WO2021131654A1 - 絶縁性樹脂 - Google Patents

絶縁性樹脂 Download PDF

Info

Publication number
WO2021131654A1
WO2021131654A1 PCT/JP2020/045550 JP2020045550W WO2021131654A1 WO 2021131654 A1 WO2021131654 A1 WO 2021131654A1 JP 2020045550 W JP2020045550 W JP 2020045550W WO 2021131654 A1 WO2021131654 A1 WO 2021131654A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
diketone
metal
insulating resin
insulating
Prior art date
Application number
PCT/JP2020/045550
Other languages
English (en)
French (fr)
Inventor
和也 衛藤
康太郎 谷川
泰 村上
Original Assignee
京セラ株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 国立大学法人信州大学 filed Critical 京セラ株式会社
Priority to JP2021567172A priority Critical patent/JP7389820B2/ja
Priority to CN202080089823.XA priority patent/CN114901758B/zh
Priority to EP20904818.0A priority patent/EP4083128A4/en
Priority to US17/787,355 priority patent/US20230040012A1/en
Publication of WO2021131654A1 publication Critical patent/WO2021131654A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • This disclosure relates to insulating resins.
  • Patent Document 1 An example of the prior art is described in Patent Document 1.
  • the insulating resin of the present disclosure includes (A) a thermoplastic resin and (B) a metal diketone complex.
  • an insulating material is used to electrically insulate between wirings and terminals.
  • the insulating material is also used as a dielectric material.
  • a ceramic material such as a metal oxide or a metal nitride, or a resin material such as a polyethylene resin or a polyimide resin is used.
  • the resin material is used as an insulating material because of its thinness and light weight, ease of processing, and cost.
  • a film capacitor is an example of an electronic component.
  • a resin film is used as an insulating material and a dielectric material.
  • Means for reducing the size of the film capacitor include thinning the dielectric film and reducing the number of layers and the number of turns of the dielectric film.
  • Patent Document 1 proposes applying a composite dielectric material in which ceramic particles are dispersed in an organic resin having an epoxy group to a dielectric film in order to increase the withstand voltage.
  • an insulating resin having improved characteristics compared to the basic configuration of the insulating resin of the present disclosure has been desired.
  • the purpose of the present disclosure is to provide an insulating resin having improved characteristics.
  • the insulating resin of the present embodiment contains (A) a thermoplastic resin and (B) a metal diketone complex.
  • the metal diketone complex is a complex in which one or more diketones are coordinated with respect to the central metal.
  • the metal element of the central metal is dispersed in the thermoplastic resin at the single molecule level.
  • the metal diketone complex does not form a bond with the thermoplastic resin due to various reactions, and is dispersed in the thermoplastic resin while maintaining the complex or at least in the state of the diketone and the metal element.
  • STEM scanning transmission electron microscope
  • deterioration of resin that is, one of the causes of deterioration of withstand voltage as a characteristic of insulating resin is breakage of intramolecular bond by oxygen.
  • metal elements can be dispersed in the thermoplastic resin at the single molecule level. Since oxygen reacts with a metal complex to form a metal oxide, oxygen is trapped by the metal element in the thermoplastic resin, and deterioration of the characteristics of the thermoplastic resin is suppressed.
  • the metal element is dispersed in the thermoplastic resin as a metal diketone complex at the single molecule level, the metal element content per unit volume of the insulating resin, that is, the amount of captured oxygen increases. Thereby, the withstand voltage resistance of the insulating resin can be improved.
  • thermoplastic resin for example, at least one selected from polycarbonate resin, polyester resin, polyarylate resin, cyclic olefin resin, polyphenylene ether resin, polyphenylene sulfide resin and polyetherimide resin is used. be able to. Further, it may be a copolymer of these plurality of types of resins. These resins have excellent heat resistance, and by using these resins, an insulating resin having excellent heat resistance can be obtained.
  • a polymer having a repeating unit represented by the general formula (1) for a polycarbonate resin and the general formula (2) or (3) for a polyarylate resin can be mentioned as an example.
  • X represents at least one selected from an aliphatic divalent group, a cyclic aliphatic divalent group, and a divalent group represented by the general formula (4), and represents at least one selected from the general formula (2).
  • X represents at least one selected from the divalent groups represented by the general formula (4).
  • Y represents a substituted or unsubstituted arylene group.
  • R1 and R2 each independently represent a substituted or unsubstituted alkyl group, aryl group, or halogen atom.
  • A represents a single bond, a linear, branched, or cyclic alkylene group having 1 to 12 carbon atoms.
  • X in the general formulas (1), (2), and (3) include divalent groups represented by the general formulas (5a) to (5n).
  • Cyclic olefin resin can also be used as the thermoplastic resin.
  • the cyclic olefin resin for example, a polymer of a norbornene-based monomer as shown in the general formula (6) can be mentioned.
  • the norbornene-based monomer is a kind of cyclic olefin monomer, and the cyclic olefin monomer is a compound having a ring structure formed by carbon atoms and having a carbon-carbon double bond in the ring structure.
  • Examples of the cyclic olefin monomer include norbornene-based monomers and monocyclic cyclic olefins.
  • the norbornene-based monomer forms a cyclic olefin-based organic resin by ring-opening polymerization, vinyl copolymerization, vinyl polymerization, radical polymerization or the like as shown in the reaction formulas (7) to (10), respectively.
  • R3, R4, and R5 are arbitrary functional groups.
  • the cyclic olefin-based resin material is usually a polymer of a single type of norbornene-based monomer, but may be a polymer of a plurality of different types of norbornene-based monomers.
  • norbornene-based monomers include norbornenes, dicyclopentadiene, tetracyclododecene and the like. These may contain a hydrocarbon group such as an alkyl group, an alkenyl group, an alkylidene group or an aryl group as a substituent, or a polar group such as a carboxyl group or an acid anhydride group as a substituent, but they are non-polar, that is, a carbon atom. It is preferable that it is a norbornene-based monomer composed of only hydrogen atoms.
  • Non-polar norbornene-based monomers include non-polar dicyclopentadiene, non-polar tetracyclododecene, non-polar norbornene, and non-polar cyclic olefins having a pentacyclic or higher.
  • the norbornene-based monomer may have a double bond in addition to the double bond of the norbornene ring.
  • cyclic olefin-based resin material examples include Norbornene-based ring-opening polymer (hereinafter, may be simply referred to as a ring-opening polymer), ARTON (registered trademark) manufactured by JSR Corporation, Japan. ZEONEX (registered trademark) and ZEONOR (registered trademark) manufactured by Zeon Co., Ltd. and APEL (registered trademark) manufactured by Mitsui Kagaku Co., Ltd., which is a norbornene-based vinyl copolymer (hereinafter, may be simply referred to as a vinyl copolymer). ), APO (registered trademark), TOPAS (registered trademark) manufactured by Polyplastics Co., Ltd., etc.
  • a hydrogenated product of a cyclic diene addition polymer and a cyclic diene addition polymer can also be used.
  • a ring-opening polymer that is, a ring-opening polymer of a monomer having a norbornene ring is particularly preferable from the viewpoint of film moldability, chemical resistance and the like.
  • the metal diketone complex is a complex in which one or a plurality of ligands containing at least the diketone are coordinated with respect to the central metal.
  • the diketone has two ketone groups in the molecule, and these two ketone groups cause a coordination bond with the central metal.
  • the central metal is at least one selected from, for example, Mo, V, Zn, Ti, Zr and Al.
  • the metal diketone complex is dispersed in the thermoplastic resin, and the trapping of oxygen by the central metal improves the withstand voltage resistance of the insulating resin.
  • Cu, Fe, Ni, Ca, Co, Mn, Mg, Ir, In, Cr, La, or the like can also be used as the central metal.
  • An appropriate central metal may be selected according to the purpose of using the insulating resin.
  • the diketone is not particularly limited as long as it coordinates with the above-mentioned central metal.
  • the ligand of the metal diketone complex may contain one or more ⁇ -diketones.
  • the diketone for example, at least one selected from acetylacetonate (acetylacetone), dibenzoylmethane, ethyl acetoacetate and diethyl malonate can be used.
  • the same diketone may be coordinated, or a plurality of types of diketones may be coordinated.
  • the central metal is Zr
  • four diketones are coordinated to form a metal diketone complex. If all four ligands are acetylacetonate, the metal diketone complex is Zr acetylacetonate (formula (11)).
  • some acetylacetonates may be replaced with other diketones. For example, one of the four acetylacetonates may be replaced with dibenzoylmethane.
  • the content of the metal diketone complex is, for example, 0.5 to 10% by mass.
  • the insulating resin of the present embodiment may further contain various components depending on the purpose of use, the type of electronic component to be used, and the like.
  • the insulating resin when used as a dielectric film for a film capacitor, it may further contain at least one of (C) diketone, alcohol or carboxylic acid as an additive.
  • the additive (C) can improve the oxidation suppressing effect of the thermoplastic resin.
  • the (C) diketone, alcohol or carboxylic acid dielectric film can be obtained, for example, by dissolving a thermoplastic resin and a metal diketone complex in a solvent to form a resin solution.
  • the metal diketone complex exhibits poor solubility in a solvent in which the thermoplastic resin is soluble, the dispersibility may decrease.
  • the metal diketone complex can be highly dispersed in the thermoplastic resin.
  • the metal diketone complex is highly dispersed in the thermoplastic resin, the probability of oxygen trapping by the central metal is increased, the oxidation suppressing effect of the thermoplastic resin is improved, and the withstand voltage resistance of the dielectric film is further improved.
  • a dielectric film will be described as an example of the use of the insulating resin of the present disclosure, but the use is not limited to this.
  • the diketone which is the diketone additive may be added separately from the diketone which is the ligand of the metal diketone complex.
  • the additive diketone may be present as a single compound in the resin solution and in the dielectric film.
  • a part of the diketone of the additive may form a complex as a part of the ligand of the metal diketone complex.
  • the same diketone as the above-mentioned ligand can be used.
  • the diketone for example, ⁇ -diketone or ketoacetic acid ester may be used.
  • the ⁇ -diketone for example, at least one of acetylacetonate (acetylacetone) and dibenzoylmethane can be used.
  • the ketoacetic acid ester for example, at least one of ethyl acetoacetate and diethyl malonate can be used.
  • the same compound as the diketone which is the above-mentioned ligand may be used, or a different compound may be used.
  • Zr acetylacetonate may be used as the metal diketone complex, and acetylacetone, which is the same compound, may be used as the additive. Further, Zr acetylacetonate may be used as the metal diketone complex, and dibenzoylmethane, which is a different compound, may be used as the additive. When different compounds are used, the additive diketone may be replaced with some of the ligands of the metal diketone complex in the resin solution and in the dielectric film.
  • the content of the diketone is, for example, 0.05 to 10% by mass.
  • the metal diketone complex can be highly dispersed in the thermoplastic resin.
  • the alcohol is replaced in the resin solution with some of the ligands of the metal diketone complex.
  • Alcohol-substituted metal diketone complexes are more soluble in solvents than unsubstituted complexes.
  • the alcohol as an additive for example, at least one selected from methanol, ethanol, propanol, butanol, hexanol, 2-ethylhexanol and octanol, nonanol, and decanol can be used.
  • the alcohol content is, for example, 0.05 to 10% by mass.
  • carboxylic acid examples include acetic acid, propionic acid, butyric acid, valeric acid, lauric acid, tridecylic acid, palmitic acid, stearic acid, oleic acid, maleic acid, fumaric acid, and succinic acid. At least one selected from acid, citric acid, fumaric acid, lactic acid, tartaric acid, benzoic acid, and phthalic acid can be used.
  • the alcohol content is, for example, 0.05 to 10% by mass.
  • the dielectric film of the present embodiment can be obtained, for example, as follows.
  • the thermoplastic resin is dissolved in a solvent, and a metal diketone complex is further added to obtain a resin solution. If necessary, additional additives may be added.
  • a dielectric film may be formed on, for example, a polyethylene terephthalate (PET) base material using this resin solution.
  • PET polyethylene terephthalate
  • As the film forming method a known method can be used, and for example, a molding method selected from a doctor blade method, a die coater method, a knife coater method, and the like can be used.
  • the dielectric film of the present embodiment has, for example, a thickness of 0.1 to 10 ⁇ m.
  • the dielectric breakdown electric field strength of the dielectric film for a film capacitor is, for example, 550 to 650 V / ⁇ m at 125 ° C. and 650 to 750 V / ⁇ m at 25 ° C.
  • the solvent is selected from, for example, ethylene glycol monopropyl ether, methyl ethyl ketone, methyl isobutyl ketone, xylene, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dimethyl acetamide, cyclohexane, ethyl cyclohexane, toluene, chloroform, tetrahydrofuran, or these.
  • An organic solvent containing a mixture of two or more kinds is used.
  • the concentration of the thermoplastic resin (resin concentration) in the resin solution is, for example, 1 to 25% by mass.
  • concentration of the metal diketone complex in the resin solution is, for example, 0.015 to 3% by mass.
  • the concentration of diketone, alcohol or carboxylic acid is, for example, 0.005 to 3% by mass.
  • the dielectric film has been described as an example of the use of the insulating resin, but the present invention is not limited to this, and the insulating resin can be used for various purposes.
  • the insulating resin can be used as a resin for coating electric wires and cables, a resin for encapsulating electronic parts, an insulating paint, an insulating adhesive, and the like.
  • the electric wire cable coating resin for example, the insulating resin of the present disclosure can be molded into a band shape or a sheet shape and wound around the cable surface for use. It can also be used by molding it into a tube shape and inserting a cable through it.
  • a sealing resin for example, the entire coil and transformer can be embedded in an insulating resin for use.
  • Semiconductor elements and electronic components mounted on a wiring board or the like can be coated with an insulating resin, or can be used by filling the connection terminals with an insulating resin.
  • an insulating paint for example, it can be used as a resin component of various paints such as solvent-based paints and powder paints together with other necessary components such as colorants.
  • an insulating adhesive for example, it can be used as a solvent-based adhesive in which an insulating resin is dissolved in a solvent.
  • insulating resin of the present disclosure will be described in detail based on examples.
  • a dielectric film using an insulating resin was used as an example.
  • thermoplastic resin Zr acetylacetonate was used as the metal diketone complex
  • acetylacetone was used as the additive.
  • Polyallylate is dissolved in toluene, and Zr acetylacetonate and acetylacetone are further dissolved.
  • the thermoplastic resin concentration is 12% by mass
  • the metal diketone complex concentration is 0.36% by mass
  • the diketone concentration is 0.
  • a resin solution of .18 mass% was obtained.
  • This resin solution was applied onto a polyethylene terephthalate (PET) substrate using a coater and dried at 125 ° C. for 3 hours to remove the solvent to prepare the dielectric film of the example.
  • a dielectric film having a thickness of 2.0 ⁇ m (Example 1) and a dielectric film having a thickness of 2.7 ⁇ m (Example 2) were obtained.
  • Comparative Example A dielectric film of Comparative Example was obtained in the same manner as in Example 1 except that a resin solution containing no Zr acetylacetonate and acetylacetone was used.
  • the dielectric breakdown electric field strength of the dielectric film was measured as follows. The PET film was peeled off from the dielectric film, and an Al electrode layer having an average thickness of 75 nm was formed on both sides of the dielectric film by a vacuum vapor deposition method to prepare a metallized film. The dielectric breakdown electric field strength of the obtained metallized film was measured. The dielectric breakdown electric field strength is the voltage at the moment when a DC voltage is applied between the metal films of the metallized film at a boosting speed of 10 V per second under an atmosphere of 25 ° C or 125 ° C and the leakage current value exceeds 1.0 mA. Obtained from the value. The results are shown in Table 1.
  • Example 1 Higher dielectric breakdown electric field strength was obtained in Examples 1 and 2 than in Comparative Examples under any atmosphere of 25 ° C. or 125 ° C. Even in an atmosphere of 150 ° C., a higher dielectric breakdown electric field strength was obtained in Example 1 as compared with Comparative Example.
  • the insulating resin of the present disclosure includes (A) a thermoplastic resin and (B) a metal diketone complex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本開示の絶縁性樹脂は、(A)熱可塑性樹脂と、(B)金属ジケトン錯体と、を含む。

Description

絶縁性樹脂
 本開示は、絶縁性樹脂に関する。
 従来技術の一例は、特許文献1に記載されている。
特開2006-225484号公報
 本開示の絶縁性樹脂は、(A)熱可塑性樹脂と、(B)金属ジケトン錯体と、を含む。
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本実施形態にかかるフィルムコンデンサ用誘電体フィルムの走査型透過電子顕微鏡(STEM)写真である。
 本開示の絶縁性樹脂の基礎となる構成として、電子部品においては、配線間および端子間などを電気的に絶縁するために、絶縁材料を用いている。また、絶縁材料は、誘電材料としても用いられる。絶縁材料としては、金属酸化物、金属窒化物などのセラミックス材料または、ポリエチレン樹脂、ポリイミド樹脂などの樹脂材料が用いられる。樹脂材料は、薄型軽量であること、加工の容易さ、コスト面から、絶縁材料として使用される。
 電子機器の小型化、高機能化などにより、電子部品の使用環境が高温化している。これらの電子部品には、高温の環境下でも長時間にわたり安定な電気的特性が得られる耐熱性が要求されている。
 電子部品の一例として、フィルムコンデンサがある。フィルムコンデンサは、絶縁材料、誘電材料として、樹脂製フィルムが用いられる。フィルムコンデンサの小型化を図る手段としては、誘電体フィルムの薄層化や、誘電体フィルムの積層数や巻回数の低減が挙げられる。誘電体フィルムを薄層化するためには、誘電体フィルムの耐電圧を向上させる必要がある。例えば、特許文献1では、耐電圧を高めるため、誘電体フィルムに、エポキシ基を有する有機樹脂にセラミック粒子を分散させた複合誘電体材料を適用することが提案されている。
 電子部品のさらなる高機能化のために、本開示の絶縁性樹脂の基礎となる構成よりも特性が向上した絶縁性樹脂が望まれていた。
 本開示の目的は、特性が向上した絶縁性樹脂を提供することである。
 本実施形態の絶縁性樹脂は、(A)熱可塑性樹脂と、(B)金属ジケトン錯体と、を含む。
 金属ジケトン錯体は、中心金属に対して、一または複数のジケトンが、配位した錯体である。金属ジケトン錯体を用いると、中心金属の金属元素が、熱可塑性樹脂中に単分子レベルで分散する。また、金属ジケトン錯体は、熱可塑性樹脂と、各種反応による結合などが生じておらず、錯体を維持したまま、または少なくともジケトンおよび金属元素の状態で、熱可塑性樹脂中に分散している。例えば、フィルム化した絶縁性樹脂の断面を走査型透過電子顕微鏡(STEM)で観察したとき、図1に示すように、金属元素は、直径1nm以下として見える程度に分散されている。金属ジケトン錯体と熱可塑性樹脂とが未反応であること、例えば、熱可塑性樹脂とアセチルアセトナートとのエステル結合およびエーテル結合などが存在していないことは、NMR(核磁気共鳴分光法)によって確認されている。
 一般的に樹脂の劣化、すなわち絶縁性樹脂の特性としては耐電圧性の低下の原因のひとつに酸素による分子内結合の切断がある。上記のように、本実施形態の絶縁性樹脂では、熱可塑性樹脂中に、単分子レベルで金属元素を分散させることができる。酸素は、金属錯体と反応して金属酸化物を生成することから、熱可塑性樹脂中の金属元素によって、酸素が捕捉(トラップ)され、熱可塑性樹脂の特性劣化が抑制される。特に、金属ジケトン錯体として熱可塑性樹脂中に、金属元素が単分子レベルで分散することで、絶縁性樹脂の単位体積あたりの金属元素含有量、すなわち捕捉される酸素量が増大する。これにより、絶縁性樹脂の耐電圧性を向上させることができる。
 (A)熱可塑性樹脂
 熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、環状オレフィン系樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂およびポリエーテルイミド樹脂から選ばれる少なくとも1種などを用いることができる。また、これら複数種類の樹脂の共重合体であってもよい。これらの樹脂は、耐熱性に優れており、これらの樹脂を用いることで、耐熱性に優れた絶縁性樹脂とすることができる。
 上記の各樹脂について、たとえば、ポリカーボネート樹脂であれば一般式(1)、ポリアリレート樹脂であれば一般式(2)または(3)で表される繰り返し単位を有するポリマーが、一例として挙げられる。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Xは、脂肪族の2価基または環状脂肪族の2価基、一般式(4)で表される2価基から選ばれる少なくとも1種を示し、一般式(2)または(3)中、Xは、一般式(4)で表される2価基から選ばれる少なくとも1種を示す。一般式(3)中、Yは、置換もしくは無置換のアリーレン(arylene)基を示す。
 一般式(4)中、R1、R2は、それぞれ独立して置換もしくは無置換のアルキル基、アリール基、またはハロゲン原子を示す。Aは、単結合、炭素原子数1~12の直鎖状、分岐状、または環状のアルキレン基を示す。
 上記一般式(1)、(2)、(3)中のXの具体例としては、たとえば一般式(5a)~(5n)で表される2価基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 (A)熱可塑性樹脂として、環状オレフィン系樹脂を用いることもできる。環状オレフィン系樹脂であれば、たとえば一般式(6)に示すようなノルボルネン系モノマーの重合体などが挙げられる。ノルボルネン系モノマーは、環状オレフィンモノマーの一種であり、環状オレフィンモノマーとは、炭素原子で形成される環構造を有するとともに、当該環構造中に炭素-炭素二重結合を有する化合物である。環状オレフィンモノマーとしては、ノルボルネン系モノマーのほか、単環環状オレフィンなどが挙げられる。ノルボルネン系モノマーは、反応式(7)~(10)にそれぞれ示すような開環重合、ビニル共重合、ビニル重合、またはラジカル重合などにより、環状オレフィン系の有機樹脂を形成する。
Figure JPOXMLDOC01-appb-C000003
 式(6)~(10)中、R3、R4、およびR5は、任意の官能基である。また、環状オレフィン系の樹脂材料は、通常、単一の種類のノルボルネン系モノマーの重合体であるが、複数の異なる種類のノルボルネン系モノマーの重合体であってもよい。
 ノルボルネン系モノマーの具体例としては、ノルボルネン類、ジシクロペンタジエン類、テトラシクロドデセン類などが挙げられる。これらは、アルキル基、アルケニル基、アルキリデン基、アリール基などの炭化水素基や、カルボキシル基、酸無水物基などの極性基を置換基として含有する場合もあるが、非極性の、すなわち炭素原子と水素原子のみで構成されるノルボルネン系モノマーであることが好ましい。
 非極性のノルボルネン系モノマーには、非極性のジシクロペンタジエン類、非極性のテトラシクロドデセン類、非極性のノルボルネン類、五環体以上の非極性の環状オレフィン類などがある。
 ノルボルネン系モノマーは、ノルボルネン環の二重結合以外に、さらに二重結合を有していてもよい。
 このような環状オレフィン系の樹脂材料としては、具体的には、ノルボルネン系開環重合体(以下、単に開環重合体という場合もある)であるJSR株式会社製のARTON(登録商標)、日本ゼオン株式会社製のZEONEX(登録商標)、ZEONOR(登録商標)や、ノルボルネン系のビニル共重合体(以下、単にビニル共重合体という場合もある)である三井化学株式会社製のAPEL(登録商標)、APO(登録商標)、ポリプラスチック株式会社製のTOPAS(登録商標)などが市販されている。また、ノルボルネン環を有するモノマーの開環重合体の水素添加物、ノルボルネン環を有するモノマーとα-オレフィン類との付加重合体、環状オレフィンの付加重合体、環状オレフィンの付加重合体の水素添加物、環状ジエンの付加重合体及び環状ジエンの付加重合体の水素添加物などを用いることもできる。これらのなかでも、特に開環重合体、すなわちノルボルネン環を有するモノマーの開環重合体が、フィルム成形性、耐薬品性などの観点から好ましい。
 (B)金属ジケトン錯体
 金属ジケトン錯体は、中心金属に対して、少なくともジケトンを含む配位子が、1または複数配位した錯体である。ジケトンは、分子内に2つのケトン基を有しており、この2つのケトン基によって、中心金属との配位結合が生じる。
 本実施形態の金属ジケトン錯体において、中心金属は、例えば、Mo、V、Zn、Ti、ZrおよびAlから選ばれる少なくとも1種である。前述のとおり、金属ジケトン錯体が熱可塑性樹脂中に分散し、中心金属による酸素の捕捉によって、絶縁性樹脂の耐電圧性が向上する。中心金属としては、上記以外にも、例えば、Cu、Fe、Ni、Ca、Co、Mn、Mg、Ir、In、CrまたはLaなどを用いることもできる。絶縁性樹脂を使用する目的などに応じて、適切な中心金属を選択すればよい。
 本実施形態の金属ジケトン錯体において、ジケトンは、上記の中心金属に配位するものであれば、特に限定されない。金属ジケトン錯体の配位子は、β-ジケトンを一つ以上含んでいてもよい。ジケトンとしては、例えば、アセチルアセトナート(アセチルアセトン)、ジベンゾイルメタン、アセト酢酸エチルおよびマロン酸ジエチルから選ばれる少なくとも1種を用いることができる。
 本実施形態の金属ジケトン錯体は、全て同じジケトンが配位していてもよく、複数種類のジケトンが配位していてもよい。例えば、中心金属がZrの場合は、4つのジケトンが配位されて金属ジケトン錯体となる。4つの配位子全てがアセチルアセトナートであれば、金属ジケトン錯体は、Zrアセチルアセトナート(式(11))である。複数種類のジケトンが配位する場合、一部のアセチルアセトナートが別のジケトンに置換されていてもよい。例えば、4つのアセチルアセトナートのうちひとつがジベンゾイルメタンに置換されていてもよい。
Figure JPOXMLDOC01-appb-C000004
 本実施形態の絶縁性樹脂において、金属ジケトン錯体の含有量は、例えば、0.5~10質量%である。
 本実施形態の絶縁性樹脂は、使用目的、使用する電子部品の種類などに応じて、さらに各種成分を添加してもよい。例えば、絶縁性樹脂を、フィルムコンデンサ用誘電体フィルムとして用いる場合に、さらに添加剤として、(C)ジケトン、アルコールまたはカルボン酸の少なくともいずれか1つをさらに含んでいてもよい。添加剤(C)は、熱可塑性樹脂の酸化抑制効果を向上させることができる。
 (C)ジケトン、アルコールまたはカルボン酸
 誘電体フィルムは、例えば、溶媒中に、熱可塑性樹脂および金属ジケトン錯体を溶解させ、樹脂溶液を成膜することで得られる。ここで、金属ジケトン錯体は、熱可塑性樹脂が可溶な溶媒に対して難溶性を示すために、分散性が低下する場合がある。ジケトン、アルコールまたはカルボン酸を添加することで、金属ジケトン錯体が熱可塑性樹脂中に高分散することが可能となる。金属ジケトン錯体が熱可塑性樹脂中に高分散することで、中心金属による酸素の捕捉確率が高くなり、熱可塑性樹脂の酸化抑制効果が向上して、誘電体フィルムの耐電圧性がさらに向上する。以下では、本開示の絶縁性樹脂の用途として誘電体フィルムを一例として説明するが、用途はこれに限定されない。
 (C-1)ジケトン
 添加剤であるジケトンは、上記金属ジケトン錯体の配位子であるジケトンとは、別に添加されてもよい。添加剤であるジケトンは、樹脂溶液中および誘電体フィルム中で単独の化合物として存在していてもよい。添加剤の一部のジケトンが、金属ジケトン錯体の一部の配位子として錯体を形成してもよい。
 添加剤であるジケトンは、上記の配位子であるジケトンと同様のものを用いることができる。ジケトンは、例えば、β-ジケトン、もしくはケト酢酸エステルを用いてもよい。β-ジケトンとしては、例えば、アセチルアセトナート(アセチルアセトン)またはジベンゾイルメタンの少なくともいずれかを用いることができる。ケト酢酸エステルとしては、例えば、アセト酢酸エチルまたはマロン酸ジエチルの少なくともいずれかを用いることができる。添加剤であるジケトンは、上記の配位子であるジケトンと同一の化合物を用いてもよく、異なる化合物を用いてもよい。例えば、金属ジケトン錯体として、Zrアセチルアセトナートを用い、添加剤として同一の化合物であるアセチルアセトンを用いてもよい。また、金属ジケトン錯体として、Zrアセチルアセトナートを用い、添加剤として異なる化合物であるジベンゾイルメタンを用いてもよい。異なる化合物を用いた場合、樹脂溶液中および誘電体フィルム中で、添加剤のジケトンが、金属ジケトン錯体の配位子の一部と置換されてもよい。
 本実施形態の誘電体フィルムにおいて、ジケトンの含有量は、例えば、0.05~10質量%である。
 (C-2)アルコール
 アルコールを添加剤として用いることで、金属ジケトン錯体が熱可塑性樹脂中に高分散することが可能となる。アルコールは、樹脂溶液中において、金属ジケトン錯体の配位子の一部と置換される。アルコール置換金属ジケトン錯体は、未置換の錯体よりも溶媒への可溶性が高くなる。
 添加剤であるアルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、2-エチルヘキサノールおよびオクタノール、ノナノール、デカノールから選ばれる少なくとも1種を用いることができる。本実施形態の誘電体フィルムにおいて、アルコールの含有量は、例えば、0.05~10質量%である。
 (C-3)カルボン酸
 添加剤であるカルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、ラウリン酸、トリデシル酸、パルミチン酸、ステアリン酸、オレイン酸、マレイン酸、フマル酸、コハク酸、クエン酸、フマル酸、乳酸、酒石酸、安息香酸、フタル酸から選ばれる少なくとも1種を用いることができる。本実施形態の誘電体フィルムにおいて、アルコールの含有量は、例えば、0.05~10質量%である。
 本実施形態の誘電体フィルムは、例えば以下のようにして得ることができる。熱可塑性樹脂を溶媒に溶解し、さらに、金属ジケトン錯体を添加し、樹脂溶液を得る。必要に応じて、さらに添加剤を添加してもよい。この樹脂溶液を用いて、例えばポリエチレンテレフタレート(PET)製基材の上に誘電体フィルムを成膜すればよい。成膜法としては、公知の方法を用いることができ、例えば、ドクターブレード法、ダイコータ法およびナイフコータ法等から選ばれる成形法を用いることができる。
 本実施形態の誘電体フィルムは、例えば、厚さが0.1~10μmである。また、フィルムコンデンサ用誘電体フィルムの絶縁破壊電界強度は、例えば、125℃で550~650V/μm、25℃で650~750V/μmである。
 溶媒としては、例えば、エチレングリコールモノプロピルエーテル、メチルエチルケトン、メチルイソブチルケトン、キシレン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジメチルアセトアミド、シクロヘキサン、エチルシクロヘキサン、トルエン、クロロホルム、テトラヒドロフラン又は、これらから選択された2種以上の混合物を含んだ有機溶剤を用いる。
 樹脂溶液における熱可塑性樹脂の濃度(樹脂濃度)は、例えば1~25質量%である。樹脂溶液における金属ジケトン錯体の濃度は、例えば0.015~3質量%である。ジケトン、アルコールまたはカルボン酸の濃度は、例えば0.005~3質量%である。
 上記では、絶縁性樹脂の用途の一例として、誘電体フィルムについて説明したが、これに限らず、絶縁性樹脂は種々の用途に用いることができる。例えば、電線ケーブル被覆樹脂、電子部品の封止樹脂、絶縁性塗料および絶縁性接着剤などとして用いることができる。電線ケーブル被覆樹脂の場合、例えば、本開示の絶縁性樹脂を帯状またはシート状に成型し、ケーブル表面に巻き付けて使用することができる。また、チューブ状に成型し、これにケーブルを挿通させて使用することもできる。封止樹脂の場合、例えば、コイル、トランスの全体を絶縁性樹脂に埋め込んで使用することができる。配線基板などに実装された半導体素子、電子部品を絶縁性樹脂で被覆したり、接続端子間に絶縁性樹脂を充填して使用することができる。絶縁性塗料の場合、例えば、溶剤系塗料、粉体塗料など各種塗料の樹脂成分として、着色剤などその他必要となる成分とともに使用することができる。絶縁性接着剤の場合、例えば、溶剤に絶縁性樹脂を溶解させた溶剤系接着剤として使用することができる。
 以下、本開示の絶縁性樹脂について、実施例に基づき詳細に説明する。なお、絶縁性樹脂を用いた誘電体フィルムを実施例とした。
 (実施例) 熱可塑性樹脂として、ポリアリレートを用い、金属ジケトン錯体として、Zrアセチルアセトナートを用い、添加剤として、アセチルアセトンを用いた。ポリアリレートをトルエンに溶解させ、さらに、Zrアセチルアセトナートおよびアセチルアセトンを溶解させ、熱可塑性樹脂濃度が12質量%であり、金属ジケトン錯体濃度が、0.36質量%であり、ジケトン濃度が、0.18質量%である樹脂溶液を得た。
 この樹脂溶液を、コータを用いてポリエチレンテレフタレート(PET)基材上に塗布し、125℃で3時間乾燥して溶媒を除去し、実施例の誘電体フィルムを作製した。塗布量を変えることで、厚さが2.0μmの誘電体フィルム(実施例1)と厚さが2.7μmの誘電体フィルム(実施例2)を得た。
 (比較例) Zrアセチルアセトナートおよびアセチルアセトンを含まない樹脂溶液を用いたこと以外は、実施例1と同様にして比較例の誘電体フィルムを得た。
 (特性評価)誘電体フィルムの絶縁破壊電界強度は、以下のように測定した。誘電体フィルムからPETフィルムを剥がし、誘電体フィルムの両面に真空蒸着法により平均厚みが75nmのAlの電極層を形成して金属化フィルムを作製した。得られた金属化フィルムについて絶縁破壊電界強度を測定した。絶縁破壊電界強度は、25℃または125℃の雰囲気下で、金属化フィルムの金属膜間に、毎秒10Vの昇圧速度で直流電圧を印加し、漏れ電流値が1.0mAを越えた瞬間の電圧値から求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 25℃および125℃いずれの雰囲気下においても、実施例1,2は、比較例に比べて、高い絶縁破壊電界強度が得られた。150℃の雰囲気下においても、実施例1は、比較例に比べて、高い絶縁破壊電界強度が得られた。
 本開示は次の実施の形態が可能である。
 本開示の絶縁性樹脂は、(A)熱可塑性樹脂と、(B)金属ジケトン錯体と、を含む。
 本開示によれば、特性が向上した絶縁性樹脂を提供できる。
 

Claims (10)

  1.  (A)熱可塑性樹脂と、
     (B)金属ジケトン錯体と、を含む絶縁性樹脂。
  2.  (B)金属ジケトン錯体の中心金属は、Mo、V、Zn、Ti、ZrおよびAlから選ばれる少なくとも1種である、請求項1に記載の絶縁性樹脂。
  3.  (B)金属ジケトン錯体の配位子は、β-ジケトンを一つ以上含む、請求項1または2に記載の絶縁性樹脂。
  4.  (B)金属ジケトン錯体の配位子は、アセチルアセトナート、ジベンゾイルメタン、アセト酢酸エチルおよびマロン酸ジエチルから選ばれる少なくとも1種を含む、請求項3に記載の絶縁性樹脂。
  5.  (C)ジケトン、アルコールまたはカルボン酸の少なくともいずれか1つをさらに含む、請求項1~4のいずれか1つに記載の絶縁性樹脂。
  6.  (C)ジケトンは、β-ジケトン、もしくはケト酢酸エステルである、請求項5に記載の絶縁性樹脂。
  7.  前記β-ジケトンは、アセチルアセトナートまたはジベンゾイルメタンの少なくともいずれか1つを含み、前記ケト酢酸エステルは、アセト酢酸エチルまたはマロン酸ジエチルの少なくともいずれか1つを含む、請求項6に記載の絶縁性樹脂。
  8.  (C)アルコールは、メタノール、エタノール、プロパノール、ブタノール、ヘキサノールおよび2-エチルヘキサノール、オクタノール、ノナノール、デカノールから選ばれる少なくとも1種である、請求項1~7のいずれか1つに記載の絶縁性樹脂。
  9.  (A)熱可塑性樹脂は、ガラス転移点が50℃以上である、請求項1~8のいずれか1つに記載の絶縁性樹脂。
  10.  (A)熱可塑性樹脂が、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂およびポリエーテルイミド樹脂から選ばれる少なくとも1種である、請求項1~9のいずれか1つに記載の絶縁性樹脂。
PCT/JP2020/045550 2019-12-25 2020-12-07 絶縁性樹脂 WO2021131654A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021567172A JP7389820B2 (ja) 2019-12-25 2020-12-07 絶縁性樹脂
CN202080089823.XA CN114901758B (zh) 2019-12-25 2020-12-07 绝缘性树脂
EP20904818.0A EP4083128A4 (en) 2019-12-25 2020-12-07 INSULATING RESIN
US17/787,355 US20230040012A1 (en) 2019-12-25 2020-12-07 Insulating resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019235160 2019-12-25
JP2019-235160 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021131654A1 true WO2021131654A1 (ja) 2021-07-01

Family

ID=76574085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045550 WO2021131654A1 (ja) 2019-12-25 2020-12-07 絶縁性樹脂

Country Status (5)

Country Link
US (1) US20230040012A1 (ja)
EP (1) EP4083128A4 (ja)
JP (1) JP7389820B2 (ja)
CN (1) CN114901758B (ja)
WO (1) WO2021131654A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141641A (ja) * 1974-04-19 1975-11-14
JPS56159014A (en) * 1980-05-09 1981-12-08 Mitsubishi Electric Corp Method of manufacturing prepreg insulator
JP2001505600A (ja) * 1996-11-29 2001-04-24 ヘルベルツ・オーストリア・ゲー・エム・ベー・ハー 電磁鋼板上に電気絶縁層を形成する為の被覆剤
JP2002280682A (ja) * 2001-01-12 2002-09-27 Fujitsu Ltd 絶縁樹脂組成物及びそれから形成した絶縁層を含む多層回路基板
JP2006225484A (ja) 2005-02-16 2006-08-31 Murata Mfg Co Ltd 複合誘電体材料及び電子部品
WO2011052581A1 (ja) * 2009-10-28 2011-05-05 三菱レイヨン株式会社 熱可塑性樹脂組成物の製造方法、成形体及び発光体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954552A (en) * 1989-05-15 1990-09-04 Shell Oil Company Stabilized carbon monoxide-olefin copolymer compositions
JPH0762106B2 (ja) * 1989-06-12 1995-07-05 松下電器産業株式会社 誘電体用樹脂組成物とフィルムコンデンサ
DE102004019947A1 (de) * 2004-04-23 2005-11-17 Baerlocher Gmbh Stabilisatorzusammensetzung für halogenhaltige thermoplastische Harzzusammensetzungen mit verbesserter Lagerfähigkeit
WO2008146908A1 (ja) * 2007-05-30 2008-12-04 Toyo Ink Manufacturing Co., Ltd. 絶縁性樹脂組成物
WO2010074024A1 (ja) * 2008-12-22 2010-07-01 ダイキン工業株式会社 フィルムコンデンサ用フィルムおよびフィルムコンデンサ
DE112011103971B4 (de) * 2010-11-30 2019-03-07 Mitsubishi Chemical Corp. Thermoplastische Harzzusammensetzung, Herstellungsverfahren einer thermoplastischen Harzzusammensetzung, Formwerkstoff und lichtemittierender Körper
JP5690606B2 (ja) * 2011-02-09 2015-03-25 日東電工株式会社 電気絶縁性樹脂シート
CN104031315B (zh) * 2014-06-06 2016-05-04 浙江农林大学 一种环保无卤膨胀阻燃聚丙烯基木质素复合材料
CN105969127A (zh) * 2016-03-29 2016-09-28 刘夏南 一种透气型家具涂料及其制备方法
EP3480827B1 (en) * 2016-06-29 2023-08-23 Kyocera Corporation Insulation material and wiring member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141641A (ja) * 1974-04-19 1975-11-14
JPS56159014A (en) * 1980-05-09 1981-12-08 Mitsubishi Electric Corp Method of manufacturing prepreg insulator
JP2001505600A (ja) * 1996-11-29 2001-04-24 ヘルベルツ・オーストリア・ゲー・エム・ベー・ハー 電磁鋼板上に電気絶縁層を形成する為の被覆剤
JP2002280682A (ja) * 2001-01-12 2002-09-27 Fujitsu Ltd 絶縁樹脂組成物及びそれから形成した絶縁層を含む多層回路基板
JP2006225484A (ja) 2005-02-16 2006-08-31 Murata Mfg Co Ltd 複合誘電体材料及び電子部品
WO2011052581A1 (ja) * 2009-10-28 2011-05-05 三菱レイヨン株式会社 熱可塑性樹脂組成物の製造方法、成形体及び発光体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083128A4

Also Published As

Publication number Publication date
US20230040012A1 (en) 2023-02-09
EP4083128A1 (en) 2022-11-02
CN114901758A (zh) 2022-08-12
JPWO2021131654A1 (ja) 2021-07-01
JP7389820B2 (ja) 2023-11-30
CN114901758B (zh) 2023-05-23
EP4083128A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
TW455884B (en) Coating solutions for use in forming bismuth-based ferroelectric thin films, and ferroelectric thin films, ferroelectric capacitors and ferroelectric memories formed with said coating solutions, as well as processes for production thereof
CN102804439B (zh) 可交联的电介质及其制备方法和用途
EP2758968B1 (en) Thermoformable polymer thick film silver conductor and its use in capacitive switch circuits
KR20100110891A (ko) 열 경화성 도전 페이스트, 및 그것을 이용하여 형성한 외부 전극을 갖는 적층 세라믹 전자 부품
US20120008252A1 (en) Dielectric paste having a low dielectric loss, method of manufacture thereof and an article that uses the same
WO2021131654A1 (ja) 絶縁性樹脂
TWI601781B (zh) 水蒸氣阻隔樹脂、水蒸氣阻隔塗布劑、水蒸氣阻隔膜、及水蒸氣阻隔積層體
CN107108923B (zh) 介电膜、以及使用了其的薄膜电容器和连结型电容器、以及逆变器、电动车辆
US20140037941A1 (en) Thermoformable polymer thick film silver conductor and its use in capacitive switch circuits
WO2016199886A1 (ja) 複合樹脂材料、誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
TWI601161B (zh) 用於形成鈦酸鋇鍶(BST)介電薄膜之形成介電薄膜用的組成物,形成介電薄膜的方法,藉此方法形成的含有Cu及Mn之BST介電薄膜以及具有此介電薄膜的複合電子組件
JP2006237506A (ja) 磁性体ペースト、インダクタおよび多層配線板
JP2015140364A (ja) 誘電体樹脂および誘電体フィルム、ならびにフィルムコンデンサ
CN1267893A (zh) 高分子磁性缩波基板材料及由其制成的高分子磁性缩波基板型材
WO2021131653A1 (ja) フィルムコンデンサ用誘電体フィルム、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
CN109313959B (zh) 绝缘材料和布线部件
KR20150048168A (ko) 도전 페이스트, 프린트 배선 기판
JP6904809B2 (ja) 複合樹脂材料、誘電体フィルムと、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
US20130069016A1 (en) Thermoformable polymer thick film silver conductor for capacitive switches
JP6468023B2 (ja) 導電性材料および導電性組成物
JP2002352624A (ja) 導電性金属化合物ペースト、該ペースト用金属化合物、該ペーストを使用した積層磁器コンデンサ、及び該コンデンサの製造方法
TW202410073A (zh) 導電性糊料、電子零件及積層陶瓷電容器
JP2004244525A (ja) 導電性塗料
JP2005336263A (ja) 膜形成用インクおよび膜形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020904818

Country of ref document: EP

Effective date: 20220725