WO2021131698A1 - 給電制御装置 - Google Patents

給電制御装置 Download PDF

Info

Publication number
WO2021131698A1
WO2021131698A1 PCT/JP2020/045826 JP2020045826W WO2021131698A1 WO 2021131698 A1 WO2021131698 A1 WO 2021131698A1 JP 2020045826 W JP2020045826 W JP 2020045826W WO 2021131698 A1 WO2021131698 A1 WO 2021131698A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switch
voltage
circuit
power supply
switch
Prior art date
Application number
PCT/JP2020/045826
Other languages
English (en)
French (fr)
Inventor
康太 小田
征哉 伊奈
弘紀 榊原
雅幸 加藤
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN202080085017.5A priority Critical patent/CN114788114A/zh
Priority to DE112020006338.0T priority patent/DE112020006338T5/de
Priority to US17/757,890 priority patent/US11870427B2/en
Publication of WO2021131698A1 publication Critical patent/WO2021131698A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/002Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Definitions

  • the present disclosure relates to a power supply control device.
  • This application claims priority based on Japanese Application No. 2019-237424 filed on December 26, 2019, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 discloses a power supply control device that controls power supply from a battery to a load.
  • the first semiconductor switch and the second semiconductor switch are arranged in the current path of the current flowing from the battery to the load.
  • Parasitic diodes are connected to both ends of each of the first semiconductor switch and the second semiconductor switch.
  • the cathodes of the parasitic diodes of the first semiconductor switch and the second semiconductor switch are located on the downstream side and the upstream side of the anode in the current path.
  • the user may make an erroneous connection to the battery in which the current flows through the load before the first semiconductor switch and the second semiconductor switch.
  • the current flows through the parasitic diode of the second semiconductor switch.
  • the temperature of the second semiconductor switch rises to an abnormal temperature, which may cause a failure.
  • the power supply control device controls power supply by switching both the first semiconductor switch and the second semiconductor switch, which are arranged in a current path and have parasitic diodes connected at both ends, on or off.
  • a processing unit that is a power supply control device and executes a process of instructing switching of the first semiconductor switch and the second semiconductor switch to on or off, and the processing unit of the first semiconductor switch and the second semiconductor switch.
  • the first semiconductor switch and the second semiconductor switch are provided with a switching circuit for switching the first semiconductor switch on when a current is flowing in the current path even though the switching to off is instructed.
  • the cathode of each parasitic diode is located on the downstream side and the upstream side of the anode in the current path.
  • FIG. It is a block diagram which shows the main part structure of the power supply system in Embodiment 1.
  • FIG. It is a timing chart for demonstrating the operation of the power supply control device.
  • It is a block diagram which shows the main part structure of a microcomputer.
  • It is a flowchart which shows the procedure of the power supply control processing.
  • It is a block diagram which shows the main part structure of the power supply system in Embodiment 2.
  • It is a block diagram which shows the main part structure of the power supply system in Embodiment 4.
  • Embodiment 10 It is a block diagram which shows the main part structure of the power supply system in Embodiment 10. It is a block diagram which shows the main part structure of the power supply system in Embodiment 11. It is a block diagram which shows the main part structure of the power supply system in Embodiment 12.
  • the power supply control device supplies power by switching both the first semiconductor switch and the second semiconductor switch, which are arranged in a current path and have parasitic diodes connected at both ends, on or off.
  • a processing unit that executes a process of instructing switching of the first semiconductor switch and the second semiconductor switch to on or off, and the processing unit being the first semiconductor switch and the second semiconductor switch.
  • the first semiconductor switch and the first semiconductor switch are provided with a switching circuit for switching the first semiconductor switch on when a current is flowing in the current path even though the semiconductor switch is instructed to be switched off.
  • the cathode of the parasitic diode of each of the two semiconductor switches is located on the downstream side and the upstream side of the anode in the current path.
  • the second semiconductor switch when the second semiconductor switch is short-circuited and the first semiconductor switch and the second semiconductor switch are instructed to be turned off, only the first semiconductor switch is switched off. At this time, the current flows through the parasitic diode of the first semiconductor switch. If a current is flowing in the current path even though the first semiconductor switch and the second semiconductor switch are instructed to be switched off, it is assumed that both ends of the second semiconductor switch are short-circuited, and the first semiconductor Toggle the switch on. As a result, the current does not flow through the parasitic diode of the first semiconductor switch for a long period of time, so that the failure of the first semiconductor switch does not occur due to the short circuit at both ends of the second semiconductor switch.
  • the first semiconductor switch is arranged on the upstream side of the second semiconductor switch in the current path, and the first semiconductor switch is arranged in the current path.
  • the load is arranged on the downstream side of the two semiconductor switches, and the switching circuit has the first semiconductor switch and the second semiconductor switch turned off even though the processing unit has instructed the switching to turn off. 2
  • the first semiconductor switch is turned on when the node voltage of the connection node between the semiconductor switch and the load is equal to or higher than the threshold voltage.
  • the current flows from the positive electrode of the DC power supply in the order of the first semiconductor switch, the second semiconductor switch, and the load.
  • the current flows in the order of the parasitic diode of the first semiconductor switch, the second semiconductor switch, and the load, and the node voltage is the DC power supply. It is a value near the voltage of the DC power supply or the voltage of the DC power supply. If the node voltage is high even though the first semiconductor switch and the second semiconductor switch are instructed to be turned off, it is considered that both ends of the second semiconductor switch are short-circuited.
  • the first semiconductor switch is arranged on the downstream side of the second semiconductor switch in the current path, and the first semiconductor switch is arranged in the current path.
  • a load is arranged on the downstream side of the semiconductor switch, and in the switching circuit, the first semiconductor switch and the second semiconductor switch are instructed to be switched off even though the processing unit is instructed to switch off. 2
  • the first semiconductor switch is turned on when the node voltage of the connection node between the semiconductor switch and the load is equal to or higher than the threshold voltage.
  • the current flows from the positive electrode of the DC power supply in the order of the second semiconductor switch, the first semiconductor switch, and the load.
  • the current flows in the order of the second semiconductor switch, the parasitic diode of the first semiconductor switch, and the load, and the node voltage is the DC power supply. It is a value near the voltage of the DC power supply or the voltage of the DC power supply. If the node voltage is high even though the first semiconductor switch and the second semiconductor switch are instructed to be turned off, it is considered that both ends of the second semiconductor switch are short-circuited.
  • the processing unit instructs the first semiconductor switch and the second semiconductor switch to be switched off
  • the node voltage is equal to or higher than the threshold voltage.
  • a process of instructing the switching circuit to switch the first semiconductor switch to ON is executed.
  • the switching circuit is instructed to switch the first semiconductor switch. Switch on.
  • the first semiconductor switch is arranged on the upstream side of the second semiconductor switch in the current path, and the first semiconductor switch is arranged in the current path.
  • a load is arranged on the upstream side of the semiconductor switch, and the switching circuit is the load even though the processing unit instructs the switching of the first semiconductor switch and the second semiconductor switch to off. And when the node voltage of the connection node between the second semiconductor switches is less than the threshold voltage, the first semiconductor switch is switched on.
  • the current flows from the positive electrode of the DC power supply in the order of the load, the first semiconductor switch, and the second semiconductor switch.
  • the current flows in the order of the load, the parasitic diode of the first semiconductor switch, and the second semiconductor switch, and the node voltage is zero V. Or it is a value near zero V. If the node voltage is low even though the first semiconductor switch and the second semiconductor switch are instructed to be turned off, it is considered that both ends of the second semiconductor switch are short-circuited.
  • the first semiconductor switch is arranged on the downstream side of the second semiconductor switch in the current path, and the first semiconductor switch is arranged in the current path.
  • the load is arranged on the upstream side of the semiconductor switch, and the switching circuit is the load even though the processing unit instructs the switching of the first semiconductor switch and the second semiconductor switch to off. And when the node voltage of the connection node between the second semiconductor switches is less than the threshold voltage, the first semiconductor switch is switched off.
  • the current flows from the positive electrode of the DC power supply in the order of the load, the second semiconductor switch, and the first semiconductor switch.
  • the current flows in the order of the load, the second semiconductor switch, and the parasitic diode of the first semiconductor switch, and the node voltage is zero V. Or it is a value near zero V. If the node voltage is low even though the first semiconductor switch and the second semiconductor switch are instructed to be turned off, it is considered that both ends of the second semiconductor switch are short-circuited.
  • the processing unit instructs the first semiconductor switch and the second semiconductor switch to be switched off
  • the node voltage is less than the threshold voltage.
  • a process of instructing the switching circuit to switch the first semiconductor switch to ON is executed.
  • the switching circuit is instructed to switch the first semiconductor switch. Switch on.
  • FIG. 1 is a block diagram showing a main configuration of the power supply system 1 according to the first embodiment.
  • the power supply system 1 is preferably mounted on a vehicle and includes a power supply control device 10, a load 11, a battery 12, a positive electrode terminal Tp, and a negative electrode terminal Tn.
  • the power supply control device 10 is connected to one end of the load 11 and the positive electrode terminal Tp.
  • the other end of the load 11 and the negative electrode terminal Tn are grounded.
  • the battery 12 is detachably connected between the positive electrode terminal Tp and the negative electrode terminal Tn by the user.
  • the user connects the positive electrode and the negative electrode of the battery 12 to the positive electrode terminal Tp and the negative electrode terminal Tn, respectively.
  • This connection is a normal connection.
  • the power supply control device 10 controls the power supply from the battery 12 to the load 11 by electrically connecting the positive electrode terminal Tp and the load 11 and disconnecting the electrical connection.
  • the connection of the battery 12 is a normal connection and the power supply control device 10 electrically connects the positive electrode terminal Tp and the load 11, the battery 12 supplies electric power to the load 11.
  • the power supply control device 10 cuts off the electrical connection, the power supply from the battery 12 to the load 11 is stopped.
  • the user may mistakenly connect the positive electrode and the negative electrode of the battery 12 to the negative electrode terminal Tn and the positive electrode terminal Tp, respectively.
  • This connection is a reverse connection.
  • the power supply control device 10 can stop the power supply from the battery 12 to the load 11 when the battery 12 is connected in reverse.
  • the load 11 is an electric device mounted on a vehicle, for example, a motor for driving a fan.
  • the load 11 When power is supplied from the battery 12 to the load 11, the load 11 operates.
  • the load 11 stops operating.
  • the power supply control device 10 includes a first semiconductor switch 20a, a second semiconductor switch 20b, a first diode 21a, a second diode 21b, a first drive circuit 22a, a second drive circuit 22b, an OR circuit 23, a voltage output circuit 24, and a device. It has a diode 25 and a microcomputer (hereinafter referred to as a microcomputer) 26.
  • a microcomputer hereinafter referred to as a microcomputer
  • Each of the first semiconductor switch 20a and the second semiconductor switch 20b is an N-channel type FET (Field Effect Transistor).
  • the OR circuit 23 has two input ends and one output end.
  • the voltage output circuit 24 has circuit resistors 30 and 31.
  • the first diode 21a and the second diode 21b are parasitic diodes of the first semiconductor switch 20a and the second semiconductor switch 20b, respectively. Therefore, the first diode 21a and the second diode 21b are formed in the first semiconductor switch 20a and the second semiconductor switch 20b when the first semiconductor switch 20a and the second semiconductor switch 20b are manufactured, respectively.
  • the cathode and anode of the first diode 21a are connected to the drain and source of the first semiconductor switch 20a, respectively.
  • the cathode and anode of the second diode 21b are connected to the drain and source of the second semiconductor switch 20b, respectively.
  • the source of the first semiconductor switch 20a is connected to the positive electrode terminal Tp.
  • the drain of the first semiconductor switch 20a is connected to the drain of the second semiconductor switch 20b.
  • the source of the second semiconductor switch 20b is connected to one end of the load 11.
  • the gates of the first semiconductor switch 20a and the second semiconductor switch 20b are connected to the first drive circuit 22a and the second drive circuit 22b, respectively.
  • the first drive circuit 22a is further connected to the output end of the OR circuit 23.
  • connection node between the source of the second semiconductor switch 20b and one end of the load 11 is connected to one end of the circuit resistor 30 of the voltage output circuit 24.
  • the other end of the circuit resistor 30 is connected to one end of the circuit resistor 31.
  • the other end of the circuit resistor 31 is grounded.
  • the connection node between the circuit resistors 30 and 31 is connected to one input end of the OR circuit 23.
  • the second drive circuit 22b and the other input end of the OR circuit 23 are connected to one end of the device resistor 25.
  • the other end of the device resistor 25 is connected to the microcomputer 26.
  • the resistance value between the drain and the source is sufficiently small. At this time, the first semiconductor switch 20a and the second semiconductor switch 20b are each on, and the current can flow through the drain and the source. For each of the first semiconductor switch 20a and the second semiconductor switch 20b, when the gate voltage with respect to the source potential is less than a constant voltage, the resistance value between the drain and the source is sufficiently large. At this time, the first semiconductor switch 20a and the second semiconductor switch 20b are each off, and no current flows through the drain and the source.
  • the OR circuit 23 outputs a high level voltage or a low level voltage to the first drive circuit 22a.
  • the first drive circuit 22a raises the gate voltage of the first semiconductor switch 20a with reference to the ground potential when the voltage input from the OR circuit 23 is switched from the low level voltage to the high level voltage.
  • the gate voltage based on the potential of the source rises to a voltage equal to or higher than a certain voltage, and the first semiconductor switch 20a is switched on.
  • the first drive circuit 22a When the voltage input from the OR circuit 23 is switched from the high level voltage to the low level voltage, the first drive circuit 22a lowers the gate voltage of the first semiconductor switch 20a with reference to the ground potential. As a result, in the first semiconductor switch 20a, the gate voltage based on the potential of the source drops to a voltage less than a certain voltage, and the first semiconductor switch 20a is switched off. As described above, the first drive circuit 22a switches the first semiconductor switch 20a on or off according to the voltage input from the OR circuit 23.
  • the microcomputer 26 outputs a high level voltage or a low level voltage to the OR circuit 23 and the second drive circuit 22b via the device resistor 25.
  • the second drive circuit 22b switches on the second semiconductor switch 20b in the same manner as the first drive circuit 22a.
  • the second drive circuit 22b switches off the second semiconductor switch 20b in the same manner as the first drive circuit 22a.
  • the node voltage is a voltage applied to the connection node between the drain of the second semiconductor switch 20b and one end of the load 11 with reference to the ground potential.
  • the circuit resistors 30 and 31 of the voltage output circuit 24 divide the node voltage.
  • the voltage obtained by dividing the voltage by the circuit resistors 30 and 31 is input to the OR circuit 23 as the output voltage of the voltage output circuit 24.
  • This output voltage is determined by the ratio of the resistance values of the circuit resistors 30 and 31.
  • the resistance values of the circuit resistors 30 and 31 are constant values.
  • the output voltage of the voltage output circuit 24 is a voltage obtained by dividing the node voltage by 3.
  • the OR circuit 23 outputs a high level voltage to the first drive circuit 22a when the output voltage of the voltage output circuit 24 or the microcomputer 26 is equal to or higher than the reference voltage.
  • the reference voltage is a constant value exceeding zero V and is set in advance.
  • the high level voltage output by the microcomputer 26 is equal to or higher than the reference voltage.
  • the low level voltage output by the microcomputer 26 is less than the reference voltage.
  • the output voltage of the voltage output circuit 24 is proportional to the node voltage.
  • the node voltage when the output voltage of the voltage output circuit 24 is the reference voltage is described as the threshold voltage. Since the reference voltage exceeds zero V, the threshold voltage also exceeds zero V.
  • the voltage output circuit 24 When the node voltage is less than the threshold voltage, the voltage output circuit 24 outputs a voltage less than the reference voltage to the OR circuit 23.
  • the voltage output circuit 24 When the node voltage is equal to or higher than the threshold voltage, the voltage output circuit 24 outputs a voltage equal to or higher than the reference voltage to the OR circuit 23.
  • FIG. 2 is a timing chart for explaining the operation of the power supply control device 10.
  • FIG. 2 shows the output voltage of the microcomputer 26, the node voltage, the output voltage of the voltage output circuit 24, the output voltage of the OR circuit 23, and the transition of the states of the first semiconductor switch 20a and the second semiconductor switch 20b. .. In these transitions, the horizontal axis shows time.
  • the voltage of the positive electrode of the battery 12 based on the potential of the negative electrode is referred to as the battery voltage.
  • the battery voltage exceeds the threshold voltage.
  • the high level voltage, the low level voltage, the reference voltage, the battery voltage and the threshold voltage are represented by H, L, Vr, Vb and Vth, respectively.
  • the high level voltage, the low level voltage, the reference voltage, the battery voltage, and the threshold voltage are shown in the same manner.
  • connection of the battery 12 is a normal connection.
  • the first semiconductor switch 20a and the second semiconductor switch 20b are off. .. Node voltage and voltage
  • the output voltage of the output voltage is zero V.
  • the output voltage of the OR circuit 23 is a low level voltage.
  • the OR circuit 23 switches the output voltage to the first drive circuit 22a to the high level voltage, and the first drive circuit 22a switches the first semiconductor switch 20a. To switch on. Further, since the output voltage to the second drive circuit 22b is switched from the low level voltage to the high level voltage, the second drive circuit 22b switches the second semiconductor switch 20b on. Therefore, when the microcomputer 26 switches the output voltage to the high level voltage, the first semiconductor switch 20a and the second semiconductor switch 20b are switched on.
  • the node voltage rises to the battery voltage Vb.
  • the output voltage of the voltage output circuit 24 rises to a voltage equal to or higher than the reference voltage Vr.
  • the first semiconductor switch 20a and the second semiconductor switch 20b are switched on, one end of the positive electrode terminal Tp and the load 11 is electrically connected, and the battery 12 connects the first semiconductor switch 20a and the second semiconductor switch 20b. Power is supplied to the load 11 via the load 11.
  • the current flows from the positive electrode terminal Tp in the order of the first semiconductor switch 20a, the second semiconductor switch 20b, the load 11, and the negative electrode terminal Tn.
  • the first semiconductor switch 20a, the second semiconductor switch 20b, and the load 11 are arranged in this order in the current path of the current flowing from the positive electrode terminal Tp to the negative electrode terminal Tn.
  • the cathodes of the first diode 21a and the second diode 21b are located on the downstream side and the upstream side of the anode in the current path, respectively.
  • the voltage between the drain and the source is substantially zero V, so that no current flows through the first diode 21a.
  • the second semiconductor switch 20b is on, no current flows through the second diode 21b.
  • the second drive circuit 22b switches the second semiconductor switch 20b off.
  • the second semiconductor switch 20b is switched off, the current flow through the load 11 and the current flow through the circuit resistors 30 and 31 are stopped, so that the node voltage and the voltage output circuit are stopped.
  • the output voltage of 24 drops to zero V.
  • the two voltages input to the OR circuit 23 become less than the reference voltage Vr, so that the output voltage of the OR circuit 23 is switched to the low level voltage, and the first drive circuit 22a turns off the first semiconductor switch 20a. Switch.
  • the first semiconductor switch 20a and the second semiconductor switch 20b Switch off.
  • the electrical connection between the positive electrode terminal Tp and one end of the load 11 is cut off, and the power supply from the battery 12 to the load 11 is stopped.
  • the current flows from the positive electrode of the battery 12 to the first diode 21a and the second semiconductor of the first semiconductor switch 20a.
  • the current flows in the order of the switch 20b and the load 11, and the node voltage rises to a value near the battery voltage Vb and exceeds the threshold voltage Vth.
  • the output voltage of the voltage output circuit 24 becomes equal to or higher than the reference voltage Vr, and the output voltage of the OR circuit 23 is switched from the low level voltage to the high level voltage.
  • the first drive circuit 22a switches on the first semiconductor switch 20a, and the current flow through the first diode 21a is stopped.
  • the microcomputer 26 is instructed to switch the first semiconductor switch 20a and the second semiconductor switch 20b to off, and when the drain and the source of the second semiconductor switch 20b are short-circuited, the first drive is performed.
  • the circuit 22a switches on the first semiconductor switch 20a.
  • a short circuit between the drain and the source of the second semiconductor switch 20b means a failure in which the resistance value between the drain and the source is fixed to a small value regardless of the voltage of the gate in the second semiconductor switch 20b. If a short circuit occurs, current can flow through the drain and source.
  • the node voltage is less than the threshold voltage Vth even if the microcomputer 26 switches the output voltage to the low level voltage. The voltage does not drop to. Therefore, even if the output voltage of the microcomputer 26 is switched to the low level voltage, the OR circuit 23 continues to output the high level voltage, and the first drive circuit 22a keeps the first semiconductor switch 20a on.
  • the battery 12 is connected between the positive electrode terminal Tp and the negative electrode terminal Tn with the first semiconductor switch 20a and the second semiconductor switch 20b turned off. At this time, even if the connection of the battery 12 is reversed, the node voltage and the output voltage of the voltage output circuit 24 are maintained at zero V, and the output voltage of the OR circuit 23 changes from the low level voltage to the high level voltage. There is no switching. Therefore, in the state where the first semiconductor switch 20a and the second semiconductor switch 20b are off, no current flows from the battery 12 regardless of whether the connection of the battery 12 is normal or not.
  • FIG. 3 is a block diagram showing a configuration of a main part of the microcomputer 26.
  • the microcomputer 26 has an output unit 40, a storage unit 41, and a control unit 42. These are connected to the internal bus 43.
  • the output unit 40 is further connected to the OR circuit 23 and the second drive circuit 22b via the device resistor 25.
  • the output unit 40 outputs a low level voltage or a high level voltage to the OR circuit 23 and the second drive circuit 22b via the device resistor 25.
  • the output unit 40 switches the output voltage to the OR circuit 23 and the second drive circuit 22b to a low level voltage or a high level voltage according to the instruction of the control unit 42.
  • the storage unit 41 is a non-volatile memory.
  • the computer program P is stored in the storage unit 41.
  • the control unit 42 has a processing element that executes processing, for example, a CPU (Central Processing Unit).
  • the processing element of the control unit 42 executes the power supply control process for controlling the power supply to the load 11 by executing the computer program P.
  • the computer program P may be stored in the storage medium A so that the processing element included in the control unit 42 can be read.
  • the computer program P read from the storage medium A by a reading device (not shown) is written in the storage unit 41.
  • the storage medium A is an optical disk, a flexible disk, a magnetic disk, a magnetic optical disk, a semiconductor memory, or the like.
  • the optical disk is a CD (Compact Disc) -ROM (Read Only Memory), a DVD (Digital Versatile Disc) -ROM, or a BD (Blu-ray (registered trademark) Disc).
  • the magnetic disk is, for example, a hard disk.
  • the computer program P may be downloaded from an external device (not shown) connected to a communication network (not shown), and the downloaded computer program P may be written in the storage unit 41.
  • control unit 42 the number of processing elements possessed by the control unit 42 is not limited to 1, and may be 2 or more. In this case, a plurality of processing elements may jointly execute the temperature calculation process and the power supply control process according to the computer program P.
  • FIG. 4 is a flowchart showing the procedure of the power supply control process. In the following, it is assumed that the connection of the battery 12 is a normal connection.
  • the control unit 42 determines whether or not to supply electric power to the load 11 (step S1). For example, when an operation signal instructing the operation of the load 11 is input to an input unit (not shown), the control unit 42 determines that power is supplied to the load 11. When the operation signal is not input to the input unit, the control unit 42 determines that the power is not supplied to the load 11.
  • control unit 42 determines whether or not to stop the power supply to the load 11 (step S2). For example, when a stop signal instructing to stop the power supply to the load 11 is input to an input unit (not shown), the control unit 42 determines that the power supply to the load 11 is stopped. When the stop signal is not input to the input unit, the control unit 42 determines that the power supply to the load 11 is not stopped. When the control unit 42 determines that the power supply is not stopped (S2: NO), the control unit 42 ends the power supply control process. After finishing the power supply control process, the control unit 42 executes the power supply control process again. Therefore, the control unit 42 waits until the power supply to the load 11 is required or the power supply to the load 11 needs to be stopped.
  • step S3 When the control unit 42 determines that power is to be supplied (S1: YES), the control unit 42 instructs the output unit 40 to switch the output voltage to a high level voltage (step S3). As a result, the output unit 40 switches the output voltage to the OR circuit 23 and the second drive circuit 22b to the high level voltage. As a result, the first drive circuit 22a and the second drive circuit 22b switch on the first semiconductor switch 20a and the second semiconductor switch 20b, and the battery 12 supplies electric power to the load 11. By executing step S3, the control unit 42 instructs the first drive circuit 22a and the second drive circuit 22b to switch the first semiconductor switch 20a and the second semiconductor switch 20b on.
  • step S4 the control unit 42 instructs the output unit 40 to switch the output voltage to the low level voltage (step S4).
  • the output unit 40 switches the output voltage to the OR circuit 23 and the second drive circuit 22b to the low level voltage.
  • both ends of the second semiconductor switch 20b are not short-circuited, when the output unit 40 switches the output voltage to the low level voltage, the first drive circuit 22a and the second drive circuit 22b are the first semiconductor switch 20a and The second semiconductor switch 20b is switched off, and the power supply from the battery 12 to the load 11 is stopped.
  • step S4 the control unit 42 instructs the first drive circuit 22a and the second drive circuit 22b to switch the first semiconductor switch 20a and the second semiconductor switch 20b off.
  • the control unit 42 functions as a processing unit.
  • the control unit 42 ends the power supply control process after executing one of steps S3 and S4. As described above, the control unit 42 executes the power supply control process again after finishing the power supply control process.
  • the control unit 42 of the microcomputer 26 instructs the output unit 40 to switch the output voltage to the low level voltage, thereby instructing the output unit 40 to switch the first semiconductor switch 20a and the second semiconductor switch 20b to off.
  • the drain and source of the second semiconductor switch 20b are set. Deeming a short circuit, the OR circuit 23 switches the output voltage to a high level voltage. As a result, the first drive circuit 22a switches the first semiconductor switch 20a on.
  • the node voltage is equal to or higher than the threshold voltage, it means that a current is flowing in the current path from the positive electrode terminal Tp to the negative electrode terminal Tn.
  • the first drive circuit 22a Since the first drive circuit 22a operates as described above, no current flows through the first diode 21a for a long time, and the temperature of the first semiconductor switch 20a does not rise to an abnormal temperature. Failure of the first semiconductor switch 20a does not occur due to a short circuit between the drain and the source of the second semiconductor switch 20b.
  • the first drive circuit 22a functions as a switching unit.
  • Embodiment 2 The configuration of the voltage output circuit 24 is not limited to the configuration shown in the first embodiment.
  • the second embodiment will be described as different from the first embodiment.
  • Other configurations except the configuration described later are common to the first embodiment. Therefore, the same reference reference numerals as those in the first embodiment are assigned to the components common to the first embodiment, and the description thereof will be omitted.
  • FIG. 5 is a block diagram showing a main configuration of the power supply system 1 according to the second embodiment.
  • the voltage output circuit 24 has circuit resistors 50, 51, ..., 54, a first circuit switch 55, and a second circuit switch 56.
  • the first circuit switch 55 is an NPN type bipolar transistor.
  • the second circuit switch 56 is a PNP type bipolar transistor.
  • One end of the circuit resistor 50 is connected to a connection node between the source of the second semiconductor switch 20b and one end of the load 11.
  • the other end of the circuit resistor 50 is connected to the base of the first circuit switch 55. It is connected to the circuit resistor 51 between the base and the emitter of the first circuit switch 55. The emitter of the first circuit switch 55 is grounded.
  • the collector of the first circuit switch 55 is connected to one end of the circuit resistor 52.
  • the other end of the circuit resistor 52 is connected to the base of the second circuit switch 56.
  • a circuit resistor 53 is connected between the base and the emitter of the second circuit switch 56.
  • a constant voltage Vc is applied to the emitter of the second circuit switch 56.
  • the constant voltage Vc is a voltage based on the ground potential.
  • the collector of the second circuit switch 56 is connected to one end of the circuit resistor 54.
  • the other end of the circuit resistor 54 is grounded.
  • the connection node between the collector of the second circuit switch 56 and one end of the circuit resistor 54 is connected to one input end of the OR circuit 23.
  • the first circuit switch 55 when the base voltage based on the potential of the emitter is a positive constant voltage or more, the resistance value between the collector and the emitter is sufficiently small. At this time, the first circuit switch 55 is on, and current can flow through the collector and the emitter. In the first circuit switch 55, when the base voltage based on the potential of the emitter is less than a positive constant voltage, the resistance value between the collector and the emitter is sufficiently large. At this time, the first circuit switch 55 is off, and no current flows through the collector and the emitter.
  • the second circuit switch 56 when the base voltage based on the potential of the emitter is less than a negative constant voltage, the resistance value between the collector and the emitter is sufficiently small. At this time, the second circuit switch 56 is on, and current can flow through the emitter and collector. In the second circuit switch 56, when the base voltage based on the potential of the emitter is a negative constant voltage or more, the resistance value between the collector and the emitter is sufficiently large. At this time, the second circuit switch 56 is off, and no current flows through the collector and the emitter.
  • FIG. 6 is a timing chart for explaining the operation of the voltage output circuit 24.
  • FIG. 6 shows the node voltage, the state of the first circuit switch 55, the state of the second circuit switch 56, and the transition of the output voltage of the voltage output circuit 24. Time is shown on the horizontal axis for these transitions.
  • the threshold voltage Vth is a node voltage in the first circuit switch 55 when the base voltage based on the potential of the emitter is a positive constant voltage of the first circuit switch 55.
  • the threshold voltage Vth is more than zero V and less than the battery voltage Vb.
  • the node voltage is zero V and is less than the threshold voltage Vth.
  • the base voltage based on the potential of the emitter in the first circuit switch 55 is less than a positive constant voltage. Therefore, the first circuit switch 55 is off.
  • the second circuit switch 56 When the first circuit switch 55 is off, the current does not flow through the circuit resistors 53 and 52. Therefore, in the second circuit switch 56, the base voltage based on the potential of the emitter is zero V and is positively constant. It is above the voltage. Therefore, the second circuit switch 56 is also off. When the second circuit switch 56 is off, no current flows through the circuit resistor 54, so the voltage output circuit 24 outputs zero V to the OR circuit 23. Zero V is less than the reference voltage Vr. Therefore, when the node voltage is zero V, the voltage output circuit 24 outputs a voltage that is less than the reference voltage Vr, as in the first embodiment.
  • the node voltage is set.
  • the base voltage with respect to the emitter is a positive constant voltage or more, and the first circuit switch 55 is on.
  • the first circuit switch 55 is on, the current flows in the order of the circuit resistors 53 and 52, and a voltage drop occurs at the circuit resistors 53.
  • the base voltage with respect to the emitter is less than a negative constant voltage, and the second circuit switch 56 is on.
  • the voltage output circuit 24 outputs a constant voltage Vc to the OR circuit 23.
  • the constant voltage Vc is equal to or higher than the reference voltage Vr of the OR circuit 23. Therefore, when the node voltage is a value near the battery voltage Vb or the battery voltage Vb, the voltage output circuit 24 outputs a voltage equal to or higher than the reference voltage, as in the first embodiment.
  • the battery 12 is connected between the positive electrode terminal Tp and the negative electrode terminal Tn with the first semiconductor switch 20a and the second semiconductor switch 20b turned off. At this time, it is assumed that the connection of the battery 12 is a reverse connection. In this case, since the node voltage is zero V and is less than the threshold voltage Vth, the first circuit switch 55 and the second circuit switch 56 are off, and the voltage output circuit 24 outputs zero V. Therefore, in the state where the first semiconductor switch 20a and the second semiconductor switch 20b are off, no current flows from the battery 12 regardless of whether the connection of the battery 12 is normal or not.
  • the voltage output circuit 24 in the second embodiment operates in the same manner as the voltage output circuit 24 in the first embodiment. Therefore, the power supply control device 10 in the second embodiment similarly exhibits the effect of the power supply control device 10 in the first embodiment.
  • the configuration of the voltage output circuit 24 is not limited to the configuration shown in the first and second embodiments.
  • the third embodiment will be described as different from the first embodiment.
  • Other configurations except the configuration described later are common to the first embodiment. Therefore, the same reference reference numerals as those in the first embodiment are assigned to the components common to the first embodiment, and the description thereof will be omitted.
  • FIG. 7 is a block diagram showing a main configuration of the power supply system 1 according to the third embodiment.
  • the voltage output circuit 24 includes a comparator 60, a circuit resistor 61, and a DC power supply 62.
  • the comparator 60 has a positive end, a negative end and an output end.
  • the positive end of the comparator 60 is connected to a connection node between the source of the second semiconductor switch 20b and one end of the load 11 and one end of the circuit resistor 61.
  • the negative end of the comparator 60 is connected to the positive electrode of the DC power supply 62.
  • the other end of the circuit resistor 61 and the negative electrode of the DC power supply 62 are grounded.
  • the output end of the comparator 60 is connected to one input end of the OR circuit 23.
  • the voltage of the positive electrode of the DC power supply 62 based on the ground potential is a constant value and functions as the threshold voltage Vth.
  • the comparator 60 outputs a high level voltage to the OR circuit 23 when the voltage at the positive end with reference to the ground potential, that is, the node voltage is equal to or higher than the threshold voltage Vth.
  • the high level voltage output by the comparator 60 is equal to or higher than the reference voltage of the OR circuit 23.
  • the comparator 60 outputs a low level voltage to the OR circuit 23 when the node voltage is less than the threshold voltage.
  • the low level voltage output by the comparator 60 is less than the reference voltage of the OR circuit 23.
  • FIG. 8 is a timing chart for explaining the operation of the voltage output circuit 24.
  • FIG. 8 shows the transition of the node voltage and the output voltage of the voltage output circuit 24. Time is shown on the horizontal axis for these transitions.
  • the comparator 60 that is, the voltage output circuit 24, outputs a voltage lower than the reference voltage Vr as in the first embodiment.
  • the node voltage is set. , Battery voltage Vb, or a value near the battery voltage Vb.
  • the comparator 60 outputs a high level voltage. Therefore, when the node voltage is a value near the battery voltage Vb or the battery voltage Vb, the voltage output circuit 24 outputs a voltage equal to or higher than the reference voltage, as in the first embodiment.
  • the battery 12 is connected between the positive electrode terminal Tp and the negative electrode terminal Tn with the first semiconductor switch 20a and the second semiconductor switch 20b turned off. At this time, it is assumed that the connection of the battery 12 is a reverse connection. In this case, since the other end of the circuit resistor 61 is grounded, the node voltage is zero V. When the node voltage is zero V, the comparator 60, i.e. the voltage output circuit 24, outputs a low level voltage. Therefore, in the state where the first semiconductor switch 20a and the second semiconductor switch 20b are off, no current flows from the battery 12 regardless of whether the connection of the battery 12 is normal or not.
  • the voltage output circuit 24 in the third embodiment operates in the same manner as the voltage output circuit 24 in the first embodiment. Therefore, the power supply control device 10 in the third embodiment similarly exhibits the effect of the power supply control device 10 in the first embodiment.
  • the OR circuit 23 determines whether or not the node voltage is equal to or higher than the threshold voltage.
  • the device that makes this determination is not limited to the OR circuit 23.
  • the fourth embodiment will be described as different from the first embodiment. Other configurations except the configuration described later are common to the first embodiment. Therefore, the same reference reference numerals as those in the first embodiment are assigned to the components common to the first embodiment, and the description thereof will be omitted.
  • FIG. 9 is a block diagram showing a main configuration of the power supply system 1 according to the fourth embodiment.
  • the power supply control device 10 according to the fourth embodiment has a component other than the OR circuit 23 among the components included in the power supply control device 10 according to the first embodiment.
  • the connection node between the circuit resistors 30 and 31 of the voltage output circuit 24 is connected to the microcomputer 26.
  • the microcomputer 26 is connected to the first drive circuit 22a and the second drive circuit 22b via the device resistor 25.
  • the output voltage of the voltage output circuit 24 is input to the microcomputer 26.
  • the microcomputer 26 outputs a high level voltage or a low level voltage to the first drive circuit 22a and the second drive circuit 22b.
  • the first drive circuit 22a switches on the first semiconductor switch 20a when the voltage input from the microcomputer 26 is switched from the low level voltage to the high level voltage.
  • the first drive circuit 22a switches off the first semiconductor switch 20a when the voltage input from the microcomputer 26 is switched from the high level voltage to the low level voltage.
  • the first drive circuit 22a and the second drive circuit 22b switch on the first semiconductor switch 20a and the second semiconductor switch 20b as in the first embodiment.
  • the first drive circuit 22a and the second drive circuit 22b switch the first semiconductor switch 20a and the second semiconductor switch 20b regardless of the output voltage of the voltage output circuit 24. Switch off.
  • FIG. 10 is a block diagram showing a configuration of a main part of the microcomputer 26.
  • the microcomputer 26 in the fourth embodiment has an input unit 44 and an A / D conversion unit 45 in addition to the components included in the microcomputer 26 in the first embodiment.
  • the output unit 40 is connected to the internal bus 43 and is also connected to the first drive circuit 22a and the second drive circuit 22b via the device resistor 25.
  • the A / D conversion unit 45 is connected to the internal bus 43 and the input unit 44.
  • the input unit 44 is further connected to a connection node between the circuit resistors 30 and 31 included in the voltage output circuit 24.
  • the output unit 40 outputs a high level voltage or a low level voltage to the first drive circuit 22a and the second drive circuit 22b via the device resistor 25.
  • the output unit 40 switches the output voltage to the first drive circuit 22a and the second drive circuit 22b to a high level voltage or a low level voltage according to the instruction of the control unit 42.
  • the voltage output circuit 24 outputs an analog voltage to the input unit 44.
  • the input unit 44 When an analog voltage is input, the input unit 44 outputs the input analog voltage to the A / D conversion unit 45.
  • the A / D conversion unit 45 converts the analog voltage input from the input unit 44 into a digital voltage.
  • the control unit 42 acquires the digital voltage converted by the A / D conversion unit 45 from the A / D conversion unit 45.
  • the voltage acquired by the control unit 42 substantially matches the voltage output by the voltage output circuit 24 at the time of acquisition.
  • the processing element of the control unit 42 executes a short-circuit detection process for detecting a short circuit between the drain and the source of the second semiconductor switch 20b in addition to the power supply control process.
  • FIG. 11 is a flowchart showing the procedure of the short circuit detection process.
  • the control unit 42 determines whether or not the output voltage of the output unit 40 is a low level voltage (step S11). As described in the description of the first embodiment, the fact that the output voltage of the output unit 40 is a low level voltage means that the control unit 42 indicates that the first semiconductor switch 20a and the second semiconductor switch 20b are turned off. means.
  • step S12 when the control unit 42 determines that the output voltage is a low level voltage (S11: YES), the control unit 42 determines whether or not the node voltage is equal to or higher than the threshold voltage (step S12).
  • step S12 when the output voltage of the voltage output circuit 24 is equal to or higher than the reference voltage Vr, the control unit 42 determines that the node voltage is equal to or higher than the threshold voltage.
  • the output voltage of the voltage output circuit 24 is less than the reference voltage Vr, it is determined that the node voltage is less than the threshold voltage.
  • the control unit 42 determines that the output voltage is not a low level voltage (S11: NO) or determines that the node voltage is less than the threshold voltage (S12: NO), the short circuit detection process ends. After completing the short-circuit detection process, the control unit 42 executes the short-circuit detection process again. Therefore, it waits until the node voltage becomes equal to or higher than the threshold voltage while the output voltage is the low level voltage.
  • the control unit 42 determines that the node voltage is equal to or higher than the threshold voltage (S12: YES)
  • the control unit 42 instructs the output unit 40 that the drain and source of the second semiconductor switch 20b are short-circuited, and instructs the output unit 40 to make the first drive circuit 22a.
  • the output voltage to the second drive circuit 22b is switched to the high level voltage (step S13).
  • the first drive circuit 22a switches the first semiconductor switch 20a on.
  • the control unit 42 instructs the first drive circuit 22a to switch the first semiconductor switch 20a on.
  • the control unit 42 ends the short-circuit detection process and executes the short-circuit detection process again.
  • the control unit 42 instructs the first semiconductor switch 20a and the second semiconductor switch 20b to be switched off as in the first embodiment. Nevertheless, when the node voltage is equal to or higher than the threshold voltage, the first drive circuit 22a switches the first semiconductor switch 20a on.
  • the power supply control device according to the fourth embodiment similarly exhibits the effect of the power supply control device 10 according to the first embodiment.
  • the first semiconductor switch 20a is arranged on the upstream side of the second semiconductor switch 20b.
  • the arrangement of the first semiconductor switch 20a and the second semiconductor switch 20b is not limited to this arrangement.
  • the differences between the fifth embodiment and the first embodiment will be described.
  • Other configurations except the configuration described later are common to the first embodiment. Therefore, the same reference reference numerals as those in the first embodiment are assigned to the components common to the first embodiment, and the description thereof will be omitted.
  • FIG. 12 is a block diagram showing a main configuration of the power supply system 1 according to the fifth embodiment.
  • the arrangement of the first semiconductor switch 20a and the second semiconductor switch 20b is different.
  • the drain of the second semiconductor switch 20b is connected to the positive electrode terminal Tp.
  • the source of the second semiconductor switch 20b is connected to the source of the first semiconductor switch 20a.
  • the drain of the first semiconductor switch 20a is connected to one end of the load 11.
  • the current is the positive electrode terminal Tp, the second semiconductor switch 20b, the first semiconductor switch 20a, and the load 11. And the negative electrode terminal Tn flow in this order.
  • the second semiconductor switch 20b, the first semiconductor switch 20a, and the load 11 are arranged in this order in the current path of the current flowing from the positive electrode terminal Tp to the negative electrode terminal Tn.
  • the node voltage in the fifth embodiment is a voltage applied to the connection node between the sources of the first semiconductor switch 20a and the second semiconductor switch 20b with reference to the ground potential.
  • the first semiconductor switch 20a is off and the drain and source of the second semiconductor switch 20b are short-circuited when the connection of the battery 12 is normal.
  • the current flows in the order of the positive electrode terminal Tp, the second semiconductor switch 20b, the first diode 21a of the first semiconductor switch 20a, the load 11, and the negative electrode terminal Tn.
  • the node voltage is zero V as in the first embodiment.
  • the node voltage is set.
  • the value is the battery voltage Vb or a value in the vicinity of the battery voltage Vb, as in the first embodiment.
  • the battery 12 is connected between the positive electrode terminal Tp and the negative electrode terminal Tn with the first semiconductor switch 20a and the second semiconductor switch 20b turned off. At this time, it is assumed that the connection of the battery 12 is a reverse connection. In this case, the node voltage is zero V as in the first embodiment. Therefore, the power supply control device 10 in the fifth embodiment similarly exhibits the effect of the power supply control device 10 in the first embodiment.
  • the configuration of the voltage output circuit 24 is not limited to the configuration using the circuit resistors 30 and 31, and may be one of the configurations of the voltage output circuit 24 in the second and third embodiments.
  • the node voltage is not limited to the voltage applied to the connection node between the sources of the first semiconductor switch 20a and the second semiconductor switch 20b with reference to the ground potential and the ground potential.
  • the differences between the sixth embodiment and the fifth embodiment will be described.
  • Other configurations other than the configuration described later are common to the fifth embodiment. Therefore, the same reference reference numerals as those in the fifth embodiment are assigned to the components common to the fifth embodiment, and the description thereof will be omitted.
  • FIG. 13 is a block diagram showing a main configuration of the power supply system 1 according to the sixth embodiment.
  • the connection nodes to which the voltage output circuit 24 is connected are different.
  • the configuration of the voltage output circuit 24 is not limited to the configuration using the circuit resistors 30 and 31, but is one of the configurations of the voltage output circuit 24 in the second and third embodiments. May be good.
  • FIG. 13 shows an example in which the configuration of the voltage output circuit 24 is the configuration of the first embodiment using the circuit resistors 30 and 31.
  • one end of the circuit resistor 30 is connected to a connection node between the drain of the first semiconductor switch 20a and one end of the load 11.
  • the node voltage is a voltage applied to the connection node between the drain of the first semiconductor switch 20a and one end of the load 11 with reference to the ground potential.
  • the node voltage is zero V as in the fifth embodiment.
  • the node voltage is set.
  • the value is the battery voltage Vb or a value in the vicinity of the battery voltage Vb, as in the fifth embodiment.
  • the battery 12 is connected between the positive electrode terminal Tp and the negative electrode terminal Tn with the first semiconductor switch 20a and the second semiconductor switch 20b turned off. At this time, it is assumed that the connection of the battery 12 is a reverse connection. In this case, the node voltage is zero V as in the fifth embodiment. Therefore, the power supply control device 10 in the sixth embodiment similarly exhibits the effect of the power supply control device 10 in the fifth embodiment.
  • the first semiconductor switch 20a is arranged on the upstream side of the second semiconductor switch 20b.
  • the arrangement of the first semiconductor switch 20a and the second semiconductor switch 20b is not limited to this arrangement.
  • the differences between the seventh embodiment and the fourth embodiment will be described.
  • Other configurations other than the configuration described later are common to the fourth embodiment. Therefore, the same reference reference numerals as those in the fourth embodiment are assigned to the components common to the fourth embodiment, and the description thereof will be omitted.
  • FIG. 14 is a block diagram showing a main configuration of the power supply system 1 according to the seventh embodiment.
  • the seventh embodiment is compared with the fourth embodiment, the arrangement of the first semiconductor switch 20a and the second semiconductor switch 20b is different.
  • the drain of the second semiconductor switch 20b is connected to the positive electrode terminal Tp.
  • the source of the second semiconductor switch 20b is connected to the source of the first semiconductor switch 20a.
  • the drain of the first semiconductor switch 20a is connected to one end of the load 11.
  • the current is the positive electrode terminal Tp, the second semiconductor switch 20b, the first semiconductor switch 20a, and the load 11. And the negative electrode terminal Tn flow in this order.
  • the second semiconductor switch 20b, the first semiconductor switch 20a, and the load 11 are arranged in this order in the current path of the current flowing from the positive electrode terminal Tp to the negative electrode terminal Tn.
  • the configuration of the voltage output circuit 24 is not limited to the configuration using the circuit resistors 30 and 31, but is one of the configurations of the voltage output circuit 24 in the second and third embodiments. May be good.
  • FIG. 14 shows an example in which the configuration of the voltage output circuit 24 is the configuration of the first embodiment using the circuit resistors 30 and 31.
  • one end of the circuit resistor 30 is connected to a connection node between the sources of the first semiconductor switch 20a and the second semiconductor switch 20b.
  • the node voltage in the seventh embodiment is a voltage applied to the connection node between the sources of the first semiconductor switch 20a and the second semiconductor switch 20b with reference to the ground potential.
  • the node voltage is zero V as in the fourth embodiment.
  • the node voltage is set.
  • the value is the battery voltage Vb or a value in the vicinity of the battery voltage Vb, as in the fourth embodiment.
  • the battery 12 is connected between the positive electrode terminal Tp and the negative electrode terminal Tn with the first semiconductor switch 20a and the second semiconductor switch 20b turned off. At this time, it is assumed that the connection of the battery 12 is a reverse connection. In this case, the node voltage is zero V as in the fourth embodiment. Therefore, the power supply control device 10 in the seventh embodiment similarly exhibits the effect of the power supply control device 10 in the fourth embodiment.
  • connection node to which the voltage output circuit 24 is connected may be a connection node between the drain of the first semiconductor switch 20a and one end of the load 11 as in the sixth embodiment.
  • the node voltage is a voltage applied to the connection node between the drain of the first semiconductor switch 20a and one end of the load 11 with reference to the ground potential.
  • the load 11 is arranged on the downstream side of the power supply control device 10.
  • the arrangement of the load 11 is not limited to this arrangement.
  • the points of the eighth embodiment different from those of the second embodiment will be described.
  • Other configurations other than the configuration described later are common to the second embodiment. Therefore, the same reference reference numerals as those in the second embodiment are assigned to the components common to the second embodiment, and the description thereof will be omitted.
  • FIG. 15 is a block diagram showing a main configuration of the power supply system 1 according to the eighth embodiment.
  • the positive electrode terminal Tp is connected to one end of the load 11.
  • the other end of the load 11 is connected to the source of the first semiconductor switch 20a included in the power supply control device 10.
  • the source of the second semiconductor switch 20b is grounded.
  • the power supply control device 10 switches the first semiconductor switch 20a and the second semiconductor switch 20b on. As a result, the other end of the load 11 and the negative electrode terminal Tn are electrically connected, and power is supplied from the battery 12 to the load 11.
  • the power supply control device 10 switches off the first semiconductor switch 20a and the second semiconductor switch 20b. As a result, the electrical connection between the other end of the load 11 and the negative electrode terminal Tn is cut off, and the power supply from the battery 12 to the load 11 is stopped.
  • the power supply control device 10 according to the eighth embodiment has all the components of the power supply control device 10 according to the second embodiment.
  • the first semiconductor switch 20a, the second semiconductor switch 20b, the first drive circuit 22a, the second drive circuit 22b, the OR circuit 23, the device resistor 25, and the microcomputer 26 are connected in the same manner as in the second embodiment.
  • the voltage output circuit 24 in the eighth embodiment has circuit resistors 52, 53, 54 and a second circuit switch 56, as in the second embodiment. These are connected in the same manner as in the second embodiment.
  • One end of the circuit resistor 52 is connected to a connection node between the drains of the first semiconductor switch 20a and the second semiconductor switch 20b.
  • a constant voltage Vc is applied to the emitter of the second circuit switch 56.
  • the connection node between the collector of the second circuit switch 56 and one end of the circuit resistor 54 is connected to one input end of the OR circuit 23.
  • the node voltage in the eighth embodiment is a voltage applied to the connection node between the drains of the first semiconductor switch 20a and the second semiconductor switch 20b with reference to the ground potential.
  • the current flows from the positive electrode terminal Tp to the load 11, the first semiconductor switch 20a, and the second semiconductor switch 20b. And the negative electrode terminal Tn flow in this order.
  • the load 11, the first semiconductor switch 20a, and the second semiconductor switch 20b are arranged in this order in the current path of the current flowing from the positive electrode terminal Tp to the negative electrode terminal Tn.
  • the first semiconductor switch 20a is off and the drain and source of the second semiconductor switch 20b are short-circuited.
  • the current flows in the order of the positive electrode terminal Tp, the load 11, the first diode 21a of the first semiconductor switch 20a, the second semiconductor switch 20b, and the negative electrode terminal Tn.
  • FIG. 16 is a timing chart for explaining the operation of the voltage output circuit 24.
  • FIG. 16 shows the transition of the node voltage and the output voltage of the voltage output circuit 24. Time is shown on the horizontal axis for these transitions.
  • the threshold voltage Vth is a node voltage in the second circuit switch 56 when the base voltage based on the potential of the emitter is a negative constant voltage of the second circuit switch 56.
  • the threshold voltage Vth is more than zero V and less than a constant voltage Vc.
  • the current does not flow through the circuit resistors 52 and 53, so that the node voltage is a constant voltage Vc and is equal to or higher than the threshold voltage Vth. ..
  • the second circuit switch 56 is off, and the voltage output circuit 24 outputs zero V, which is less than the reference voltage Vr, to the OR circuit 23.
  • the node voltage is set to the node voltage. It is zero V and is less than the threshold voltage Vth.
  • the second circuit switch 56 is on, and the voltage output circuit 24 outputs a constant voltage Vc equal to or higher than the reference voltage Vr to the OR circuit 23.
  • the control unit 42 of the microcomputer 26 outputs the low level voltage to the output unit 40, it is assumed that the drain and the source of the second semiconductor switch 20b are short-circuited.
  • the OR circuit 23 switches the output voltage to a high level voltage.
  • the first drive circuit 22a switches the first semiconductor switch 20a on.
  • the battery 12 is connected between the positive electrode terminal Tp and the negative electrode terminal Tn with the first semiconductor switch 20a and the second semiconductor switch 20b turned off. At this time, it is assumed that the connection of the battery 12 is a reverse connection. In this case, since the node voltage is a constant voltage Vc and is equal to or higher than the threshold voltage Vth, the second circuit switch 56 is off and the voltage output circuit 24 outputs zero V. Therefore, in the state where the first semiconductor switch 20a and the second semiconductor switch 20b are off, no current flows from the battery 12 regardless of whether the connection of the battery 12 is normal or not.
  • the power supply control device 10 in the eighth embodiment operates in the same manner as the power supply control device 10 in the second embodiment, and similarly exhibits the effect of the power supply control device 10 in the second embodiment.
  • the node voltage is not limited to the voltage applied to the connection node between the drains of the first semiconductor switch 20a and the second semiconductor switch 20b with reference to the ground potential.
  • the differences between the ninth embodiment and the eighth embodiment will be described.
  • Other configurations other than the configuration described later are common to the eighth embodiment. Therefore, the same reference reference numerals as those in the eighth embodiment are assigned to the components common to the eighth embodiment, and the description thereof will be omitted.
  • FIG. 17 is a block diagram showing a main configuration of the power supply system 1 according to the ninth embodiment.
  • the connection node to which one end of the circuit resistor 52 of the voltage output circuit 24 is connected is different.
  • One end of the circuit resistor 52 is connected to a connection node between the other end of the load 11 and the source of the first semiconductor switch 20a.
  • the node voltage is a voltage applied to the connection node between the other end of the load 11 and the source of the first semiconductor switch 20a with reference to the ground potential.
  • the node voltage is a constant voltage Vc, which is equal to or higher than the threshold voltage Vth as in the eighth embodiment.
  • Vc constant voltage
  • the node voltage is set. , Zero V, or a value near zero V, and is less than the threshold voltage Vth as in the eighth embodiment.
  • the battery 12 is connected between the positive electrode terminal Tp and the negative electrode terminal Tn with the first semiconductor switch 20a and the second semiconductor switch 20b turned off. At this time, it is assumed that the connection of the battery 12 is a reverse connection.
  • the node voltage is a constant voltage Vc, which is equal to or higher than the threshold voltage Vth as in the eighth embodiment. Therefore, the power supply control device 10 in the ninth embodiment similarly exhibits the effect of the power supply control device 10 in the eighth embodiment.
  • the OR circuit 23 determines whether or not the node voltage is equal to or higher than the threshold voltage.
  • the device that makes this determination is not limited to the OR circuit 23.
  • the differences between the tenth embodiment and the eighth embodiment will be described.
  • Other configurations other than the configuration described later are common to the eighth embodiment. Therefore, the same reference reference numerals as those in the eighth embodiment are assigned to the components common to the eighth embodiment, and the description thereof will be omitted.
  • FIG. 18 is a block diagram showing a main configuration of the power supply system 1 according to the tenth embodiment.
  • the power supply control device 10 in the tenth embodiment has a component other than the OR circuit 23 among the components of the power supply control device 10 in the eighth embodiment.
  • the microcomputer 26 in the tenth embodiment is configured in the same manner as the microcomputer 26 in the fourth embodiment.
  • the connection node between the collector of the second circuit switch 56 of the voltage output circuit 24 and the circuit resistor 54 is connected to the input unit 44 of the microcomputer 26.
  • the output unit 40 of the microcomputer 26 is connected to the first drive circuit 22a and the second drive circuit 22b via the device resistor 25.
  • the output voltage of the voltage output circuit 24 is input to the input unit 44 of the microcomputer 26.
  • the output unit 40 of the microcomputer 26 outputs a high level voltage or a low level voltage to the first drive circuit 22a and the second drive circuit 22b.
  • the first drive circuit 22a switches on the first semiconductor switch 20a when the voltage input from the output unit 40 is switched from the low level voltage to the high level voltage.
  • the first drive circuit 22a switches off the first semiconductor switch 20a when the voltage input from the output unit 40 of the microcomputer 26 is switched from the high level voltage to the low level voltage.
  • the first drive circuit 22a and the second drive circuit 22b switch on the first semiconductor switch 20a and the second semiconductor switch 20b as in the eighth embodiment. ..
  • the first drive circuit 22a and the second drive circuit 22b are the first semiconductor switch 20a and the second semiconductor switch 20b regardless of the output voltage of the voltage output circuit 24. To switch off.
  • the voltage output circuit 24 outputs a voltage that is less than the reference voltage Vr when the first semiconductor switch 20a and the second semiconductor switch 20b are off.
  • the first semiconductor switch 20a is off when the first semiconductor switch 20a and the second semiconductor switch 20b are on, or when the drain and source of the second semiconductor switch 20b are short-circuited. In some cases, a voltage equal to or higher than the reference voltage Vr is output.
  • the power supply control device 10 in the tenth embodiment similarly exhibits the effect of the power supply control device 10 in the fourth embodiment.
  • step S12 of the short-circuit detection process in the tenth embodiment the control unit 42 determines that the node voltage is equal to or higher than the threshold voltage when the output voltage of the voltage output circuit 24 is less than the reference voltage Vr.
  • the control unit 42 determines that the node voltage is less than the threshold voltage.
  • the control unit 42 executes step S13, assuming that the drain and source of the second semiconductor switch 20b are short-circuited.
  • the control unit 42 ends the short circuit detection process.
  • One end of the circuit resistor 52 of the voltage output circuit 24 may be connected to the connection node between the other end of the load 11 and the source of the first semiconductor switch 20a, as in the ninth embodiment.
  • the node voltage is a voltage applied to the connection node between the other end of the load 11 and the source of the first semiconductor switch 20a with reference to the ground potential, as in the ninth embodiment.
  • the first semiconductor switch 20a is arranged on the upstream side of the second semiconductor switch 20b.
  • the arrangement of the first semiconductor switch 20a and the second semiconductor switch 20b is not limited to this arrangement.
  • the differences between the eleventh embodiment and the eighth embodiment will be described.
  • Other configurations other than the configuration described later are common to the eighth embodiment. Therefore, the same reference reference numerals as those in the first embodiment are assigned to the components common to the first embodiment, and the description thereof will be omitted.
  • FIG. 19 is a block diagram showing a main configuration of the power supply system 1 according to the eleventh embodiment.
  • the arrangement of the first semiconductor switch 20a and the second semiconductor switch 20b is different.
  • the drain of the second semiconductor switch 20b is connected to the other end of the load 11.
  • the source of the second semiconductor switch 20b is connected to the source of the first semiconductor switch 20a.
  • the drain of the first semiconductor switch 20a is grounded.
  • the current is the positive electrode terminal Tp, the load 11, the second semiconductor switch 20b, and the first semiconductor switch 20a. And the negative electrode terminal Tn flow in this order.
  • the load 11, the second semiconductor switch 20b, and the first semiconductor switch 20a are arranged in this order in the current path of the current flowing from the positive electrode terminal Tp to the negative electrode terminal Tn.
  • the first semiconductor switch 20a is off and the drain and source of the second semiconductor switch 20b are short-circuited.
  • the current flows in the order of the positive electrode terminal Tp, the load 11, the second semiconductor switch 20b, the first diode 21a of the first semiconductor switch 20a, and the negative electrode terminal Tn.
  • the node voltage in the eleventh embodiment is a voltage applied to the connection node between the other end of the load 11 and the drain of the first semiconductor switch 20a with reference to the ground potential.
  • the node voltage is a constant voltage Vc, which is equal to or higher than the threshold voltage Vth as in the eighth embodiment.
  • Vc constant voltage
  • the node voltage is set. , Zero V or a value near zero V, and is less than the threshold voltage Vth as in the eighth embodiment.
  • the battery 12 is connected between the positive electrode terminal Tp and the negative electrode terminal Tn with the first semiconductor switch 20a and the second semiconductor switch 20b turned off. At this time, it is assumed that the connection of the battery 12 is a reverse connection.
  • the node voltage is a constant voltage Vc, which is equal to or higher than the threshold voltage Vth as in the eighth embodiment. Therefore, the power supply control device 10 in the eleventh embodiment similarly exhibits the effect of the power supply control device 10 in the eighth embodiment.
  • the first semiconductor switch 20a is arranged on the upstream side of the second semiconductor switch 20b.
  • the arrangement of the first semiconductor switch 20a and the second semiconductor switch 20b is not limited to this arrangement.
  • the differences between the 12th embodiment and the 10th embodiment will be described.
  • Other configurations except the configuration described later are common to the tenth embodiment. Therefore, the same reference reference numerals as those in the tenth embodiment are assigned to the components common to the tenth embodiment, and the description thereof will be omitted.
  • FIG. 20 is a block diagram showing a main configuration of the power supply system 1 according to the twelfth embodiment.
  • the embodiment 12 is compared with the embodiment 10, the arrangement of the first semiconductor switch 20a and the second semiconductor switch 20b is different.
  • the drain of the second semiconductor switch 20b is connected to the other end of the load 11.
  • the source of the second semiconductor switch 20b is connected to the source of the first semiconductor switch 20a.
  • the drain of the first semiconductor switch 20a is grounded.
  • the current is the positive electrode terminal Tp, the load 11, the second semiconductor switch 20b, and the first semiconductor switch 20a. And the negative electrode terminal Tn flow in this order.
  • the load 11, the second semiconductor switch 20b, and the first semiconductor switch 20a are arranged in this order in the current path of the current flowing from the positive electrode terminal Tp to the negative electrode terminal Tn.
  • the first semiconductor switch 20a is off and the drain and source of the second semiconductor switch 20b are short-circuited when the connection of the battery 12 is normal.
  • the current flows in the order of the positive electrode terminal Tp, the load 11, the second semiconductor switch 20b, the first diode 21a of the first semiconductor switch 20a, and the negative electrode terminal Tn.
  • the node voltage in the twelfth embodiment is a voltage applied to the connection node between the other end of the load 11 and the drain of the first semiconductor switch 20a with reference to the ground potential.
  • the node voltage is a constant voltage Vc, which is equal to or higher than the threshold voltage Vth as in the tenth embodiment.
  • Vc constant voltage
  • the node voltage is set. , Zero V or a value near zero V, and is less than the threshold voltage Vth as in the tenth embodiment.
  • the battery 12 is connected between the positive electrode terminal Tp and the negative electrode terminal Tn with the first semiconductor switch 20a and the second semiconductor switch 20b turned off. At this time, it is assumed that the connection of the battery 12 is a reverse connection.
  • the node voltage is a constant voltage Vc, which is equal to or higher than the threshold voltage Vth as in the tenth embodiment. Therefore, the power supply control device 10 according to the twelfth embodiment similarly exhibits the effect of the power supply control device 10 according to the tenth embodiment.
  • the first semiconductor switch 20a and the second semiconductor switch 20b are not limited to N-channel FETs as long as they are semiconductor switches having a parasitic diode.
  • the first semiconductor switch 20a may be a P-channel type FET.
  • the cathode and anode of the first diode 21a are connected to the source and drain of the first semiconductor switch 20a.
  • the drain and source of the first semiconductor switch 20a are connected to the first semiconductor switch 20a when the first semiconductor switch 20a is an N-channel type FET. It is changed to the connection destination of the source and drain of.
  • the first drive circuit 22a switches the first semiconductor switch 20a on by lowering the voltage at the gate of the first semiconductor switch 20a.
  • the first drive circuit 22a switches the first semiconductor switch 20a off by increasing the voltage at the gate of the first semiconductor switch 20a.
  • the second semiconductor switch 20b may be a P-channel type FET.
  • the cathode and anode of the second diode 21b are connected to the source and drain of the second semiconductor switch 20b.
  • the drain and source of the second semiconductor switch 20b are connected to the second semiconductor switch 20b when the second semiconductor switch 20b is an N-channel type FET. It is changed to the connection destination of the source and drain of.
  • the second drive circuit 22b switches the second semiconductor switch 20b on by lowering the voltage at the gate of the second semiconductor switch 20b.
  • the second drive circuit 22b switches the second semiconductor switch 20b off by increasing the voltage at the gate of the second semiconductor switch 20b.
  • the microcomputer 26 is connected to the OR circuit 23 and the second drive circuit 22b, or the first drive circuit 22a and the second drive circuit 22b via the device resistor 25.
  • the microcomputer 26 is connected to the OR circuit 23 or the first drive circuit 22a via one device resistor 25, and is connected to the OR circuit 23 or the first drive circuit 22a via the other device resistor 25. 2 It may be connected to the drive circuit 22b.
  • the microcomputer 26 outputs a high level voltage or a low level voltage to the OR circuit 23 or the first drive circuit 22a, and outputs a high level voltage or a low level voltage to the second drive circuit 22b.
  • the microcomputer 26 In a configuration in which the microcomputer 26 directly outputs a high level voltage or a low level voltage to the first drive circuit 22a, when the output voltage of the voltage output circuit 24 is equal to or higher than the reference voltage Vr, the microcomputer 26 outputs to the first drive circuit 22a. Switch the voltage to the high level voltage.
  • one input end of the OR circuit 23 may be directly connected to a connection node on the current path without going through the voltage output circuit 24.
  • the reference voltage of the voltage input to one input end of the OR circuit 23 matches the threshold voltage.
  • one input end of the OR circuit 23 may be connected to a connection node on the current path via a diode instead of the voltage output circuit 24. Also in this case, the reference voltage of the voltage input to one input end of the OR circuit 23 matches the threshold voltage.
  • the cathode of the diode is arranged on the OR circuit 23 side.
  • the first circuit switch 55 is not limited to the NPN type bipolar transistor because it may be a switch that switches on when the voltage at the control end exceeds a certain voltage.
  • the second circuit switch 56 is not limited to the PNP type bipolar transistor because it may be a switch that switches on when the voltage at the control end becomes less than a certain voltage.
  • it may be a P-channel type FET.
  • Power supply system 10 Power supply control device 11 Load 12 Battery 20a 1st semiconductor switch 20b 2nd semiconductor switch 21a 1st diode 21b 2nd diode 22a 1st drive circuit (switching unit) 22b 2nd drive circuit 23 OR circuit 24 Voltage output circuit 25 Device resistance 26 Microcomputer 30, 31, 50, 51, 52, 53, 54, 61 Circuit resistance 40 Output unit 41 Storage unit 42 Control unit (processing unit) 43 Internal bus 44 Input unit 45 A / D converter 55 1st circuit switch 56 2nd circuit switch 60 Comparator 62 DC power supply A Storage medium P Computer program Tn Negative terminal Tp Positive terminal

Abstract

給電制御装置(10)では、電流経路に配置された第1半導体スイッチ(20a)及び第2半導体スイッチ(20b)をオン又はオフに切替えることによって給電を制御する。第1半導体スイッチ(20a)及び第2半導体スイッチ(20b)それぞれのドレイン及びソース間に第1ダイオード(21a)及び第2ダイオード(21b)が接続されている。第1ダイオード(21a)及び第2ダイオード(21b)それぞれのカソードは、電流経路において、アノードの下流側及び上流側に位置している。マイコン(26)が第1半導体スイッチ(20a)及び第2半導体スイッチ(20b)のオフへの切替えを指示しているにも関わらず、電流経路を電流が流れている場合、第1駆動回路(22a)は第1半導体スイッチ(20a)をオフに切替える。

Description

給電制御装置
 本開示は給電制御装置に関する。
 本出願は、2019年12月26日出願の日本出願第2019-237424号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、バッテリから負荷への給電を制御する給電制御装置が開示されている。この給電制御装置では、バッテリから負荷に流れる電流の電流経路に第1半導体スイッチ及び第2半導体スイッチが配置されている。第1半導体スイッチ及び第2半導体スイッチそれぞれの両端には寄生ダイオードが接続されている。第1半導体スイッチ及び第2半導体スイッチそれぞれの寄生ダイオードのカソードは、電流経路においてアノードの下流側及び上流側に位置する。第1半導体スイッチ及び第2半導体スイッチの両方をオン又はオフに切替えることによって、バッテリから負荷への給電を制御する。
 ユーザは、バッテリについて、電流が第1半導体スイッチ及び第2半導体スイッチよりも先に負荷を流れる誤った接続を行う可能性がある。第1半導体スイッチが存在せず、かつ、第2半導体スイッチがオフである場合において、誤ったバッテリの接続を行ったとき、電流は第2半導体スイッチの寄生ダイオードを流れる。電流が第2半導体スイッチの寄生ダイオードを長期間流れた場合、第2半導体スイッチの温度が異常な温度に上昇し、故障が発生する可能性がある。
 しかしながら、特許文献1に記載の給電制御装置では、第1半導体スイッチが配置されているので、第1半導体スイッチ及び第2半導体スイッチがオフである場合、バッテリの接続が正常であるか否かに無関係に、電流が第1半導体スイッチ又は第2半導体スイッチの寄生ダイオードを流れることはない。
特開2019-146414号公報
 本開示の一態様に係る給電制御装置は、電流経路に配置され、両端に寄生ダイオードが接続されている第1半導体スイッチ及び第2半導体スイッチの両方をオン又はオフに切替えることによって給電を制御する給電制御装置であって、前記第1半導体スイッチ及び第2半導体スイッチのオン又はオフへの切替えを指示する処理を実行する処理部と、前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記電流経路を電流が流れている場合に前記第1半導体スイッチをオンに切替える切替え回路とを備え、前記第1半導体スイッチ及び第2半導体スイッチそれぞれの寄生ダイオードのカソードは、前記電流経路にてアノードの下流側及び上流側に位置する。
実施形態1における電源システムの要部構成を示すブロック図である。 給電制御装置の動作を説明するためのタイミングチャートである。 マイコンの要部構成を示すブロック図である。 給電制御処理の手順を示すフローチャートである。 実施形態2における電源システムの要部構成を示すブロック図である。 電圧出力回路の動作を説明するためのタイミングチャートである。 実施形態3における電源システムの要部構成を示すブロック図である。 電圧出力回路の動作を説明するためのタイミングチャートである。 実施形態4における電源システムの要部構成を示すブロック図である。 マイコンの要部構成を示すブロック図である。 短絡検知処理の手順を示すフローチャートである。 実施形態5における電源システムの要部構成を示すブロック図である。 実施形態6における電源システムの要部構成を示すブロック図である。 実施形態7における電源システムの要部構成を示すブロック図である。 実施形態8における電源システムの要部構成を示すブロック図である。 電圧出力回路の動作を説明するためのタイミングチャートである。 実施形態9における電源システムの要部構成を示すブロック図である。 実施形態10における電源システムの要部構成を示すブロック図である。 実施形態11における電源システムの要部構成を示すブロック図である。 実施形態12における電源システムの要部構成を示すブロック図である。
[本開示が解決しようとする課題]
 特許文献1に記載の給電制御装置において、バッテリの接続が正常であり、かつ、第1半導体スイッチがオフである状態で第2半導体スイッチの両端が短絡したと仮定する。この場合、電流は、バッテリから第1半導体スイッチの寄生ダイオード、第2半導体スイッチ及び負荷の順に流れる。電流が第1半導体スイッチの寄生ダイオードを長期間流れた場合、第1半導体スイッチにおいても故障が発生する可能性がある。
 そこで、一方の半導体スイッチにおける両端の短絡に起因して他方の半導体スイッチの故障が発生することがない給電制御装置を提供することを目的とする。
[本開示の効果]
 本開示によれば、第2半導体スイッチにおける両端の短絡に起因して第1半導体スイッチの故障が発生することはない。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列挙して説明する。以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
(1)本開示の一態様に係る給電制御装置は、電流経路に配置され、両端に寄生ダイオードが接続されている第1半導体スイッチ及び第2半導体スイッチの両方をオン又はオフに切替えることによって給電を制御する給電制御装置であって、前記第1半導体スイッチ及び第2半導体スイッチのオン又はオフへの切替えを指示する処理を実行する処理部と、前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記電流経路を電流が流れている場合に前記第1半導体スイッチをオンに切替える切替え回路とを備え、前記第1半導体スイッチ及び第2半導体スイッチそれぞれの寄生ダイオードのカソードは、前記電流経路にてアノードの下流側及び上流側に位置する。
 上記の態様にあっては、第2半導体スイッチが短絡している場合において、第1半導体スイッチ及び第2半導体スイッチのオフを指示しているとき、第1半導体スイッチのみがオフに切替わる。このとき、電流は第1半導体スイッチの寄生ダイオードを流れる。第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、電流経路を電流が流れている場合、第2半導体スイッチの両端が短絡しているとして、第1半導体スイッチをオンに切替える。これにより、第1半導体スイッチの寄生ダイオードを電流が長期間流れることはないので、第2半導体スイッチにおける両端の短絡に起因して、第1半導体スイッチの故障が発生することはない。
(2)本開示の一態様に係る給電制御装置は、前記電流経路にて、前記第1半導体スイッチは、前記第2半導体スイッチの上流側に配置されており、前記電流経路にて、前記第2半導体スイッチの下流側に負荷が配置されており、前記切替え回路は、前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記第2半導体スイッチ及び前記負荷間の接続ノードのノード電圧が閾値電圧以上である場合に前記第1半導体スイッチをオンに切替える。
 上記の態様にあっては、直流電源の正極から、電流は、第1半導体スイッチ、第2半導体スイッチ及び負荷の順に流れる。第1半導体スイッチがオフである状態で第2半導体スイッチの両端が短絡している場合、電流は、第1半導体スイッチの寄生ダイオード、第2半導体スイッチ及び負荷の順に流れ、ノード電圧は、直流電源の電圧又は直流電源の電圧近傍の値である。第1半導体スイッチ及び第2半導体スイッチのオフが指示されているにも関わらず、ノード電圧が高い場合、第2半導体スイッチの両端が短絡しているとみなす。
(3)本開示の一態様に係る給電制御装置は、前記電流経路にて、前記第1半導体スイッチは、前記第2半導体スイッチの下流側に配置されており、前記電流経路にて、前記第1半導体スイッチの下流側に負荷が配置されており、前記切替え回路は、前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記第2半導体スイッチ及び前記負荷間の接続ノードのノード電圧が閾値電圧以上である場合に前記第1半導体スイッチをオンに切替える。
 上記の態様にあっては、直流電源の正極から、電流は、第2半導体スイッチ、第1半導体スイッチ及び負荷の順に流れる。第1半導体スイッチがオフである状態で第2半導体スイッチの両端が短絡している場合、電流は、第2半導体スイッチ、第1半導体スイッチの寄生ダイオード及び負荷の順に流れ、ノード電圧は、直流電源の電圧又は直流電源の電圧近傍の値である。第1半導体スイッチ及び第2半導体スイッチのオフが指示されているにも関わらず、ノード電圧が高い場合、第2半導体スイッチの両端が短絡しているとみなす。
(4)本開示の一態様に係る給電制御装置は、前記処理部は、前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示している場合、前記ノード電圧が前記閾値電圧以上であるか否かを判定し、前記ノード電圧が前記閾値電圧以上であると判定した場合に前記第1半導体スイッチのオンへの切替えを前記切替え回路に指示する処理を実行する。
 上記の態様にあっては、第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、ノード電圧が高い場合、切替え回路に指示して、第1半導体スイッチをオンに切替えさせる。
(5)本開示の一態様に係る給電制御装置は、前記電流経路にて、前記第1半導体スイッチは、前記第2半導体スイッチの上流側に配置されており、前記電流経路にて、前記第1半導体スイッチの上流側に負荷が配置されており、前記切替え回路は、前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記負荷及び第2半導体スイッチ間の接続ノードのノード電圧が閾値電圧未満である場合に前記第1半導体スイッチをオンに切替える。
 上記の態様にあっては、直流電源の正極から、電流は、負荷、第1半導体スイッチ及び第2半導体スイッチの順に流れる。第1半導体スイッチがオフである状態で第2半導体スイッチの両端が短絡している場合、電流は、負荷、第1半導体スイッチの寄生ダイオード及び第2半導体スイッチの順に流れ、ノード電圧は、ゼロV又はゼロV近傍の値である。第1半導体スイッチ及び第2半導体スイッチのオフが指示されているにも関わらず、ノード電圧が低い場合、第2半導体スイッチの両端が短絡しているとみなす。
(6)本開示の一態様に係る給電制御装置は、前記電流経路にて、前記第1半導体スイッチは、前記第2半導体スイッチの下流側に配置されており、前記電流経路にて、前記第2半導体スイッチの上流側に負荷が配置されており、前記切替え回路は、前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記負荷及び第2半導体スイッチ間の接続ノードのノード電圧が閾値電圧未満である場合に前記第1半導体スイッチをオフに切替える。
 上記の態様にあっては、直流電源の正極から、電流は、負荷、第2半導体スイッチ及び第1半導体スイッチの順に流れる。第1半導体スイッチがオフである状態で第2半導体スイッチの両端が短絡している場合、電流は、負荷、第2半導体スイッチ及び第1半導体スイッチの寄生ダイオードの順に流れ、ノード電圧は、ゼロV又はゼロV近傍の値である。第1半導体スイッチ及び第2半導体スイッチのオフが指示されているにも関わらず、ノード電圧が低い場合、第2半導体スイッチの両端が短絡しているとみなす。
(7)本開示の一態様に係る給電制御装置は、前記処理部は、前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示している場合、前記ノード電圧が前記閾値電圧未満であるか否かを判定し、前記ノード電圧が前記閾値電圧未満であると判定した場合に前記第1半導体スイッチのオンへの切替えを前記切替え回路に指示する処理を実行する。
 上記の態様にあっては、第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、ノード電圧が低い場合、切替え回路に指示して、第1半導体スイッチをオンに切替えさせる。
[本開示の実施形態の詳細]
 本開示の実施形態に係る電源システムの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(実施形態1)
<電源システム1の構成>
 図1は、実施形態1における電源システム1の要部構成を示すブロック図である。電源システム1は、車両に好適に搭載されており、給電制御装置10、負荷11、バッテリ12、正極端子Tp及び負極端子Tnを備える。給電制御装置10は、負荷11の一端及び正極端子Tpに接続されている。負荷11の他端及び負極端子Tnは接地されている。バッテリ12は、ユーザによって、正極端子Tp及び負極端子Tn間に着脱可能に接続される。
 通常、図1に示すように、ユーザは、バッテリ12の正極及び負極それぞれを正極端子Tp及び負極端子Tnに接続する。この接続は正常接続である。給電制御装置10は、正極端子Tp及び負荷11の電気的な接続と、この電気的な接続の遮断とを行うことによって、バッテリ12から負荷11への給電を制御する。バッテリ12の接続が正常接続である場合において、給電制御装置10が正極端子Tp及び負荷11を電気的に接続したとき、バッテリ12は、負荷11に電力を供給する。同様の場合において、給電制御装置10が電気的な接続を遮断したとき、バッテリ12から負荷11への給電が停止する。
 ユーザは、バッテリ12の正極及び負極それぞれを、誤って負極端子Tn及び正極端子Tpに接続する可能性がある。この接続は逆接続である。給電制御装置10は、バッテリ12の接続が逆接続である場合にバッテリ12から負荷11への給電を停止することができる。
 負荷11は、車両に搭載されている電気機器であり、例えば、ファンを駆動するモータである。バッテリ12から負荷11に電力が供給されている場合、負荷11は作動する。バッテリ12から負荷11への給電が停止した場合、負荷11は動作を停止する。
<給電制御装置10の構成>
 給電制御装置10は、第1半導体スイッチ20a、第2半導体スイッチ20b、第1ダイオード21a、第2ダイオード21b、第1駆動回路22a、第2駆動回路22b、OR回路23、電圧出力回路24、装置抵抗25及びマイクロコンピュータ(以下、マイコンという)26を有する。第1半導体スイッチ20a及び第2半導体スイッチ20bそれぞれは、Nチャネル型のFET(Field Effect Transistor)である。OR回路23は、2つの入力端と1つの出力端とを有する。電圧出力回路24は回路抵抗30,31を有する。
 第1ダイオード21a及び第2ダイオード21bそれぞれは、第1半導体スイッチ20a及び第2半導体スイッチ20bの寄生ダイオードである。従って、第1ダイオード21a及び第2ダイオード21bそれぞれは、第1半導体スイッチ20a及び第2半導体スイッチ20bを製造した場合に、第1半導体スイッチ20a及び第2半導体スイッチ20bにおいて形成される。第1ダイオード21aのカソード及びアノードそれぞれは、第1半導体スイッチ20aのドレイン及びソースに接続されている。第2ダイオード21bのカソード及びアノードそれぞれは、第2半導体スイッチ20bのドレイン及びソースに接続されている。
 第1半導体スイッチ20aのソースは正極端子Tpに接続されている。第1半導体スイッチ20aのドレインは、第2半導体スイッチ20bのドレインに接続されている。第2半導体スイッチ20bのソースは負荷11の一端に接続されている。第1半導体スイッチ20a及び第2半導体スイッチ20bそれぞれのゲートは、第1駆動回路22a及び第2駆動回路22bに接続されている。第1駆動回路22aは、更に、OR回路23の出力端に接続されている。
 第2半導体スイッチ20bのソース及び負荷11の一端間の接続ノードは、電圧出力回路24の回路抵抗30の一端に接続されている。回路抵抗30の他端は回路抵抗31の一端に接続されている。回路抵抗31の他端は接地されている。回路抵抗30,31間の接続ノードは、OR回路23の一方の入力端に接続されている。第2駆動回路22bとOR回路23の他方の入力端とは、装置抵抗25の一端に接続されている。装置抵抗25の他端はマイコン26に接続されている。
 第1半導体スイッチ20a及び第2半導体スイッチ20bそれぞれについて、ソースの電位を基準としたゲートの電圧が一定電圧以上である場合、ドレイン及びソース間の抵抗値は十分に小さい。このとき、第1半導体スイッチ20a及び第2半導体スイッチ20bそれぞれはオンであり、電流がドレイン及びソースを介して流れることが可能である。第1半導体スイッチ20a及び第2半導体スイッチ20bそれぞれについて、ソースの電位を基準としたゲートの電圧が一定電圧未満である場合、ドレイン及びソース間の抵抗値は十分に大きい。このとき、第1半導体スイッチ20a及び第2半導体スイッチ20bそれぞれはオフであり、電流がドレイン及びソースを介して流れることはない。
 OR回路23は、ハイレベル電圧又はローレベル電圧を第1駆動回路22aに出力している。第1駆動回路22aは、OR回路23から入力されている電圧がローレベル電圧からハイレベル電圧に切替わった場合、接地電位を基準とした第1半導体スイッチ20aのゲートの電圧を上昇させる。これにより、第1半導体スイッチ20aでは、ソースの電位を基準としたゲートの電圧が一定電圧以上の電圧に上昇し、第1半導体スイッチ20aはオンに切替わる。
 第1駆動回路22aは、OR回路23から入力されている電圧がハイレベル電圧からローレベル電圧に切替わった場合、接地電位を基準とした第1半導体スイッチ20aのゲートの電圧を低下させる。これにより、第1半導体スイッチ20aでは、ソースの電位を基準としたゲートの電圧が一定電圧未満の電圧に低下し、第1半導体スイッチ20aはオフに切替わる。
 以上のように、第1駆動回路22aは、OR回路23から入力されている電圧に応じて、第1半導体スイッチ20aをオン又はオフに切替える。
 マイコン26は、装置抵抗25を介して、OR回路23及び第2駆動回路22bにハイレベル電圧又はローレベル電圧を出力している。第2駆動回路22bは、マイコン26から入力されている電圧がローレベル電圧からハイレベル電圧に切替わった場合、第1駆動回路22aと同様に、第2半導体スイッチ20bをオンに切替える。第2駆動回路22bは、マイコン26から入力されている電圧がハイレベル電圧からローレベル電圧に切替わった場合、第1駆動回路22aと同様に、第2半導体スイッチ20bをオフに切替える。
 以下では、電圧出力回路24が接続される接続ノードの電圧をノード電圧と記載する。実施形態1では、ノード電圧は、接地電位を基準として、第2半導体スイッチ20bのドレイン及び負荷11の一端間の接続ノードに印加される電圧である。電圧出力回路24の回路抵抗30,31はノード電圧を分圧する。回路抵抗30,31が分圧することによって得られた電圧は、電圧出力回路24の出力電圧として、OR回路23に入力される。この出力電圧は、回路抵抗30,31の抵抗値の比によって決まる。回路抵抗30,31の抵抗値は一定値である。回路抵抗30の抵抗値が回路抵抗31の抵抗値の2倍である場合、電圧出力回路24の出力電圧は、ノード電圧を3で除算することで得られる電圧である。
 OR回路23は、電圧出力回路24又はマイコン26の出力電圧が基準電圧以上である場合、ハイレベル電圧を第1駆動回路22aに出力する。電圧出力回路24及びマイコン26の出力電圧が基準電圧未満である場合、ローレベル電圧を第1駆動回路22aに出力する。基準電圧は、ゼロVを超える一定値であり、予め設定されている。マイコン26が出力するハイレベル電圧は基準電圧以上である。マイコン26が出力するローレベル電圧は基準電圧未満である。
 電圧出力回路24の出力電圧はノード電圧に比例する。電圧出力回路24の出力電圧が基準電圧である場合におけるノード電圧を閾値電圧と記載する。基準電圧がゼロVを超えているので、閾値電圧もゼロVを超えている。ノード電圧が閾値電圧未満である場合、電圧出力回路24は、基準電圧未満である電圧をOR回路23に出力する。ノード電圧が閾値電圧以上である場合、電圧出力回路24は、基準電圧以上である電圧をOR回路23に出力する。
<給電制御装置10の動作>
 図2は、給電制御装置10の動作を説明するためのタイミングチャートである。図2では、マイコン26の出力電圧、ノード電圧、電圧出力回路24の出力電圧、OR回路23の出力電圧、並びに、第1半導体スイッチ20a及び第2半導体スイッチ20bの状態の推移が示されている。これらの推移において、横軸には、時間が示されている。負極の電位を基準としたバッテリ12の正極の電圧をバッテリ電圧と記載する。バッテリ電圧は閾値電圧を超えている。図2では、ハイレベル電圧、ローレベル電圧、基準電圧、バッテリ電圧及び閾値電圧それぞれは、H、L、Vr、Vb及びVthによって示される。図2以外の図においても、ハイレベル電圧、ローレベル電圧、基準電圧、バッテリ電圧及び閾値電圧それぞれは、同様に示される。
 以下では、バッテリ12の接続は正常接続であると仮定する。図2に示すように、給電制御装置10内において故障が発生していない場合において、マイコン26の出力電圧がローレベル電圧であるとき、第1半導体スイッチ20a及び第2半導体スイッチ20bはオフである。ノード電圧及び電圧出力電圧の出力電圧はゼロVである。OR回路23の出力電圧はローレベル電圧である。
 マイコン26が出力電圧をローレベル電圧からハイレベル電圧に切替えた場合、OR回路23は、第1駆動回路22aへの出力電圧をハイレベル電圧に切替え、第1駆動回路22aは第1半導体スイッチ20aをオンに切替える。更に、第2駆動回路22bへの出力電圧がローレベル電圧からハイレベル電圧に切替わるので、第2駆動回路22bは第2半導体スイッチ20bをオンに切替える。このため、マイコン26が出力電圧をハイレベル電圧に切替えた場合、第1半導体スイッチ20a及び第2半導体スイッチ20bはオンに切替わる。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオンに切替わった場合、ノード電圧は、バッテリ電圧Vbに上昇する。これにより、電圧出力回路24の出力電圧は、基準電圧Vr以上である電圧に上昇する。第1半導体スイッチ20a及び第2半導体スイッチ20bがオンに切替わった場合、正極端子Tp及び負荷11の一端が電気的に接続し、バッテリ12は、第1半導体スイッチ20a及び第2半導体スイッチ20bを介して負荷11に電力を供給する。
 このとき、電流は、正極端子Tpから第1半導体スイッチ20a、第2半導体スイッチ20b、負荷11及び負極端子Tnの順に流れる。このように、正極端子Tpから負極端子Tnへ流れる電流の電流経路には、第1半導体スイッチ20a、第2半導体スイッチ20b及び負荷11がこの順で配置されている。第1ダイオード21a及び第2ダイオード21bそれぞれのカソードは、電流経路においてアノードの下流側及び上流側に位置する。
 第1半導体スイッチ20aがオンである場合、ドレイン及びソース間の電圧が実質的にゼロVであるため、第1ダイオード21aを電流が流れることはない。同様に、第2半導体スイッチ20bがオンである場合、第2ダイオード21bを電流が流れることはない。
 マイコン26が出力電圧をハイレベル電圧からローレベル電圧に切替えた場合、第2駆動回路22bは第2半導体スイッチ20bをオフに切替える。第2半導体スイッチ20bがオフに切替わった場合、負荷11を介した電流の通流、及び、回路抵抗30,31を介した電流の通流が停止するので、ノード電圧、及び、電圧出力回路24の出力電圧はゼロVに低下する。これにより、OR回路23に入力される2つの電圧が基準電圧Vr未満となるので、OR回路23の出力電圧がローレベル電圧に切替わり、第1駆動回路22aは第1半導体スイッチ20aをオフに切替える。
 以上のように、給電制御装置10内で故障が発生していない場合において、マイコン26が出力電圧をハイレベル電圧からローレベル電圧に切替えたとき、第1半導体スイッチ20a及び第2半導体スイッチ20bはオフに切替わる。第1半導体スイッチ20a及び第2半導体スイッチ20bがオフに切替わった場合、正極端子Tp及び負荷11の一端間の電気的な接続が遮断され、バッテリ12から負荷11への給電が停止する。
 マイコン26がローレベル電圧を出力している状態で第2半導体スイッチ20bのドレイン及びソースが短絡した場合、バッテリ12の正極から、電流が、第1半導体スイッチ20aの第1ダイオード21a、第2半導体スイッチ20b及び負荷11の順に流れ、ノード電圧は、バッテリ電圧Vb近傍の値まで上昇し、閾値電圧Vthを超える。これより、電圧出力回路24の出力電圧は基準電圧Vr以上となり、OR回路23の出力電圧がローレベル電圧からハイレベル電圧に切替わる。これにより、第1駆動回路22aは第1半導体スイッチ20aをオンに切替え、第1ダイオード21aを介した電流の通流が停止する。
 以上のように、マイコン26は、第1半導体スイッチ20a及び第2半導体スイッチ20bのオフへの切替えを指示している場合において、第2半導体スイッチ20bのドレイン及びソースが短絡したとき、第1駆動回路22aは第1半導体スイッチ20aをオンに切替える。
 第2半導体スイッチ20bのドレイン及びソースの短絡は、第2半導体スイッチ20bにおいて、ゲートの電圧に無関係に、ドレイン及びソース間の抵抗値が小さい値に固定される故障を意味する。短絡が発生している場合、ドレイン及びソースを介して電流が流れることが可能である。
 マイコン26がハイレベル電圧を出力している状態で第2半導体スイッチ20bのドレイン及びソースが短絡した場合においては、マイコン26が出力電圧をローレベル電圧に切替えても、ノード電圧が閾値電圧Vth未満の電圧に低下することはない。このため、マイコン26の出力電圧がローレベル電圧に切替わっても、OR回路23はハイレベル電圧を出力し続け、第1駆動回路22aは第1半導体スイッチ20aをオンに維持する。
 通常、第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態でバッテリ12が正極端子Tp及び負極端子Tn間に接続される。このとき、バッテリ12の接続が逆接続であったとしても、ノード電圧、及び、電圧出力回路24の出力電圧はゼロVに維持され、OR回路23の出力電圧がローレベル電圧からハイレベル電圧に切替わることはない。このため、第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態では、バッテリ12の接続が正常接続であるか否かに無関係に、バッテリ12から電流が流れることはない。
<マイコン26の構成>
 図3はマイコン26の要部構成を示すブロック図である。マイコン26は、出力部40、記憶部41及び制御部42を有する。これらは、内部バス43に接続されている。出力部40は、更に、装置抵抗25を介して、OR回路23及び第2駆動回路22bに接続されている。
 出力部40は、装置抵抗25を介して、OR回路23及び第2駆動回路22bにローレベル電圧又はハイレベル電圧を出力している。出力部40は、制御部42の指示に従って、OR回路23及び第2駆動回路22bへの出力電圧をローレベル電圧又はハイレベル電圧に切替える。
 記憶部41は不揮発メモリである。記憶部41には、コンピュータプログラムPが記憶されている。制御部42は、処理を実行する処理素子、例えば、CPU(Central Processing Unit)を有する。制御部42の処理素子は、コンピュータプログラムPを実行することによって、負荷11への給電を制御する給電制御処理を実行する。
 なお、コンピュータプログラムPは、制御部42が有する処理素子が読み取り可能に記憶媒体Aに記憶されていてもよい。この場合、図示しない読み出し装置によって記憶媒体Aから読み出されたコンピュータプログラムPが記憶部41に書き込まれる。記憶媒体Aは、光ディスク、フレキシブルディスク、磁気ディスク、磁気光ディスク又は半導体メモリ等である。光ディスクは、CD(Compact Disc)-ROM(Read Only Memory)、DVD(Digital Versatile Disc)-ROM、又は、BD(Blu-ray(登録商標) Disc)等である。磁気ディスクは、例えばハードディスクである。また、図示しない通信網に接続されている図示しない外部装置からコンピュータプログラムPをダウンロードし、ダウンロードしたコンピュータプログラムPを記憶部41に書き込んでもよい。
 また、制御部42が有する処理素子の数は、1に限定されず、2以上であってもよい。この場合、複数の処理素子がコンピュータプログラムPに従って、温度算出処理及び給電制御処理を協同で実行してもよい。
<給電制御処理>
 図4は給電制御処理の手順を示すフローチャートである。以下では、バッテリ12の接続は正常接続であると仮定する。給電制御処理では、まず、制御部42は、電力を負荷11に供給するか否かを判定する(ステップS1)。例えば、負荷11の作動を指示する作動信号が図示しない入力部に入力された場合、制御部42は電力を負荷11に供給すると判定する。作動信号が入力部に入力されていない場合、制御部42は電力を負荷11に供給しないと判定する。
 制御部42は、電力を供給しないと判定した場合(S1:NO)、負荷11への給電を停止するか否かを判定する(ステップS2)。例えば、負荷11への給電の停止を指示する停止信号が図示しない入力部に入力された場合、制御部42は負荷11への給電を停止すると判定する。停止信号が入力部に入力されていない場合、制御部42は負荷11への給電を停止しないと判定する。制御部42は、給電を停止しないと判定した場合(S2:NO)、給電制御処理を終了する。制御部42は、給電制御処理を終了した後、再び、給電制御処理を実行する。従って、制御部42は、負荷11への給電が必要となるか、又は、負荷11への給電の停止が必要となるまで待機する。
 制御部42は、電力を供給すると判定した場合(S1:YES)、出力部40に、出力電圧のハイレベル電圧への切替えを指示する(ステップS3)。これにより、出力部40は、OR回路23及び第2駆動回路22bへの出力電圧をハイレベル電圧に切替える。結果、第1駆動回路22a及び第2駆動回路22bは第1半導体スイッチ20a及び第2半導体スイッチ20bをオンに切替え、バッテリ12は負荷11に電力が供給される。制御部42は、ステップS3を実行することによって、第1駆動回路22a及び第2駆動回路22bに第1半導体スイッチ20a及び第2半導体スイッチ20bのオンへの切替えを指示する。
 制御部42は、給電を停止すると判定した場合(S2:YES)、出力部40に、出力電圧のローレベル電圧への切替えを指示する(ステップS4)。これにより、出力部40は、OR回路23及び第2駆動回路22bへの出力電圧をローレベル電圧に切替える。第2半導体スイッチ20bの両端が短絡していない場合においては、出力部40が出力電圧をローレベル電圧に切替えたとき、第1駆動回路22a及び第2駆動回路22bは、第1半導体スイッチ20a及び第2半導体スイッチ20bをオフに切替え、バッテリ12から負荷11への給電が停止する。
 制御部42は、ステップS4を実行することによって、第1駆動回路22a及び第2駆動回路22bに第1半導体スイッチ20a及び第2半導体スイッチ20bのオフへの切替えを指示する。制御部42は処理部として機能する。
 制御部42は、ステップS3,S4の一方を実行した後、給電制御処理を終了する。前述したように、制御部42は、給電制御処理を終了した後、再び、給電制御処理を実行する。
<給電制御装置10の効果>
 以上のように、マイコン26の制御部42は、出力部40に出力電圧のローレベル電圧への切替えを指示することによって、第1半導体スイッチ20a及び第2半導体スイッチ20bのオフへの切替えを指示する。制御部42が第1半導体スイッチ20a及び第2半導体スイッチ20bのオフへの切替えを指示しているにも関わらず、ノード電圧が閾値電圧以上である場合、第2半導体スイッチ20bのドレイン及びソースが短絡したとみなし、OR回路23は、出力電圧をハイレベル電圧に切替える。これにより、第1駆動回路22aは第1半導体スイッチ20aをオンに切替える。ノード電圧が閾値電圧以上であることは、正極端子Tpから負極端子Tnへの電流経路を電流が流れていることを意味する。
 第1駆動回路22aが以上のように動作するので、第1ダイオード21aを介して電流が長時間流れることはなく、第1半導体スイッチ20aの温度が異常な温度に上昇することはない。第2半導体スイッチ20bのドレイン及びソースの短絡に起因して第1半導体スイッチ20aの故障が発生することはない。第1駆動回路22aは切替え部として機能する。
(実施形態2)
 電圧出力回路24の構成は実施形態1において示された構成に限定されない。
 以下では、実施形態2について、実施形態1と異なる点を説明する。後述する構成を除く他の構成は、実施形態1と共通している。このため、実施形態1と共通する構成部には実施形態1と同一の参照符号を付してその説明を省略する。
<電圧出力回路24の構成>
 図5は、実施形態2における電源システム1の要部構成を示すブロック図である。実施形態2を実施形態1と比較した場合、電圧出力回路24の構成が異なる。実施形態2において、電圧出力回路24は、回路抵抗50,51,・・・,54、第1回路スイッチ55及び第2回路スイッチ56を有する。第1回路スイッチ55はNPN型のバイポーラトランジスタである。第2回路スイッチ56はPNP型のバイポーラトランジスタである。
 回路抵抗50の一端は、第2半導体スイッチ20bのソース及び負荷11の一端間の接続ノードに接続されている。回路抵抗50の他端は、第1回路スイッチ55のベースに接続されている。第1回路スイッチ55のベース及びエミッタ間に回路抵抗51に接続されている。第1回路スイッチ55のエミッタは接地されている。第1回路スイッチ55のコレクタは回路抵抗52の一端に接続されている。回路抵抗52の他端は、第2回路スイッチ56のベースに接続されている。
 第2回路スイッチ56のベース及びエミッタ間に回路抵抗53が接続されている。第2回路スイッチ56のエミッタには、一定電圧Vcが印加されている。一定電圧Vcは接地電位を基準とした電圧である。第2回路スイッチ56のコレクタは、回路抵抗54の一端に接続されている。回路抵抗54の他端は接地されている。第2回路スイッチ56のコレクタ及び回路抵抗54の一端間の接続ノードはOR回路23の一方の入力端に接続されている。
 第1回路スイッチ55では、エミッタの電位を基準としたベースの電圧が正の一定電圧以上である場合、コレクタ及びエミッタ間の抵抗値は十分に小さい。このとき、第1回路スイッチ55はオンであり、コレクタ及びエミッタを介して電流が流れることが可能である。第1回路スイッチ55では、エミッタの電位を基準としたベースの電圧が正の一定電圧未満である場合、コレクタ及びエミッタ間の抵抗値は十分に大きい。このとき、第1回路スイッチ55はオフであり、コレクタ及びエミッタを介して電流が流れることはない。
 第2回路スイッチ56では、エミッタの電位を基準としたベースの電圧が負の一定電圧未満である場合、コレクタ及びエミッタ間の抵抗値は十分に小さい。このとき、第2回路スイッチ56はオンであり、エミッタ及びコレクタを介して電流が流れることが可能である。第2回路スイッチ56では、エミッタの電位を基準としたベースの電圧が負の一定電圧以上である場合、コレクタ及びエミッタ間の抵抗値は十分に大きい。このとき、第2回路スイッチ56はオフであり、コレクタ及びエミッタを介して電流が流れることはない。
<電圧出力回路24の動作>
 図6は、電圧出力回路24の動作を説明するためのタイミングチャートである。図6には、ノード電圧、第1回路スイッチ55の状態、第2回路スイッチ56の状態及び電圧出力回路24の出力電圧の推移が示されている。これらの推移について、横軸には時間が示されている。
 ノード電圧がゼロを超えた場合、電流は回路抵抗50,51の順に流れる。回路抵抗51において、電圧降下が生じる。第1回路スイッチ55において、エミッタの電位を基準としたベースの電圧は、回路抵抗51における電圧降下の幅と一致する。ノード電圧が高い程、回路抵抗51を流れる電流が大きいので、電圧降下の幅は大きい。閾値電圧Vthは、第1回路スイッチ55において、エミッタの電位を基準としたベースの電圧が、第1回路スイッチ55の正の一定電圧である場合におけるノード電圧である。閾値電圧Vthは、ゼロVを超えており、かつ、バッテリ電圧Vb未満である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである場合、ノード電圧は、ゼロVであり、閾値電圧Vth未満である。ノード電圧が閾値電圧Vth未満である場合、第1回路スイッチ55において、エミッタの電位を基準としたベースの電圧は、正の一定電圧未満である。このため、第1回路スイッチ55はオフである。
 第1回路スイッチ55がオフである場合、電流は回路抵抗53,52を流れないので、第2回路スイッチ56において、エミッタの電位を基準としたベースの電圧は、ゼロVであり、正の一定電圧以上である。このため、第2回路スイッチ56もオフである。第2回路スイッチ56がオフである場合、電流は回路抵抗54を流れないので、電圧出力回路24はゼロVをOR回路23に出力する。ゼロVは基準電圧Vr未満である。従って、ノード電圧がゼロVである場合、実施形態1と同様に、電圧出力回路24は、基準電圧Vr未満である電圧を出力する。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオンである場合、又は、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡している場合、ノード電圧は、バッテリ電圧Vb、又は、バッテリ電圧Vb近傍の値であり、閾値電圧Vth以上である。このとき、第1回路スイッチ55において、エミッタを基準としたベースの電圧は、正の一定電圧以上であり、第1回路スイッチ55はオンである。第1回路スイッチ55がオンである場合、電流は、回路抵抗53,52の順に流れ、回路抵抗53において電圧降下が生じる。
 このとき、第2回路スイッチ56において、エミッタを基準としたベースの電圧は、負の一定電圧未満であり、第2回路スイッチ56はオンである。第2回路スイッチ56がオンである場合、電圧出力回路24は一定電圧VcをOR回路23に出力する。一定電圧Vcは、OR回路23の基準電圧Vr以上である。従って、ノード電圧がバッテリ電圧Vb又はバッテリ電圧Vb近傍の値である場合、実施形態1と同様に、電圧出力回路24は、基準電圧以上である電圧を出力する。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態でバッテリ12が正極端子Tp及び負極端子Tn間に接続される。このとき、バッテリ12の接続が逆接続であったと仮定する。この場合、ノード電圧は、ゼロVであり、閾値電圧Vth未満であるので、第1回路スイッチ55及び第2回路スイッチ56はオフであり、電圧出力回路24はゼロVを出力する。このため、第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態では、バッテリ12の接続が正常接続であるか否かに無関係に、バッテリ12から電流が流れることはない。
 以上のように、実施形態2における電圧出力回路24は、実施形態1における電圧出力回路24と同様に作用する。従って、実施形態2における給電制御装置10は、実施形態1における給電制御装置10が奏する効果を同様に奏する。
(実施形態3)
 電圧出力回路24の構成は実施形態1,2において示された構成に限定されない。
 以下では、実施形態3について、実施形態1と異なる点を説明する。後述する構成を除く他の構成は、実施形態1と共通している。このため、実施形態1と共通する構成部には実施形態1と同一の参照符号を付してその説明を省略する。
<電圧出力回路24の構成>
 図7は、実施形態3における電源システム1の要部構成を示すブロック図である。実施形態3を実施形態1と比較した場合、電圧出力回路24の構成が異なる。実施形態3において、電圧出力回路24は、コンパレータ60、回路抵抗61及び直流電源62を有する。コンパレータ60は、プラス端、マイナス端及び出力端を有する。
 コンパレータ60のプラス端は、第2半導体スイッチ20bのソース及び負荷11の一端間の接続ノードと、回路抵抗61の一端とに接続されている。コンパレータ60のマイナス端は直流電源62の正極に接続されている。回路抵抗61の他端と、直流電源62の負極とは接地されている。コンパレータ60の出力端はOR回路23の一方の入力端に接続されている。
 接地電位を基準とした直流電源62の正極の電圧は、一定値であり、閾値電圧Vthとして機能する。コンパレータ60は、接地電位を基準としたプラス端の電圧、即ち、ノード電圧が閾値電圧Vth以上である場合、ハイレベル電圧をOR回路23に出力する。コンパレータ60が出力するハイレベル電圧は、OR回路23の基準電圧以上である。コンパレータ60は、ノード電圧が閾値電圧未満である場合、ローレベル電圧をOR回路23に出力する。コンパレータ60が出力するローレベル電圧は、OR回路23の基準電圧未満である。
<電圧出力回路24の動作>
 図8は、電圧出力回路24の動作を説明するためのタイミングチャートである。図8には、ノード電圧及び電圧出力回路24の出力電圧の推移が示されている。これらの推移について、横軸には時間が示されている。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである場合、ノード電圧はゼロVである。ノード電圧がゼロVである場合、コンパレータ60、即ち、電圧出力回路24は、実施形態1と同様に、基準電圧Vr未満である電圧を出力する。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオンである場合、又は、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡している場合、ノード電圧は、バッテリ電圧Vb、又は、バッテリ電圧Vb近傍の値である。このとき、コンパレータ60はハイレベル電圧を出力する。従って、ノード電圧がバッテリ電圧Vb又はバッテリ電圧Vb近傍の値である場合、実施形態1と同様に、電圧出力回路24は、基準電圧以上である電圧を出力する。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態でバッテリ12が正極端子Tp及び負極端子Tn間に接続される。このとき、バッテリ12の接続が逆接続であったと仮定する。この場合、回路抵抗61の他端が接地されているので、ノード電圧はゼロVである。ノード電圧がゼロVである場合、コンパレータ60、即ち、電圧出力回路24はローレベル電圧を出力する。このため、第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態では、バッテリ12の接続が正常接続であるか否かに無関係に、バッテリ12から電流が流れることはない。
 以上のように、実施形態3における電圧出力回路24は、実施形態1における電圧出力回路24と同様に作用する。従って、実施形態3における給電制御装置10は、実施形態1における給電制御装置10が奏する効果を同様に奏する。
(実施形態4)
 実施形態1において、ノード電圧が閾値電圧以上であるか否かの判定はOR回路23によって行われる。しかしながら、この判定を行う機器は、OR回路23に限定されない。
 以下では、実施形態4について、実施形態1と異なる点を説明する。後述する構成を除く他の構成は、実施形態1と共通している。このため、実施形態1と共通する構成部には実施形態1と同一の参照符号を付してその説明を省略する。
 図9は、実施形態4における電源システム1の要部構成を示すブロック図である。実施形態4における給電制御装置10は、実施形態1における給電制御装置10が有する構成部の中で、OR回路23以外の構成部を有する。実施形態4においては、電圧出力回路24の回路抵抗30,31間の接続ノードはマイコン26に接続されている。マイコン26は、装置抵抗25を介して、第1駆動回路22a及び第2駆動回路22bに接続されている。
 電圧出力回路24の出力電圧はマイコン26に入力される。マイコン26は、第1駆動回路22a及び第2駆動回路22bにハイレベル電圧又はローレベル電圧を出力している。第1駆動回路22aは、マイコン26から入力されている電圧がローレベル電圧からハイレベル電圧に切替わった場合、第1半導体スイッチ20aをオンに切替える。第1駆動回路22aは、マイコン26から入力されている電圧がハイレベル電圧からローレベル電圧に切替わった場合、第1半導体スイッチ20aをオフに切替える。
 マイコン26の出力電圧がハイレベル電圧に切替わった場合、実施形態1と同様に、第1駆動回路22a及び第2駆動回路22bは第1半導体スイッチ20a及び第2半導体スイッチ20bをオンに切替える。マイコン26の出力電圧がローレベル電圧に切替わった場合、電圧出力回路24の出力電圧に無関係に、第1駆動回路22a及び第2駆動回路22bは第1半導体スイッチ20a及び第2半導体スイッチ20bをオフに切替える。
<マイコン26の構成>
 図10はマイコン26の要部構成を示すブロック図である。実施形態4におけるマイコン26は、実施形態1におけるマイコン26が有する構成部に加えて、入力部44及びA/D変換部45を有する。出力部40は、内部バス43に接続されるとともに、装置抵抗25を介して、第1駆動回路22a及び第2駆動回路22bに接続されている。A/D変換部45は、内部バス43及び入力部44に接続されている。入力部44は、更に、電圧出力回路24が有する回路抵抗30,31間の接続ノードに接続されている。
 出力部40は、装置抵抗25を介して、第1駆動回路22a及び第2駆動回路22bにハイレベル電圧又はローレベル電圧を出力している。出力部40は、制御部42の指示に従って、第1駆動回路22a及び第2駆動回路22bへの出力電圧をハイレベル電圧又はローレベル電圧に切替える。
 電圧出力回路24は、入力部44にアナログの電圧を出力する。入力部44は、アナログの電圧が入力された場合、入力されたアナログの電圧をA/D変換部45に出力する。A/D変換部45は、入力部44から入力されたアナログの電圧をデジタルの電圧に変換する。制御部42は、A/D変換部45が変換したデジタルの電圧をA/D変換部45から取得する。制御部42が取得する電圧は、取得時点において電圧出力回路24が出力した電圧と実質的に一致する。
 制御部42の処理素子は、コンピュータプログラムPを実行することによって、給電制御処理に加えて、第2半導体スイッチ20bのドレイン及びソースの短絡を検知する短絡検知処理を実行する。
<短絡検知処理>
 図11は短絡検知処理の手順を示すフローチャートである。制御部42は、出力部40の出力電圧がローレベル電圧であるか否かを判定する(ステップS11)。実施形態1の説明で述べたように、出力部40の出力電圧がローレベル電圧であることは、制御部42が第1半導体スイッチ20a及び第2半導体スイッチ20bのオフを指示していることを意味する。
 制御部42は、出力電圧がローレベル電圧であると判定した場合(S11:YES)、ノード電圧が閾値電圧以上であるか否かを判定する(ステップS12)。ステップS12では、制御部42は、電圧出力回路24の出力電圧が基準電圧Vr以上である場合、ノード電圧が閾値電圧以上であると判定する。電圧出力回路24の出力電圧が基準電圧Vr未満である場合、ノード電圧が閾値電圧未満であると判定する。
 制御部42は、出力電圧がローレベル電圧ではないと判定した場合(S11:NO)、又は、ノード電圧が閾値電圧未満であると判定した場合(S12:NO)、短絡検知処理を終了する。制御部42は、短絡検知処理を終了した後、再び、短絡検知処理を実行する。従って、出力電圧がローレベル電圧である状態でノード電圧が閾値電圧以上となるまで待機する。
 制御部42は、ノード電圧が閾値電圧以上であると判定した場合(S12:YES)、第2半導体スイッチ20bのドレイン及びソースが短絡したとして、出力部40に指示して、第1駆動回路22a及び第2駆動回路22bへの出力電圧をハイレベル電圧に切替えさせる(ステップS13)。これにより、第1駆動回路22aは第1半導体スイッチ20aをオンに切替える。制御部42は、ステップS13を実行することによって、第1駆動回路22aに第1半導体スイッチ20aのオンへの切替えを指示する。
 制御部42は、ステップS13を実行した後、短絡検知処理を終了し、再び短絡検知処理を実行する。
 以上のように、実施形態4における給電制御装置10においても、実施形態1と同様に、制御部42が、第1半導体スイッチ20a及び第2半導体スイッチ20bのオフへの切替えを指示しているにも関わらず、ノード電圧が閾値電圧以上である場合、第1駆動回路22aは第1半導体スイッチ20aをオンに切替える。実施形態4における給電制御装置は、実施形態1における給電制御装置10が奏する効果を同様に奏する。
(実施形態5)
 実施形態1においては、第1半導体スイッチ20aは第2半導体スイッチ20bの上流側に配置されている。第1半導体スイッチ20a及び第2半導体スイッチ20bの配置はこの配置に限定されない。
 以下では、実施形態5について、実施形態1と異なる点を説明する。後述する構成を除く他の構成は、実施形態1と共通している。このため、実施形態1と共通する構成部には実施形態1と同一の参照符号を付してその説明を省略する。
<給電制御装置10の構成>
 図12は、実施形態5における電源システム1の要部構成を示すブロック図である。実施形態5を実施形態1と比較した場合、第1半導体スイッチ20a及び第2半導体スイッチ20bの配置が異なる。実施形態5における給電制御装置10では、第2半導体スイッチ20bのドレインは、正極端子Tpに接続されている。第2半導体スイッチ20bのソースは、第1半導体スイッチ20aのソースに接続されている。第1半導体スイッチ20aのドレインは負荷11の一端に接続されている。
 バッテリ12の接続が正常接続である場合において、第1半導体スイッチ20a及び第2半導体スイッチ20bがオンであるとき、電流は、正極端子Tp、第2半導体スイッチ20b、第1半導体スイッチ20a、負荷11及び負極端子Tnの順に流れる。正極端子Tpから負極端子Tnへ流れる電流の電流経路には、第2半導体スイッチ20b、第1半導体スイッチ20a及び負荷11がこの順で配置されている。
 電圧出力回路24の回路抵抗30の一端は、第1半導体スイッチ20a及び第2半導体スイッチ20bのソース間の接続ノードに接続されている。実施形態5におけるノード電圧は、接地電位を基準として、第1半導体スイッチ20a及び第2半導体スイッチ20bのソース間の接続ノードに印加される電圧である。
 バッテリ12の接続が正常接続である場合において、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡していると仮定する。この場合、電流は、正極端子Tp、第2半導体スイッチ20b、第1半導体スイッチ20aの第1ダイオード21a、負荷11及び負極端子Tnの順に流れる。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである場合、ノード電圧は、実施形態1と同様にゼロVである。第1半導体スイッチ20a及び第2半導体スイッチ20bがオンである場合、又は、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡している場合、ノード電圧は、実施形態1と同様に、バッテリ電圧Vb、又は、バッテリ電圧Vb近傍の値である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態でバッテリ12が正極端子Tp及び負極端子Tn間に接続される。このとき、バッテリ12の接続が逆接続であったと仮定する。この場合、ノード電圧は実施形態1と同様にゼロVである。
 従って、実施形態5における給電制御装置10は、実施形態1における給電制御装置10が奏する効果を同様に奏する。
 なお、実施形態5において、電圧出力回路24の構成は、回路抵抗30,31を用いた構成に限定されず、実施形態2,3における電圧出力回路24の一方の構成であってもよい。
(実施形態6)
 実施形態5において、ノード電圧は、接地電位を基準として、接地電位を基準として、第1半導体スイッチ20a及び第2半導体スイッチ20bのソース間の接続ノードに印加される電圧に限定されない。
 以下では、実施形態6について、実施形態5と異なる点を説明する。後述する構成を除く他の構成は、実施形態5と共通している。このため、実施形態5と共通する構成部には実施形態5と同一の参照符号を付してその説明を省略する。
<給電制御装置10の構成>
 図13は、実施形態6における電源システム1の要部構成を示すブロック図である。実施形態6を実施形態5と比較した場合、電圧出力回路24が接続している接続ノードが異なる。実施形態5の説明で述べたように、電圧出力回路24の構成は、回路抵抗30,31を用いた構成に限定されず、実施形態2,3における電圧出力回路24の一方の構成であってもよい。
 図13には、電圧出力回路24の構成が回路抵抗30,31を用いた実施形態1の構成である例が示されている。この場合、回路抵抗30の一端は、第1半導体スイッチ20aのドレイン及び負荷11の一端間の接続ノードに接続されている。実施形態6では、ノード電圧は、接地電位を基準として、第1半導体スイッチ20aのドレイン及び負荷11の一端間の接続ノードに印加される電圧である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである場合、ノード電圧は、実施形態5と同様にゼロVである。第1半導体スイッチ20a及び第2半導体スイッチ20bがオンである場合、又は、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡している場合、ノード電圧は、実施形態5と同様に、バッテリ電圧Vb、又は、バッテリ電圧Vb近傍の値である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態でバッテリ12が正極端子Tp及び負極端子Tn間に接続される。このとき、バッテリ12の接続が逆接続であったと仮定する。この場合、ノード電圧は実施形態5と同様にゼロVである。
 従って、実施形態6における給電制御装置10は、実施形態5における給電制御装置10が奏する効果を同様に奏する。
(実施形態7)
 実施形態4においては、第1半導体スイッチ20aは第2半導体スイッチ20bの上流側に配置されている。第1半導体スイッチ20a及び第2半導体スイッチ20bの配置はこの配置に限定されない。
 以下では、実施形態7について、実施形態4と異なる点を説明する。後述する構成を除く他の構成は、実施形態4と共通している。このため、実施形態4と共通する構成部には実施形態4と同一の参照符号を付してその説明を省略する。
<給電制御装置10の構成>
 図14は、実施形態7における電源システム1の要部構成を示すブロック図である。実施形態7を実施形態4と比較した場合、第1半導体スイッチ20a及び第2半導体スイッチ20bの配置が異なる。実施形態7における給電制御装置10では、第2半導体スイッチ20bのドレインは、正極端子Tpに接続されている。第2半導体スイッチ20bのソースは、第1半導体スイッチ20aのソースに接続されている。第1半導体スイッチ20aのドレインは負荷11の一端に接続されている。
 バッテリ12の接続が正常接続である場合において、第1半導体スイッチ20a及び第2半導体スイッチ20bがオンであるとき、電流は、正極端子Tp、第2半導体スイッチ20b、第1半導体スイッチ20a、負荷11及び負極端子Tnの順に流れる。正極端子Tpから負極端子Tnへ流れる電流の電流経路には、第2半導体スイッチ20b、第1半導体スイッチ20a及び負荷11がこの順で配置されている。
 実施形態4の説明で述べたように、電圧出力回路24の構成は、回路抵抗30,31を用いた構成に限定されず、実施形態2,3における電圧出力回路24の一方の構成であってもよい。図14では、電圧出力回路24の構成が回路抵抗30,31を用いた実施形態1の構成である例が示されている。この例では、回路抵抗30の一端は、第1半導体スイッチ20a及び第2半導体スイッチ20bのソース間の接続ノードに接続されている。実施形態7におけるノード電圧は、接地電位を基準として、第1半導体スイッチ20a及び第2半導体スイッチ20bのソース間の接続ノードに印加される電圧である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである場合、ノード電圧は、実施形態4と同様にゼロVである。第1半導体スイッチ20a及び第2半導体スイッチ20bがオンである場合、又は、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡している場合、ノード電圧は、実施形態4と同様に、バッテリ電圧Vb、又は、バッテリ電圧Vb近傍の値である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態でバッテリ12が正極端子Tp及び負極端子Tn間に接続される。このとき、バッテリ12の接続が逆接続であったと仮定する。この場合、ノード電圧は実施形態4と同様にゼロVである。 従って、実施形態7における給電制御装置10は、実施形態4における給電制御装置10が奏する効果を同様に奏する。
<なお書き>
 電圧出力回路24が接続する接続ノードは、実施形態6と同様に、第1半導体スイッチ20aのドレイン及び負荷11の一端間の接続ノードであってもよい。この場合、ノード電圧は、接地電位を基準として、第1半導体スイッチ20aのドレイン及び負荷11の一端間の接続ノードに印加される電圧である。
(実施形態8)
 実施形態2においては、負荷11は給電制御装置10の下流側に配置されている。しかしながら、負荷11の配置はこの配置に限定されない。
 以下では、実施形態8について、実施形態2と異なる点を説明する。後述する構成を除く他の構成は、実施形態2と共通している。このため、実施形態2と共通する構成部には実施形態2と同一の参照符号を付してその説明を省略する。
<電源システム1の構成>
 図15は、実施形態8における電源システム1の要部構成を示すブロック図である。実施形態8における電源システム1では、正極端子Tpは負荷11の一端に接続されている。負荷11の他端は、給電制御装置10が有する第1半導体スイッチ20aのソースに接続されている。第2半導体スイッチ20bのソースは接地されている。
 実施形態8では、給電制御装置10は、第1半導体スイッチ20a及び第2半導体スイッチ20bをオンに切替える。これにより、負荷11の他端及び負極端子Tnが電気的に接続され、バッテリ12から負荷11に電力が供給される。給電制御装置10は、第1半導体スイッチ20a及び第2半導体スイッチ20bをオフに切替える。これにより、負荷11の他端及び負極端子Tn間の電気的な接続が遮断され、バッテリ12から負荷11への給電が停止する。
<給電制御装置10の構成>
 実施形態8における給電制御装置10は、実施形態2における給電制御装置10が有する全ての構成部を有する。第1半導体スイッチ20a、第2半導体スイッチ20b、第1駆動回路22a、第2駆動回路22b、OR回路23、装置抵抗25及びマイコン26は実施形態2と同様に接続されている。実施形態8における電圧出力回路24は、実施形態2と同様に、回路抵抗52,53,54及び第2回路スイッチ56を有する。これらは、実施形態2と同様に接続されている。
 回路抵抗52の一端は、第1半導体スイッチ20a及び第2半導体スイッチ20bのドレイン間の接続ノードに接続されている。第2回路スイッチ56のエミッタには、一定電圧Vcが印加されている。第2回路スイッチ56のコレクタ及び回路抵抗54の一端間の接続ノードは、OR回路23の一方の入力端に接続されている。実施形態8におけるノード電圧は、接地電位を基準として、第1半導体スイッチ20a及び第2半導体スイッチ20bのドレイン間の接続ノードに印加される電圧である。
 バッテリ12の接続が正常接続である場合において、第1半導体スイッチ20a及び第2半導体スイッチ20bがオンであるとき、電流は、正極端子Tpから負荷11、第1半導体スイッチ20a、第2半導体スイッチ20b及び負極端子Tnの順に流れる。このように、正極端子Tpから負極端子Tnへ流れる電流の電流経路には、負荷11、第1半導体スイッチ20a及び第2半導体スイッチ20bがこの順で配置されている。同様の場合において、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡していると仮定する。この場合、電流は、正極端子Tp、負荷11、第1半導体スイッチ20aの第1ダイオード21a、第2半導体スイッチ20b及び負極端子Tnの順に流れる。
<電圧出力回路24の動作>
 図16は電圧出力回路24の動作を説明するためのタイミングチャートである。図16には、ノード電圧及び電圧出力回路24の出力電圧の推移が示されている。これらの推移について、横軸には時間が示されている。
 ノード電圧が一定電圧Vc未満である場合、電流は回路抵抗53,52の順に流れ、回路抵抗53において電圧降下が生じる。このとき、第2回路スイッチ56において、エミッタの電位を基準としたベースの電圧は、負の電圧である。負の電圧の絶対値は電圧降下の幅と一致する。ノード電圧が低い程、回路抵抗53を流れる電流が大きいので、電圧降下の幅は大きい。閾値電圧Vthは、第2回路スイッチ56において、エミッタの電位を基準としたベースの電圧が、第2回路スイッチ56の負の一定電圧である場合におけるノード電圧である。閾値電圧Vthは、ゼロVを超えており、かつ、一定電圧Vc未満である。
 実施形態8において、第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである場合、電流は回路抵抗52,53を流れないので、ノード電圧は、一定電圧Vcであり、閾値電圧Vth以上である。この場合、第2回路スイッチ56はオフであり、電圧出力回路24は、基準電圧Vr未満であるゼロVをOR回路23に出力する。第1半導体スイッチ20a及び第2半導体スイッチ20bがオンである場合、又は、第2半導体スイッチ20bのドレイン及びソースが短絡している状態で第1半導体スイッチ20aがオフである場合、ノード電圧は、ゼロVであり、閾値電圧Vth未満である。この場合、第2回路スイッチ56はオンであり、電圧出力回路24は、基準電圧Vr以上である一定電圧VcをOR回路23に出力する。
 従って、マイコン26の制御部42が出力部40にローレベル電圧を出力させているにも関わらず、ノード電圧が閾値電圧未満である場合、第2半導体スイッチ20bのドレイン及びソースが短絡したとして、OR回路23は、出力電圧をハイレベル電圧に切替える。これにより、第1駆動回路22aは第1半導体スイッチ20aをオンに切替える。ノード電圧が閾値電圧Vth未満であることは、正極端子Tpから負極端子Tnへの電流経路を電流が流れていることを意味する。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態でバッテリ12が正極端子Tp及び負極端子Tn間に接続される。このとき、バッテリ12の接続が逆接続であったと仮定する。この場合、ノード電圧は、一定電圧Vcであり、閾値電圧Vth以上であるので、第2回路スイッチ56はオフであり、電圧出力回路24はゼロVを出力する。このため、第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態では、バッテリ12の接続が正常接続であるか否かに無関係に、バッテリ12から電流が流れることはない。
 実施形態8における給電制御装置10は、実施形態2における給電制御装置10と同様に作用し、実施形態2における給電制御装置10が奏する効果を同様に奏する。
(実施形態9)
 実施形態8において、ノード電圧は、接地電位を基準として、第1半導体スイッチ20a及び第2半導体スイッチ20bのドレイン間の接続ノードに印加される電圧に限定されない。
 以下では、実施形態9について、実施形態8と異なる点を説明する。後述する構成を除く他の構成は、実施形態8と共通している。このため、実施形態8と共通する構成部には実施形態8と同一の参照符号を付してその説明を省略する。
<給電制御装置10の構成>
 図17は、実施形態9における電源システム1の要部構成を示すブロック図である。実施形態9を実施形態8と比較した場合、電圧出力回路24の回路抵抗52の一端が接続している接続ノードが異なる。回路抵抗52の一端は、負荷11の他端及び第1半導体スイッチ20aのソース間の接続ノードに接続されている。実施形態9では、ノード電圧は、接地電位を基準として、負荷11の他端及び第1半導体スイッチ20aのソース間の接続ノードに印加される電圧である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである場合、ノード電圧は、一定電圧Vcであり、実施形態8と同様に閾値電圧Vth以上である。第1半導体スイッチ20a及び第2半導体スイッチ20bがオンである場合、又は、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡している場合、ノード電圧は、ゼロV、又は、ゼロV近傍の値であり、実施形態8と同様に閾値電圧Vth未満である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態でバッテリ12が正極端子Tp及び負極端子Tn間に接続される。このとき、バッテリ12の接続が逆接続であったと仮定する。この場合、ノード電圧は、一定電圧Vcであり、実施形態8と同様に閾値電圧Vth以上である。
 従って、実施形態9における給電制御装置10は、実施形態8における給電制御装置10が奏する効果を同様に奏する。
(実施形態10)
 実施形態8において、ノード電圧が閾値電圧以上であるか否かの判定はOR回路23によって行われる。しかしながら、この判定を行う機器は、OR回路23に限定されない。 以下では、実施形態10について、実施形態8と異なる点を説明する。後述する構成を除く他の構成は、実施形態8と共通している。このため、実施形態8と共通する構成部には実施形態8と同一の参照符号を付してその説明を省略する。
 図18は、実施形態10における電源システム1の要部構成を示すブロック図である。実施形態10における給電制御装置10は、実施形態8における給電制御装置10が有する構成部の中で、OR回路23以外の構成部を有する。実施形態10におけるマイコン26は、実施形態4におけるマイコン26と同様に構成されている。実施形態10においては、電圧出力回路24の第2回路スイッチ56のコレクタ及び回路抵抗54間の接続ノードは、マイコン26の入力部44に接続されている。マイコン26の出力部40は、装置抵抗25を介して、第1駆動回路22a及び第2駆動回路22bに接続されている。
 電圧出力回路24の出力電圧はマイコン26の入力部44に入力される。マイコン26の出力部40は、第1駆動回路22a及び第2駆動回路22bにハイレベル電圧又はローレベル電圧を出力している。第1駆動回路22aは、出力部40から入力されている電圧がローレベル電圧からハイレベル電圧に切替わった場合、第1半導体スイッチ20aをオンに切替える。第1駆動回路22aは、マイコン26の出力部40から入力されている電圧がハイレベル電圧からローレベル電圧に切替わった場合、第1半導体スイッチ20aをオフに切替える。
 出力部40の出力電圧がハイレベル電圧に切替わった場合、実施形態8と同様に、第1駆動回路22a及び第2駆動回路22bは第1半導体スイッチ20a及び第2半導体スイッチ20bをオンに切替える。出力部40の出力電圧がローレベル電圧に切替わった場合、電圧出力回路24の出力電圧に無関係に、第1駆動回路22a及び第2駆動回路22bは第1半導体スイッチ20a及び第2半導体スイッチ20bをオフに切替える。
 実施形態10では、実施形態4と同様に、電圧出力回路24は、第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである場合に基準電圧Vr未満である電圧を出力する。電圧出力回路24は、第1半導体スイッチ20a及び第2半導体スイッチ20bがオンである場合、又は、第2半導体スイッチ20bのドレイン及びソースが短絡している状態で第1半導体スイッチ20aがオフである場合に基準電圧Vr以上である電圧を出力する。
 マイコン26の制御部42は実施形態4と同様の短絡検知処理を行うので、実施形態10における給電制御装置10は、実施形態4における給電制御装置10が奏する効果を同様に奏する。
 実施形態10における短絡検知処理のステップS12では、制御部42は、電圧出力回路24の出力電圧が基準電圧Vr未満である場合、ノード電圧が閾値電圧以上であると判定する。制御部42は、電圧出力回路24の出力電圧が基準電圧Vr以上である場合、ノード電圧が閾値電圧未満であると判定する。制御部42は、ノード電圧が閾値電圧未満であると判定した場合(S12:NO)、第2半導体スイッチ20bのドレイン及びソースが短絡したとして、ステップS13を実行する。制御部42は、ノード電圧が閾値電圧以上であると判定した場合(S12:YES)、短絡検知処理を終了する。
<なお書き>
 電圧出力回路24の回路抵抗52の一端は、実施形態9と同様に、負荷11の他端及び第1半導体スイッチ20aのソース間の接続ノードに接続されてもよい。この場合、ノード電圧は、実施形態9と同様に、接地電位を基準として、負荷11の他端及び第1半導体スイッチ20aのソース間の接続ノードに印加される電圧である。
(実施形態11)
 実施形態8においては、第1半導体スイッチ20aは第2半導体スイッチ20bの上流側に配置されている。第1半導体スイッチ20a及び第2半導体スイッチ20bの配置はこの配置に限定されない。
 以下では、実施形態11について、実施形態8と異なる点を説明する。後述する構成を除く他の構成は、実施形態8と共通している。このため、実施形態1と共通する構成部には実施形態1と同一の参照符号を付してその説明を省略する。
<給電制御装置10の構成>
 図19は、実施形態11における電源システム1の要部構成を示すブロック図である。実施形態11を実施形態8と比較した場合、第1半導体スイッチ20a及び第2半導体スイッチ20bの配置が異なる。実施形態11における給電制御装置10では、第2半導体スイッチ20bのドレインは、負荷11の他端に接続されている。第2半導体スイッチ20bのソースは、第1半導体スイッチ20aのソースに接続されている。第1半導体スイッチ20aのドレインは接地されている。
 バッテリ12の接続が正常接続である場合において、第1半導体スイッチ20a及び第2半導体スイッチ20bがオンであるとき、電流は、正極端子Tp、負荷11、第2半導体スイッチ20b、第1半導体スイッチ20a及び負極端子Tnの順に流れる。正極端子Tpから負極端子Tnへ流れる電流の電流経路には、負荷11、第2半導体スイッチ20b及び第1半導体スイッチ20aがこの順で配置されている。同様の場合において、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡していると仮定する。この場合、電流は、正極端子Tp、負荷11、第2半導体スイッチ20b、第1半導体スイッチ20aの第1ダイオード21a及び負極端子Tnの順に流れる。
 電圧出力回路24の回路抵抗52の一端は、負荷11の他端及び第1半導体スイッチ20aのドレイン間の接続ノードに接続されている。実施形態11におけるノード電圧は、接地電位を基準として、負荷11の他端及び第1半導体スイッチ20aのドレイン間の接続ノードに印加される電圧である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである場合、ノード電圧は、一定電圧Vcであり、実施形態8と同様に閾値電圧Vth以上である。第1半導体スイッチ20a及び第2半導体スイッチ20bがオンである場合、又は、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡している場合、ノード電圧は、ゼロV又はゼロV近傍の値であり、実施形態8と同様に、閾値電圧Vth未満である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態でバッテリ12が正極端子Tp及び負極端子Tn間に接続される。このとき、バッテリ12の接続が逆接続であったと仮定する。この場合、ノード電圧は、一定電圧Vcであり、実施形態8と同様に閾値電圧Vth以上である。
 従って、実施形態11における給電制御装置10は、実施形態8における給電制御装置10が奏する効果を同様に奏する。
(実施形態12)
 実施形態10においては、第1半導体スイッチ20aは第2半導体スイッチ20bの上流側に配置されている。第1半導体スイッチ20a及び第2半導体スイッチ20bの配置はこの配置に限定されない。
 以下では、実施形態12について、実施形態10と異なる点を説明する。後述する構成を除く他の構成は、実施形態10と共通している。このため、実施形態10と共通する構成部には実施形態10と同一の参照符号を付してその説明を省略する。
<給電制御装置10の構成>
 図20は、実施形態12における電源システム1の要部構成を示すブロック図である。実施形態12を実施形態10と比較した場合、第1半導体スイッチ20a及び第2半導体スイッチ20bの配置が異なる。実施形態12における給電制御装置10では、第2半導体スイッチ20bのドレインは、負荷11の他端に接続されている。第2半導体スイッチ20bのソースは、第1半導体スイッチ20aのソースに接続されている。第1半導体スイッチ20aのドレインは接地されている。
 バッテリ12の接続が正常接続である場合において、第1半導体スイッチ20a及び第2半導体スイッチ20bがオンであるとき、電流は、正極端子Tp、負荷11、第2半導体スイッチ20b、第1半導体スイッチ20a及び負極端子Tnの順に流れる。正極端子Tpから負極端子Tnへ流れる電流の電流経路には、負荷11、第2半導体スイッチ20b及び第1半導体スイッチ20aがこの順で配置されている。
 バッテリ12の接続が正常接続である場合において、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡していると仮定する。この場合、電流は、正極端子Tp、負荷11、第2半導体スイッチ20b、第1半導体スイッチ20aの第1ダイオード21a及び負極端子Tnの順に流れる。
 回路抵抗52の一端は、負荷11の他端及び第1半導体スイッチ20aのドレイン間の接続ノードに接続されている。実施形態12におけるノード電圧は、接地電位を基準として、負荷11の他端及び第1半導体スイッチ20aのドレイン間の接続ノードに印加される電圧である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである場合、ノード電圧は、一定電圧Vcであり、実施形態10と同様に閾値電圧Vth以上である。第1半導体スイッチ20a及び第2半導体スイッチ20bがオンである場合、又は、第1半導体スイッチ20aがオフであり、かつ、第2半導体スイッチ20bのドレイン及びソースが短絡している場合、ノード電圧は、ゼロV又はゼロV近傍の値であり、実施形態10と同様に閾値電圧Vth未満である。
 第1半導体スイッチ20a及び第2半導体スイッチ20bがオフである状態でバッテリ12が正極端子Tp及び負極端子Tn間に接続される。このとき、バッテリ12の接続が逆接続であったと仮定する。この場合、ノード電圧は、一定電圧Vcであり、実施形態10と同様に閾値電圧Vth以上である。
 従って、実施形態12における給電制御装置10は、実施形態10における給電制御装置10が奏する効果を同様に奏する。
<変形例>
 実施形態1~12において、第1半導体スイッチ20a及び第2半導体スイッチ20bそれぞれは、寄生ダイオードを有する半導体スイッチであればよいので、Nチャネル型のFETに限定されない。第1半導体スイッチ20aはPチャネル型のFETであってもよい。この場合、第1ダイオード21aのカソード及びアノードは、第1半導体スイッチ20aのソース及びドレインに接続される。
 第1半導体スイッチ20aがPチャネル型のFETである場合、第1半導体スイッチ20aのドレイン及びソースそれぞれの接続先は、第1半導体スイッチ20aがNチャネル型のFETである場合における第1半導体スイッチ20aのソース及びドレインの接続先に変更される。第1駆動回路22aは、第1半導体スイッチ20aのゲートの電圧を低下させることによって、第1半導体スイッチ20aをオンに切替える。第1駆動回路22aは、第1半導体スイッチ20aのゲートの電圧を上昇させることによって、第1半導体スイッチ20aをオフに切替える。
 同様に、第2半導体スイッチ20bはPチャネル型のFETであってもよい。この場合も、第2ダイオード21bのカソード及びアノードは、第2半導体スイッチ20bのソース及びドレインに接続される。第2半導体スイッチ20bがPチャネル型のFETである場合、第2半導体スイッチ20bのドレイン及びソースそれぞれの接続先は、第2半導体スイッチ20bがNチャネル型のFETである場合における第2半導体スイッチ20bのソース及びドレインの接続先に変更される。第2駆動回路22bは、第2半導体スイッチ20bのゲートの電圧を低下させることによって、第2半導体スイッチ20bをオンに切替える。第2駆動回路22bは、第2半導体スイッチ20bのゲートの電圧を上昇させることによって、第2半導体スイッチ20bをオフに切替える。
 実施形態1~12において、マイコン26は、装置抵抗25を介して、OR回路23及び第2駆動回路22b、又は、第1駆動回路22a及び第2駆動回路22bに接続している。給電制御装置10は2つの装置抵抗25を有する場合、マイコン26は、一方の装置抵抗25を介して、OR回路23又は第1駆動回路22aに接続され、他方の装置抵抗25を介して、第2駆動回路22bに接続されてもよい。この場合、マイコン26は、OR回路23又は第1駆動回路22aにハイレベル電圧又はローレベル電圧を出力するとともに、第2駆動回路22bにハイレベル電圧又はローレベル電圧を出力する。マイコン26が第1駆動回路22aにハイレベル電圧又はローレベル電圧を直接に出力する構成では、電圧出力回路24の出力電圧が基準電圧Vr以上である場合、マイコン26は第1駆動回路22aに出力している電圧をハイレベル電圧に切替える。
 実施形態1~3,5,6において、OR回路23の一方の入力端は、電圧出力回路24を介さずに、電流経路上の接続ノードに直接に接続されてもよい。この場合、OR回路23の一方の入力端に入力される電圧の基準電圧は、閾値電圧と一致する。同様に、実施形態1~3,5,6において、OR回路23の一方の入力端は、電圧出力回路24ではなく、ダイオードを介して電流経路上の接続ノードに接続されてもよい。この場合も、OR回路23の一方の入力端に入力される電圧の基準電圧は、閾値電圧と一致する。ダイオードのカソードはOR回路23側に配置される。
 実施形態2,5~7において、第1回路スイッチ55は、制御端の電圧が一定電圧以上となった場合にオンに切替わるスイッチであればよいので、NPN型のバイポーラトランジスタに限定されず、例えば、Nチャネル型のFETであってもよい。
 実施形態2,5~12において、第2回路スイッチ56は、制御端の電圧が一定電圧未満となった場合にオンに切替わるスイッチであればよいので、PNP型のバイポーラトランジスタに限定されず、例えば、Pチャネル型のFETであってもよい。
 開示された実施形態1~12はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 電源システム
 10 給電制御装置
 11 負荷
 12 バッテリ
 20a 第1半導体スイッチ
 20b 第2半導体スイッチ
 21a 第1ダイオード
 21b 第2ダイオード
 22a 第1駆動回路(切替え部)
 22b 第2駆動回路
 23 OR回路
 24 電圧出力回路
 25 装置抵抗
 26 マイコン
 30,31,50,51,52,53,54,61 回路抵抗
 40 出力部
 41 記憶部
 42 制御部(処理部)
 43 内部バス
 44 入力部
 45 A/D変換部
 55 第1回路スイッチ
 56 第2回路スイッチ
 60 コンパレータ
 62 直流電源
 A 記憶媒体
 P コンピュータプログラム
 Tn 負極端子
 Tp 正極端子

Claims (7)

  1.  電流経路に配置され、両端に寄生ダイオードが接続されている第1半導体スイッチ及び第2半導体スイッチの両方をオン又はオフに切替えることによって給電を制御する給電制御装置であって、
     前記第1半導体スイッチ及び第2半導体スイッチのオン又はオフへの切替えを指示する処理を実行する処理部と、
     前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記電流経路を電流が流れている場合に前記第1半導体スイッチをオンに切替える切替え回路と
     を備え、
     前記第1半導体スイッチ及び第2半導体スイッチそれぞれの寄生ダイオードのカソードは、前記電流経路にてアノードの下流側及び上流側に位置する
     給電制御装置。
  2.  前記電流経路にて、前記第1半導体スイッチは、前記第2半導体スイッチの上流側に配置されており、
     前記電流経路にて、前記第2半導体スイッチの下流側に負荷が配置されており、
     前記切替え回路は、前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記第2半導体スイッチ及び前記負荷間の接続ノードのノード電圧が閾値電圧以上である場合に前記第1半導体スイッチをオンに切替える
     請求項1に記載の給電制御装置。
  3.  前記電流経路にて、前記第1半導体スイッチは、前記第2半導体スイッチの下流側に配置されており、
     前記電流経路にて、前記第1半導体スイッチの下流側に負荷が配置されており、
     前記切替え回路は、前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記第2半導体スイッチ及び前記負荷間の接続ノードのノード電圧が閾値電圧以上である場合に前記第1半導体スイッチをオンに切替える
     請求項1に記載の給電制御装置。
  4.  前記処理部は、
     前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示している場合、前記ノード電圧が前記閾値電圧以上であるか否かを判定し、
     前記ノード電圧が前記閾値電圧以上であると判定した場合に前記第1半導体スイッチのオンへの切替えを前記切替え回路に指示する
     処理を実行する
     請求項2又は請求項3に記載の給電制御装置。
  5.  前記電流経路にて、前記第1半導体スイッチは、前記第2半導体スイッチの上流側に配置されており、
     前記電流経路にて、前記第1半導体スイッチの上流側に負荷が配置されており、
     前記切替え回路は、前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記負荷及び第2半導体スイッチ間の接続ノードのノード電圧が閾値電圧未満である場合に前記第1半導体スイッチをオンに切替える
     請求項1に記載の給電制御装置。
  6.  前記電流経路にて、前記第1半導体スイッチは、前記第2半導体スイッチの下流側に配置されており、
     前記電流経路にて、前記第2半導体スイッチの上流側に負荷が配置されており、
     前記切替え回路は、前記処理部が前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示しているにも関わらず、前記負荷及び第2半導体スイッチ間の接続ノードのノード電圧が閾値電圧未満である場合に前記第1半導体スイッチをオフに切替える
     請求項1に記載の給電制御装置。
  7.  前記処理部は、
     前記第1半導体スイッチ及び第2半導体スイッチのオフへの切替えを指示している場合、前記ノード電圧が前記閾値電圧未満であるか否かを判定し、
     前記ノード電圧が前記閾値電圧未満であると判定した場合に前記第1半導体スイッチのオンへの切替えを前記切替え回路に指示する
     処理を実行する
     請求項5又は請求項6に記載の給電制御装置。
PCT/JP2020/045826 2019-12-26 2020-12-09 給電制御装置 WO2021131698A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080085017.5A CN114788114A (zh) 2019-12-26 2020-12-09 供电控制装置
DE112020006338.0T DE112020006338T5 (de) 2019-12-26 2020-12-09 Stromversorgungssteuervorrichtung
US17/757,890 US11870427B2 (en) 2019-12-26 2020-12-09 Power supply control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019237424A JP7294127B2 (ja) 2019-12-26 2019-12-26 給電制御装置
JP2019-237424 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021131698A1 true WO2021131698A1 (ja) 2021-07-01

Family

ID=76575422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045826 WO2021131698A1 (ja) 2019-12-26 2020-12-09 給電制御装置

Country Status (5)

Country Link
US (1) US11870427B2 (ja)
JP (1) JP7294127B2 (ja)
CN (1) CN114788114A (ja)
DE (1) DE112020006338T5 (ja)
WO (1) WO2021131698A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107632A (ja) * 1994-09-16 1996-04-23 Robert Bosch Gmbh スイッチング装置
JP2008244487A (ja) * 2008-04-21 2008-10-09 Renesas Technology Corp 複合型mosfet
JP2013255017A (ja) * 2012-06-05 2013-12-19 Rohm Co Ltd パワーパス回路
JP2017184538A (ja) * 2016-03-31 2017-10-05 株式会社デンソー 電源システム
JP2017208766A (ja) * 2016-05-20 2017-11-24 株式会社オートネットワーク技術研究所 給電制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1226438B (it) * 1988-07-05 1991-01-15 Sgs Thomson Microelectronics Circuito elettronico con dispositivo di protezione da variazioni di tensione della batteria di alimentazione.
IT1227104B (it) * 1988-09-27 1991-03-15 Sgs Thomson Microelectronics Circuito integrato autoprotetto da inversioni di polarita' della batteria di alimentazione
DE19817790A1 (de) * 1998-04-21 1999-12-09 Siemens Ag Verpolschutzschaltung
JP6891835B2 (ja) 2018-02-22 2021-06-18 株式会社オートネットワーク技術研究所 制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107632A (ja) * 1994-09-16 1996-04-23 Robert Bosch Gmbh スイッチング装置
JP2008244487A (ja) * 2008-04-21 2008-10-09 Renesas Technology Corp 複合型mosfet
JP2013255017A (ja) * 2012-06-05 2013-12-19 Rohm Co Ltd パワーパス回路
JP2017184538A (ja) * 2016-03-31 2017-10-05 株式会社デンソー 電源システム
JP2017208766A (ja) * 2016-05-20 2017-11-24 株式会社オートネットワーク技術研究所 給電制御装置

Also Published As

Publication number Publication date
US20230054739A1 (en) 2023-02-23
US11870427B2 (en) 2024-01-09
DE112020006338T5 (de) 2022-10-20
JP7294127B2 (ja) 2023-06-20
CN114788114A (zh) 2022-07-22
JP2021106475A (ja) 2021-07-26

Similar Documents

Publication Publication Date Title
US6420906B1 (en) FET-OR circuit and power supply circuit using the same
US8970259B2 (en) Power transistor drive circuit
CN111819750B (zh) 控制装置、控制方法及计算机可读取的存储介质
US10135234B2 (en) Preventive apparatus
JP6708003B2 (ja) 給電制御装置
US20180370464A1 (en) Power supply control device
CN108781077B (zh) 供电控制装置
WO2018147103A1 (ja) スイッチ制御装置、スイッチ切替え方法及びコンピュータプログラム
WO2021131698A1 (ja) 給電制御装置
JP2001238347A (ja) 電源制御回路
WO2020022037A1 (ja) 回路装置
WO2020230605A1 (ja) 電圧レギュレータ及び車載用のバックアップ電源
WO2020230604A1 (ja) 電圧レギュレータ及び車載用のバックアップ電源
JP7226250B2 (ja) 駆動装置、短絡検知方法及びコンピュータプログラム
JP2019140747A (ja) 給電制御装置、給電制御方法及びコンピュータプログラム
JP7310591B2 (ja) 駆動装置
WO2023079975A1 (ja) 制御装置
US20230008237A1 (en) Switch device, current determination method and computer program
WO2021210319A1 (ja) 給電制御装置、検査方法及びコンピュータプログラム
JP5965663B2 (ja) 半導体装置
CN116490404A (zh) 供电控制装置、供电控制方法及计算机程序
JP2014017672A (ja) 負荷駆動回路
JP2022013339A (ja) 短絡判定装置、および、スイッチ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907301

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20907301

Country of ref document: EP

Kind code of ref document: A1