substrate 11 in the portion corresponding to the opening 22 of the mask 21 is exposed.
  • the surface 11a located at both ends of the base substrate 11 is not covered with the mask 21.
  • the surfaces 11a located at both ends of the base substrate 11 may be covered with the mask 21.
  • the entire side surface or the back surface of the base substrate 11 may be covered with the mask 21.
  • the entire surface except for the opening 22 may be covered with the mask 21.
  • step ST12 epitaxial growth is performed along the mask 21 to form a semiconductor layer 31 containing a predetermined semiconductor material. More specifically, a vapor phase growth method using a mask 21, for example, a metalorganic chemical vapor deposition (MOCVD) method, or an HVPE (Hydride Vapor Phase Epitaxy) method is used to move the semiconductor layer 31 in the (0001) direction. , (1120) direction. Specifically, the base substrate 11 on which the mask 21 is formed is inserted into the reaction tube of the epitaxial apparatus.
  • MOCVD metalorganic chemical vapor deposition
  • HVPE Hydride Vapor Phase Epitaxy
  • the base substrate 11 is subjected to a predetermined growth temperature, for example.
  • the temperature is raised to 1050 ° C. or higher and 1100 ° C. or lower.
  • a group III raw material such as trimethylgallium (TMG) is supplied in addition to the above gas, and the semiconductor layer 31 is vapor-deposited from the opening 22.
  • TMG trimethylgallium
  • step ST12 first, crystals of a predetermined semiconductor material selectively grow on the surface 11a of the base substrate 11 exposed to the opening 22, and then grow laterally along the surface 21a of the mask 21 to cause the surface 21a of the mask 21.
  • the semiconductor layer 31 grows on the surface.
  • the semiconductor layer 31 that has grown in the lateral direction stops growing before coming into contact with the adjacent semiconductor layer 31.
  • the semiconductor layer 31 is mainly (0001) direction to a desired thickness, n - after the GaN layer 32 is epitaxially grown, n - a n + GaN layer 33 is epitaxially grown on the GaN layer 32 ..
  • the n ⁇ GaN layer 32 and the n + GaN layer 33 are laminated.
  • the n - GaN layer 32 can be formed on the surface 21a. Further, since the surface 21a of the mask 21 is amorphous, the n - GaN layer 32 can be formed on the surface 21a.
  • the base substrate 11 on which the semiconductor layer 31 is formed in this way is taken out from the epitaxial device.
  • FIG. 5 is a process diagram for explaining a method for manufacturing a semiconductor device according to the first embodiment.
  • FIG. 6 is a cross-sectional view for explaining a method of manufacturing a semiconductor device according to the first embodiment. Steps ST21 to ST27 are performed after performing steps ST11 to ST12.
  • One surface 31b of the semiconductor layer 31 of the plurality of semiconductor elements 1 is attached to the support substrate 51 (step ST21). More specifically, one surface 51a of the support substrate 51 and one surface 31b of the semiconductor layer 31 are attached and joined in a state of facing each other. As a result, the semiconductor layers 31 of the plurality of semiconductor elements 1 are arranged on one surface 51a of the support substrate 51.
  • the ohmic electrode 61 is formed on the other surface 51b of the support substrate 51 (step ST22).
  • aluminum, titanium, nickel, and gold are laminated in the order closer to the other surface 51b of the support substrate 51 to form the ohmic electrode 61.
  • the mask 21 arranged on the base substrate 11 is removed by wet etching (step ST23).
  • An external force is applied so as to peel off the base substrate 11 and the support substrate 51, and the base substrate 11 is peeled off from one surface 31b of the semiconductor layer 31 (step ST24).
  • the external force is applied by, for example, ultrasonic waves.
  • the insulating film 42 is formed by covering the peripheral edge of the other surface 31a of each of the exposed strip-shaped semiconductor layers 31 (step ST25).
  • a Schottky electrode 41 is formed on the other surface 31a of each semiconductor layer 31 (step ST26).
  • a metal 43 is formed on the surface 41a of the Schottky electrode 41 exposed from the opening 42a of the insulating film 42 (step ST27).
  • the semiconductor device 2 in which a plurality of semiconductor elements 1 are connected in parallel or in series is formed on the support substrate 51.
  • the semiconductor device 2 includes a semiconductor layer 31 containing a predetermined semiconductor material, an ohmic electrode 61 arranged on one surface 31b of the semiconductor layer 31, and a shotky electrode 41 arranged on the other surface 31a of the semiconductor layer 31.
  • a plurality of semiconductor elements 1 having the above, and a support substrate 51 for supporting the plurality of semiconductor elements 1 are provided. Further, the Schottky electrodes 41 of the semiconductor elements 1 of the plurality of semiconductor devices 2 may be connected via the wires 52.
  • the surface 21a of the mask 21 is a material that does not contain an element that serves as a donor to the semiconductor layer 31, auto-doping is reduced and the n - GaN layer 32 can be formed on the surface 21a. Further, since the surface 21a of the mask 21 is amorphous, the n - GaN layer 32 can be formed on the surface 21a. These by, n - after the GaN layer 32 is epitaxially grown, n - a n + GaN layer 33 on the GaN layer 32 can be epitaxially grown.
  • the thickness of the n ⁇ GaN layer 32 in the stacking direction can be made thinner, and the thickness of the n + GaN layer 33 in the stacking direction can be made thinner, so that the manufacturing cost required for the epitaxial growth of the semiconductor element 1 and the semiconductor device 2 can be reduced. ..
  • the n + GaN layer 33 is epitaxially grown on the n ⁇ GaN layer 32, the device characteristics of the semiconductor element 1 and the semiconductor device 2 can be improved.
  • the mask 21 is made of AlOx and does not contain Si, which is an n-type dope material. As a result, it is possible to suppress the occurrence of auto-doping in which Si of the mask 21 is incorporated into the crystal during epitaxial growth. As a result, the manufactured semiconductor element 1 can realize a low concentration of 10 16 / cm 3 units or less, which is required for a high withstand voltage layer of a power device, for example.
  • FIG. 7 is a cross-sectional view for explaining a method for manufacturing a semiconductor element according to the second embodiment.
  • the manufacturing method of the semiconductor element 1, the semiconductor device 2, and the semiconductor element 1 is basically the same as the manufacturing method of the semiconductor element 1, the semiconductor device 2, and the semiconductor element 1 of the first embodiment.
  • the same components as those in the first embodiment are designated by the same reference numerals or corresponding reference numerals, and detailed description thereof will be omitted.
  • the mask 21 has a first layer 211 and a plurality of layers including a second layer 212 located closer to the semiconductor layer 31 than the first layer 211.
  • the mask 21 has two layers, a first layer 211 and a second layer 212.
  • the first layer 211 is formed of a second material containing an element that serves as a donor or acceptor in a given semiconductor material.
  • the first layer 211 is formed of, for example, amorphous SiO 2.
  • the second layer 212 is formed of a first material that does not contain an element that serves as a donor or acceptor in a predetermined semiconductor material.
  • the second layer 212 is formed of, for example, AlOx.
  • the thickness of the second layer 212 in the stacking direction may be thicker than the thickness of the first layer 211 in the stacking direction.
  • the thickness of the first layer 211 in the stacking direction may be 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the second layer 212 in the stacking direction may be 10 ⁇ m or more and 30 ⁇ m or less.
  • the mask 21 can reduce the thickness of the first layer 211 formed of AlOx in the stacking direction. As a result, the time required for the step of forming the mask 21 (step ST11) can be shortened. The manufacturing cost of the semiconductor element 1 and the semiconductor device 2 can be reduced.
  • FIG. 8 is a process diagram for explaining a method for manufacturing a semiconductor element according to the third embodiment.
  • Step ST31 and step ST33 are the same as steps ST11 and ST12 shown in FIG.
  • the surface 21a of the mask 21 on the side closer to the semiconductor layer 31 is formed to have a rough surface roughness.
  • the smoothly formed surface 21a may be processed to make the surface roughness rough.
  • the surface 21a having a rough surface may be used as it is.
  • a case where the smoothly formed surface 21a is processed to make the surface roughness rough will be described.
  • the surface 21a of the mask 21 formed in step ST31 on the side close to the semiconductor layer 31 is processed to make the surface roughness rough (step ST32).
  • the crystal can be appropriately grown at the time of epitaxial growth.
  • FIG. 9 is a process diagram for explaining a method for manufacturing a semiconductor element according to the fourth embodiment. Steps ST41 and ST43 are the same as steps ST11 and ST12 shown in FIG.
  • the surface 21a of the mask 21 on the side closer to the semiconductor layer 31 is formed with high smoothness.
  • the smoothly formed surface 21a may be used as it is.
  • the surface 21a having a rough surface may be polished to be smooth.
  • a case where the surface 21a having a rough surface roughness is polished to increase the smoothness will be described.
  • the surface 21a of the mask 21 formed in step ST41 on the side close to the semiconductor layer 31 is polished to increase the smoothness (step ST42).
  • the raw material gas or the like flows smoothly along the surface 21a during epitaxial growth.
  • the crystal can be appropriately grown during epitaxial growth.
  • FIG. 10 is a cross-sectional view for explaining a method for manufacturing a semiconductor element according to the fifth embodiment.
  • the mask 21 includes a first layer 211, a second layer 212 located closer to the semiconductor layer 31 than the first layer 211, and a third layer located closer to the surface 11a of the base substrate 11 than the second layer 212. It has a plurality of layers including 213. In the present embodiment, the mask 21 has three layers, that is, the first layer 211, the second layer 212, and the third layer 213.
  • the first layer 211 is formed of an amorphous first material containing an element that acts as a donor or acceptor in a given semiconductor material.
  • the first layer 211 is formed of, for example, amorphous SiO 2.
  • the second layer 212 is formed of an amorphous first material that does not contain an element that serves as a donor or acceptor in a given semiconductor material.
  • the second layer 212 is formed of, for example, AlOx.
  • the third layer 213 is formed of an amorphous third material that does not contain an element that serves as a donor or acceptor in a predetermined semiconductor material.
  • the first layer 211 is formed of, for example, AlOx.
  • the third layer 213 does not serve as a donor to the base substrate 11, and the occurrence of auto-doping to the base substrate 11 can be suppressed. As a result, the base substrate 11 can be easily reused in the manufacturing process of the other semiconductor element 1.
  • the embodiments disclosed in the present application may be applied to various light emitting devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

半導体素子の製造方法は、ベース基板11の表面を覆って、一部が開口したマスク21を形成する工程と、開口22から露出するベース基板11の表面から、マスク21に沿ってエピタキシャル成長させて、所定の半導体材料を含む半導体層31を形成する工程と、を含む。マスク21における、半導体層31に近い側の表面21aは、所定の半導体材料におけるドナーまたはアクセプタとなる元素を含まない、非晶質の第一材料で形成される。

Description

半導体素子の製造方法及び半導体装置
 本出願は、半導体素子の製造方法及び半導体装置に関する。
 特許文献1には、GaN系半導体をSiOからなるマスクを用いて、ELO(Epitaxial Lateral OverGrowth)法で作製する半導体素子の製造方法が記載されている。
特許第4638958号公報
 GaN系半導体をSiO等のSiを含む成長マスクを用いて、ELO(Epitaxial Lateral OverGrowth)法で作製する場合、成長マスク中のSiが結晶中に取り込まれる、オートドープが発生する可能性がある。Siは、GaN系半導体の中で、n型ドープ材となるので、1016/cm台以下の低いドープ濃度を実現することが困難である。
 1つの態様に係る半導体素子の製造方法は、基板の表面を覆って、一部が開口したマスクを形成する工程と、前記開口から露出する前記基板の表面から、前記マスクに沿ってエピタキシャル成長させて、所定の半導体材料を含む半導体層を形成する工程と、を含み、前記マスクにおける、前記半導体層に近い側の表面は、前記所定の半導体材料におけるドナーまたはアクセプタとなる元素を含まない、非晶質の第一材料で形成される。
 1つの態様に係る半導体装置は、所定の半導体材料を含む半導体層と、前記半導体層の一方の表面に配置された第一電極と、を含む複数の半導体素子と、複数の前記半導体素子の前記半導体層の一方の表面を支持する支持基板と、を備え、前記半導体層は、他方の表面に位置するnGaN層と、一方の表面に位置するnGaN層とが積層されている。
 1つの態様によれば、1016/cm台以下の低いドープ濃度を実現できる。
図1は、第一実施形態に係る半導体素子の製造方法を説明するための断面図である。 図2は、第一実施形態に係る半導体装置を説明するための概略図である。 図3は、第一実施形態に係る半導体素子の製造方法を説明するための工程図である。 図4は、第一実施形態に係る半導体素子の製造方法を説明するための断面図である。 図5は、第一実施形態に係る半導体装置の製造方法を説明するための工程図である。 図6は、第一実施形態に係る半導体装置の製造方法を説明するための断面図である。 図7は、第二実施形態に係る半導体素子の製造方法を説明するための断面図である。 図8は、第三実施形態に係る半導体素子の製造方法を説明するための工程図である。 図9は、第四実施形態に係る半導体素子の製造方法を説明するための工程図である。 図10は、第五実施形態に係る半導体素子の製造方法を説明するための断面図である。
 本出願に係る実施形態を、図面を参照しつつ詳細に説明する。以下の説明において、同様の構成要素について同一の符号を付すことがある。さらに、重複する説明は省略することがある。
[第一実施形態]
 実施形態に係る半導体素子1、半導体装置2及び半導体素子1の製造方法について説明する。
 図1は、第一実施形態に係る半導体素子の製造方法を説明するための断面図である。図2は、第一実施形態に係る半導体装置を説明するための概略図である。複数の半導体素子1が並列または直列に接続されて、半導体装置2が形成される。本実施形態では、半導体装置2は、例えば、ショットキーバリアダイオード(SBD:Schottky Barrier Diode)、MOSFET(Metal Oxide Semiconductor Field Effect Trasistor)のようなパワー半導体装置である。
 半導体素子1は、製造工程において、ベース基板(基板)11の表面11aにマスク21が形成され、マスク21の表面21aに半導体層31が形成される。半導体層31は、nGaN層32と、nGaN層33とを有する。半導体素子1は、半導体層31の他方の表面31aに配置されたショットキー電極(第二電極)41と、半導体層31の一方の表面31bの側に配置されたオーミック電極(第一電極)61とを有する。nGaN層32のドナー密度は、例えば1017台以下である。nGaN層33のドナー密度は、例えば1018台以上である。
 ベース基板11は、窒化物半導体で形成された基板である。ベース基板11は、例えば、窒化ガリウム(GaN)単結晶インゴットから切出したC面のGaN基板である。ベース基板11は、例えば、C面サファイア基板である。ベース基板11は、例えば、C面サファイア基板または(111)面方位のSi基板などの上に例えばGaN層などの半導体層を(0001)面方位に成長させた基板でもよい。本実施形態では、ベース基板11は、C面サファイアのGaNで形成されるものとして説明する。ベース基板11は、製造工程において半導体層31から剥離される。剥離されたベース基板11は、他の半導体素子1の製造工程において再利用可能である。
 マスク21は、ベース基板11の表面11aを覆って、一部が開口した状態で配置される。本実施形態では、マスク21は、複数の帯状の開口22を有する。
 マスク21における、半導体層31に近い側の表面21aは、所定の半導体材料におけるドナーまたはアクセプタとなる元素を含まない、非晶質の第一材料で形成される。所定の半導体材料は、半導体層31の材料のことであり、例えば、GaNである。第一材料は、ドナーにならない元素を含む材料として、例えば、アルミニウム酸化物(AlOx)である。本実施形態では、マスク21は、AlOxで形成されるものとして説明する。本実施形態では、表面21aを含む、マスク21におけるすべての周面がAlOxで形成される。所定の半導体材料がGaNであるとき、ドナーとなる元素は、第14族元素である。所定の半導体材料がGaNであるとき、アクセプタとなる元素は、第12族元素である。
 マスク21は、ベース基板11の表面11aの上に、AlOx膜を成膜した後、パターニングによって、一部に開口が設けられて、形成される。AlOx膜を成膜する方法は、例えば、アトミックレイヤデポジション(ALD:Atomic Layer Deposition)またはスパッタリングである。パターニングの方法は、例えば、フォトマスクを用いたフォトリソグラフィ及びエッチングである。AlOx膜を成膜する方法及びパターニングの方法は限定されない。マスク21は、製造工程においてエッチングによって除去される。
 マスク21の積層方向の厚さは、0.1μm以上10μm以下であってもよい。
 半導体層31は、マスク21に沿ってエピタキシャル成長させた、所定の半導体材料を含む層である。半導体層31は、積層させた、他方の表面31aに位置するnGaN層32と、一方の表面31bに位置するnGaN層33とを含む。nGaN層32は、マスク21の表面21aに近い側に位置する。半導体層31の一方の表面31bは、nGaN層33の表面33aである。nGaN層33は、マスク21の表面21aから遠い側、言い換えると、nGaN層32の表面32aに位置する。
 半導体層32に含まれるn型不純物の濃度は、1016/cm台以下である。半導体層31のマスク21の表面21aに近い側の層に含まれるn型不純物の濃度は、1016/cm台以下である。本実施形態では、半導体層31のnGaN層32に含まれるn型不純物の濃度は1016/cm台以下である。本実施形態では、n型不純物は、Alである。
 例えば、600Vが耐圧の素子だと、半導体層31の積層方向の厚さは、2.0μm以上17μm以下であってもよい。nGaN層32の積層方向の厚さは、nGaN層33の積層方向の厚さより厚くてもよい。nGaN層32の積層方向の厚さは、2.0μm以上12μm以下であってもよい。nGaN層33の積層方向の厚さは、0.1μm以上5μm以下であってもよい。
 ショットキー電極41は、半導体層31の他方の表面31aに配置される。ショットキー電極41は、帯状に形成される。絶縁膜42は、フィールドプレート構造を作るための絶縁膜である。絶縁膜42は、露出している各半導体層31の他方の表面31aの周縁部と、ショットキー電極41の周縁部とを覆って配置される。絶縁膜42は、筒状に形成され、中央部に開口42aを有する。絶縁膜42の開口42aから露出しているショットキー電極41の表面41aには、メタル43が絶縁膜42を一部覆うように配置され、フィールドプレート構造を構成する。ショットキー電極41は、半導体素子1のアノードである。
 支持基板51は、複数の半導体素子1の一方の表面31bを支持する。支持基板51によって支持された複数の半導体素子1は、並列または直列に接続される。支持基板51は一方の表面51aに接着層が形成されている。接着層は、導電性を有する接着材が適宜用いられてよい。例えば、接着層は、ナノAgぺースト、ナノCuペースト、高温はんだなどである。または接合材を用いず、直接接合してもよい。支持基板51は、例えば、電気抵抗の小さいnSi基板であってもよい。支持基板51は、例えば、GaAs、GaP、GaNなどの化合物半導体基板、金属基板などでもよい。このような支持基板51の一方の表面51aと、半導体層31の一方の表面31bとを対向させた状態で張り付けて接合する。接合は、例えば圧接、加熱、Nガス雰囲気、Hガス雰囲気などの条件下で、行われてもよい。
 オーミック電極61は、半導体層31の一方の表面31b側に配置される。より詳しくは、オーミック電極61は、支持基板51の他方の表面51bに配置される。オーミック電極61は、半導体素子1のカソードである。例えば、オーミック電極61は、支持基板51にSiを使う場合は、外部電極として、他方の表面51bに近い順に、アルミニウム、チタン、ニッケル、金等を積層する。
 次に、半導体素子1及び半導体装置2の製造方法について説明する。
 まず、図3、図4を参照して、半導体素子1の製造方法を説明する。図3は、第一実施形態に係る半導体素子の製造方法を説明するための工程図である。図4は、第一実施形態に係る半導体素子の製造方法を説明するための断面図である。
 ベース基板11の表面11aを覆って、一部が開口したマスク21を形成する(ステップST11)。より詳しくは、ベース基板11の表面11aの上に、例えば、アトミックレイヤデポジションまたはスパッタリング、CVD等によって、AlOx膜を成膜する。そして、AlOx膜を、フォトマスクを用いたフォトリソグラフィ及びエッチングによりパターニングすることによって、複数の開口22を有するマスク21を形成する。
 ステップST11において、マスク21の開口22に対応する部分のベース基板11の表面11aが露出する。図4のステップST11では、ベース基板11の両端に位置する表面11aがマスク21に覆われない図を示した。しかし、ベース基板11の両端に位置する表面11aがマスク21に覆われていてもよい。また、ベース基板11の側面又は裏面の全体がマスク21に覆われていてもよい。後述する気相成長法において用いる原料ガスに接触しうる面のうち、開口22を除く全体が、マスク21に覆われていてもよい。
 マスク21の開口22から露出するベース基板11の表面11aから、マスク21に沿ってエピタキシャル成長させて、所定の半導体材料を含む半導体層31を形成する(ステップST12)。より詳しくは、マスク21を用いて気相成長法、例えば、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法や、HVPE(Hydride Vapour Phase Epitaxy)より半導体層31を(0001)方向、(1120)方向に成長させる。具体的には、マスク21が形成されたベース基板11を、エピタキシャル装置の反応管に挿入する。そして、原料ガスとしてNHや、キャリアガスであるH、NまたはHとNとの混合ガスと、V族原料ガスとを供給しながら、ベース基板11を所定の成長温度、例えば、1050℃以上1100℃以下までの温度に昇温する。温度が安定してから上記ガスの他にトリメチルガリウム(TMG)などのIII族原料を供給して、開口22から、半導体層31を気相成長させる。このときSiなどのn型不純物、Mgなどのp型不純物などの原料ガスを供給することによって、所望の導電型のGaN層を得ることが可能となる。このとき、マスク21の表面21aの上には、直接かつ単独に結晶が成長しにくい。
 ステップST12において、まず、開口22に露出したベース基板11の表面11aに所定の半導体材料の結晶が選択成長し、引き続きマスク21の表面21aに沿って横方向に成長することによりマスク21の表面21aに半導体層31が成長する。横方向に成長した半導体層31が、隣接する半導体層31に接触する前に、成長を停止させる。
 ステップST12において、半導体層31は、主に(0001)方向に所望の厚みになるよう、nGaN層32をエピタキシャル成長させた後に、nGaN層32の上にnGaN層33をエピタキシャル成長させる。半導体層31は、nGaN層32とnGaN層33とが積層される。
 マスク21の表面21aが半導体層31に対してドナーになる元素を含まない材料で構成されることで、表面21aの上にnGaN層32が形成可能である。また、マスク21の表面21aが非晶質であるので、表面21aの上にnGaN層32が形成可能である。
 このように半導体層31が形成されたベース基板11が、エピタキシャル装置から取り出される。
 つづいて、図5、図6を参照して、半導体素子1を含む半導体装置2の製造方法を説明する。図5は、第一実施形態に係る半導体装置の製造方法を説明するための工程図である。図6は、第一実施形態に係る半導体装置の製造方法を説明するための断面図である。ステップST21ないしステップST27は、ステップST11ないしステップST12を行った後に行われる。
 支持基板51に、複数の半導体素子1の半導体層31の一方の表面31bを張り付ける(ステップST21)。より詳しくは、支持基板51の一方の表面51aと半導体層31の一方の表面31bとを対向させた状態で張り付けて接合する。これにより、支持基板51の一方の表面51aには、複数の半導体素子1の半導体層31が配置される。
 支持基板51の他方の表面51bにオーミック電極61を形成する(ステップST22)。例えば、支持基板51の他方の表面51bに近い順に、アルミニウム、チタン、ニッケル、金を積層して、オーミック電極61を形成する。
 ウェットエッチングによって、ベース基板11に配置されたマスク21を除去する(ステップST23)。
 ベース基板11と支持基板51とを引き剥がすように外力を加えて、ベース基板11を半導体層31の一方の表面31bから剥離する(ステップST24)。外力は、例えば超音波等で加える。
 露出している帯状の各半導体層31の他方の表面31aの周縁部を覆って、絶縁膜42を形成する(ステップST25)。
 各半導体層31の他方の表面31aにショットキー電極41を形成する(ステップST26)。
 絶縁膜42の開口42aから露出しているショットキー電極41の表面41aにメタル43を形成する(ステップST27)。
 このようにして、支持基板51の上に、複数の半導体素子1が並列または直列に接続された半導体装置2が形成される。半導体装置2は、所定の半導体材料を含む半導体層31と、半導体層31の一方の表面31bに配置されたオーミック電極61と、半導体層31の他方の表面31aに配置されたショットキー電極41と、を有する複数の半導体素子1と、複数の半導体素子1を支持する支持基板51とを備える。さらに、複数の半導体装置2の半導体素子1のショットキー電極41を、ワイヤ52を介して接続してもよい。
 以上により、マスク21の表面21aが半導体層31に対してドナーになる元素を含まない材料なので、オートドープが低減され、表面21aの上にnGaN層32を形成することができる。また、マスク21の表面21aが非晶質であるので、表面21aの上にnGaN層32を形成することができる。これらにより、nGaN層32をエピタキシャル成長させた後に、nGaN層32の上にnGaN層33をエピタキシャル成長させることができる。
 これにより、nGaN層32の積層方向の厚さを、nGaN層33の積層方向の厚さをより薄くできるので、半導体素子1及び半導体装置2のエピタキシャル成長に掛かる製造コスト等を低減できる。
 さらに、nGaN層32の上にnGaN層33をエピタキシャル成長させるので、半導体素子1及び半導体装置2のデバイス特性を向上できる。
 マスク21は、AlOxで形成され、n型ドープ材となるSiを含まない。これにより、エピタキシャル成長時に、マスク21のSiが結晶中に取り込まれる、オートドープの発生を抑制できる。これらにより、製造される半導体素子1は、例えばパワーデバイスの高耐圧層に必要な、1016/cm台以下の低濃度を実現できる。
[第二実施形態]
 図7を用いて、実施形態に係る半導体素子1、半導体装置2及び半導体素子1の製造方法について説明する。図7は、第二実施形態に係る半導体素子の製造方法を説明するための断面図である。半導体素子1、半導体装置2及び半導体素子1の製造方法は、基本的な構成は第一実施形態の半導体素子1、半導体装置2及び半導体素子1の製造方法と同様である。以下の説明においては、第一実施形態と同様の構成要素には、同一の符号または対応する符号を付し、その詳細な説明は省略する。
 マスク21は、第一層211と、第一層211より半導体層31に近い側に位置する第二層212を含む複数層と、を有する。本実施形態では、マスク21は、第一層211と第二層212との2層を有する。第一層211は、所定の半導体材料におけるドナーまたはアクセプタとなる元素を含む第二材料で形成される。第一層211は、例えば非晶質のSiOで形成される。第二層212は、所定の半導体材料におけるドナーまたはアクセプタとなる元素を含まない第一材料で形成される。第二層212は、例えばAlOxで形成される。第二層212の積層方向の厚さは、第一層211の積層方向の厚さより厚くてもよい。第一層211の積層方向の厚さは、0.5μm以上10μm以下であってもよい。第二層212の積層方向の厚さは、10μm以上30μm以下であってもよい。
 以上により、マスク21は、AlOxで形成される第一層211の積層方向の厚さを薄くできる。これにより、マスク21を形成する工程(ステップST11)に要する時間を短縮できる。半導体素子1及び半導体装置2の製造コストを低減できる。
[第三実施形態]
 図8を用いて、実施形態に係る半導体素子1、半導体装置2及び半導体素子1の製造方法について説明する。図8は、第三実施形態に係る半導体素子の製造方法を説明するための工程図である。ステップST31、ステップST33は、図3に示すステップST11、ステップST12と同様である。
 マスク21における、半導体層31に近い側の表面21aは、表面粗さが粗く形成される。ステップST31において、滑らかに形成された表面21aを加工して、表面粗さを粗くしてもよい。ステップST31において、表面粗さが粗く形成された表面21aをそのまま使用してもよい。ここでは、滑らかに形成された表面21aを加工して、表面粗さを粗くする場合について説明する。
 ステップST31で形成したマスク21における、半導体層31に近い側の表面21aを加工して、表面粗さを粗くする(ステップST32)。
 マスク21の表面21aの表面粗さが粗いことにより、エピタキシャル成長時に、結晶の成長が阻害される。
 以上により、半導体層31に近い側の表面21aの表面粗さが粗いことによって、エピタキシャル成長時に、結晶を適切に成長させることができる。
[第四実施形態]
 図9を用いて、実施形態に係る半導体素子1、半導体装置2及び半導体素子1の製造方法について説明する。図9は、第四実施形態に係る半導体素子の製造方法を説明するための工程図である。ステップST41、ステップST43は、図3に示すステップST11、ステップST12と同様である。
 マスク21における、半導体層31に近い側の表面21aは、平滑度が高く形成される。ステップST41において、滑らかに形成された表面21aをそのまま使用してもよい。ステップST41において、表面粗さが粗く形成された表面21aを研磨して、滑らかにしてもよい。ここでは、表面粗さが粗く形成された表面21aを研磨して、平滑度を高くする場合について説明する。
 ステップST41で形成したマスク21における、半導体層31に近い側の表面21aを研磨して、平滑度を高くする(ステップST42)。
 マスク21の表面21aの平滑度を高くすることにより、エピタキシャル成長時に、表面21aに沿って原料ガスなどがスムースに流れる。
 以上により、半導体層31に近い側の表面21aの平滑度を高くすることによって、エピタキシャル成長時に、結晶を適切に成長させることができる。
[第五実施形態]
 図10を用いて、実施形態に係る半導体素子1、半導体装置2及び半導体素子1の製造方法について説明する。図10は、第五実施形態に係る半導体素子の製造方法を説明するための断面図である。
 マスク21は、第一層211と、第一層211より半導体層31に近い側に位置する第二層212と、第二層212よりベース基板11の表面11aに近い側に位置する第三層213を含む複数層と、を有する。本実施形態では、マスク21は、第一層211と第二層212と第三層213との3層を有する。
 第一層211は、所定の半導体材料におけるドナーまたはアクセプタとなる元素を含む、非晶質の第一材料で形成される。第一層211は、例えば非晶質のSiOで形成される。第二層212は、所定の半導体材料におけるドナーまたはアクセプタとなる元素を含まない、非晶質の第一材料で形成される。第二層212は、例えばAlOxで形成される。第三層213は、所定の半導体材料におけるドナーまたはアクセプタとなる元素を含まない、非晶質の第三材料で形成される。第一層211は、例えば、AlOxで形成される。
 以上により、第三層213が、ベース基板11に対してドナーにならず、ベース基板11に対するオートドープの発生を抑制できる。これにより、ベース基板11を他の半導体素子1の製造工程において容易に再利用できる。
 本出願の開示する実施形態は、発明の要旨及び範囲を逸脱しない範囲で変更することができる。さらに、本出願の開示する実施形態及びその変形例は、適宜組み合わせることができる。
 例えば、本出願の開示する実施形態は、種々の発光素子に適用してもよい。
 添付の請求項に係る技術を完全かつ明瞭に開示するために特徴的な実施形態に関し記載してきた。しかし、添付の請求項は、上記実施形態に限定されるべきものでなく、本明細書に示した基礎的事項の範囲内で当該技術分野の当業者が創作しうるすべての変形例及び代替可能な構成を具現化するように構成されるべきである。
 1 半導体素子
 2 半導体装置
 11 ベース基板(基板)
 11a 表面
 21 マスク
 21a 表面
 22 開口
 31 半導体層
 31a 他方の表面
 31b 一方の表面
 32 nGaN層
 32a 表面
 33 nGaN層
 33a 表面
 41 ショットキー電極(第二電極)
 41a 表面
 42 絶縁膜
 43 メタル
 43a 表面
 51 支持基板
 51a 表面
 61 オーミック電極(第一電極)

Claims (9)

  1.  基板の表面を覆って、一部が開口したマスクを形成する工程と、
     前記開口から露出する前記基板の表面から、前記マスクに沿ってエピタキシャル成長させて、所定の半導体材料を含む半導体層を形成する工程と、
     を含み、
     前記マスクにおける、前記半導体層に近い側の表面は、前記所定の半導体材料におけるドナーまたはアクセプタとなる元素を含まない、非晶質の第一材料で形成される、
     半導体素子の製造方法。
  2.  前記半導体材料は、GaNであり、
     前記第一材料は、アルミニウム酸化物である、
     請求項1に記載の半導体素子の製造方法。
  3.  前記マスクにおける、前記半導体層に近い側の表面は、表面粗さが粗い、
     請求項1または2に記載の半導体素子の製造方法。
  4.  前記マスクにおける、前記半導体層に近い側の表面は、平滑度が高い、
     請求項1または2に記載の半導体素子の製造方法。
  5.  前記マスクは、第一層と、前記第一層より前記半導体層に近い側に位置する第二層を含む複数層と、を有し、
     前記第一層は、前記所定の半導体材料におけるドナーまたはアクセプタとなる元素を含む第二材料で形成され、
     前記第二層は、前記第一材料で形成される、
     請求項1から請求項4のいずれか一項に記載の半導体素子の製造方法。
  6.  前記半導体層を形成する工程において、nGaN層をエピタキシャル成長させた後に、nGaN層をエピタキシャル成長させて、nGaN層とnGaN層とを積層する、
     請求項1から請求項5のいずれか一項に記載の半導体素子の製造方法。
  7.  nGaN層のn型不純物濃度は、1016/cm台以下である、
     請求項6に記載の半導体素子の製造方法。
  8.  前記半導体材料は、GaNであり、
     前記マスクは、前記第一層より前記基板の表面に近い側に位置する第三層、をさらに有し、
     前記第三層は、前記所定の半導体材料におけるドナーまたはアクセプタとなる元素を含まない、第三材料で形成される、
     請求項5に記載の半導体素子の製造方法。
  9.  所定の半導体材料を含む半導体層と、
     前記半導体層の一方の表面に配置された第一電極と、
     を含む複数の半導体素子と、
     複数の前記半導体素子の前記半導体層の一方の表面を支持する支持基板と、
     を備え、
     前記半導体層は、他方の表面に位置するnGaN層と、一方の表面に位置するnGaN層とが積層されている、
     半導体装置。
PCT/JP2020/046353 2019-12-26 2020-12-11 半導体素子の製造方法及び半導体装置 WO2021131808A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/785,447 US20230022774A1 (en) 2019-12-26 2020-12-11 Manufacturing method for semiconductor element, and semiconductor device
CN202080086808.XA CN114846589A (zh) 2019-12-26 2020-12-11 半导体元件的制造方法以及半导体装置
JP2021567247A JPWO2021131808A1 (ja) 2019-12-26 2020-12-11
EP20907611.6A EP4086941A4 (en) 2019-12-26 2020-12-11 METHOD FOR PRODUCING A SEMICONDUCTOR ELEMENT AND SEMICONDUCTOR DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-237531 2019-12-26
JP2019237531 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021131808A1 true WO2021131808A1 (ja) 2021-07-01

Family

ID=76574387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046353 WO2021131808A1 (ja) 2019-12-26 2020-12-11 半導体素子の製造方法及び半導体装置

Country Status (5)

Country Link
US (1) US20230022774A1 (ja)
EP (1) EP4086941A4 (ja)
JP (1) JPWO2021131808A1 (ja)
CN (1) CN114846589A (ja)
WO (1) WO2021131808A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4638958B1 (ja) 1962-03-20 1971-11-16
JP2003234546A (ja) * 2002-02-07 2003-08-22 Nec Corp 半導体多層膜およびそれを用いた半導体素子ならびにその製造方法
JP2003309331A (ja) * 1995-09-18 2003-10-31 Hitachi Ltd 半導体装置
JP2008243835A (ja) * 2007-03-23 2008-10-09 Furukawa Electric Co Ltd:The 縦型半導体素子及びその製造方法
JP2010016065A (ja) * 2008-07-01 2010-01-21 Furukawa Electric Co Ltd:The ショットキーバリアダイオードおよびその製造方法
JP2017183697A (ja) * 2016-03-23 2017-10-05 パナソニックIpマネジメント株式会社 Iii族窒化物半導体及びその製造方法
JP2019131441A (ja) * 2018-01-31 2019-08-08 京セラ株式会社 結晶成長方法および半導体素子の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104031B1 (en) * 1999-11-15 2012-04-11 Panasonic Corporation Nitride semiconductor laser diode and method of fabricating the same
JP2004023023A (ja) * 2002-06-20 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体素子
JP5194334B2 (ja) * 2004-05-18 2013-05-08 住友電気工業株式会社 Iii族窒化物半導体デバイスの製造方法
JP4807081B2 (ja) * 2006-01-16 2011-11-02 ソニー株式会社 GaN系化合物半導体から成る下地層の形成方法、並びに、GaN系半導体発光素子の製造方法
JP4876927B2 (ja) * 2007-01-22 2012-02-15 住友電気工業株式会社 半導体デバイスを形成する方法
JP5999443B2 (ja) * 2013-06-07 2016-09-28 豊田合成株式会社 III 族窒化物半導体結晶の製造方法およびGaN基板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4638958B1 (ja) 1962-03-20 1971-11-16
JP2003309331A (ja) * 1995-09-18 2003-10-31 Hitachi Ltd 半導体装置
JP2003234546A (ja) * 2002-02-07 2003-08-22 Nec Corp 半導体多層膜およびそれを用いた半導体素子ならびにその製造方法
JP2008243835A (ja) * 2007-03-23 2008-10-09 Furukawa Electric Co Ltd:The 縦型半導体素子及びその製造方法
JP2010016065A (ja) * 2008-07-01 2010-01-21 Furukawa Electric Co Ltd:The ショットキーバリアダイオードおよびその製造方法
JP2017183697A (ja) * 2016-03-23 2017-10-05 パナソニックIpマネジメント株式会社 Iii族窒化物半導体及びその製造方法
JP2019131441A (ja) * 2018-01-31 2019-08-08 京セラ株式会社 結晶成長方法および半導体素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4086941A4

Also Published As

Publication number Publication date
EP4086941A4 (en) 2024-05-15
EP4086941A1 (en) 2022-11-09
JPWO2021131808A1 (ja) 2021-07-01
CN114846589A (zh) 2022-08-02
US20230022774A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
JP4638958B1 (ja) 半導体素子の製造方法
KR20110056493A (ko) 반도체 기판, 전자 디바이스 및 반도체 기판의 제조 방법
JP4458223B2 (ja) 化合物半導体素子及びその製造方法
WO2011033776A1 (ja) 化合物半導体結晶の製造方法、電子デバイスの製造方法、および半導体基板
KR20110065444A (ko) 반도체 기판, 전자 디바이스 및 반도체 기판의 제조 방법
US8765584B2 (en) Semiconductor device and manufacturing method therefor
TWI483383B (zh) 化合物半導體裝置及其製造方法
JP5468761B2 (ja) 半導体装置、ウエハ構造体および半導体装置の製造方法
JP5412093B2 (ja) 半導体ウェハ製造方法及び半導体装置製造方法
JP4876927B2 (ja) 半導体デバイスを形成する方法
US8372727B2 (en) Method for fabricating light emitting device
JP2011066398A (ja) 半導体素子およびその製造方法
JP2007036010A (ja) ショットキーバリアダイオード装置及びその製造方法
KR20110081803A (ko) 반도체 기판, 전자 디바이스 및 반도체 기판의 제조 방법
JP5608969B2 (ja) 化合物半導体装置及びその製造方法
JP5564799B2 (ja) 窒化ガリウム系半導体電子デバイスを作製する方法
JP4875660B2 (ja) Iii−v族窒化物半導体装置
JP2003142501A (ja) GaN系電界効果トランジスタ及びその製造方法
JP4058595B2 (ja) 半導体発光素子及びその製造方法
WO2021131808A1 (ja) 半導体素子の製造方法及び半導体装置
JP4875577B2 (ja) Iii−v族窒化物半導体装置
JP4041906B2 (ja) 半導体発光素子
WO2022131059A1 (ja) 半導体素子の製造方法、半導体素子及び半導体装置
JP4058594B2 (ja) 半導体発光素子
WO2022025080A1 (ja) 半導体素子の製造方法、半導体素子及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907611

Country of ref document: EP

Effective date: 20220726