WO2021131196A1 - モータ一体型流体機械、垂直離着陸機及びモータ一体型流体機械の設計方法 - Google Patents

モータ一体型流体機械、垂直離着陸機及びモータ一体型流体機械の設計方法 Download PDF

Info

Publication number
WO2021131196A1
WO2021131196A1 PCT/JP2020/036523 JP2020036523W WO2021131196A1 WO 2021131196 A1 WO2021131196 A1 WO 2021131196A1 JP 2020036523 W JP2020036523 W JP 2020036523W WO 2021131196 A1 WO2021131196 A1 WO 2021131196A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
motor
rigidity
outer peripheral
fluid machine
Prior art date
Application number
PCT/JP2020/036523
Other languages
English (en)
French (fr)
Inventor
一輝 大橋
直昭 藤原
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US17/789,157 priority Critical patent/US20230048852A1/en
Priority to EP20905784.3A priority patent/EP4060879A4/en
Publication of WO2021131196A1 publication Critical patent/WO2021131196A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions

Definitions

  • the present disclosure relates to a method for designing a motor-integrated fluid machine, a vertical take-off and landing machine, and a motor-integrated fluid machine.
  • a ring motor including a stator, a rotor, and a plurality of propeller blades
  • the stator has a stator support ring and a plurality of windings arranged in the circumferential direction of the stator support ring.
  • a plurality of pitch blades are connected to the stator support ring.
  • the rotor has a rotor support ring, a plurality of magnetic poles arranged in the circumferential direction of the rotor support ring, and a central hub.
  • the central hub is attached to a portion of the stator.
  • a plurality of propeller blades are coupled to a rotor support ring. Therefore, the rotor rotates around the central hub coupled to the stator by the winding and magnetic poles, so that the plurality of propeller blades rotate.
  • the motor-integrated fluid machine of the present disclosure is a motor-integrated fluid machine that sucks fluid from a suction port and blows out the sucked fluid from an outlet, centering on a shaft portion provided at the center of a rotating shaft and the shaft portion.
  • a rotating portion, an outer peripheral portion provided on the outer periphery of the shaft portion, and a motor for rotating the rotating portion are provided, and the motor is an outer peripheral drive for rotating the rotating portion by applying power from the outer peripheral portion.
  • the rotating portion includes a hub rotatably supported by the shaft portion, and a plurality of blades provided on the outer peripheral side of the hub and arranged side by side in the circumferential direction of the rotating shaft.
  • the motor has a rotating outer peripheral portion that is provided on the outer peripheral side of the blade and is annular along the circumferential direction of the rotating shaft, and the motor has a rotor-side magnet provided on the rotating outer peripheral portion and the outer peripheral portion. It has a stator-side magnet provided on the portion and facing the rotor-side magnet, and the rigidity of the rotating outer peripheral portion with respect to centrifugal force is 50 with respect to the rigidity of the rotating portion with respect to centrifugal force.
  • the rigidity ratio is 0% or more and 95% or less.
  • the vertical take-off and landing machine of the present disclosure includes the above-mentioned motor-integrated hydraulic machine and an airframe that moves by thrust generated from the motor-integrated hydraulic machine.
  • the method for designing the motor-integrated fluid machine of the present disclosure is the above-mentioned method for designing the motor-integrated fluid machine, in which the step of setting the rigidity ratio of the rotating outer peripheral portion to the rotating portion and the rigidity ratio are used. Based on this, a step of deriving the centrifugal force undertaken by the plurality of blades, a step of deriving the wall thickness of the blade so that the blade has the rigidity to withstand the load based on the derived centrifugal force, and the rigidity ratio. A step of deriving a plate thickness of the rotating outer peripheral portion so as to have a rigidity to withstand the load on the rotating outer peripheral portion based on the rigidity of the blade is provided.
  • FIG. 1 is a cross-sectional view of a motor-integrated fan according to the present embodiment.
  • FIG. 2 is a perspective view of the fan blade according to the present embodiment.
  • FIG. 3 is a partial perspective view showing a part of the fan blade according to the present embodiment.
  • FIG. 4 is an explanatory diagram showing a part of the fan blade according to the present embodiment.
  • FIG. 5 is a graph showing the relationship between the plate thickness and the rigidity ratio of the rotary support ring.
  • FIG. 6 is a flowchart relating to the design method of the motor-integrated fan according to the present embodiment.
  • the motor-integrated fluid machine is an axial-flow fluid machine.
  • the motor-integrated fluid machine is a motor-integrated fan 1 (hereinafter, also simply referred to as a fan 1) that generates propulsive force by taking in air from a suction port and blowing out air from an outlet.
  • the motor-integrated fluid machine will be described by applying it to the motor-integrated fan 1, but the present invention is not particularly limited to this configuration.
  • the motor-integrated fluid machine may be applied as a motor-integrated propeller such as a propeller that generates propulsive force by taking in a liquid such as water or seawater from a suction port and injecting the liquid from an outlet. ..
  • the motor-integrated fan 1 is provided in, for example, a vertical take-off and landing aircraft such as a helicopter or a drone.
  • the motor-integrated fan 1 provided in the vertical take-off and landing aircraft generates a propulsive force for raising the airframe and a propulsive force for controlling the attitude of the airframe.
  • the motor-integrated fan 1 may be applied to, for example, an air cushion vehicle such as a hovercraft. Further, when applied as a motor-integrated propulsion device, it may be applied to a ship.
  • FIG. 1 is a cross-sectional view of a motor-integrated fan according to the present embodiment.
  • FIG. 2 is a perspective view of the fan blade according to the present embodiment.
  • FIG. 3 is a partial perspective view showing a part of the fan blade according to the present embodiment.
  • FIG. 4 is an explanatory diagram showing a part of the fan blade according to the present embodiment.
  • FIG. 5 is a graph showing the relationship between the plate thickness and the rigidity ratio of the rotary support ring.
  • the motor-integrated fan 1 is called a duct-type propeller or a ducted fan. This motor-integrated fan 1 is used, for example, in a horizontal state in which the axial direction is the vertical direction, takes in air from the upper side in the vertical direction, and blows out air to the lower side in the vertical direction.
  • the motor-integrated fan 1 may be used in a vertical state in which the axial direction is horizontal.
  • the motor-integrated fan 1 is a flat fan in which the length of the rotating shaft I in the axial direction is shorter than the length of the rotating shaft I in the radial direction.
  • the motor-integrated fan 1 is a fan in which one motor is integrally provided, and includes a shaft portion 11, a rotating portion 12, an outer peripheral portion 13, a motor 14, a rolling bearing 15, and a straightening vane 16. I have.
  • the shaft portion 11 is provided at the center of the rotating shaft I and serves as a support system (fixed side).
  • the axis direction of the rotation axis I is the vertical direction in FIG. 1, and is a direction along the vertical direction. Therefore, the air flow direction is a direction along the axial direction of the rotation axis I, and the air flows from the upper side to the lower side in FIG.
  • the shaft portion 11 has a shaft-side fitting portion 25 which is a portion provided on the upstream side of the rotating shaft I and a shaft main body 26 which is a portion provided on the downstream side of the shaft-side fitting portion 25. Have.
  • the shaft side fitting portion 25 is fitted with the hub 31 of the rotating portion 12, which will be described later.
  • the shaft-side fitting portion 25 has a cylindrical shape and is provided so as to project in the axial direction from the end face on the upstream side of the shaft body 26.
  • the shaft-side fitting portion 25 has a cylindrical space formed on the center side of the rotation shaft I. A part of the hub 31 of the rotating portion 12 is inserted into this space. Further, the outer peripheral side of the shaft-side fitting portion 25 is surrounded by a part of the hub 31 of the rotating portion 12.
  • the shaft body 26 has a substantially conical shape that tapers from the upstream side to the downstream side in the axial direction. Therefore, the outer peripheral surface of the shaft body 26 becomes a surface that goes from the outside to the inside in the radial direction from the upstream side to the downstream side in the axial direction. Inside the shaft body 26, an internal space is formed in which equipment can be installed. Examples of the device include a control device and a camera. Further, a radial inner end portion of the straightening vane 16 described later is connected to the outer peripheral surface of the shaft main body 26.
  • the rotating portion 12 is a rotating system (rotating side) that rotates around the shaft portion 11.
  • the rotating portion 12 is provided on the inflow side where air flows in with respect to the shaft portion 11 in the axial direction of the rotating shaft I.
  • the rotating portion 12 has a hub 31, a plurality of blades 32, and a rotating support ring 33.
  • the hub 31 is provided on the upstream side of the shaft portion 11 in the axial direction, and is rotatably fitted to the shaft side fitting portion 25.
  • the hub 31 has a hub main body 35 which is a portion provided on the upstream side in the axial direction, and a hub side fitting portion 36 which is a portion provided on the downstream side of the hub main body 35.
  • the hub body 35 is formed in a hemisphere whose upstream end face has a predetermined radius of curvature.
  • the hub-side fitting portion 36 has a shape complementary to that of the shaft-side fitting portion 25.
  • the hub-side fitting portion 36 includes a central shaft 36a provided at the center of the rotation shaft and a cylindrical cylindrical portion 36b provided on the outer peripheral side of the central shaft 36a.
  • the central shaft 36a is inserted into the space at the center of the rotation shaft of the shaft-side fitting portion 25.
  • the cylindrical portion 36b is provided so as to project in the axial direction from the end surface on the downstream side of the hub main body 35.
  • the cylindrical portion 36b is arranged so as to surround the outer circumference of the shaft-side fitting portion 25.
  • a rolling bearing 15 is provided between the inner peripheral surface of the shaft-side fitting portion 25 and the outer peripheral surface of the central shaft 36a of the hub 31.
  • the surface from the end surface of the hub body 35 to the outer peripheral surface of the shaft body 26 via the outer peripheral surface of the cylindrical portion 36b is a smooth surface without steps.
  • the plurality of blades 32 are provided so as to extend outward from the hub 31 in the radial direction, and are provided side by side at predetermined intervals in the circumferential direction.
  • Each blade 32 has a blade shape, and the length in the direction in which the positive pressure surface and the negative pressure surface face each other is thick.
  • the plurality of blades 32 are constructed by using a composite material.
  • the plurality of blades 32 are configured by using a composite material, but are not particularly limited, and may be configured by using, for example, a metal material.
  • the rotation support ring 33 is formed in an annular shape centered on the rotation axis I.
  • the rotation support ring 33 is connected to the outer peripheral side of the plurality of blades 32 in the radial direction of the rotation axis I.
  • the radial outer ends of the blades 32 are fixed to the inner peripheral surface of the rotation support ring 33 via the coupling fitting 42.
  • a permanent magnet 45 of the motor 14, which will be described later, is held on the outer peripheral surface of the rotation support ring 33.
  • the rotating portion 12 has a hub 31, a plurality of blades 32, and a rotation support ring 33 integrally connected to each other, and rotates about the hub 31. Further, as will be described in detail later, the permanent magnet 45 of the motor 14 is integrally held by the rotating portion 12, so that the fan blade in which the rotating portion 12 and the permanent magnet 45 are integrated as shown in FIG. 2 is integrated. It is formed as a rotor 41.
  • the outer peripheral portion 13 is provided on the radial outer side of the shaft portion 11 and serves as a support system (fixed side).
  • the outer peripheral portion 13 is formed in an annular shape, and is a duct that generates thrust by the rotation of the rotating portion 12.
  • the opening on the upstream side is the suction port 38 and the opening on the downstream side is the outlet 39 in the axial direction of the rotation axis I.
  • the duct 13 has a shape in which thrust is generated by sucking air from the suction port 38 by rotating the rotating portion 12 and blowing out the sucked air from the air outlet 39.
  • the duct 13 has an inner peripheral surface on the downstream side of the rotating portion 12 that extends from the suction port 38 side toward the air outlet 39 side.
  • the duct 13 Inside the duct 13, an annular internal space is formed that accommodates the rotation support ring 33 of the rotating portion 12, the permanent magnet 45 of the motor 14, and the coil 46 of the motor 14, which will be described later. Inside, the duct 13 holds the coil 46 at a position facing the permanent magnet 45 held by the rotating portion 12, and the permanent magnet 45 and the coil 46 face each other in the radial direction. That is, the duct 13 functions as a stator.
  • the motor 14 is an outer peripheral drive motor that rotates the rotating portion 12 by applying power from the duct 13 side toward the rotating portion 12.
  • the motor 14 has a rotor-side magnet provided on the rotating portion 12 side and a stator-side magnet provided on the duct 13 side.
  • the rotor side magnet is a permanent magnet 45
  • the stator side magnet is a coil 46 which is an electromagnet.
  • the permanent magnet 45 is held and provided on the outer peripheral surface of the rotation support ring 33, and is arranged in an annular shape in the circumferential direction. Further, the permanent magnet 45 is configured so that the positive electrode and the negative electrode alternate at predetermined intervals in the circumferential direction.
  • the permanent magnets 45 may be in a Halbach array.
  • the permanent magnet 45 is provided at a position facing the coil 46 in the radial direction of the rotation axis I.
  • a plurality of coils 46 are provided while being held inside the duct 13, facing each pole of the permanent magnet 45, and are provided side by side in the circumferential direction.
  • the coil 46 is provided at a position facing the permanent magnet 45 held by the rotating portion 12 in the radial direction of the rotating shaft I. That is, the permanent magnet 45 and the coil 46 are arranged so as to face each other in the radial direction of the rotation axis I.
  • the rolling bearing 15 is provided between the inner peripheral surface of the shaft-side fitting portion 25 of the shaft portion 11 and the outer peripheral surface of the central shaft 36a of the hub 31 of the rotating portion 12.
  • the rolling bearing 15 connects the shaft portion 11 and the rotating portion 12 while allowing the rotating portion 12 to rotate with respect to the shaft portion 11.
  • the rolling bearing 15 is, for example, a ball bearing or the like.
  • the straightening vane 16 is provided by connecting the shaft portion 11 and the duct 13.
  • the straightening vane 16 is provided on the downstream side of the rotating portion 12 in the axial direction of the rotating shaft I. That is, the straightening vane 16 is provided at the position of the downstream portion 43 of the duct 13 in the axial direction.
  • a plurality of straightening vanes 16 are provided side by side in the circumferential direction of the rotation axis I.
  • the rectifying plate 16 has a streamlined shape such as a blade shape, and rectifies the air flowing from the rotating portion 12 to generate thrust.
  • the shape of the straightening vane 16 is not limited to the blade shape, and may be a flat plate shape.
  • the rotating portion 12 rotates by applying power from the duct 13 side to the rotating portion 12 by a magnetic field by the motor 14.
  • the motor-integrated fan 1 sucks air from the suction port 38 and blows air toward the outlet 39.
  • the air blown out from the rotating portion 12 flows along the inner peripheral surface of the duct 13 to generate thrust.
  • the air flow is rectified by the straightening vane 16, and thrust is also generated in the straightening vane 16.
  • the fan blade rotor 41 includes a rotating portion 12, a permanent magnet 45, and a restraining portion 51.
  • a composite material is used for the restraint portion 51, and the restraint portion 51 is wound around the rotation support ring 33 and the permanent magnet 45 from the outside of the rotation support ring 33 and the permanent magnet 45 of the rotation portion 12.
  • the composite material carbon fibers are impregnated with a resin, and for example, a cured prepreg is applied.
  • the composite material may be a sheet-like material having a narrow width or a fiber bundle, and is not particularly limited.
  • the restraint portion 51 is permanently wound around the rotary support ring 33 and the permanent magnet 45 extending in the circumferential direction in a spiral shape and integrally cured to the rotary support ring 33 and the permanent magnet 45.
  • the magnet 45 is integrally restrained.
  • a coupling metal fitting 42 for connecting the radial outer end portion of the blade 32 is provided on the inner peripheral side of the rotary support ring 33, and the restraint portion 51 is permanently connected to the rotary support ring 33. Together with the magnet 45, the coupling metal fitting 42 is integrally restrained.
  • the restraint portion 51 is wound around the entire circumference of the rotation support ring 33. At this time, the restraint portion 51 is wound so as to overlap in the circumferential direction of the rotation support ring 33. That is, in the restraint portion 51 spirally wound in the circumferential direction, a part of one restraint portion 51 adjacent in the circumferential direction and a part of the other restraint portion 51 are overlapped with each other.
  • the restraint portion 51 integrally restrains the portions of the rotation support ring 33 and the permanent magnet 45 corresponding to the joint portion of the coupling metal fitting 42. Then, the restraint portion 51 integrally restrains the coupling metal fitting 42 together with the rotation support ring 33 and the permanent magnet 45 at the flat plate portions on both sides in the circumferential direction of the coupling metal fitting 42.
  • the restraint portion 51 may be divided into a plurality of parts, and in the joint portion of the coupling metal fitting 42, the restraint portion 51 that restrains the rotation support ring 33 and the permanent magnet 45 and the flat plate portion of the coupling metal fitting 42.
  • the configuration may include a rotation support ring 33, a permanent magnet 45, and a restraint portion 51 for restraining the coupling metal fitting 42. In this case, it is preferable to use the same composite material for the divided restraint portion 51.
  • centrifugal force P1 is applied to the fan blade rotor 41.
  • This centrifugal force P1 is distributed to each blade 32 of the fan blade rotor 41 and the rotation support ring 33, so that a tensile force P2 in the radial direction is generated in each blade 32 of the fan blade rotor 41, and the fan blade rotor 41 A hoop stress P3 in the circumferential direction is generated in the rotation support ring 33 of the above.
  • the rigidity of the rotary support ring 33 with respect to the centrifugal force P1 is defined as the difficulty of elongation of the rotary support ring 33 with respect to the centrifugal force P1 in the radial direction, and the centrifugal force P1 is divided by the radial elongation.
  • the rigidity of the rotating portion 12 with respect to the centrifugal force P1 is defined as the difficulty of elongation of the rotating portion 12 with respect to the centrifugal force P1 in the radial direction, and the centrifugal force P1 is divided by the radial elongation.
  • the rotary support ring 33 extends in the radial direction when it receives the centrifugal force P1, and similarly, the blade 32 extends in the radial direction when it receives the centrifugal force P1. Since the ends of the blades 32 of the rotary support ring 33 are connected by the coupling metal fittings 42, the rotational support rings 33 and the blades 32 have the same radial elongation. At this time, the centrifugal force P1 is distributed to the tensile force P2 and the hoop stress P3 according to the rigidity ratio of the plurality of blades 32 and the rotary support ring 33 so that the elongations of the rotary support ring 33 and the blade 32 are balanced. Will be done.
  • the rotary support ring 33 becomes difficult to extend in the radial direction.
  • the centrifugal force P1 that is, the tensile force P2
  • the centrifugal force P1 that is, the hoop force P3
  • the rigidity ratio of the rotary support ring 33 is reduced, the rotary support ring 33 tends to extend in the radial direction.
  • the centrifugal force P1 that is, the tensile force P2 distributed to the plurality of blades 32 increases while increasing.
  • the centrifugal force P1 that is, the hoop force P3 distributed to the rotation support ring 33 becomes smaller.
  • the wall thickness of each blade 32 and the radial thickness of the rotary support ring 33 have a trade-off relationship, and in consideration of this relationship, the plurality of blades 32 and the rotary support ring 33 have a trade-off relationship.
  • the rigidity ratio with and is set as follows.
  • the horizontal axis thereof is the rigidity ratio of the rotation support ring 33 to the rotating portion 12, and the vertical axis thereof is the plate thickness.
  • the plate thickness includes the radial thickness of the rotary support ring 33 (ring plate thickness: solid line), the wall thickness of the blade 32 (blade wall thickness: dotted line), and the ring plate thickness + blade wall thickness (dashed line). I'm out.
  • the wall thickness of the blade 32 the wall thickness of the blade 32 on the hub 31 side is adopted, and the wall thickness of all the blades 32 is the total wall thickness.
  • the blade wall thickness is a value obtained by calculating the wall thickness required to bear the force of the blade 32.
  • the ring plate thickness is a value obtained by calculating the plate thickness required to obtain a desired rigidity ratio with respect to the rigidity of the blade 32.
  • FIG. 6 is a flowchart relating to the design method of the motor-integrated fan according to the present embodiment.
  • step S11 for setting the rigidity ratio of the rotation support ring 33 with respect to the rotation portion 12 is performed.
  • step S12 for deriving the centrifugal force P1 undertaken by the blade 32 is performed based on the set rigidity ratio.
  • step S13 is performed to derive the wall thickness of the blade 32 so that the blade 32 has the rigidity to withstand the derived centrifugal force P1.
  • Step S14 for deriving the plate thickness is performed. From the above, the blade wall thickness and the ring plate thickness shown in FIG. 5 are calculated.
  • the rigidity ratio of the rotary support ring 33 is set so that the plate thickness of "ring plate thickness + blade wall thickness" is equal to or less than the plate thickness T1 which is a predetermined threshold value.
  • the plate thickness T1 is a plate thickness defined by the weight of the rotating portion 12.
  • the plate thickness is set to T1 or less in order to suppress the weight of the rotating portion 12.
  • the rigidity of the rotation support ring 33 is set to a rigidity ratio that is in the range H1 of 50% or more and 95% or less with respect to the rigidity of the rotating portion 12.
  • the rigidity ratio of the plurality of blades 32 is in the range of 5% or more and 50% or less.
  • the rigidity ratio of the rotation support ring 33 when the rigidity ratio of the rotation support ring 33 is 95%, the rigidity ratio of the plurality of blades 32 is 5%, and when the rigidity ratio of the rotation support ring 33 is 50%, the rigidity ratio of the plurality of blades 32 is 50%. Is 50%.
  • the rotation support ring 33 can efficiently bear the rigidity. More specifically, when the rigidity ratio of the rotation support ring 33 decreases, the blade 32 needs to bear the rigidity, so that the weight of the blade 32 increases as the rigidity of the blade 32 increases. .. Therefore, in order to suppress the weight increase of the blade 32, the rigidity ratio of the rotation support ring 33 is 50% or more.
  • the rigidity ratio of the rotary support ring 33 is 95% or less.
  • the rigidity ratio of the rotary support ring 33 is set so that the plate thickness of "ring plate thickness + blade wall thickness" is less than the plate thickness T2, which is smaller than the plate thickness T1.
  • the plate thickness is set to T2 or less in order to further suppress the installation space and weight increase of the rotating portion 12.
  • the rigidity of the rotation support ring 33 is set to a rigidity ratio that is in the range H2 of 80% or more and 90% or less with respect to the rigidity of the rotating portion 12.
  • the rigidity ratio of the plurality of blades 32 is in the range of 10% or more and 20% or less.
  • the rigidity ratio of the rotation support ring 33 is 90%, the rigidity ratio of the plurality of blades 32 is 10%, and when the rigidity ratio of the rotation support ring 33 is 80%, the rigidity ratio of the plurality of blades 32 is 80%. Is 20%.
  • the rigidity ratio of the rotation support ring 33 is set so that the plate thickness of "ring plate thickness + blade wall thickness" is minimized.
  • the rigidity of the rotation support ring 33 is set to a rigidity ratio of 85% (point H3) ⁇ 2% with respect to the rigidity of the rotating portion 12.
  • the rigidity ratio of the plurality of blades 32 is 15% ⁇ 2%.
  • the rigidity ratio at which "ring plate thickness + blade wall thickness” is minimized differs slightly depending on the component configuration, size, and material, and the rigidity ratio of the rotary support ring 33 is not necessarily 85%. % ⁇ 2%.
  • the rigidity ratio of the rotation support ring 33 to the rotation portion 12 can be set within the above range H1.
  • the plate thickness of "ring plate thickness + blade wall thickness” is set to plate thickness T1 or less, even when centrifugal force P1 is applied, the load capacity with respect to the tensile force P2 generated in the plurality of blades 32 is withstood.
  • the plate thickness of "ring plate thickness + blade wall thickness” can be made thinner. , The weight of the rotating portion 12 can be reduced.
  • the plate thickness of “ring plate thickness + blade wall thickness” is set to the minimum range. Therefore, the weight of the rotating portion 12 can be made the lightest.
  • the rigidity ratio of the plurality of blades 32 can be set to 5% or more and 50% or less according to the rigidity ratio of the rotation support ring 33. Therefore, the rigidity ratio of the plurality of blades 32, which is appropriate for the rigidity ratio of the rotation support ring 33, can be set. Therefore, since the wall thickness of the blade 32 can be made an appropriate thickness according to the radial thickness of the rotary support ring 33, an increase in the weight of the blade 32 can be suppressed, and the wall thickness of the blade can be suppressed. Therefore, the degree of freedom in designing the weight and wall thickness of the blade 32 can be increased.
  • the radial thickness of the rotary support ring 33 can be made thinner than the total wall thickness of the plurality of blades 32, so that the increase in the weight of the rotary support ring 33 is suppressed. be able to.
  • the motor-integrated fluid machine (motor-integrated fan) 1 and the vertical take-off and landing machine described in each embodiment are grasped as follows, for example.
  • the motor-integrated fluid machine 1 is provided at the center of the rotation shaft in the motor-integrated fluid machine 1 that sucks fluid (air) from the suction port 38 and blows out the sucked fluid from the outlet 39.
  • the shaft portion 11, a rotating portion 12 that rotates around the shaft portion 11, an outer peripheral portion (duct) 13 provided on the outer periphery of the shaft portion 11, and a motor 14 that rotates the rotating portion are provided.
  • the motor 14 is an outer peripheral drive motor 14 that rotates the rotating portion 12 by applying power from the outer peripheral portion 13, and the rotating portion 12 is a hub 31 rotatably supported by the shaft portion 11.
  • a plurality of blades 32 provided on the outer peripheral side of the hub 31 and arranged side by side in the circumferential direction of the rotating shaft, and an annular shape provided on the outer peripheral side of the plurality of blades 32 along the circumferential direction of the rotating shaft.
  • the motor 14 is provided on the rotor side magnet (permanent magnet) 45 provided on the rotating outer peripheral portion 33, and is provided on the outer peripheral portion 13, and the motor 14 is provided with the rotating outer peripheral portion (rotation support ring) 33. It has a stator side magnet (coil) 46 provided facing the child side magnet 45, and the rigidity of the rotating outer peripheral portion 33 is 50% or more and 95% or less with respect to the rigidity of the rotating portion 12. It is a rigidity ratio.
  • the rigidity ratio of the rotating outer peripheral portion 33 to the rotating portion 12 to 50% or more and 95% or less, the tension generated in the plurality of blades 32 even when the centrifugal force P1 is applied.
  • the withstand load can be secured with respect to the force P2, and similarly, the withstand load can be secured with respect to the hoop stress P3 generated in the rotation outer peripheral portion 33.
  • the rigidity of the rotating outer peripheral portion 33 is 80% or more and 90% or less of the rigidity of the rotating portion 12.
  • the total thickness of the radial outer peripheral portion 33 and the wall thickness of the plurality of blades 32 can be made thinner, so that the weight of the rotating portion 12 can be reduced. ..
  • the rigidity of the rotating outer peripheral portion 33 is a rigidity ratio of 85% ⁇ 2% with respect to the rigidity of the rotating portion 12.
  • the total thickness of the radial outer peripheral portion 33 and the wall thickness of the plurality of blades 32 can be set to the minimum range, so that the weight of the rotating portion 12 can be made the lightest. ..
  • the rigidity of the plurality of blades 32 is a rigidity ratio of 5% or more and 50% or less with respect to the rigidity of the rotating portion 12.
  • the rigidity ratio of the plurality of blades 32 suitable for the rigidity ratio of the rotating outer peripheral portion 33 can be set. Therefore, since the wall thickness of the blade 32 can be made an appropriate thickness according to the thickness of the rotating outer peripheral portion 33 in the radial direction, an increase in the weight of the blade 32 can be suppressed.
  • the plate thickness of the rotating outer peripheral portion 33 in the radial direction of the rotating shaft is thinner than the total wall thickness of the plurality of blades 32.
  • the vertical take-off and landing machine includes the above-mentioned motor-integrated fluid machine 1 and an airframe that moves by thrust generated from the motor-integrated fluid machine 1.
  • the method for designing the motor-integrated fluid machine according to the seventh aspect is the step S11 for setting the rigidity ratio of the rotating outer peripheral portion 33 to the rotating portion 12, and the plurality of blades 32 taking charge based on the rigidity ratio.
  • Step S12 for deriving the centrifugal force P1 step S13 for deriving the wall thickness of the blade 32 such that the blade 32 has the rigidity to be loaded by the blade 32 based on the centrifugal force P1, the rigidity ratio and the above.
  • a step S14 is provided in which the rigidity of the rotating outer peripheral portion 33 is derived based on the rigidity of the blade 32, and the plate thickness of the rotating outer peripheral portion 33 is derived so as to be the rigidity of the derived rotating outer peripheral portion 33. ..
  • the rigidity of the blade 32 can be set based on the rigidity ratio of the rotating outer peripheral portion 33 to the rotating portion 12. Therefore, the weight of the blade 32 and the thickness of the blade can be designed so as to satisfy the rigidity of the blade 32, so that the degree of freedom in designing the blade 32 can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

吸込口から流体を吸い込み、吸い込んだ流体を吹出口から吹き出すモータ一体型流体機械において、回転軸の中心に設けられる軸部と、軸部を中心に回転する回転部と、軸部の外周に設けられる外周部と、回転部を回転させるモータと、を備え、モータは、外周部から動力を与えて回転部を回転させる外周駆動のモータとなっており、回転部は、軸部に回転自在に支持されるハブと、ハブの外周側に設けられる複数のブレードと、複数のブレードの外周側に設けられる環状となる回転外周部と、を有し、モータは、回転外周部に設けられる回転子側磁石と、外周部に設けられ、回転子側磁石に対向して設けられる固定子側磁石と、を有し、遠心力に対する回転外周部の剛性は、遠心力に対する回転部の剛性に対して、50%以上95%以下の剛性割合となっている。

Description

モータ一体型流体機械、垂直離着陸機及びモータ一体型流体機械の設計方法
 本開示は、モータ一体型流体機械、垂直離着陸機及びモータ一体型流体機械の設計方法に関するものである。
 従来、固定子、回転子、及び複数のプロペラブレードを含むリングモータが知られている(例えば、特許文献1参照)。固定子は、固定子支持リングと、固定子支持リングの周方向に配置された複数の巻線とを有する。固定子支持リングには、複数のピッチブレードが結合されている。回転子は、回転子支持リングと、回転子支持リングの周方向に配置され複数の磁極と、中心ハブとを有する。中心ハブは、固定子の一部分に結合されている。複数のプロペラブレードは、回転子支持リングに結合されている。このため、回転子は、巻線及び磁極により、固定子に結合する中心ハブを中心に回転することで、複数のプロペラブレードが回転する。
特開2017-109726号公報
 ところで、特許文献1のリングモータのようなモータ一体型流体機械において、ブレードを回転させると、回転子支持リングには遠心力が働く。このとき、回転子支持リングには、複数の磁極が周方向に配置されているため、この磁極の質量によって、各ブレードに対してより大きな遠心力が働く。この場合、遠心力に対するブレードの耐荷重を確保するためには、ブレードの肉厚を厚くすることとなり、モータ一体型流体機械の重量増加を招いてしまう。換言すれば、モータ一体型流体機械の重量増加を抑制しつつ、遠心力に対するブレードの耐荷重を確保することは困難である。
 そこで、本開示は、重量増加を抑制しつつ、遠心力に対する耐荷重を好適に確保することができるモータ一体型流体機械、垂直離着陸機及びモータ一体型流体機械の設計方法を提供することを課題とする。
 本開示のモータ一体型流体機械は、吸込口から流体を吸い込み、吸い込んだ前記流体を吹出口から吹き出すモータ一体型流体機械において、回転軸の中心に設けられる軸部と、前記軸部を中心に回転する回転部と、前記軸部の外周に設けられる外周部と、前記回転部を回転させるモータと、を備え、前記モータは、前記外周部から動力を与えて前記回転部を回転させる外周駆動のモータとなっており、前記回転部は、前記軸部に回転自在に支持されるハブと、前記ハブの外周側に設けられ、前記回転軸の周方向において並べて設けられる複数のブレードと、複数の前記ブレードの外周側に設けられ、前記回転軸の周方向に沿って環状となる回転外周部と、を有し、前記モータは、前記回転外周部に設けられる回転子側磁石と、前記外周部に設けられ、前記回転子側磁石に対向して設けられる固定子側磁石と、を有し、遠心力に対する前記回転外周部の剛性は、遠心力に対する前記回転部の剛性に対して、50%以上95%以下の剛性割合となっている。
 また、本開示の垂直離着陸機は、上記のモータ一体型流体機械と、前記モータ一体型流体機械から発生する推力によって移動する機体と、を備える。
 また、本開示のモータ一体型流体機械の設計方法は、上記のモータ一体型流体機械の設計方法であって、前記回転部に対する前記回転外周部の剛性割合を設定するステップと、前記剛性割合に基づいて、前記複数のブレードが受け持つ遠心力を導出するステップと、導出した遠心力に基づいて、前記ブレードが耐荷する剛性となるような前記ブレードの肉厚を導出するステップと、前記剛性割合と前記ブレードの剛性とに基づいて、前記回転外周部が耐荷する剛性となるような前記回転外周部の板厚を導出するステップと、を備える。
 本開示によれば、重量増加を抑制しつつ、遠心力に対する耐荷重を好適に確保することができる。
図1は、本実施形態に係るモータ一体型ファンに関する断面図である。 図2は、本実施形態に係るファンブレードの斜視図である。 図3は、本実施形態に係るファンブレードの一部を示す部分斜視図である。 図4は、本実施形態に係るファンブレードの一部を示す説明図である。 図5は、板厚と回転支持リングの剛性割合との関係を示すグラフである。 図6は、本実施形態に係るモータ一体型ファンの設計方法に関するフローチャートである。
 以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[本実施形態]
 本実施形態に係るモータ一体型流体機械は、軸流の流体機械となっている。モータ一体型流体機械は、吸込口から空気を取り込み、吹出口から空気を吹き出すことで、推進力を発生させるモータ一体型ファン1(以下、単にファン1ともいう)である。なお、実施形態1では、モータ一体型流体機械として、モータ一体型ファン1に適用して説明するが、この構成に特に限定されない。モータ一体型流体機械は、例えば、吸込口から水または海水等の液体を取り込み、吹出口から液体を噴射することで、推進力を発生させるプロペラ等のモータ一体型推進器として適用してもよい。
(モータ一体型ファン)
 モータ一体型ファン1は、例えば、ヘリコプタまたはドローン等の垂直離着陸機に設けられている。垂直離着陸機に設けられるモータ一体型ファン1は、機体を浮上させるための推進力を発生させたり、機体の姿勢を制御するための推進力を発生させたりする。なお、モータ一体型ファン1は、例えば、ホバークラフト等の空気クッション車両に適用してもよい。さらに、モータ一体型推進器として適用する場合には、船舶に適用してもよい。
 図1から図5を参照して、モータ一体型ファン1について説明する。図1は、本実施形態に係るモータ一体型ファンに関する断面図である。図2は、本実施形態に係るファンブレードの斜視図である。図3は、本実施形態に係るファンブレードの一部を示す部分斜視図である。図4は、本実施形態に係るファンブレードの一部を示す説明図である。図5は、板厚と回転支持リングの剛性割合との関係を示すグラフである。
 モータ一体型ファン1は、ダクト型プロペラ、または、ダクテッドファンと呼ばれるものである。このモータ一体型ファン1は、例えば、軸方向を鉛直方向とする水平状態で使用され、鉛直方向の上方側から空気を取り込み、鉛直方向の下方側へ空気を吹き出している。なお、モータ一体型ファン1は、軸方向を水平方向とする鉛直状態で使用されてもよい。
 モータ一体型ファン1は、回転軸Iの軸方向における長さが、回転軸Iの径方向における長さよりも短い扁平のファンとなっている。モータ一体型ファン1は、1つのモータが一体に設けられたファンであり、軸部11と、回転部12と、外周部13と、モータ14と、転がり軸受15と、整流板16と、を備えている。
 軸部11は、回転軸Iの中心に設けられ、支持系(固定側)となっている。回転軸Iは、軸方向が図1の上下方向となっており、鉛直方向に沿った方向となっている。このため、空気の流れ方向は、回転軸Iの軸方向に沿った方向となっており、図1の上方側から下方側に向かって空気が流れる。軸部11は、回転軸Iの軸方向において、その上流側に設けられる部位となる軸側嵌合部25と、軸側嵌合部25の下流側に設けられる部位となる軸本体26とを有している。
 軸側嵌合部25は、後述する回転部12のハブ31が嵌め合わされる。軸側嵌合部25は、円筒形状となっており、軸本体26の上流側の端面から軸方向に突出して設けられている。軸側嵌合部25は、回転軸Iの中心側に円柱形状の空間が形成されている。この空間には、回転部12のハブ31の一部が挿入される。また、軸側嵌合部25の外周側は、回転部12のハブ31の一部によって取り囲まれている。
 軸本体26は、軸方向の上流側から下流側に向かって先細りとなる略円錐形状となっている。このため、軸本体26は、その外周面が、軸方向の上流側から下流側に向かうにつれて、径方向の外側から内側に向かう面となっている。軸本体26の内部には、機器を設置可能な内部空間が形成されている。機器としては、例えば、制御装置、カメラ等である。また、軸本体26の外周面には、後述する整流板16の径方向内側の端部が接続されている。
 図1及び図2に示すように、回転部12は、軸部11を中心に回転する回転系(回転側)となっている。回転部12は、回転軸Iの軸方向において、軸部11に対して、空気が流入する流入側に設けられている。回転部12は、ハブ31と、複数のブレード32と、回転支持リング33と、を有している。
 ハブ31は、軸部11の軸方向の上流側に設けられ、軸側嵌合部25に回転自在に嵌め合わされる。ハブ31は、軸方向の上流側に設けられる部位となるハブ本体35と、ハブ本体35の下流側に設けられる部位となるハブ側嵌合部36とを有している。ハブ本体35は、上流側の端面が所定の曲率半径となる半球面に形成されている。ハブ側嵌合部36は、軸側嵌合部25と相補的な形状となっている。ハブ側嵌合部36は、回転軸の中心に設けられる中心軸36aと、中心軸36aの外周側に設けられる円筒形状の円筒部36bとを含んでいる。中心軸36aは、軸側嵌合部25の回転軸の中心の空間に挿入される。円筒部36bは、ハブ本体35の下流側の端面から軸方向に突出して設けられている。円筒部36bは、軸側嵌合部25の外周を取り囲むように配置される。このとき、軸側嵌合部25の内周面とハブ31の中心軸36aの外周面との間には、転がり軸受15が設けられる。
 そして、ハブ本体35の端面から、円筒部36bの外周面を経て、軸本体26の外周面に至る面は、段差のない滑らかな面となっている。
 複数のブレード32は、ハブ31から径方向の外側へ向かって延在して設けられると共に、周方向に所定の間隔を空けて並べて設けられる。各ブレード32は、翼形状となっており、正圧面と負圧面とが対向する方向の長さが肉厚となっている。複数のブレード32は、複合材を用いて構成されている。なお、本実施形態において、複数のブレード32は、複合材を用いて構成したが、特に限定されず、例えば、金属材料を用いて構成してもよい。
 回転支持リング33は、回転軸Iを中心とする円環形状に形成されている。回転支持リング33は、回転軸Iの径方向において、複数のブレード32の外周側に接続される。回転支持リング33の内周面には、各ブレード32の径方向外側の端部が、結合金具42を介して固定されている。また、回転支持リング33の外周面には、後述するモータ14の永久磁石45が保持されている。
 上記の回転部12は、ハブ31と、複数のブレード32と、回転支持リング33とが一体に結合されており、ハブ31を中心に回転する。また、詳細は後述するが、この回転部12には、モータ14の永久磁石45が一体に保持されることで、図2に示す、回転部12と永久磁石45とが一体となったファンブレードロータ41として形成される。
 外周部13は、軸部11の径方向外側に設けられ、支持系(固定側)となっている。外周部13は、円環形状に形成され、回転部12の回転によって推力を生じさせるダクトとなっている。外周部13(以下、ダクト13という)は、回転軸Iの軸方向において、上流側の開口が吸込口38となっており、下流側の開口が吹出口39となっている。また、ダクト13は、回転部12が回転することによって、吸込口38から空気を吸い込み、吸い込んだ空気を吹出口39から吹き出すことで、推力を発生させる形状となっている。具体的に、ダクト13は、回転部12の下流側の内周面が、吸込口38側から吹出口39側に向かって広がる面となっている。
 ダクト13は、その内部に、回転部12の回転支持リング33と、モータ14の永久磁石45と、後述するモータ14のコイル46とを収容する環状の内部空間が形成されている。ダクト13は、その内部において、回転部12に保持される永久磁石45と対向する位置においてコイル46を保持しており、永久磁石45とコイル46とは、径方向において対向している。つまり、ダクト13は、ステータとして機能している。
 モータ14は、ダクト13側から回転部12へ向けて動力を与えることにより、回転部12を回転させる外周駆動のモータとなっている。モータ14は、回転部12側に設けられる回転子側磁石と、ダクト13側に設けられる固定子側磁石とを有している。実施形態1において、回転子側磁石は、永久磁石45となっており、固定子側磁石は、電磁石となるコイル46となっている。
 永久磁石45は、回転支持リング33の外周面に保持されて設けられ、周方向に円環状に配置されている。また、永久磁石45は、周方向において所定の間隔ごとに正極及び負極が交互となるように構成されている。なお、永久磁石45は、ハルバッハ配列としてもよい。永久磁石45は、回転軸Iの径方向においてコイル46と対向する位置に設けられる。
 コイル46は、ダクト13の内部に保持されて設けられ、永久磁石45の各極に対向して複数設けられると共に、周方向に並べて設けられる。コイル46は、回転軸Iの径方向において回転部12に保持される永久磁石45と対向する位置に設けられる。つまり、永久磁石45及びコイル46は、回転軸Iの径方向に対向させて配置したラジアル配置となっている。
 転がり軸受15は、軸部11の軸側嵌合部25の内周面と、回転部12のハブ31における中心軸36aの外周面との間に設けられている。転がり軸受15は、軸部11に対する回転部12の回転を許容しつつ、軸部11と回転部12とを連結している。転がり軸受15は、例えば、ボールベアリング等である。
 整流板16は、軸部11とダクト13とを連結して設けられている。整流板16は、回転軸Iの軸方向において、回転部12の下流側に設けられている。つまり、整流板16は、軸方向において、ダクト13の下流側部位43の位置に設けられている。整流板16は、回転軸Iの周方向に複数並べて設けられている。また、整流板16は、翼形状等の流線形状となっており、回転部12から流れ込む空気を整流し、推力を発生させている。なお、整流板16の形状は、翼形状に限定されず、平板形状であってもよい。
 このようなモータ一体型ファン1は、モータ14により、ダクト13側から回転部12に磁界による動力を与えることで、回転部12が回転する。モータ一体型ファン1は、回転部12が回転すると、吸込口38から空気を吸い込むと共に、吹出口39へ向けて空気を吹き出す。回転部12から吹き出された空気は、ダクト13の内周面に沿って流れることで、推力を発生させる。このとき、整流板16により空気の流れが整流されて、整流板16においても推力を発生させる。
(ファンブレードロータ)
 次に、図2から図4を参照して、回転部12と永久磁石45とが一体となったファンブレードロータ41について説明する。ファンブレードロータ41は、回転部12と、永久磁石45と、拘束部51とを備えている。
 拘束部51は、例えば、複合材が用いられており、回転部12の回転支持リング33及び永久磁石45の外側から、回転支持リング33及び永久磁石45に巻き付けられる。複合材としては、炭素繊維に樹脂を含浸させたものであり、例えばプリプレグを硬化させたものが適用される。また、複合材としては、細い幅となるシート状のものであってもよいし、繊維束であってもよく、特に限定されない。
 図3に示すように、拘束部51は、周方向を延在する回転支持リング33及び永久磁石45を芯として、これらの周囲にらせん状に巻き付け一体硬化させることで、回転支持リング33と永久磁石45とを一体に拘束している。また、図4に示すように、回転支持リング33の内周側には、ブレード32の径方向外側の端部を結合する結合金具42が設けられ、拘束部51は、回転支持リング33及び永久磁石45と共に、結合金具42を一体に拘束している。
 また、拘束部51は、回転支持リング33の全周に亘って巻き付けられている。このとき、拘束部51は、回転支持リング33の周方向に重複させて巻き付けられている。つまり、周方向に向かってらせん状に巻き付けられる拘束部51は、周方向に隣接する一方の拘束部51の一部と、他方の拘束部51の一部とが重ね合わされる。
 なお、図3に示すように、拘束部51は、結合金具42の周方向中央の結合部分において、回転支持リング33及び永久磁石45と共に、結合金具42を一体に拘束することが困難である。この場合、拘束部51は、結合金具42の結合部分に対応する回転支持リング33及び永久磁石45の部位を一体に拘束する。そして、拘束部51は、結合金具42の周方向両側の平板部分において、回転支持リング33及び永久磁石45と共に結合金具42を一体に拘束する。つまり、拘束部51は、複数に分割された構成となっていてもよく、結合金具42の結合部分において、回転支持リング33及び永久磁石45を拘束する拘束部51と、結合金具42の平板部分において回転支持リング33、永久磁石45及び結合金具42を拘束する拘束部51と、を含む構成であってもよい。この場合、分割された拘束部51は、同じ複合材を用いることが好ましい。
 上記のような、ファンブレードロータ41が回転すると、ファンブレードロータ41には、遠心力P1が付与される。この遠心力P1は、ファンブレードロータ41の各ブレード32と回転支持リング33に分配されることで、ファンブレードロータ41の各ブレード32には、径方向における引張力P2が生じ、ファンブレードロータ41の回転支持リング33には、周方向におけるフープ応力P3が生じる。
 ここで、遠心力P1に対する回転支持リング33の剛性を、遠心力P1に対する回転支持リング33の径方向における伸びにくさとして定義し、遠心力P1を径方向の伸びで除算した値としている。同様に、遠心力P1に対する回転部12の剛性を、遠心力P1に対する回転部12の径方向における伸びにくさとして定義し、遠心力P1を径方向の伸びで除算した値としている。回転支持リング33は、遠心力P1を受けると径方向に伸び、同様に、ブレード32は、遠心力P1を受けると径方向に伸びる。回転支持リング33は、ブレード32の端部が結合金具42により結合されていることから、回転支持リング33とブレード32との径方向における伸びは一致する。このとき、遠心力P1は、回転支持リング33とブレード32との伸びが釣り合うように、複数のブレード32と回転支持リング33との剛性比率に応じて、引張力P2とフープ応力P3とに分配される。具体的に、回転支持リング33の剛性比率を大きくした場合、回転支持リング33は径方向に伸びにくくなる。例えば、各ブレード32の肉厚を薄くし、回転支持リング33の径方向の厚さを厚くすることで、複数のブレード32に分配される遠心力P1(すなわち引張力P2)は小さくなる一方で、回転支持リング33に分配される遠心力P1(すなわちフープ力P3)は大きくなる。これに対して、回転支持リング33の剛性比率を小さくした場合、回転支持リング33は径方向に伸びやすくなる。例えば、各ブレード32の肉厚を厚くし、回転支持リング33の径方向の厚さを薄くすることで、複数のブレード32に分配される遠心力P1(すなわち引張力P2)は大きくなる一方で、回転支持リング33に分配される遠心力P1(すなわちフープ力P3)は小さくなる。このように、各ブレード32の肉厚と、回転支持リング33の径方向の厚さとは、トレード・オフの関係となっており、この関係を考慮して、複数のブレード32と回転支持リング33との剛性比率を、下記のように設定している。
(剛性割合と板厚の関係)
 図5は、その横軸が、回転部12に対する回転支持リング33の剛性割合であり、その縦軸が、板厚となっている。なお、板厚は、回転支持リング33の径方向の厚さ(リング板厚:実線)、ブレード32の肉厚(ブレード肉厚:点線)、リング板厚+ブレード肉厚(一点鎖線)を含んでいる。また、図5のグラフでは、ブレード32の肉厚として、ブレード32のハブ31側の肉厚が採用され、また、全てのブレード32の肉厚を合算した肉厚となっている。ブレード肉厚は、ブレード32が受け持つ力を担うために必要な肉厚を算出した値となっている。また、リング板厚は、ブレード32の剛性に対して所望の剛性割合となるために必要な板厚を算出した値となっている。
 ここで、図5に示すグラフの作成に際し、ブレード肉厚及びリング板厚を導出するモータ一体型流体機械の設計方法について説明する。図6は、本実施形態に係るモータ一体型ファンの設計方法に関するフローチャートである。図6に示すように、先ず、この設計方法では、回転部12に対する回転支持リング33の剛性割合を設定するステップS11を行う。続いて、設定した剛性割合に基づいて、ブレード32が受け持つ遠心力P1を導出するステップS12を行う。この後、導出した遠心力P1に耐荷するブレード32の剛性となるように、ブレード32の肉厚を導出するステップS13を行う。そして、ブレード32の剛性、及び回転部12に対する回転支持リング33の剛性割合に基づいて、回転支持リング33の剛性を導出し、導出した回転支持リング33の剛性となるような回転支持リング33の板厚を導出するステップS14を行う。以上により、図5に示す、ブレード肉厚及びリング板厚を算出している。
 本実施形態では、「リング板厚+ブレード肉厚」の板厚が、所定のしきい値となる板厚T1以下となるように、回転支持リング33の剛性割合が設定されている。ここで、板厚T1は、回転部12の重量によって規定される板厚である。板厚は、回転部12の重量を抑制するために、T1以下に設定される。この場合、回転支持リング33の剛性は、回転部12の剛性に対して、50%以上95%以下の範囲H1となる剛性割合に設定されている。回転支持リング33の剛性割合が範囲H1である場合、複数のブレード32の剛性割合は、5%以上50%以下の範囲となる。すなわち、回転支持リング33の剛性割合が95%である場合、複数のブレード32の剛性割合は、5%となり、回転支持リング33の剛性割合が50%である場合、複数のブレード32の剛性割合は、50%となる。上記のような剛性割合とすることで、回転支持リング33は効率よく剛性を担うことができる。より具体的に説明すると、回転支持リング33の剛性割合が低下する場合、ブレード32で剛性を担う必要があることから、ブレード32の剛性を上げるに伴って、ブレード32の重量が増加してしまう。このため、ブレード32の重量増加を抑制するために、回転支持リング33の剛性割合は、50%以上となる。一方で、ブレード32の重量増加を抑制するために、回転支持リング33の剛性割合を過度に上げてしまうと、回転支持リング33のリング板厚が大きくなってしまい、回転支持リング33の重量増加を招いてしまう。このため、回転支持リング33の設置スペース及び重量増加を抑制するために、回転支持リング33の剛性割合は、95%以下となる。
 また、本実施形態では、「リング板厚+ブレード肉厚」の板厚が、板厚T1よりも小さい板厚T2以下となるように、回転支持リング33の剛性割合が設定されることがより好ましい。つまり、回転部12の設置スペース及び重量増加をより抑制するために、板厚は、T2以下に設定される。この場合、回転支持リング33の剛性は、回転部12の剛性に対して、80%以上90%以下の範囲H2となる剛性割合に設定されている。回転支持リング33の剛性割合が範囲H2である場合、複数のブレード32の剛性割合は、10%以上20%以下の範囲となる。すなわち、回転支持リング33の剛性割合が90%である場合、複数のブレード32の剛性割合は、10%となり、回転支持リング33の剛性割合が80%である場合、複数のブレード32の剛性割合は、20%となる。
 さらに、本実施形態では、「リング板厚+ブレード肉厚」の板厚が、最小となるように、回転支持リング33の剛性割合が設定されることがより好ましい。具体的に、回転支持リング33の剛性は、回転部12の剛性に対して、85%(点H3)±2%となる剛性割合に設定されている。回転支持リング33の剛性割合が85%±2%である場合、複数のブレード32の剛性割合は、15%±2%となる。なお、「リング板厚+ブレード肉厚」が最小となる剛性割合は、部品の構成、サイズ、材料によって多少異なり、必ずしも回転支持リング33の剛性割合が85%となるわけではないことから、85%±2%としている。
 以上のように、本実施形態によれば、回転部12に対する回転支持リング33の剛性割合を、上記の範囲H1内で設定することができる。これにより、「リング板厚+ブレード肉厚」の板厚を板厚T1以下としつつ、遠心力P1が付与された場合であっても、複数のブレード32に生じる引張力P2に対して耐荷重を確保することができ、同様に、回転支持リング33に生じるフープ応力P3に対して耐荷重を確保することができる。よって、回転部12の重量増加を抑制しつつ、遠心力P1に対する回転部12の耐荷重を好適に確保することができる。
 また、本実施形態によれば、回転部12に対する回転支持リング33の剛性割合を、上記の範囲H2内で設定することにより、「リング板厚+ブレード肉厚」の板厚をより薄くできることから、回転部12の重量の軽量化を図ることができる。
 また、本実施形態によれば、回転部12に対する回転支持リング33の剛性割合を、上記の点H3±2%で設定することにより、「リング板厚+ブレード肉厚」の板厚を最小範囲にできることから、回転部12の重量を最も軽くすることができる。
 また、本実施形態によれば、回転支持リング33の剛性割合に応じて、複数のブレード32の剛性割合を、5%以上50%以下とすることができる。このため、回転支持リング33の剛性割合に適切な複数のブレード32の剛性割合とすることができる。よって、ブレード32の肉厚を、回転支持リング33の径方向の厚さに応じた適切な厚さにできるため、ブレード32の重量の増加を抑制することができ、また、ブレード肉厚の抑制もできることから、ブレード32の重量及び肉厚の設計自由度を高めることができる。
 また、本実施形態によれば、回転支持リング33の径方向の厚さを、複数のブレード32の肉厚の合計よりも薄くすることができるため、回転支持リング33の重量の増加を抑制することができる。
 また、本実施形態によれば、遠心力P1に対して耐荷重のある、耐久性の高いモータ一体型ファン1を機体に搭載した垂直離着陸機を提供することができる。
 各実施形態に記載のモータ一体型流体機械(モータ一体型ファン)1及び垂直離着陸機は、例えば、以下のように把握される。
 第1の態様に係るモータ一体型流体機械1は、吸込口38から流体(空気)を吸い込み、吸い込んだ前記流体を吹出口39から吹き出すモータ一体型流体機械1において、回転軸の中心に設けられる軸部11と、前記軸部11を中心に回転する回転部12と、前記軸部11の外周に設けられる外周部(ダクト)13と、前記回転部を回転させるモータ14と、を備え、前記モータ14は、前記外周部13から動力を与えて前記回転部12を回転させる外周駆動のモータ14となっており、前記回転部12は、前記軸部11に回転自在に支持されるハブ31と、前記ハブ31の外周側に設けられ、前記回転軸の周方向において並べて設けられる複数のブレード32と、複数の前記ブレード32の外周側に設けられ、前記回転軸の周方向に沿って環状となる回転外周部(回転支持リング)33と、を有し、前記モータ14は、前記回転外周部33に設けられる回転子側磁石(永久磁石)45と、前記外周部13に設けられ、前記回転子側磁石45に対向して設けられる固定子側磁石(コイル)46と、を有し、前記回転外周部33の剛性は、前記回転部12の剛性に対して、50%以上95%以下の剛性割合となっている。
 この構成によれば、回転部12に対する回転外周部33の剛性割合を、50%以上95%以下とすることで、遠心力P1が付与された場合であっても、複数のブレード32に生じる引張力P2に対して耐荷重を確保することができ、同様に、回転外周部33に生じるフープ応力P3に対して耐荷重を確保することができる。このとき、回転外周部33の径方向における厚さと、複数のブレード32の肉厚とが厚くなることを抑制できる。よって、回転部12の重量増加を抑制しつつ、遠心力P1に対する回転部12の耐荷重を好適に確保することができる。
 第2の態様に係るモータ一体型流体機械1において、前記回転外周部33の剛性は、前記回転部12の剛性に対して、80%以上90%以下の剛性割合となっている。
 この構成によれば、回転外周部33の径方向における厚さと、複数のブレード32の肉厚との厚さの合計を、より薄くできることから、回転部12の重量の軽量化を図ることができる。
 第3の態様に係るモータ一体型流体機械において、前記回転外周部33の剛性は、前記回転部12の剛性に対して、85%±2%の剛性割合となっている。
 この構成によれば、回転外周部33の径方向における厚さと、複数のブレード32の肉厚との厚さの合計を、最小範囲にできることから、回転部12の重量を最も軽くすることができる。
 第4の態様に係るモータ一体型流体機械において、前記複数のブレード32の剛性は、前記回転部12の剛性に対して、5%以上50%以下の剛性割合となっている。
 この構成によれば、回転外周部33の剛性割合に適切な複数のブレード32の剛性割合とすることができる。よって、ブレード32の肉厚を、回転外周部33の径方向の厚さに応じた適切な厚さにできるため、ブレード32の重量の増加を抑制することができる。
 第5の態様に係るモータ一体型流体機械において、前記回転外周部33は、前記回転軸の径方向における板厚が、複数の前記ブレード32の肉厚の合計よりも薄くなっている。
 この構成によれば、回転支持リング33の重量の増加を抑制することができる。
 第6の態様に係る垂直離着陸機は、上記のモータ一体型流体機械1と、前記モータ一体型流体機械1から発生する推力によって移動する機体と、を備える。
 この構成によれば、遠心力P1に対して耐荷重のある、耐久性の高いモータ一体型流体機械1を機体に搭載した垂直離着陸機を提供することができる。
 第7の態様に係るモータ一体型流体機械の設計方法は、前記回転部12に対する前記回転外周部33の剛性割合を設定するステップS11と、前記剛性割合に基づいて、前記複数のブレード32が受け持つ遠心力P1を導出するステップS12と、遠心力P1に基づいて、前記ブレード32が耐荷する前記ブレード32の剛性となるような前記ブレード32の肉厚を導出するステップS13と、前記剛性割合と前記ブレード32の剛性とに基づいて、前記回転外周部33の剛性を導出し、導出した前記回転外周部33の剛性となるような前記回転外周部33の板厚を導出するステップS14と、を備える。
 この構成によれば、回転部12に対する回転外周部33の剛性割合に基づいた、ブレード32の剛性とすることができる。このため、ブレード32の剛性を満たすように、ブレード32の重量及びブレード肉厚を設計することができるため、ブレード32の設計自由度を高めることができる。
 1 モータ一体型ファン
 11 軸部
 12 回転部
 13 ダクト
 14 モータ
 15 転がり軸受
 16 整流板
 31 ハブ
 32 ブレード
 33 回転支持リング
 38 吸込口
 39 吹出口
 41 ファンブレードロータ
 42 結合金具
 45 永久磁石
 46 コイル
 51 拘束部

Claims (7)

  1.  吸込口から流体を吸い込み、吸い込んだ前記流体を吹出口から吹き出すモータ一体型流体機械において、
     回転軸の中心に設けられる軸部と、
     前記軸部を中心に回転する回転部と、
     前記軸部の外周に設けられる外周部と、
     前記回転部を回転させるモータと、を備え、
     前記モータは、前記外周部から動力を与えて前記回転部を回転させる外周駆動のモータとなっており、
     前記回転部は、
     前記軸部に回転自在に支持されるハブと、
     前記ハブの外周側に設けられ、前記回転軸の周方向において並べて設けられる複数のブレードと、
     複数の前記ブレードの外周側に設けられ、前記回転軸の周方向に沿って環状となる回転外周部と、を有し、
     前記モータは、
     前記回転外周部に設けられる回転子側磁石と、
     前記外周部に設けられ、前記回転子側磁石に対向して設けられる固定子側磁石と、を有し、
     遠心力に対する前記回転外周部の剛性は、遠心力に対する前記回転部の剛性に対して、50%以上95%以下の剛性割合となっているモータ一体型流体機械。
  2.  前記回転外周部の剛性は、前記回転部の剛性に対して、80%以上90%以下の剛性割合となっている請求項1に記載のモータ一体型流体機械。
  3.  前記回転外周部の剛性は、前記回転部の剛性に対して、85%±2%の剛性割合となっている請求項2に記載のモータ一体型流体機械。
  4.  前記複数のブレードの剛性は、前記回転部の剛性に対して、5%以上50%以下の剛性割合となっている請求項1から3のいずれか1項に記載のモータ一体型流体機械。
  5.  前記回転外周部は、前記回転軸の径方向における板厚が、複数の前記ブレードの肉厚の合計よりも薄くなっている請求項1から4のいずれか1項に記載のモータ一体型流体機械。
  6.  請求項1から5のいずれか1項に記載のモータ一体型流体機械と、
     前記モータ一体型流体機械から発生する推力によって移動する機体と、を備える垂直離着陸機。
  7.  請求項1から5のいずれか1項に記載のモータ一体型流体機械の設計方法であって、
     前記回転部に対する前記回転外周部の剛性割合を設定するステップと、
     前記剛性割合に基づいて、前記複数のブレードが受け持つ遠心力を導出するステップと、
     導出した遠心力に基づいて、前記ブレードが耐荷する前記ブレードの剛性となるような前記ブレードの肉厚を導出するステップと、
     前記剛性割合と前記ブレードの剛性とに基づいて、前記回転外周部の剛性を導出し、導出した前記回転外周部の剛性となるような前記回転外周部の板厚を導出するステップと、を備えるモータ一体型流体機械の設計方法。
PCT/JP2020/036523 2019-12-27 2020-09-28 モータ一体型流体機械、垂直離着陸機及びモータ一体型流体機械の設計方法 WO2021131196A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/789,157 US20230048852A1 (en) 2019-12-27 2020-09-28 Motor integrated type fluid machine, vertical take-off and landing aircraft, and design method for motor integrated type fluid machine
EP20905784.3A EP4060879A4 (en) 2019-12-27 2020-09-28 MOTOR INTEGRATED TYPE FLUID MACHINE, VERTICAL TAKE OFF AND LANDING AIRCRAFT, AND METHOD FOR DESIGNING MOTOR INTEGRATED TYPE FLUID MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019238689A JP7413013B2 (ja) 2019-12-27 2019-12-27 モータ一体型流体機械、垂直離着陸機及びモータ一体型流体機械の設計方法
JP2019-238689 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021131196A1 true WO2021131196A1 (ja) 2021-07-01

Family

ID=76575851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036523 WO2021131196A1 (ja) 2019-12-27 2020-09-28 モータ一体型流体機械、垂直離着陸機及びモータ一体型流体機械の設計方法

Country Status (4)

Country Link
US (1) US20230048852A1 (ja)
EP (1) EP4060879A4 (ja)
JP (1) JP7413013B2 (ja)
WO (1) WO2021131196A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043342A4 (en) * 2019-11-11 2022-11-16 Mitsubishi Heavy Industries, Ltd. ROTOR MANUFACTURING PROCESS
WO2023286785A1 (ja) * 2021-07-15 2023-01-19 三菱重工業株式会社 電動ファンおよび電動垂直離着陸機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097288A (ja) * 1999-09-30 2001-04-10 Mitsubishi Heavy Ind Ltd ヘリコプタダクテッドファン
JP2017109726A (ja) 2015-10-08 2017-06-22 ロッキード マーティン コーポレイションLockheed Martin Corporation プロペラ駆動式乗物用の複雑さを低減したリングモータ設計
WO2017199724A1 (ja) * 2016-05-19 2017-11-23 ヤマハ発動機株式会社 プロペラおよびそれによって推進される輸送機器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121073A1 (en) * 2006-04-03 2009-05-14 The Boeing Company Aircraft having a jet engine, an adjustable aft nozzle, and an electric vertical fan
EP2371050A2 (en) * 2008-12-02 2011-10-05 Flodesign Wind Turbine Corporation Ultracapacitor interface in wind turbine ring generator
JP2013024057A (ja) * 2011-07-15 2013-02-04 Daikin Industries Ltd 遠心圧縮機
JP7417292B2 (ja) * 2018-08-26 2024-01-18 エアーボーン モーター ワークス インク. 電磁ジャイロスコープ安定化推進システムの方法および装置
JP7269722B2 (ja) * 2018-12-13 2023-05-09 三菱重工業株式会社 モータ一体型流体機械及び垂直離着陸機
JP7182449B2 (ja) * 2018-12-13 2022-12-02 三菱重工業株式会社 モータ一体型ファン及び垂直離着陸機
JP7325191B2 (ja) * 2019-02-12 2023-08-14 三菱重工業株式会社 モータ一体型流体機械及び垂直離着陸機
JP2021075183A (ja) * 2019-11-11 2021-05-20 三菱重工業株式会社 ロータの製造方法
WO2021174177A1 (en) * 2020-02-28 2021-09-02 Airborne Motor Works Inc. Friction limiting turbine generator gyroscope method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097288A (ja) * 1999-09-30 2001-04-10 Mitsubishi Heavy Ind Ltd ヘリコプタダクテッドファン
JP2017109726A (ja) 2015-10-08 2017-06-22 ロッキード マーティン コーポレイションLockheed Martin Corporation プロペラ駆動式乗物用の複雑さを低減したリングモータ設計
WO2017199724A1 (ja) * 2016-05-19 2017-11-23 ヤマハ発動機株式会社 プロペラおよびそれによって推進される輸送機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060879A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043342A4 (en) * 2019-11-11 2022-11-16 Mitsubishi Heavy Industries, Ltd. ROTOR MANUFACTURING PROCESS
US11952148B2 (en) 2019-11-11 2024-04-09 Mitsubishi Heavy Industries, Ltd. Rotor manufacturing method
WO2023286785A1 (ja) * 2021-07-15 2023-01-19 三菱重工業株式会社 電動ファンおよび電動垂直離着陸機

Also Published As

Publication number Publication date
JP7413013B2 (ja) 2024-01-15
EP4060879A1 (en) 2022-09-21
US20230048852A1 (en) 2023-02-16
JP2021108506A (ja) 2021-07-29
EP4060879A4 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
US11059599B2 (en) Electric aircraft propulsion system
WO2021131196A1 (ja) モータ一体型流体機械、垂直離着陸機及びモータ一体型流体機械の設計方法
US9574565B2 (en) Centrifugal fan having main blade with axially upper end projecting upward
US11655043B2 (en) Electric aircraft propulsion system
JP7269722B2 (ja) モータ一体型流体機械及び垂直離着陸機
GB2565886B (en) Electric engine
US20130230421A1 (en) Centrifugal fan
WO2020158361A1 (ja) モータ一体型流体機械及び垂直離着陸機
US20220161937A1 (en) Motor-integrated fluid machine and vertical takeoff and landing aircraft
WO2021059665A1 (ja) モータ一体型流体機械及び垂直離着陸機
WO2021095376A1 (ja) ロータの製造方法
CN214756008U (zh) 对旋风扇驱动组件和风扇组件
JP2022129157A (ja) 流体機械および垂直離着陸機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020905784

Country of ref document: EP

Effective date: 20220614

NENP Non-entry into the national phase

Ref country code: DE