WO2021059665A1 - モータ一体型流体機械及び垂直離着陸機 - Google Patents

モータ一体型流体機械及び垂直離着陸機 Download PDF

Info

Publication number
WO2021059665A1
WO2021059665A1 PCT/JP2020/026531 JP2020026531W WO2021059665A1 WO 2021059665 A1 WO2021059665 A1 WO 2021059665A1 JP 2020026531 W JP2020026531 W JP 2020026531W WO 2021059665 A1 WO2021059665 A1 WO 2021059665A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
support ring
rotation support
rotor
fluid machine
Prior art date
Application number
PCT/JP2020/026531
Other languages
English (en)
French (fr)
Inventor
一輝 大橋
直昭 藤原
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP20867047.1A priority Critical patent/EP4036001A4/en
Priority to US17/762,245 priority patent/US20220345017A1/en
Publication of WO2021059665A1 publication Critical patent/WO2021059665A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60VAIR-CUSHION VEHICLES
    • B60V1/00Air-cushion
    • B60V1/14Propulsion; Control thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/20Vertical take-off and landing [VTOL] aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/16Propellers having a shrouding ring attached to blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the present invention relates to a motor-integrated fluid machine and a vertical take-off and landing machine.
  • a thrust generator including an annular stator, an annular rotor provided inside the stator and rotatable with respect to the stator, and a propeller member provided inside the rotor is known (for example, a patent).
  • Reference 1 A coil is provided on the inner peripheral side of the stator, and a permanent magnet is provided on the outer peripheral side of the rotor.
  • Rotor-side magnets such as permanent magnets provided on the outer peripheral side of the rotor are generally joined to the rotor using an adhesive, or are locked to the rotor by forming a locking portion on the rotor-side magnet. By doing so, it is integrated with the rotor.
  • the rotor-side magnet has a heavy specific gravity, and the rotor rotates at high speed, so that a large centrifugal force acts on the rotor-side magnet.
  • a large centrifugal force acts on the rotor side magnet, it is difficult to obtain a sufficient load capacity at the joint between the rotor and the rotor side magnet with the adhesive or the locking part, which makes design difficult. Become.
  • the motor-integrated fluid machine of the present invention is a motor-integrated fluid machine in which a motor is integrally provided, from a rotating portion that rotates about a rotating shaft, an outer peripheral portion provided on the outer periphery of the rotating portion, and the outer peripheral portion.
  • a motor that drives the outer circumference to rotate the rotating portion by applying power, and the rotating portion includes a rotary support ring formed in an annular shape centered on the rotary shaft and a central side of the rotary support ring.
  • the motor has a rotor side magnet provided on the outer peripheral side of the rotary support ring in the radial direction, and the outer peripheral portion.
  • stator side magnet provided on the inner peripheral side of the rotor and is provided so as to face the rotor side magnet, and the rotation support ring and the rotor side magnet are integrated so as to be integrated with the rotation support. It is provided with a restraining portion that covers and restrains the ring and the rotor-side magnet from the outside.
  • the vertical take-off and landing machine of the present invention includes the above-mentioned motor-integrated hydraulic machine and an airframe that moves by the thrust generated from the motor-integrated hydraulic machine.
  • a sufficient load capacity can be obtained even when centrifugal force acts.
  • FIG. 1 is a cross-sectional view of the motor-integrated fan according to the first embodiment.
  • FIG. 2 is a perspective view of the fan blade according to the first embodiment.
  • FIG. 3 is a partial perspective view showing a part of the fan blade according to the first embodiment.
  • FIG. 4 is an explanatory diagram showing a part of the fan blade according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the fan blade according to the first embodiment.
  • FIG. 6 is an explanatory view showing a part of the fan blades of the motor-integrated fan according to the second embodiment.
  • FIG. 7 is a cross-sectional view of a fan blade of the motor-integrated fan according to the third embodiment.
  • the motor-integrated fluid machine is an axial-flow fluid machine.
  • the motor-integrated fluid machine is a motor-integrated fan 1 (hereinafter, also simply referred to as a fan 1) that generates propulsive force by taking in air from a suction port and blowing out air from an outlet.
  • the motor-integrated fluid machine will be described by applying it to the motor-integrated fan 1, but the present invention is not particularly limited to this configuration.
  • the motor-integrated fluid machine may be applied as a motor-integrated propeller such as a propeller that generates propulsive force by taking in a liquid such as water or seawater from a suction port and injecting the liquid from an outlet. ..
  • the motor-integrated fan 1 is provided in, for example, a vertical take-off and landing aircraft such as a helicopter or a drone.
  • the motor-integrated fan 1 provided in the vertical take-off and landing aircraft generates a propulsive force for levitating the airframe and a propulsive force for controlling the attitude of the airframe.
  • the motor-integrated fan 1 may be applied to an air cushion vehicle such as a hovercraft. Further, when applied as a motor-integrated propulsion device, it may be applied to a ship.
  • FIG. 1 is a cross-sectional view of the motor-integrated fan according to the first embodiment.
  • FIG. 2 is a perspective view of the fan blade according to the first embodiment.
  • FIG. 3 is a partial perspective view showing a part of the fan blade according to the first embodiment.
  • FIG. 4 is an explanatory diagram showing a part of the fan blade according to the first embodiment.
  • FIG. 5 is a cross-sectional view of the fan blade according to the first embodiment.
  • the motor-integrated fan 1 is called a duct-type propeller or a ducted fan. This motor-integrated fan 1 is used, for example, in a horizontal state in which the axial direction is the vertical direction, takes in air from the upper side in the vertical direction, and blows out air to the lower side in the vertical direction.
  • the motor-integrated fan 1 may be used in a vertical state in which the axial direction is horizontal.
  • the motor-integrated fan 1 is a flat fan in which the length of the rotating shaft I in the axial direction is shorter than the length of the rotating shaft I in the radial direction.
  • the motor-integrated fan 1 is a fan in which one motor is integrally provided, and includes a shaft portion 11, a rotating portion 12, an outer peripheral portion 13, a motor 14, a rolling bearing 15, and a straightening vane 16. I have.
  • the shaft portion 11 is provided at the center of the rotating shaft I and serves as a support system (fixed side).
  • the axis direction of the rotation axis I is the vertical direction in FIG. 1, and is a direction along the vertical direction. Therefore, the flow direction of the air is a direction along the axial direction of the rotation axis I, and the air flows from the upper side to the lower side in FIG.
  • the shaft portion 11 has a shaft-side fitting portion 25 which is a portion provided on the upstream side of the rotating shaft I and a shaft main body 26 which is a portion provided on the downstream side of the shaft-side fitting portion 25. Have.
  • the hub 31 of the rotating portion 12, which will be described later, is fitted to the shaft-side fitting portion 25.
  • the shaft-side fitting portion 25 has a cylindrical shape and is provided so as to project in the axial direction from the end face on the upstream side of the shaft body 26.
  • the shaft-side fitting portion 25 has a cylindrical space formed on the center side of the rotation shaft I. A part of the hub 31 of the rotating portion 12 is inserted into this space. Further, the outer peripheral side of the shaft-side fitting portion 25 is surrounded by a part of the hub 31 of the rotating portion 12.
  • the shaft body 26 has a substantially conical shape that tapers from the upstream side to the downstream side in the axial direction. Therefore, the outer peripheral surface of the shaft body 26 becomes a surface that goes from the outside to the inside in the radial direction from the upstream side to the downstream side in the axial direction. Inside the shaft body 26, an internal space is formed in which equipment can be installed. Examples of the device include a control device and a camera. Further, an end portion on the inner side in the radial direction of the straightening vane 16 described later is connected to the outer peripheral surface of the shaft main body 26.
  • the rotating portion 12 is a rotating system (rotating side) that rotates around the shaft portion 11.
  • the rotating portion 12 is provided on the inflow side where air flows in with respect to the shaft portion 11 in the axial direction of the rotating shaft I.
  • the rotating portion 12 has a hub 31, a plurality of blades 32, and a rotating support ring 33.
  • the hub 31 is provided on the upstream side of the shaft portion 11 in the axial direction, and is rotatably fitted to the shaft side fitting portion 25.
  • the hub 31 has a hub main body 35 which is a portion provided on the upstream side in the axial direction, and a hub side fitting portion 36 which is a portion provided on the downstream side of the hub main body 35.
  • the hub body 35 is formed in a hemisphere whose upstream end face has a predetermined radius of curvature.
  • the hub-side fitting portion 36 has a shape complementary to that of the shaft-side fitting portion 25.
  • the hub-side fitting portion 36 includes a central shaft 36a provided at the center of the rotation shaft and a cylindrical cylindrical portion 36b provided on the outer peripheral side of the central shaft 36a.
  • the central shaft 36a is inserted into the space at the center of the rotation shaft of the shaft-side fitting portion 25.
  • the cylindrical portion 36b is provided so as to project in the axial direction from the end surface on the downstream side of the hub main body 35.
  • the cylindrical portion 36b is arranged so as to surround the outer circumference of the shaft-side fitting portion 25.
  • a rolling bearing 15 is provided between the inner peripheral surface of the shaft-side fitting portion 25 and the outer peripheral surface of the central shaft 36a of the hub 31.
  • the surface from the end surface of the hub body 35 to the outer peripheral surface of the shaft body 26 via the outer peripheral surface of the cylindrical portion 36b is a smooth surface without steps.
  • the plurality of blades 32 are provided so as to extend outward from the hub 31 in the radial direction, and are provided side by side at predetermined intervals in the circumferential direction. Each blade 32 has a blade shape.
  • the plurality of blades 32 are constructed by using a composite material. In the present embodiment, the plurality of blades 32 are configured by using a composite material, but are not particularly limited, and may be configured by using, for example, a metal material.
  • the rotation support ring 33 is formed in an annular shape centered on the rotation axis I.
  • the rotation support ring 33 is connected to the outer peripheral side of the plurality of blades 32 in the radial direction of the rotation axis I.
  • the inner peripheral surface of the rotation support ring 33 constitutes a part of the inner peripheral surface of the outer peripheral portion 13 described later.
  • the radial outer ends of the blades 32 are fixed to the inner peripheral surface of the rotation support ring 33 via the coupling fitting 42. Further, a permanent magnet 45 of the motor 14, which will be described later, is held on the outer peripheral surface of the rotation support ring 33.
  • the rotating portion 12 has a hub 31, a plurality of blades 32, and a rotation support ring 33 integrally connected to each other, and rotates about the hub 31. Further, as will be described in detail later, the permanent magnet 45 of the motor 14 is integrally held by the rotating portion 12, so that the fan blade in which the rotating portion 12 and the permanent magnet 45 are integrated as shown in FIG. 2 is integrated. It is formed as a rotor 41.
  • the outer peripheral portion 13 is provided on the outer side in the radial direction of the shaft portion 11 and serves as a support system (fixed side).
  • the outer peripheral portion 13 is formed in an annular shape, and is a duct that generates thrust by the rotation of the rotating portion 12.
  • the opening on the upstream side is the suction port 38 and the opening on the downstream side is the outlet 39 in the axial direction of the rotation axis I.
  • the duct 13 has a shape in which thrust is generated by sucking air from the suction port 38 by rotating the rotating portion 12 and blowing out the sucked air from the air outlet 39.
  • the duct 13 has an inner peripheral surface on the downstream side of the rotating portion 12 that extends from the suction port 38 side toward the air outlet 39 side.
  • the duct 13 Inside the duct 13, an annular internal space is formed for accommodating the rotation support ring 33 of the rotating portion 12, the permanent magnet 45 of the motor 14, and the coil 46 of the motor 14, which will be described later. Inside, the duct 13 holds the coil 46 at a position facing the permanent magnet 45 held by the rotating portion 12, and the permanent magnet 45 and the coil 46 face each other in the radial direction. That is, the duct 13 functions as a stator.
  • the motor 14 is an outer peripheral drive motor that rotates the rotating portion 12 by applying power from the duct 13 side toward the rotating portion 12.
  • the motor 14 has a rotor-side magnet provided on the rotating portion 12 side and a stator-side magnet provided on the duct 13 side.
  • the rotor side magnet is a permanent magnet 45
  • the stator side magnet is a coil 46 which is an electromagnet.
  • the permanent magnet 45 is held and provided on the outer peripheral surface of the rotation support ring 33, and is arranged in an annular shape in the circumferential direction. Further, the permanent magnet 45 is configured so that the positive electrode and the negative electrode alternate at predetermined intervals in the circumferential direction.
  • the permanent magnets 45 may be in a Halbach array.
  • the permanent magnet 45 is provided at a position facing the coil 46 in the radial direction of the rotation axis I.
  • a plurality of coils 46 are provided while being held inside the duct 13, facing each pole of the permanent magnet 45, and are provided side by side in the circumferential direction.
  • the coil 46 is provided at a position facing the permanent magnet 45 held by the rotating portion 12 in the radial direction of the rotating shaft I. That is, the permanent magnet 45 and the coil 46 are arranged so as to face each other in the radial direction of the rotation axis I.
  • the rolling bearing 15 is provided between the inner peripheral surface of the shaft-side fitting portion 25 of the shaft portion 11 and the outer peripheral surface of the central shaft 36a of the hub 31 of the rotating portion 12.
  • the rolling bearing 15 connects the shaft portion 11 and the rotating portion 12 while allowing the rotating portion 12 to rotate with respect to the shaft portion 11.
  • the rolling bearing 15 is, for example, a ball bearing or the like.
  • the straightening vane 16 is provided by connecting the shaft portion 11 and the duct 13.
  • the straightening vane 16 is provided on the downstream side of the rotating portion 12 in the axial direction of the rotating shaft I. That is, the straightening vane 16 is provided at the position of the downstream portion 43 of the duct 13 in the axial direction.
  • a plurality of straightening vanes 16 are provided side by side in the circumferential direction of the rotation axis I.
  • the rectifying plate 16 has a streamlined shape such as a blade shape, and rectifies the air flowing from the rotating portion 12 to generate thrust.
  • the shape of the straightening vane 16 is not limited to the blade shape, and may be a flat plate shape.
  • the rotating portion 12 rotates by applying power from the duct 13 side to the rotating portion 12 by a magnetic field by the motor 14.
  • the motor-integrated fan 1 sucks air from the suction port 38 and blows air toward the outlet 39.
  • the air blown out from the rotating portion 12 flows along the inner peripheral surface of the duct 13 to generate thrust.
  • the air flow is rectified by the straightening vane 16, and thrust is also generated in the straightening vane 16.
  • the fan blade rotor 41 includes a rotating portion 12, a permanent magnet 45, and a restraining portion 51.
  • a composite material is used for the restraint portion 51, and the restraint portion 51 is wound around the rotation support ring 33 and the permanent magnet 45 from the outside of the rotation support ring 33 and the permanent magnet 45 of the rotation portion 12.
  • the composite material carbon fibers are impregnated with a resin, and for example, a prepreg is applied.
  • the composite material may be a sheet-like material having a narrow width or a fiber bundle, and is not particularly limited.
  • the restraint portion 51 has a rotation support ring 33 extending in the circumferential direction and a permanent magnet 45 as a core, and is spirally wound around them to form a rotation support ring 33 and a permanent magnet 45.
  • a coupling metal fitting 42 for connecting the radial outer end portion of the blade 32 is provided on the inner peripheral side of the rotary support ring 33, and the restraint portion 51 is permanently connected to the rotary support ring 33. Together with the magnet 45, the coupling metal fitting 42 is integrally restrained.
  • the restraint portion 51 is wound around the entire circumference of the rotation support ring 33. At this time, the restraint portion 51 is wound so as to overlap in the circumferential direction of the rotation support ring 33. That is, in the restraint portion 51 spirally wound in the circumferential direction, a part of one restraint portion 51 adjacent in the circumferential direction and a part of the other restraint portion 51 are overlapped with each other.
  • the restraint portion 51 integrally restrains the portions of the rotation support ring 33 and the permanent magnet 45 corresponding to the joint portion of the coupling metal fitting 42. Then, the restraint portion 51 integrally restrains the coupling metal fitting 42 together with the rotation support ring 33 and the permanent magnet 45 at the flat plate portions on both sides in the circumferential direction of the coupling metal fitting 42.
  • the restraint portion 51 may be divided into a plurality of parts, and in the joint portion of the coupling metal fitting 42, the restraint portion 51 that restrains the rotation support ring 33 and the permanent magnet 45 and the flat plate portion of the coupling metal fitting 42.
  • the configuration may include a rotation support ring 33, a permanent magnet 45, and a restraint portion 51 for restraining the coupling metal fitting 42. In this case, it is preferable to use the same composite material for the divided restraint portion 51.
  • the rotation support ring 33 has a chamfered corner portion in contact with the restraint portion 51.
  • the rotation support ring 33 has a chamfer surface formed by chamfering the corner portions formed on both sides in the axial direction on the inner peripheral side (lower side in FIG. 5).
  • the width of the rotation support ring 33 in the axial direction (left-right direction in FIG. 5) of the rotation axis I is wider than the width in the axial direction of the permanent magnet 45, and the permanent magnet 45 is in the axial direction. Is arranged in the center of the rotation support ring 33. Therefore, the restraint portion 51 is wound around the rotation support ring 33 and the permanent magnet 45 so as not to have an angle smaller than 90 °, that is, an acute angle.
  • the rotation support ring 33 and the permanent magnet 45 can be integrally restrained by the restraint portion 51. Therefore, even when the permanent magnet 45 is arranged on the outer peripheral side of the rotation support ring 33, the configuration can withstand the centrifugal force.
  • the rotary support ring 33 and the permanent magnet 45 can be integrally restrained by using a composite material as the restraint portion 51 and winding the composite material around the rotary support ring 33 and the permanent magnet 45. Therefore, the thickness of the restraint portion 51 formed on the outer peripheral side of the permanent magnet 45 can be reduced. By reducing the thickness of the restraint portion 51, it is possible to narrow the gap between the permanent magnet 45 and the coil 46, and it is possible to improve the energy efficiency of the motor 14.
  • the composite material as the restraint portion 51 can be wound around the rotation support ring 33 and the permanent magnet 45 over the entire circumference of the rotation support ring 33. Therefore, when the centrifugal force is generated, the hoop stress of the spirally wound composite material can be appropriately applied, so that the thickness of the restraint portion 51 can be further reduced.
  • the composite material as the restraint portion 51 can be wound so as to overlap in the circumferential direction of the rotation support ring 33, the strength of the restraint portion 51 can be improved.
  • the corner portion of the rotary support ring 33 in contact with the composite material can be chamfered, the stress concentration on the composite material can be relaxed and the composite material can be suppressed from being cut. be able to.
  • the permanent magnet 45 can be arranged at the center of the rotation support ring 33 in the axial direction. Therefore, even when the composite material is bent in contact with the rotary support ring 33 and the permanent magnet 45, the bending angle can be made larger than 90 ° (obtuse angle). As a result, stress concentration on the composite material can be relaxed, and cutting of the composite material can be suppressed.
  • FIG. 6 is an explanatory view showing a part of the fan blades of the motor-integrated fan according to the second embodiment.
  • the restraint portion 51 of the motor-integrated fan 1 of the first embodiment is replaced with a composite material by a magnet case 61.
  • the magnet case 61 is a case that covers the rotation support ring 33 and the permanent magnet 45 from the outer peripheral side. Further, the magnet case 61 is made of metal. In the second embodiment, the magnet case 61 is made of metal in consideration of load bearing resistance, workability, and the like, but a composite material, a ceramic material, or the like may be applied, and the magnet case 61 is not particularly limited.
  • the magnet case 61 covers the outer peripheral surfaces of the rotary support ring 33 and the permanent magnet 45, and also covers both side surfaces of the rotary support ring 33 and the permanent magnet 45 in the axial direction. Further, the magnet case 61 is fixed to the coupling metal fitting 62 provided on the inner peripheral surface of the rotation support ring 33. Similar to the first embodiment, the coupling metal fitting 62 fixes the radial outer end of each blade 32 to the rotation support ring 33.
  • the magnet case 61 and the fitting 62 are formed with fastening holes for fastening them. The fastening holes are formed on both side surfaces in the axial direction on the inner peripheral side of the magnet case 61 and on both side surfaces in the axial direction of the fitting 62. The fastening holes are fastened using fastening members such as bolts and nuts, so that the magnet case 61 and the coupling metal fitting 62 are coupled.
  • the rotation support ring 33 and the permanent magnet 45 can be integrally restrained by the magnet case 61. Therefore, even when the permanent magnet 45 is arranged on the outer peripheral side of the rotation support ring 33, the configuration can withstand the centrifugal force.
  • FIG. 7 is a cross-sectional view of a fan blade of the motor-integrated fan according to the third embodiment.
  • the motor-integrated fan 70 of the third embodiment has a configuration in which the motor-integrated fan 1 of the first embodiment is further provided with a restraint ring 72. That is, the fan blade 71 of the motor-integrated fan 70 includes a rotating portion 12, a permanent magnet 45, a restraining portion 51, and a restraining ring 72. Since the rotating portion 12, the permanent magnet 45, and the restraining portion 51 are substantially the same as those in the first embodiment, the description thereof will be omitted.
  • the restraint ring 72 is provided on the outer peripheral side of the permanent magnet 45 and is formed in an annular shape.
  • the restraint ring 72 is constructed by using a composite material such as a prepreg, and is formed so that the fiber direction of the carbon fibers contained therein is the circumferential direction. Further, the restraint portion 51 is wound so that the rotation support ring 33, the permanent magnet 45 and the restraint ring 72 are integrated. Therefore, the restraint ring 72 is arranged between the permanent magnet 45 and the restraint portion 51 in the radial direction.
  • the restraint ring 72 has a chamfered corner portion in contact with the restraint portion 51.
  • the restraint ring 72 has a chamfer surface formed by chamfering the corner portions formed on both sides in the axial direction on the outer peripheral side (upper side in FIG. 7).
  • the hoop stress in the circumferential direction can be increased by the restraint ring 72, even when the permanent magnet 45 is arranged on the outer peripheral side of the rotation support ring 33, it is centrifugal. It can be configured to withstand force.
  • the composite material used for the restraint portion 51 of the first embodiment and the third embodiment it is preferable to use a unidirectional material in which the fiber directions of the reinforcing fibers are aligned in one direction. This is because the stress applied when restraining the permanent magnet 45 is tensile stress, so by using a unidirectional material as the composite material, it is possible to obtain sufficient strength with a small winding amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

モータが一体に設けられるモータ一体型流体機械において、回転軸を中心に回転する回転部と、回転部の外周に設けられる外周部と、外周部から動力を与えて回転部を回転させる外周駆動のモータと、を備え、回転部は、回転軸を中心とする円環形状に形成される回転支持リングと、回転支持リングの中心側に設けられ、回転軸の周方向において並べて設けられる複数のブレードと、を有し、モータは、回転支持リングの径方向の外周側に設けられる永久磁石と、外周部の内周側に設けられ、永久磁石に対向して設けられるコイルと、を有し、回転支持リングと永久磁石とが一体となるように、回転支持リングと永久磁石とを外側から覆って拘束する拘束部51を備える。

Description

モータ一体型流体機械及び垂直離着陸機
 本発明は、モータ一体型流体機械及び垂直離着陸機に関するものである。
 従来、環状のステータと、ステータの内側に設けられ、ステータに対して回転可能な環状のロータと、ロータの内側に設けられるプロペラ部材とを備えた推力発生装置が知られている(例えば、特許文献1参照)。ステータの内周側には、コイルが設けられ、ロータの外周側には、永久磁石が設けられている。
特開2011-5926号公報
 ところで、回転するロータには、径方向の外側に向かって遠心力が作用する。ロータの外周側に設けられる永久磁石等の回転子側磁石は、一般的に、接着剤を用いてロータに接合されたり、または、回転子側磁石に係止部を形成してロータに係止したりすることで、ロータと一体になっている。しかしながら、回転子側磁石は比重が重く、また、ロータが高速回転することで、回転子側磁石には、大きな遠心力が作用する。回転子側磁石に対して大きな遠心力が作用する場合、接着剤または係止部では、ロータと回転子側磁石との接合部分において十分な耐荷重を得ることが難しいことから、設計が困難となる。
 そこで、本発明は、遠心力が作用しても、十分な耐荷重を得ることができるモータ一体型流体機械及び垂直離着陸機を提供することを課題とする。
 本発明のモータ一体型流体機械は、モータが一体に設けられるモータ一体型流体機械において、回転軸を中心に回転する回転部と、前記回転部の外周に設けられる外周部と、前記外周部から動力を与えて前記回転部を回転させる外周駆動のモータと、を備え、前記回転部は、前記回転軸を中心とする円環形状に形成される回転支持リングと、前記回転支持リングの中心側に設けられ、前記回転軸の周方向において並べて設けられる複数のブレードと、を有し、前記モータは、前記回転支持リングの前記径方向の外周側に設けられる回転子側磁石と、前記外周部の内周側に設けられ、前記回転子側磁石に対向して設けられる固定子側磁石と、を有し、前記回転支持リングと前記回転子側磁石とが一体となるように、前記回転支持リングと前記回転子側磁石とを外側から覆って拘束する拘束部を備える。
 また、本発明の垂直離着陸機は、上記のモータ一体型流体機械と、前記モータ一体型流体機械から発生する推力によって移動する機体と、を備える。
 本発明によれば、遠心力が作用しても、十分な耐荷重を得ることができる。
図1は、実施形態1に係るモータ一体型ファンに関する断面図である。 図2は、実施形態1に係るファンブレードの斜視図である。 図3は、実施形態1に係るファンブレードの一部を示す部分斜視図である。 図4は、実施形態1に係るファンブレードの一部を示す説明図である。 図5は、実施形態1に係るファンブレードの断面図である。 図6は、実施形態2に係るモータ一体型ファンのファンブレードの一部を示す説明図である。 図7は、実施形態3に係るモータ一体型ファンのファンブレードの断面図である。
 以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[実施形態1]
 実施形態1に係るモータ一体型流体機械は、軸流の流体機械となっている。モータ一体型流体機械は、吸込口から空気を取り込み、吹出口から空気を吹き出すことで、推進力を発生させるモータ一体型ファン1(以下、単にファン1ともいう)である。なお、実施形態1では、モータ一体型流体機械として、モータ一体型ファン1に適用して説明するが、この構成に特に限定されない。モータ一体型流体機械は、例えば、吸込口から水または海水等の液体を取り込み、吹出口から液体を噴射することで、推進力を発生させるプロペラ等のモータ一体型推進器として適用してもよい。
(モータ一体型ファン)
 モータ一体型ファン1は、例えば、ヘリコプタまたはドローン等の垂直離着陸機に設けられている。垂直離着陸機に設けられるモータ一体型ファン1は、機体を浮上させるための推進力を発生させたり、機体の姿勢を制御するための推進力を発生させたりする。なお、モータ一体型ファン1は、例えば、ホバークラフト等の空気クッション車両に適用してもよい。さらに、モータ一体型推進器として適用する場合には、船舶に適用してもよい。
 図1から図5を参照して、モータ一体型ファン1について説明する。図1は、実施形態1に係るモータ一体型ファンに関する断面図である。図2は、実施形態1に係るファンブレードの斜視図である。図3は、実施形態1に係るファンブレードの一部を示す部分斜視図である。図4は、実施形態1に係るファンブレードの一部を示す説明図である。図5は、実施形態1に係るファンブレードの断面図である。
 モータ一体型ファン1は、ダクト型プロペラ、または、ダクテッドファンと呼ばれるものである。このモータ一体型ファン1は、例えば、軸方向を鉛直方向とする水平状態で使用され、鉛直方向の上方側から空気を取り込み、鉛直方向の下方側へ空気を吹き出している。なお、モータ一体型ファン1は、軸方向を水平方向とする鉛直状態で使用されてもよい。
 モータ一体型ファン1は、回転軸Iの軸方向における長さが、回転軸Iの径方向における長さよりも短い扁平のファンとなっている。モータ一体型ファン1は、1つのモータが一体に設けられたファンであり、軸部11と、回転部12と、外周部13と、モータ14と、転がり軸受15と、整流板16と、を備えている。
 軸部11は、回転軸Iの中心に設けられ、支持系(固定側)となっている。回転軸Iは、軸方向が図1の上下方向となっており、鉛直方向に沿った方向となっている。このため、空気の流れ方向は、回転軸Iの軸方向に沿った方向となっており、図1の上方側から下方側に向かって空気が流れる。軸部11は、回転軸Iの軸方向において、その上流側に設けられる部位となる軸側嵌合部25と、軸側嵌合部25の下流側に設けられる部位となる軸本体26とを有している。
 軸側嵌合部25は、後述する回転部12のハブ31が嵌め合わされる。軸側嵌合部25は、円筒形状となっており、軸本体26の上流側の端面から軸方向に突出して設けられている。軸側嵌合部25は、回転軸Iの中心側に円柱形状の空間が形成されている。この空間には、回転部12のハブ31の一部が挿入される。また、軸側嵌合部25の外周側は、回転部12のハブ31の一部によって取り囲まれている。
 軸本体26は、軸方向の上流側から下流側に向かって先細りとなる略円錐形状となっている。このため、軸本体26は、その外周面が、軸方向の上流側から下流側に向かうにつれて、径方向の外側から内側に向かう面となっている。軸本体26の内部には、機器を設置可能な内部空間が形成されている。機器としては、例えば、制御装置、カメラ等である。また、軸本体26の外周面には、後述する整流板16の径方向内側の端部が接続されている。
 図1及び図2に示すように、回転部12は、軸部11を中心に回転する回転系(回転側)となっている。回転部12は、回転軸Iの軸方向において、軸部11に対して、空気が流入する流入側に設けられている。回転部12は、ハブ31と、複数のブレード32と、回転支持リング33と、を有している。
 ハブ31は、軸部11の軸方向の上流側に設けられ、軸側嵌合部25に回転自在に嵌め合わされる。ハブ31は、軸方向の上流側に設けられる部位となるハブ本体35と、ハブ本体35の下流側に設けられる部位となるハブ側嵌合部36とを有している。ハブ本体35は、上流側の端面が所定の曲率半径となる半球面に形成されている。ハブ側嵌合部36は、軸側嵌合部25と相補的な形状となっている。ハブ側嵌合部36は、回転軸の中心に設けられる中心軸36aと、中心軸36aの外周側に設けられる円筒形状の円筒部36bとを含んでいる。中心軸36aは、軸側嵌合部25の回転軸の中心の空間に挿入される。円筒部36bは、ハブ本体35の下流側の端面から軸方向に突出して設けられている。円筒部36bは、軸側嵌合部25の外周を取り囲むように配置される。このとき、軸側嵌合部25の内周面とハブ31の中心軸36aの外周面との間には、転がり軸受15が設けられる。
 そして、ハブ本体35の端面から、円筒部36bの外周面を経て、軸本体26の外周面に至る面は、段差のない滑らかな面となっている。
 複数のブレード32は、ハブ31から径方向の外側へ向かって延在して設けられると共に、周方向に所定の間隔を空けて並べて設けられる。各ブレード32は、翼形状となっている。複数のブレード32は、複合材を用いて構成されている。なお、本実施形態において、複数のブレード32は、複合材を用いて構成したが、特に限定されず、例えば、金属材料を用いて構成してもよい。
 回転支持リング33は、回転軸Iを中心とする円環形状に形成されている。回転支持リング33は、回転軸Iの径方向において、複数のブレード32の外周側に接続される。回転支持リング33は、その内周面が、後述する外周部13の内周面の一部を構成している。回転支持リング33の内周面には、各ブレード32の径方向外側の端部が、結合金具42を介して固定されている。また、回転支持リング33の外周面には、後述するモータ14の永久磁石45が保持されている。
 上記の回転部12は、ハブ31と、複数のブレード32と、回転支持リング33とが一体に結合されており、ハブ31を中心に回転する。また、詳細は後述するが、この回転部12には、モータ14の永久磁石45が一体に保持されることで、図2に示す、回転部12と永久磁石45とが一体となったファンブレードロータ41として形成される。
 外周部13は、軸部11の径方向外側に設けられ、支持系(固定側)となっている。外周部13は、円環形状に形成され、回転部12の回転によって推力を生じさせるダクトとなっている。外周部13(以下、ダクト13という)は、回転軸Iの軸方向において、上流側の開口が吸込口38となっており、下流側の開口が吹出口39となっている。また、ダクト13は、回転部12が回転することによって、吸込口38から空気を吸い込み、吸い込んだ空気を吹出口39から吹き出すことで、推力を発生させる形状となっている。具体的に、ダクト13は、回転部12の下流側の内周面が、吸込口38側から吹出口39側に向かって広がる面となっている。
 ダクト13は、その内部に、回転部12の回転支持リング33と、モータ14の永久磁石45と、後述するモータ14のコイル46とを収容する環状の内部空間が形成されている。ダクト13は、その内部において、回転部12に保持される永久磁石45と対向する位置においてコイル46を保持しており、永久磁石45とコイル46とは、径方向において対向している。つまり、ダクト13は、ステータとして機能している。
 モータ14は、ダクト13側から回転部12へ向けて動力を与えることにより、回転部12を回転させる外周駆動のモータとなっている。モータ14は、回転部12側に設けられる回転子側磁石と、ダクト13側に設けられる固定子側磁石とを有している。実施形態1において、回転子側磁石は、永久磁石45となっており、固定子側磁石は、電磁石となるコイル46となっている。
 永久磁石45は、回転支持リング33の外周面に保持されて設けられ、周方向に円環状に配置されている。また、永久磁石45は、周方向において所定の間隔ごとに正極及び負極が交互となるように構成されている。なお、永久磁石45は、ハルバッハ配列としてもよい。永久磁石45は、回転軸Iの径方向においてコイル46と対向する位置に設けられる。
 コイル46は、ダクト13の内部に保持されて設けられ、永久磁石45の各極に対向して複数設けられると共に、周方向に並べて設けられる。コイル46は、回転軸Iの径方向において回転部12に保持される永久磁石45と対向する位置に設けられる。つまり、永久磁石45及びコイル46は、回転軸Iの径方向に対向させて配置したラジアル配置となっている。
 転がり軸受15は、軸部11の軸側嵌合部25の内周面と、回転部12のハブ31における中心軸36aの外周面との間に設けられている。転がり軸受15は、軸部11に対する回転部12の回転を許容しつつ、軸部11と回転部12とを連結している。転がり軸受15は、例えば、ボールベアリング等である。
 整流板16は、軸部11とダクト13とを連結して設けられている。整流板16は、回転軸Iの軸方向において、回転部12の下流側に設けられている。つまり、整流板16は、軸方向において、ダクト13の下流側部位43の位置に設けられている。整流板16は、回転軸Iの周方向に複数並べて設けられている。また、整流板16は、翼形状等の流線形状となっており、回転部12から流れ込む空気を整流し、推力を発生させている。なお、整流板16の形状は、翼形状に限定されず、平板形状であってもよい。
 このようなモータ一体型ファン1は、モータ14により、ダクト13側から回転部12に磁界による動力を与えることで、回転部12が回転する。モータ一体型ファン1は、回転部12が回転すると、吸込口38から空気を吸い込むと共に、吹出口39へ向けて空気を吹き出す。回転部12から吹き出された空気は、ダクト13の内周面に沿って流れることで、推力を発生させる。このとき、整流板16により空気の流れが整流されて、整流板16においても推力を発生させる。
(ファンブレードロータ)
 次に、図2から図4を参照して、回転部12と永久磁石45とが一体となったファンブレードロータ41について説明する。ファンブレードロータ41は、回転部12と、永久磁石45と、拘束部51とを備えている。
 拘束部51は、例えば、複合材が用いられており、回転部12の回転支持リング33及び永久磁石45の外側から、回転支持リング33及び永久磁石45に巻き付けられる。複合材としては、炭素繊維に樹脂を含浸させたものであり、例えばプリプレグが適用される。また、複合材としては、細い幅となるシート状のものであってもよいし、繊維束であってもよく、特に限定されない。
 図3に示すように、拘束部51は、周方向を延在する回転支持リング33及び永久磁石45を芯として、これらの周囲にらせん状に巻き付けることで、回転支持リング33と永久磁石45とを一体に拘束している。また、図4に示すように、回転支持リング33の内周側には、ブレード32の径方向外側の端部を結合する結合金具42が設けられ、拘束部51は、回転支持リング33及び永久磁石45と共に、結合金具42を一体に拘束している。
 また、拘束部51は、回転支持リング33の全周に亘って巻き付けられている。このとき、拘束部51は、回転支持リング33の周方向に重複させて巻き付けられている。つまり、周方向に向かってらせん状に巻き付けられる拘束部51は、周方向に隣接する一方の拘束部51の一部と、他方の拘束部51の一部とが重ね合わされる。
 なお、図3に示すように、拘束部51は、結合金具42の周方向中央の結合部分において、回転支持リング33及び永久磁石45と共に、結合金具42を一体に拘束することが困難である。この場合、拘束部51は、結合金具42の結合部分に対応する回転支持リング33及び永久磁石45の部位を一体に拘束する。そして、拘束部51は、結合金具42の周方向両側の平板部分において、回転支持リング33及び永久磁石45と共に結合金具42を一体に拘束する。つまり、拘束部51は、複数に分割された構成となっていてもよく、結合金具42の結合部分において、回転支持リング33及び永久磁石45を拘束する拘束部51と、結合金具42の平板部分において回転支持リング33、永久磁石45及び結合金具42を拘束する拘束部51と、を含む構成であってもよい。この場合、分割された拘束部51は、同じ複合材を用いることが好ましい。
 ここで、図5を参照して、拘束部51が巻かれた回転支持リング33及び永久磁石45の断面について説明する。回転支持リング33は、拘束部51と接する角部が面取りされている。具体的に、回転支持リング33は、内周側(図5の下方側)の面において、軸方向の両側に形成される角部が面取りされることで、チャンファ面が形成される。
 また、回転支持リング33は、回転軸Iの軸方向(図5の左右方向)における幅が、永久磁石45の軸方向における幅に比して幅広となっており、永久磁石45は、軸方向において回転支持リング33の中央に配置されている。このため、拘束部51は、90°よりも小さい角度、つまり鋭角とならないように、回転支持リング33及び永久磁石45に巻き付けられる。
 以上のように、実施形態1によれば、拘束部51により回転支持リング33及び永久磁石45を一体に拘束することができる。このため、回転支持リング33の外周側に永久磁石45を配置する場合であっても、遠心力に耐え得る構成とすることができる。
 また、実施形態1によれば、拘束部51として複合材を用いて、回転支持リング33及び永久磁石45に巻き付けることにより、回転支持リング33及び永久磁石45を一体に拘束することができる。このため、永久磁石45の外周側に形成される拘束部51の厚さを薄いものとすることができる。拘束部51の厚さを薄くすることで、永久磁石45とコイル46との間の隙間を狭くすることが可能となり、モータ14のエネルギー効率向上を図ることが可能となる。
 また、実施形態1によれば、拘束部51としての複合材を、回転支持リング33の全周に亘って、回転支持リング33及び永久磁石45に巻き付けることができる。このため、遠心力の発生時において、らせん状に巻回された複合材のフープ応力を適切に作用させることができるため、拘束部51の厚さをより薄くすることが可能となる。
 また、実施形態1によれば、拘束部51としての複合材を、回転支持リング33の周方向に重複させて巻き付けることができるため、拘束部51の強度を向上させることができる。
 また、実施形態1によれば、複合材と接する回転支持リング33の角部を面取りすることができるため、複合材に対する応力集中を緩和することができ、複合材が切断されることを抑制することができる。
 また、実施形態1によれば、永久磁石45を、軸方向において回転支持リング33の中央に配置することができる。このため、複合材が、回転支持リング33及び永久磁石45に接触して屈曲する場合であっても、屈曲する角度を90°よりも大きく(鈍角と)することができる。これにより、複合材に対する応力集中を緩和することができ、複合材が切断されることを抑制することができる。
[実施形態2]
 次に、図6を参照して、実施形態2に係るモータ一体型ファン60について説明する。なお、実施形態2では、重複した記載を避けるべく、実施形態1と異なる部分について説明し、実施形態1と同様の構成である部分については、同じ符号を付して説明する。図6は、実施形態2に係るモータ一体型ファンのファンブレードの一部を示す説明図である。
 実施形態2のモータ一体型ファン60は、実施形態1のモータ一体型ファン1の拘束部51を、複合材に代えて、磁石ケース61としている。
 磁石ケース61は、回転支持リング33及び永久磁石45の外周側から覆うケースとなっている。また、磁石ケース61は、金属を用いて構成されている。なお、実施形態2において、磁石ケース61は、耐荷重性及び加工性等を考慮して金属を用いたが、複合材またはセラミック材等を適用してもよく、特に限定されない。
 磁石ケース61は、回転支持リング33及び永久磁石45の外周面を被覆すると共に、回転支持リング33及び永久磁石45の軸方向における両側面を被覆している。また、磁石ケース61は、回転支持リング33の内周面に設けられる結合金具62に固定される。結合金具62は、実施形態1と同様に、各ブレード32の径方向外側の端部を回転支持リング33に固定するものである。磁石ケース61及び結合金具62には、これらを締結するための締結孔が形成されている。締結孔は、磁石ケース61の内周側における軸方向の両側面と、結合金具62の軸方向の両側面とに形成されている。締結孔は、ボルト及びナット等の締結部材を用いて締結されることで、磁石ケース61及び結合金具62が結合される。
 以上のように、実施形態2によれば、磁石ケース61により回転支持リング33及び永久磁石45を一体に拘束することができる。このため、回転支持リング33の外周側に永久磁石45を配置する場合であっても、遠心力に耐え得る構成とすることができる。
[実施形態3]
 次に、図7を参照して、実施形態3に係るモータ一体型ファン70について説明する。なお、実施形態3でも、重複した記載を避けるべく、実施形態1及び2と異なる部分について説明し、実施形態1及び2と同様の構成である部分については、同じ符号を付して説明する。図7は、実施形態3に係るモータ一体型ファンのファンブレードの断面図である。
 実施形態3のモータ一体型ファン70は、実施形態1のモータ一体型ファン1に、拘束リング72をさらに備えた構成となっている。つまり、モータ一体型ファン70のファンブレード71は、回転部12と、永久磁石45と、拘束部51と、拘束リング72を備えている。なお、回転部12、永久磁石45及び拘束部51は、実施形態1とほぼ同様であるため説明を省略する。
 拘束リング72は、永久磁石45の外周側に設けられており、円環状に形成されている。拘束リング72は、例えば、プリプレグ等の複合材を用いて構成されており、含有する炭素繊維の繊維方向が周方向となるように形成される。また、拘束部51は、回転支持リング33、永久磁石45及び拘束リング72が一体となるように巻き付けられる。このため、拘束リング72は、径方向において永久磁石45と拘束部51との間に配置される。
 また、図7に示すように、拘束リング72は、拘束部51と接する角部が面取りされている。具体的に、拘束リング72は、外周側(図7の上方側)の面において、軸方向の両側に形成される角部が面取りされることで、チャンファ面が形成される。
 以上のように、実施形態3によれば、拘束リング72により、周方向におけるフープ応力を高めることができるため、回転支持リング33の外周側に永久磁石45を配置する場合であっても、遠心力により耐え得る構成とすることができる。
 なお、実施形態1及び実施形態3の拘束部51に用いられる複合材は、強化繊維の繊維方向が一方向に引き揃えられた一方向材を用いることが好ましい。これは、永久磁石45を拘束する際に与えられる応力が引張応力であることから、複合材として一方向材を用いることで、少ない巻き付け量で十分な強度を得ることが可能となる。
 1 モータ一体型ファン
 11 軸部
 12 回転部
 13 ダクト
 14 モータ
 15 転がり軸受
 16 整流板
 31 ハブ
 32 ブレード
 33 回転支持リング
 38 吸込口
 39 吹出口
 41 ファンブレードロータ
 42 結合金具
 45 永久磁石
 46 コイル
 51 拘束部
 60 モータ一体型ファン(実施形態2)
 61 磁石ケース
 62 結合金具
 70 モータ一体型ファン(実施形態3)
 71 ファンブレード
 72 拘束リング

Claims (9)

  1.  モータが一体に設けられるモータ一体型流体機械において、
     回転軸を中心に回転する回転部と、
     前記回転部の外周に設けられる外周部と、
     前記外周部から動力を与えて前記回転部を回転させる外周駆動のモータと、を備え、
     前記回転部は、
     前記回転軸を中心とする円環形状に形成される回転支持リングと、
     前記回転支持リングの中心側に設けられ、前記回転軸の周方向において並べて設けられる複数のブレードと、を有し、
     前記モータは、
     前記回転支持リングの径方向の外周側に設けられる回転子側磁石と、
     前記外周部の内周側に設けられ、前記回転子側磁石に対向して設けられる固定子側磁石と、を有し、
     前記回転支持リングと前記回転子側磁石とが一体となるように、前記回転支持リングと前記回転子側磁石とを外側から覆って拘束する拘束部を備えるモータ一体型流体機械。
  2.  前記拘束部は、前記回転支持リング及び前記回転子側磁石の外側から、前記回転支持リング及び前記回転子側磁石に巻き付けられる複合材を含む請求項1に記載のモータ一体型流体機械。
  3.  前記複合材は、前記回転支持リングの全周に亘って、前記回転支持リング及び前記回転子側磁石に巻き付けられる請求項2に記載のモータ一体型流体機械。
  4.  前記複合材は、前記回転支持リングの周方向に重複させて巻き付けられている請求項2または3に記載のモータ一体型流体機械。
  5.  前記回転支持リング及び前記回転子側磁石の少なくとも一方は、前記複合材と接する角部が面取りされている請求項2から4のいずれか1項に記載のモータ一体型流体機械。
  6.  前記回転支持リングは、前記回転軸の軸方向における幅が、前記回転子側磁石の軸方向における幅に比して幅広となっており、
     前記回転子側磁石は、軸方向において前記回転支持リングの中央に配置されている請求項2から5のいずれか1項に記載のモータ一体型流体機械。
  7.  前記拘束部は、
     前記回転子側磁石を挟んで前記回転支持リングの反対側となる外周側に設けられ、円環形状に形成される拘束リングを、さらに含み、
     前記複合材は、前記回転支持リング、前記回転子側磁石及び前記拘束リングの外側から、前記回転支持リング、前記回転子側磁石及び前記拘束リングに巻き付けられる請求項2から6のいずれか1項に記載のモータ一体型流体機械。
  8.  前記拘束部は、前記回転子側磁石を外側から覆って、前記回転支持リングに固定される磁石ケースである請求項1に記載のモータ一体型流体機械。
  9.  請求項1から8のいずれか1項に記載のモータ一体型流体機械と、
     前記モータ一体型流体機械から発生する推力によって移動する機体と、を備える垂直離着陸機。
PCT/JP2020/026531 2019-09-26 2020-07-07 モータ一体型流体機械及び垂直離着陸機 WO2021059665A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20867047.1A EP4036001A4 (en) 2019-09-26 2020-07-07 ENGINE INTEGRATED FLUID MACHINE AND VERTICAL TAKE-OFF AND LANDING AIRCRAFT
US17/762,245 US20220345017A1 (en) 2019-09-26 2020-07-07 Motor-integrated fluid machine and vertical take-off and landing aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019175289A JP7210409B2 (ja) 2019-09-26 2019-09-26 モータ一体型流体機械及び垂直離着陸機
JP2019-175289 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021059665A1 true WO2021059665A1 (ja) 2021-04-01

Family

ID=75156812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026531 WO2021059665A1 (ja) 2019-09-26 2020-07-07 モータ一体型流体機械及び垂直離着陸機

Country Status (4)

Country Link
US (1) US20220345017A1 (ja)
EP (1) EP4036001A4 (ja)
JP (1) JP7210409B2 (ja)
WO (1) WO2021059665A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3122647A1 (fr) * 2021-05-04 2022-11-11 Airbus Operations Système de propulsion pour aéronef comportant un moteur électrique linéaire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005926A (ja) 2009-06-25 2011-01-13 Kawasaki Heavy Ind Ltd 推力発生装置
JP2016163495A (ja) * 2015-03-04 2016-09-05 国立大学法人東京工業大学 電動機および電動機システム
JP2017109726A (ja) * 2015-10-08 2017-06-22 ロッキード マーティン コーポレイションLockheed Martin Corporation プロペラ駆動式乗物用の複雑さを低減したリングモータ設計

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3132270A (en) * 1959-09-29 1964-05-05 Phelon Co Inc Rotor annulus for electric generator
US3258623A (en) * 1963-05-02 1966-06-28 Phelon Co Inc Rotor for an electric generator
US3657582A (en) * 1969-05-13 1972-04-18 Russell E Phelon Rotor annulus for electric generator
US3581394A (en) * 1969-05-13 1971-06-01 Russell E Phelon Rotor annulus for electric generator
JPS5840422B2 (ja) * 1975-07-25 1983-09-06 株式会社日立製作所 磁石発電機の回転子
JPS589500Y2 (ja) * 1977-06-24 1983-02-21 株式会社デンソー 磁石発電機の回転子
DE3673875D1 (de) * 1985-06-06 1990-10-11 Nippon Denso Co Magnetlaeufer.
US5220231A (en) * 1990-08-23 1993-06-15 Westinghouse Electric Corp. Integral motor propulsor unit for water vehicles
JP2001314052A (ja) * 2000-02-25 2001-11-09 Nissan Motor Co Ltd 同期電動機のロータ構造
JP3913970B2 (ja) * 2000-09-20 2007-05-09 三菱電機株式会社 磁石発電機
FI113308B (fi) * 2001-06-14 2004-03-31 Abb Oy Kestomagneettielementti ja sähkökone
US6452301B1 (en) * 2001-11-02 2002-09-17 Electric Boat Corporation Magnet retention arrangement for high speed rotors
US6692319B2 (en) * 2002-03-29 2004-02-17 Alstom Shilling Robotics Thruster for submarine vessels
CA2382382A1 (fr) * 2002-04-16 2003-10-16 Universite De Sherbrooke Moteur rotatif continu a combustion induite par onde de choc
JP3671398B2 (ja) * 2002-05-16 2005-07-13 三菱電機株式会社 磁石発電機
JP2004328989A (ja) * 2003-04-09 2004-11-18 Kokusan Denki Co Ltd フライホイール磁石発電機及びフライホイール磁石発電機用回転子の製造方法
GB0507217D0 (en) * 2005-04-09 2005-05-18 Rolls Royce Plc A rotor for an electrical machine
TWM288735U (en) * 2005-10-21 2006-03-11 Super Electronics Co Ltd Externally-rotated DC Brushless motor and fan having inner directed ring-shape ferrite magnet
JP5108236B2 (ja) * 2006-02-08 2012-12-26 本田技研工業株式会社 モータ用ロータ
GB2438443A (en) * 2006-05-27 2007-11-28 Converteam Ltd Rotor magnet retaining arrangement suitable for low-speed large-diameter electrical generators
US7902706B2 (en) * 2006-08-18 2011-03-08 Maglev Technologies, Llc Rotational apparatus including a passive magnetic bearing
JP2008104311A (ja) * 2006-10-20 2008-05-01 Honda Motor Co Ltd 磁石回転子
JP4310350B2 (ja) * 2007-05-07 2009-08-05 三菱電機株式会社 磁石発電機の回転子
EP2068425A1 (de) * 2007-12-05 2009-06-10 E+a Forschungsinstitut Elektromaschinen GmbH Rotor für eine elektrische Synchronmaschine
US7781932B2 (en) * 2007-12-31 2010-08-24 General Electric Company Permanent magnet assembly and method of manufacturing same
ITMI20081122A1 (it) * 2008-06-19 2009-12-20 Rolic Invest Sarl Generatore eolico provvisto di un impianto di raffreddamento
IT1397081B1 (it) * 2009-11-23 2012-12-28 Rolic Invest Sarl Impianto eolico per la generazione di energia elettrica
US9071104B2 (en) * 2010-03-03 2015-06-30 Siemens Aktiengesellschaft Method of attaching a magnet to a rotor or a stator of an electrical machine
US20120112461A1 (en) * 2011-12-21 2012-05-10 Earth Sure Renewable Energy Corporation Dual use fan assembly for hvac systems and automotive systems to generate clean alternative elecric energy
CN104838054B (zh) * 2012-12-18 2017-06-13 阿莫泰克有限公司 洗衣机的驱动装置及具有该驱动装置的洗衣机
JP5752177B2 (ja) * 2013-05-09 2015-07-22 三菱電機株式会社 磁石式回転電機
WO2015157863A1 (en) * 2014-04-15 2015-10-22 Tm4 Inc. Inserted permanent magnet rotor for an external rotor electric machine
TWI530067B (zh) * 2014-05-21 2016-04-11 建準電機工業股份有限公司 吊扇馬達
CN105270594A (zh) * 2014-06-15 2016-01-27 鲍小福 一种永磁电机推进技术
US20160006305A1 (en) * 2014-07-01 2016-01-07 New Widetech Industries Co., Ltd. Easily mountable motor rotor
JP6429115B2 (ja) * 2014-12-25 2018-11-28 日本電産株式会社 モータ
DE102015000259B4 (de) * 2015-01-16 2016-12-29 Cayago Gmbh Schwimm- und Tauchhilfe
US10836512B2 (en) * 2016-05-06 2020-11-17 Honeywell International Inc. Energy efficient spherical momentum control devices
WO2019191503A1 (en) * 2018-03-28 2019-10-03 Airborne Motors, Llc Self propelled thrust-producing controlled moment gyroscope
CN112912691A (zh) * 2018-08-26 2021-06-04 航空电机工程有限公司 电磁陀螺稳定推进系统方法及设备
CN113316443A (zh) * 2019-01-20 2021-08-27 航空电机有限责任公司 医疗稳定器束带方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005926A (ja) 2009-06-25 2011-01-13 Kawasaki Heavy Ind Ltd 推力発生装置
JP2016163495A (ja) * 2015-03-04 2016-09-05 国立大学法人東京工業大学 電動機および電動機システム
JP2017109726A (ja) * 2015-10-08 2017-06-22 ロッキード マーティン コーポレイションLockheed Martin Corporation プロペラ駆動式乗物用の複雑さを低減したリングモータ設計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4036001A4

Also Published As

Publication number Publication date
US20220345017A1 (en) 2022-10-27
EP4036001A4 (en) 2023-10-11
EP4036001A1 (en) 2022-08-03
JP2021049912A (ja) 2021-04-01
JP7210409B2 (ja) 2023-01-23

Similar Documents

Publication Publication Date Title
CN114144355B (zh) 电动飞行器推进系统
WO2020121671A1 (ja) モータ一体型流体機械及び垂直離着陸機
EP3300219B1 (en) Motor and method for manufacturing same
WO2021131196A1 (ja) モータ一体型流体機械、垂直離着陸機及びモータ一体型流体機械の設計方法
US10892673B2 (en) Thrust producing split flywheel gyroscope method and apparatus
CN111936742A (zh) 自推进产生推力的控制力矩陀螺仪
US20210111607A1 (en) Component for a power generation system
WO2021059665A1 (ja) モータ一体型流体機械及び垂直離着陸機
WO2020158361A1 (ja) モータ一体型流体機械及び垂直離着陸機
WO2020166250A1 (ja) モータ一体型流体機械及び垂直離着陸機
WO2021095376A1 (ja) ロータの製造方法
US12107459B2 (en) Rotor for an electric aircraft motor comprising a plurality of magnets
JP2022129157A (ja) 流体機械および垂直離着陸機
EP3878737A1 (en) Motor-integrated fan, and vertical takeoff and landing craft
WO2023199066A1 (en) Electric propulsion systems
EP2597759A1 (en) Wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020867047

Country of ref document: EP

Effective date: 20220426