WO2021129716A1 - 上行传输、信号接收方法、装置、终端、服务节点及介质 - Google Patents

上行传输、信号接收方法、装置、终端、服务节点及介质 Download PDF

Info

Publication number
WO2021129716A1
WO2021129716A1 PCT/CN2020/138886 CN2020138886W WO2021129716A1 WO 2021129716 A1 WO2021129716 A1 WO 2021129716A1 CN 2020138886 W CN2020138886 W CN 2020138886W WO 2021129716 A1 WO2021129716 A1 WO 2021129716A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
srs
uplink transmission
target
information
Prior art date
Application number
PCT/CN2020/138886
Other languages
English (en)
French (fr)
Inventor
郑国增
吴昊
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020227013501A priority Critical patent/KR20220068248A/ko
Priority to US17/777,264 priority patent/US20220416863A1/en
Priority to EP20907191.9A priority patent/EP4084353A4/en
Publication of WO2021129716A1 publication Critical patent/WO2021129716A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • This application relates to a wireless communication network, such as an uplink transmission and signal receiving method, device, terminal, service node, and medium.
  • the precoding for uplink transmission usually uses the precoding indicated by the serving node.
  • the precoding is selected from a predefined codebook. This method requires the use of wideband precoding and the precoding accuracy is low. The performance improvement of uplink transmission is limited. When the uplink and downlink channels have complete reciprocity or partial reciprocity, the terminal cannot obtain high-precision precoding based on downlink channel measurement. Related technologies have low precoding accuracy for uplink transmission signals, and cannot guarantee the accuracy and reliability of uplink transmission.
  • This application provides an uplink transmission and signal receiving method, device, terminal, service node, and medium to improve the accuracy and reliability of uplink transmission.
  • the embodiment of the present application provides an uplink transmission method, including: beamforming a sounding reference signal (Sounding Reference Signal, SRS) according to a target parameter, the target parameter being determined according to downlink channel information; receiving precoding information; according to the target The parameters and the precoding information send an uplink transmission signal.
  • SRS Sounding Reference Signal
  • An embodiment of the present application also provides a signal receiving method, including: receiving an SRS; sending precoding information according to the SRS; and receiving an uplink transmission signal.
  • An embodiment of the present application also provides an uplink transmission device, including: a beamforming module configured to beamform the SRS according to a target parameter, the target parameter being determined according to downlink channel information; a precoding information receiving module, configured to receive Precoding information; an uplink transmission module configured to send an uplink transmission signal according to the target parameter and the precoding information.
  • the embodiment of the present application also provides a signal receiving device, including: a signal receiving module configured to receive SRS; a precoding information sending module configured to send precoding information according to the SRS; and an uplink receiving module configured to receive uplink transmissions signal.
  • An embodiment of the present application also provides a terminal, including: one or more processors; a storage device, configured to store one or more programs; when the one or more programs are executed by the one or more processors , So that the one or more processors implement the above-mentioned uplink transmission method.
  • the embodiment of the present application also provides a service node, including: one or more processors; a storage device for storing one or more programs; when the one or more programs are used by the one or more processors Execution, so that the one or more processors implement the above-mentioned signal receiving method.
  • the embodiment of the present application also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the above-mentioned uplink transmission method is realized.
  • FIG. 1 is a flowchart of an uplink transmission method provided by an embodiment
  • FIG. 2 is a schematic diagram of an implementation of sending an uplink transmission signal according to an embodiment
  • FIG. 3 is a flowchart of a signal receiving method provided by an embodiment
  • FIG. 4 is a schematic structural diagram of an uplink transmission device provided by an embodiment
  • FIG. 5 is a schematic structural diagram of a signal receiving device provided by an embodiment
  • FIG. 6 is a schematic diagram of the hardware structure of a terminal provided by an embodiment
  • FIG. 7 is a schematic diagram of the hardware structure of a service node provided by an embodiment.
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing
  • Complete reciprocity means that the uplink channel characteristics can be obtained entirely from downlink channel measurements, and the downlink channel characteristics can be obtained entirely from uplink channel measurements.
  • Partial reciprocity means that part of the characteristics of the uplink channel can be obtained by measuring the downlink channel, such as angle, angle spread, delay, delay spread, etc., and part of the characteristics of the downlink channel can also be obtained by measuring the uplink channel.
  • Using full reciprocity or partial reciprocity can improve the feedback accuracy of channel state information and reduce the feedback overhead of channel state information.
  • the precoding of the uplink transmission signal usually uses the precoding indicated by the serving node (for example, the base station), and the precoding is selected from a predefined codebook.
  • This method uses wideband precoding and has low precoding accuracy. In the case of partial reciprocity in the uplink and downlink channels, the performance improvement of uplink transmission is limited.
  • Related technologies have low precoding accuracy for uplink transmission signals, and cannot guarantee the accuracy and reliability of uplink transmission.
  • an uplink transmission method is provided, which is applied to a terminal (User Equipment, UE).
  • the terminal determines the target parameter according to the downlink channel information and uses the target parameter to beamform the SRS.
  • the target parameter is reflected to the serving node for the serving node to make decisions and instructions, and the terminal combines the feedback of the serving node
  • the precoding information is sent to the uplink transmission signal, thereby improving the accuracy and reliability of the uplink transmission.
  • Fig. 1 is a flowchart of an uplink transmission method provided in an embodiment. As shown in Fig. 1, the method provided in this embodiment includes steps 110-130.
  • step 110 the sounding reference signal SRS beamforming is performed according to the target parameter, and the target parameter is determined according to the downlink channel information.
  • step 120 precoding information is received.
  • step 130 an uplink transmission signal is sent according to the target parameter and the precoding information.
  • the terminal obtains the target parameter according to the downlink channel information.
  • the target parameter reflects the channel state information of the downlink channel.
  • the target parameter is used to beamform the SRS.
  • the beamforming process makes the SRS carry the channel state information of the downlink channel.
  • the serving node can learn the channel state information of the uplink channel by receiving the beamforming SRS, make a decision based on this and feed back the precoding information to the terminal, thereby instructing the UE to use the corresponding resources and ports to send the uplink transmission signal to ensure The reliability of uplink transmission also saves signaling overhead.
  • the precoding information in step 120 is determined by the serving node by receiving the SRS.
  • the target parameter includes a first matrix, the number of rows of the first matrix is greater than or equal to the number of columns; the column vector of the first matrix is a basis vector; the basis vector is selected from a predefined vector space, or according to the The downlink channel information is determined.
  • the target parameter includes the first matrix (denoted as W 1 ) determined according to the downlink channel information, and the downlink channel information can be obtained through the downlink reference signal sent by the serving node.
  • the dimension of W 1 can be denoted as N r ⁇ L 1 (L 1 ⁇ N r ).
  • Each W 1 is a column vector groups, each basis vector may be selected from a predefined vector space, may be generated in real time according to the downlink channel.
  • the configuration types of SRS include a first type and a second type; the first type includes: one SRS resource set corresponds to one downlink reference signal, one SRS resource set includes one SRS resource, and one SRS resource includes The number of ports is equal to the number of columns of the target parameter; the second type includes: one SRS resource set corresponds to one downlink reference signal, each SRS resource in one SRS resource set corresponds to one port, and one SRS resource set contains The number of SRS resources is equal to the number of columns of the target parameter.
  • the configuration of SRS can use any one of the following methods:
  • One SRS resource set is associated with one downlink reference signal, the SRS resource set includes one SRS resource, and the SRS resource includes L 1 ports.
  • One SRS resource set is associated with one downlink reference signal, the SRS resource set includes L 1 SRS resources, and each SRS resource includes one port.
  • the beamforming of the SRS according to the target parameter includes: when the configuration type of the SRS is the first type, the precoding of each port in one SRS resource corresponds to the value of the target parameter A column vector; when the configuration type of the SRS is the second type, the precoding of each SRS resource in an SRS resource set corresponds to a column vector of the target parameter.
  • the beamforming mode is: precoding of the i-th port (i ⁇ L 1 ) of the SRS resource, corresponding to the i-th column of W 1 (i-th base vector ).
  • the beamforming method is: precoding of the i-th (i ⁇ L 1 ) SRS resource in the SRS resource set, which corresponds to the i-th column (i-th basis vector) of the W 1 matrix.
  • the precoding information is used to indicate the second matrix, and the number of rows of the second matrix is less than or equal to the number of columns of the first matrix; the number of columns of the second matrix is equal to the number of uplink transmission layers.
  • the dimension of the second matrix (denoted as W 2 ) is L 2 ⁇ , where L 2 ⁇ L 1 , and ⁇ represents the number of uplink transmission layers.
  • the number of rows in the second matrix is equal to the number of target ports selected from the ports included in one SRS resource, and the number of rows in the second matrix is equal to the number of rows from the first matrix.
  • L 2 indicates that L 2 target ports are selected from L 1 ports contained in an SRS resource, that is, it is implicitly indicated to select L from L 1 base vectors in W 1 2 target basis vectors.
  • L 2 indicates that L 2 target SRS resources are selected from L 1 SRS resources, that is, it is implicitly instructed to select L 2 target base vectors from L 1 base vectors in W 1.
  • the second matrix includes a weighting coefficient of each target basis vector in each layer, and the weighting coefficient is a complex number.
  • W 2 specifically represents the weighting coefficient of each of the L 2 target base vectors on the ⁇ layer, and the terminal learns the L 2 target base vectors indicated by the serving node and the number of uplink transmission layers After the weighting coefficient, the precoding of the uplink transmission signal can be determined, so as to ensure the accuracy and reliability of the uplink transmission.
  • the precoding information includes at least one of the following: indication information of the number of layers for uplink transmission, selection information of the target base vector, and quantization information of the second matrix.
  • the precoding information may also include indication information of the number of uplink transmission layers, and the indication information of the uplink transmission layer number may also be implicitly indicated by the number of columns ⁇ of W 2 ; the precoding information may also include the target basis vector the selection information, vector information of the target group may be implicitly indicated according to a preset rule, e.g., the number of lines L 2 W 2 has implicitly indicates the number of the target vector group, the terminal may be determined according to a preset rule how the L 2 target base vectors are selected from the L 1 base vectors of W 1 to transmit uplink transmission signals. For example, the L 2 target base vectors with the best channel quality can be selected, or the channel state information meets the transmission requirements.
  • the precoding information can also include the quantization information of the second matrix.
  • the weighting coefficients in W 2 are quantized and then sent to the terminal through signaling.
  • the quantization of the weighting coefficients can use the following methods one:
  • Method 1 Direct quantization. For each weighting coefficient in W 2 , the amplitude of the weighting coefficient is quantized by A bit, and the phase of the weighting coefficient is quantized by B bit.
  • Method 2 Normalize W 2 and then quantize, that is, select a weighting coefficient as the reference coefficient, the default amplitude of the reference coefficient is 1, the phase is 0, and the C bit is used to indicate the position of the reference coefficient in W 2 , For each of the other weighting coefficients, the amplitude of the weighting coefficient is quantized by A bit, and the phase of the weighting coefficient is quantized by B bit.
  • the quantization information of the second matrix includes at least one of the following: the position of the reference coefficient in the weighting coefficient in the second matrix, the quantization amplitude of the weighting coefficient, and the quantization phase of the weighting coefficient.
  • the bit width of the precoding information is determined according to at least one of the following: the number of columns of the first matrix; the number of target base vectors; the maximum number of layers allowed for uplink transmission; the amplitude quantization accuracy of the weighting coefficient; weighting The phase quantization accuracy of the coefficients.
  • the bit width of the precoding information is fixed and can be determined according to at least one of the following parameters: the number of columns L 1 of W 1 , the number of selected target base vectors L 2 , the maximum number of layers allowed for uplink transmission ( Denoted as RI max ), amplitude quantization accuracy (denoted as A), and phase quantization accuracy (denoted as B).
  • the maximum number of layers allowed for uplink transmission is greater than or equal to the number of layers for uplink transmission indicated by the serving node, that is, RI max ⁇
  • the amplitude quantization accuracy can be characterized by the number of bits used to quantize the amplitude A
  • the phase quantization accuracy can be Characterized by the number of bits B used to quantize the phase.
  • the bit width of the indication information of the number of layers of uplink transmission includes 0 bits, or the maximum number of layers allowed for uplink transmission is a logarithmic bit.
  • the bit width of the indication information of the number of uplink transmission layers ⁇ can be 0 bits, that is, the number of uplink transmission layers is implicitly indicated by W 2 (the number of rows); it can also be log 2 (RI max ) Bits, each bit is used to indicate whether each layer is selected for transmission of uplink transmission signals.
  • the indication information of the number of uplink transmission layers has an association relationship with at least one of the following: the amplitude quantization accuracy of the weighting coefficient; and the phase quantization accuracy of the weighting coefficient.
  • the number of uplink transmission layers ⁇ and the amplitude quantization accuracy A may have an association relationship. For example, when the number of uplink transmission layers is small, the amplitude quantization accuracy is higher, that is, the number of bits used to quantize the amplitude A More.
  • the number of layers ⁇ of the uplink transmission may also be related to the phase quantization accuracy B. For example, when the number of layers of the uplink transmission is small, the phase quantization accuracy is higher, that is, the number of bits B used to quantize the phase is more.
  • the bit width of the selection information of the target basis vector includes one of the following: taking the logarithmic bits of the first parameter, where the first parameter is the maximum value of the target basis vector selected from the column vectors of the first matrix. The number of possible combinations; the number of bits in the column vector of the first matrix.
  • the quantization range of the weighting coefficient is determined according to the amplitude quantization accuracy; the quantization phase of the weighting coefficient is determined according to the phase quantization accuracy.
  • the bit width of the quantization information of the second matrix may be (A+B) ⁇ L 2 ⁇ RI max bits, or log 2 (L 2 ⁇ RI max )+(L 2 ⁇ RI max ⁇ 1) ⁇ (A+B) bits; where A is the amplitude quantization accuracy, B is the phase quantization accuracy, L 2 is the number of target base vectors, and RI max is the maximum number of layers allowed for uplink transmission.
  • the precoding matrix of the uplink transmission signal is the product of the third matrix and the second matrix, where the third matrix is composed of a target basis vector selected from the column vectors of the first matrix; each layer of the uplink transmission signal The precoding corresponds to a column of the precoding matrix.
  • the precoding of the jth layer is determined based on the jth column of W.
  • Fig. 2 is a schematic diagram of an implementation of sending an uplink transmission signal according to an embodiment. As shown in Figure 2, the implementation process of sending the uplink transmission information number specifically includes:
  • the terminal determines W 1 according to the downlink channel information, and W 1 contains L 1 basis vectors;
  • the terminal beamforms the SRS according to W 1 , and sends the beamformed SRS to the serving node;
  • the service node receives the beamformed SRS, and determines W 2 after processing
  • the serving node sends the precoding information (including W 2 ) to the terminal;
  • the terminal performs beamforming on the SRS according to the target parameters and using the target parameters, and reflects the channel state information to the serving node by sending the beamforming SRS for the serving node to make decisions and instructions.
  • the uplink transmission signal is sent, thereby improving the accuracy and reliability of the uplink transmission, while saving the signaling overhead used to indicate the uplink transmission.
  • the serving node does not need to separately indicate the layer, port or from the codebook
  • the selected precoding improves the efficiency of uplink transmission.
  • a signal receiving method is also provided, which is applied to a service node.
  • the serving node makes a decision based on the beamforming SRS sent by the terminal and feeds back precoding information to the terminal, instructing the terminal to upload an uplink transmission signal, so as to improve the accuracy of precoding and the reliability of uplink transmission.
  • FIG. 3 is a flowchart of a signal receiving method provided by an embodiment. As shown in FIG. 3, the method provided in this embodiment includes steps 210-230. For details that are not described in detail in this embodiment, reference may be made to any of the foregoing embodiments.
  • step 210 SRS is received.
  • step 220 the precoding information is sent according to the SRS.
  • step 230 an uplink transmission signal is received.
  • the SRS received by the serving node is beamformed by the terminal according to the target parameter, and the uplink transmission signal is sent by the terminal according to the target parameter and the precoding information.
  • the configuration types of SRS include a first type and a second type; the first type includes: one SRS resource set corresponds to one downlink reference signal, one SRS resource set includes one SRS resource, and one SRS resource includes The number of ports is equal to the number of target parameter columns; the second type includes: one SRS resource set corresponds to one downlink reference signal, each SRS resource in one SRS resource set corresponds to one port, and the SRS contained in one SRS resource set The number of resources is equal to the number of columns of target parameters.
  • the configuration of SRS can use any one of the following methods:
  • One SRS resource set is associated with one downlink reference signal, the SRS resource set includes one SRS resource, and the SRS resource includes L 1 ports.
  • One SRS resource set is associated with one downlink reference signal, the SRS resource set includes L 1 SRS resources, and each SRS resource includes one port.
  • the target parameter includes a first matrix, the number of rows of the first matrix is greater than or equal to the number of columns; the column vector of the first matrix is a basis vector; the basis vector is selected from a predefined vector space, or according to the The downlink channel information is determined.
  • the target parameter includes the first matrix (that is, W 1 ) determined according to the downlink channel information, and the downlink channel information can be obtained through the downlink reference signal sent by the serving node.
  • the dimension of W 1 can be denoted as N r ⁇ L 1 (L 1 ⁇ N r ).
  • Each W 1 is a column vector groups, each basis vector may be selected from a predefined vector space, may be generated in real time according to the downlink channel.
  • the precoding information is used to indicate the second matrix, the number of rows of the second matrix is less than or equal to the number of rows of the first matrix; the number of columns of the second matrix is equal to the number of uplink transmission layers.
  • the dimension of the second matrix (denoted as W 2 ) is L 2 ⁇ , where L 2 ⁇ L 1 , and ⁇ represents the number of uplink transmission layers.
  • it further includes: when the configuration type of the SRS is the first type, selecting the target port from the ports included in the SRS resource, and the number of rows in the second matrix is equal to that selected from the column vector of the first matrix The number of target basis vectors; when the SRS configuration type is the second type, the target SRS resource selected from the SRS resource set, the number of rows in the second matrix is equal to the target basis selected from the column vectors of the first matrix The number of vectors.
  • the target base vector is selected according to the configuration type of the SRS, which specifically includes:
  • the second matrix includes the weighting coefficient of each target basis vector in each layer, and the weighting coefficient is a complex number.
  • W 2 specifically represents the weighting coefficient of each of the L 2 target base vectors on the ⁇ layer, and the terminal learns the L 2 target base vectors indicated by the serving node and the number of uplink transmission layers After the weighting coefficient, the precoding of the uplink transmission signal can be determined, so as to ensure the accuracy and reliability of the uplink transmission.
  • the precoding information includes at least one of the following: indication information of the number of layers for uplink transmission, selection information of the target base vector, and quantization information of the second matrix;
  • the quantization information of the second matrix includes at least one of the following: The position of the reference coefficient in the weighting coefficient in the second matrix, the quantization amplitude of the weighting coefficient, and the quantization phase of the weighting coefficient.
  • the bit width of the precoding information is determined according to at least one of the following: the number of columns of the first matrix; the number of target base vectors; the maximum number of layers allowed for uplink transmission; the amplitude quantization accuracy of the weighting coefficient; Phase quantization accuracy.
  • the bit width of the indication information of the number of layers of uplink transmission includes 0 bits, or the maximum number of layers allowed for uplink transmission is a logarithmic bit.
  • the bit width of the selection information of the standard basis vector includes one of the following: taking a logarithmic bit of the first parameter, where the first parameter is the selection of the target basis vector from the column vectors of the first matrix The maximum possible number of combinations; the number of bits in the column vector of the first matrix.
  • the method further includes at least one of the following: quantizing the weighting coefficient according to the amplitude quantization accuracy of the weighting coefficient to obtain the quantization amplitude of the weighting coefficient; quantizing the weighting coefficient according to the phase quantization accuracy of the weighting coefficient, Obtain the quantized phase of the weighting coefficient; normalize the second matrix.
  • the weighting coefficients in W 2 are quantized and then sent to the terminal through signaling, and the weighting coefficients can be quantized in one of the following ways:
  • Method 1 Direct quantization. For each weighting coefficient in W 2 , A bit is used to quantize the amplitude, A is the amplitude quantization accuracy, and the B bit is used to quantize the phase, and B is the phase quantization accuracy.
  • Method 2 Normalize W 2 and then quantize, that is, select a weighting coefficient as the reference coefficient, the default amplitude of the reference coefficient is 1, the phase is 0, and the C bit is used to indicate the position of the reference coefficient in W 2 , For each of the other weighting coefficients, the amplitude is quantized by A bit, A is the amplitude quantization accuracy, and the phase is quantized by B bit, and B is the phase quantization accuracy.
  • the matrix formed by the corresponding L 2 target basis vectors selected in, the dimension of W 3 is ⁇ L 2 .
  • the precoding of the jth layer is determined based on the jth column of W.
  • the signal receiving method in this embodiment and the uplink transmission method proposed in the foregoing embodiment belong to the same concept.
  • FIG. 4 is a schematic structural diagram of an uplink transmission device provided by an embodiment. As shown in FIG. 4, the transmission device includes: a beamforming module 310, a precoding information receiving module 320, and an uplink transmission module 330.
  • the beamforming module 310 is configured to beamform the SRS according to target parameters, which are determined according to the downlink channel information; the precoding information receiving module 320 is configured to receive precoding information; the uplink transmission module 330 is configured to The target parameter and the precoding information send an uplink transmission signal.
  • the signal sending device of this embodiment determines the target parameter according to the downlink channel information and uses the target parameter to beamform the SRS.
  • the target parameter By sending the beamformed SRS, the channel state information is reflected to the serving node for the serving node to make decisions and Instructed, the terminal sends the uplink transmission signal in combination with the precoding information fed back by the serving node, thereby improving the accuracy and reliability of the uplink transmission.
  • the target parameter includes a first matrix, the number of rows of the first matrix is greater than or equal to the number of columns; the column vector of the first matrix is a basis vector; the basis vector is derived from a predefined vector Select in space, or determine according to the downlink channel information.
  • the configuration types of SRS include a first type and a second type; the first type includes: one SRS resource set corresponds to one downlink reference signal, one SRS resource set includes one SRS resource, and one SRS resource The number of ports included in the target parameter is equal to the number of columns of the target parameter; the second type includes: one SRS resource set corresponds to one downlink reference signal, each SRS resource in one SRS resource set corresponds to one port, and one SRS The number of SRS resources included in the resource set is equal to the number of columns of the target parameter.
  • the beamforming module 310 is specifically configured to: when the configuration type of the SRS is the first type, the precoding of each port in an SRS resource corresponds to a column vector of the target parameter ; In the case where the configuration type of the SRS is the second type, the precoding of each SRS resource in an SRS resource set corresponds to a column vector of the target parameter.
  • the precoding information is used to indicate a second matrix, the number of rows of the second matrix is less than or equal to the number of columns of the first matrix; The number of layers is equal.
  • the number of rows of the second matrix is equal to the number of target ports selected from the ports included in one SRS resource, and the rows of the second matrix The number is equal to the number of target basis vectors selected from the column vectors of the first matrix; when the configuration type of SRS is the second type, the number of rows in the second matrix is equal to the number of rows selected from a set of SRS resources The number of target SRS resources, the number of rows of the second matrix is equal to the number of target basis vectors selected from the column vectors of the first matrix.
  • the second matrix includes a weighting coefficient of each target basis vector in each layer, and the weighting coefficient is a complex number.
  • the precoding information includes at least one of the following: indication information of the number of layers for uplink transmission, selection information of the target base vector, and quantization information of the second matrix.
  • the bit width of the precoding information is determined according to at least one of the following: the number of columns of the first matrix; the number of target base vectors; the maximum number of layers allowed for uplink transmission; the amplitude quantization accuracy of the weighting coefficient; weighting The phase quantization accuracy of the coefficients.
  • the bit width of the indication information of the number of layers of uplink transmission includes 0 bits, or the maximum number of layers allowed for uplink transmission is a logarithmic bit.
  • the bit width of the selection information of the target basis vector includes one of the following: taking a logarithmic bit of the first parameter, where the first parameter is the selection of the target basis vector from the column vectors of the first matrix The maximum possible number of combinations; the number of bits in the column vector of the first matrix.
  • the quantization information of the second matrix includes at least one of the following: the position of the reference coefficient in the weighting coefficient in the second matrix, the quantization amplitude of the weighting coefficient, and the quantization phase of the weighting coefficient.
  • the quantization range of the weighting coefficient is determined according to the amplitude quantization accuracy; the quantization phase of the weighting coefficient is determined according to the phase quantization accuracy.
  • the precoding matrix of the uplink transmission signal is a product of a third matrix and a second matrix, wherein the third matrix is composed of a target basis vector selected from the column vectors of the first matrix ;
  • the precoding of each layer of the uplink transmission signal corresponds to a column of the precoding matrix.
  • the uplink transmission device proposed in this embodiment and the uplink transmission method proposed in the foregoing embodiment belong to the same concept.
  • FIG. 5 is a schematic structural diagram of a signal receiving device provided by an embodiment.
  • the transmission device includes: a signal receiving module 410, a precoding information sending module 420, and an uplink receiving module 430.
  • the signal receiving module 410 is set to receive SRS; the precoding information sending module 420 is set to send precoding information according to the SRS; the uplink receiving module 430 is set to receive uplink transmission signals.
  • the signal sending device of this embodiment makes a decision based on the beamforming SRS sent by the terminal and feeds back precoding information to the terminal, instructing the terminal to upload uplink transmission signals, thereby improving the accuracy of precoding and the reliability of uplink transmission .
  • the configuration types of SRS include a first type and a second type; the first type includes: one SRS resource set corresponds to one downlink reference signal, one SRS resource set includes one SRS resource, and one SRS resource The number of ports contained in is equal to the number of target parameter columns; the second type includes: one SRS resource set corresponds to one downlink reference signal, each SRS resource in one SRS resource set corresponds to one port, and one SRS resource set The number of SRS resources contained in is equal to the number of target parameter columns.
  • the target parameter includes a first matrix, the number of rows of the first matrix is greater than or equal to the number of columns; the column vector of the first matrix is a basis vector; the basis vector is derived from a predefined vector Select in space, or determine according to the downlink channel information.
  • the precoding information is used to indicate a second matrix, and the number of rows of the second matrix is less than or equal to the number of rows of the first matrix; The number of layers is equal.
  • it further includes: a port selection module configured to select a target port from the ports included in the SRS resource when the configuration type of the SRS is the first type, and rows of the second matrix The number is equal to the number of target base vectors selected from the column vectors of the first matrix; the resource selection module is set to select the target from the SRS resource set when the configuration type of the SRS is the second type For SRS resources, the number of rows of the second matrix is equal to the number of target basis vectors selected from the column vectors of the first matrix.
  • the second matrix includes a weighting coefficient of each target basis vector in each layer, and the weighting coefficient is a complex number.
  • the precoding information includes at least one of the following: indication information of the number of layers for uplink transmission, selection information of the target base vector, and quantization information of the second matrix;
  • the quantization information of the second matrix includes at least one of the following: the position of the reference coefficient in the weighting coefficient in the second matrix, the quantization amplitude of the weighting coefficient, and the quantization phase of the weighting coefficient.
  • it further includes at least one of the following: an amplitude quantization module, configured to quantize the weighting coefficient according to the amplitude quantization precision of the weighting coefficient, to obtain the quantization amplitude of the weighting coefficient; The phase quantization accuracy of quantizes the weighted coefficients to obtain a quantized phase normalization module of the weighted coefficients, which is set to normalize the second matrix.
  • an amplitude quantization module configured to quantize the weighting coefficient according to the amplitude quantization precision of the weighting coefficient, to obtain the quantization amplitude of the weighting coefficient
  • the phase quantization accuracy of quantizes the weighted coefficients to obtain a quantized phase normalization module of the weighted coefficients, which is set to normalize the second matrix.
  • the precoding matrix of the uplink transmission signal is a product of a third matrix and a second matrix, wherein the third matrix is composed of a target basis vector selected from the column vectors of the first matrix ;
  • the precoding of each layer of the uplink transmission signal corresponds to a column of the precoding matrix.
  • the signal receiving device proposed in this embodiment and the signal receiving method proposed in the foregoing embodiment belong to the same concept.
  • the embodiment of the present application also provides a terminal.
  • the uplink transmission method may be executed by a transmission device, which may be implemented by software and/or hardware, and integrated in the terminal.
  • Fig. 6 is a schematic diagram of a hardware structure of a terminal provided by an embodiment.
  • a terminal provided in this embodiment includes a processor 510 and a storage device 520.
  • one processor 510 is taken as an example.
  • the processor 510 and the storage device 520 in the device may be connected by a bus or other methods. Connect as an example.
  • the one or more programs are executed by the one or more processors 510, so that the one or more processors implement the uplink transmission method described in any one of the foregoing embodiments.
  • the storage device 520 in the terminal can be used to store one or more programs.
  • the programs can be software programs, computer-executable programs, and modules, such as those corresponding to the transmission method in the embodiment of the present invention.
  • Program instructions/modules (for example, the modules in the uplink transmission device shown in FIG. 4 include: a beamforming module 310, a precoding information receiving module 320, and an uplink transmission module 330).
  • the processor 510 executes various functional applications and data processing of the terminal by running software programs, instructions, and modules stored in the storage device 520, that is, implements the uplink transmission method in the foregoing method embodiment.
  • the storage device 520 mainly includes a storage program area and a storage data area.
  • the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the device, etc. (as in the above implementation) The target parameters, precoding information, etc. in the example).
  • the storage device 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 520 may include a memory remotely provided with respect to the processor 510, and these remote memories may be connected to the terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • SRS beamforming is performed according to the target parameter, and the target parameter is determined according to the downlink channel information; receiving; Precoding information; sending an uplink transmission signal according to the target parameter and the precoding information.
  • the terminal proposed in this embodiment and the uplink transmission method proposed in the foregoing embodiment belong to the same concept.
  • the embodiment of the present application also provides a service node.
  • the signal receiving method may be executed by a transmission device, which may be implemented by software and/or hardware, and integrated in the service node.
  • FIG. 7 is a schematic diagram of the hardware structure of a service node provided by an embodiment.
  • a service node provided by this embodiment includes a processor 610 and a storage device 620.
  • one processor 610 is taken as an example.
  • the processor 610 and the storage device 620 in the device may be connected by a bus or other methods. Take the bus connection as an example.
  • the one or more programs are executed by the one or more processors 610, so that the one or more processors implement the signal receiving method described in any of the foregoing embodiments.
  • the storage device 620 in the service node serves as a computer-readable storage medium that can be used to store one or more programs.
  • the programs can be software programs, computer-executable programs, and modules, such as those corresponding to the transmission method in the embodiment of the present invention.
  • Program instructions/modules (for example, the modules in the signal receiving device shown in FIG. 5 include: a signal receiving module 410, a precoding information sending module 420, and an uplink receiving module 430).
  • the processor 610 executes various functional applications and data processing of the service node by running the software programs, instructions, and modules stored in the storage device 620, that is, implements the signal receiving method in the foregoing method embodiment.
  • the storage device 620 mainly includes a storage program area and a storage data area.
  • the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the device, etc. (as in the above implementation) The target parameters, precoding information, etc. in the example).
  • the storage device 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 620 may include memories remotely provided with respect to the processor 610, and these remote memories may be connected to the service node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions, and the computer-executable instructions are used to perform an uplink transmission method or a signal receiving method when executed by a computer processor.
  • this application can be implemented by software and general hardware, or can be implemented by hardware.
  • the technical solution of the present application can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute any of this application The method described in the embodiment.
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical memory devices and systems (digital multi-function optical discs) (Digital Versatile Disc, DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FGPA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FGPA Field Programmable Gate Array
  • processors based on multi-core processor architecture such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FGPA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FGPA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供一种上行传输、信号接收方法、装置、终端、服务节点及介质。该上行传输方法根据目标参量对探测参考信号SRS波束赋形并发送波束赋形后的SRS,所述目标参量根据下行信道信息确定;接收预编码信息;根据所述目标参量和所述预编码信息发送上行传输信号。

Description

上行传输、信号接收方法、装置、终端、服务节点及介质
本申请要求在2019年12月26日提交中国专利局、申请号为201911367563.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种上行传输、信号接收方法、装置、终端、服务节点及介质。
背景技术
上行传输的预编码通常使用服务节点指示的预编码,预编码是从预定义的码本中选择,这种方法需要使用宽带预编码且预编码精度较低,对上行传输的性能提升有限,在上下行信道存在完全互易性或部分互易性的情况下,终端无法基于下行信道测量获得高精度的预编码。相关技术对上行传输信号的预编码精度低,无法保证上行传输的精度和可靠性。
发明内容
本申请提供一种上行传输、信号接收方法、装置、终端、服务节点及介质,以提高上行传输的精度和可靠性。
本申请实施例提供一种上行传输方法,包括:根据目标参量对探测参考信号(Sounding Reference Signal,SRS)波束赋形,所述目标参量根据下行信道信息确定;接收预编码信息;根据所述目标参量和所述预编码信息发送上行传输信号。
本申请实施例还提供了一种信号接收方法,包括:接收SRS;根据所述SRS发送预编码信息;接收上行传输信号。
本申请实施例还提供了一种上行传输装置,包括:波束赋形模块,设置为根据目标参量对SRS波束赋形,所述目标参量根据下行信道信息确定;预编码信息接收模块,设置为接收预编码信息;上行传输模块,设置为根据所述目标参量和所述预编码信息发送上行传输信号。
本申请实施例还提供了一种信号接收装置,包括:信号接收模块,设置为接收SRS;预编码信息发送模块,设置为根据所述SRS发送预编码信息;上行接收模块,设置为接收上行传输信号。
本申请实施例还提供了一种终端,包括:一个或多个处理器;存储装置, 用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的上行传输方法。
本申请实施例还提供了一种服务节点,包括:一个或多个处理器;存储装置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的信号接收方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的上行传输方法。
附图说明
图1为一实施例提供的一种上行传输方法的流程图;
图2为一实施例提供的一种发送上行传输信号的实现示意图;
图3为一实施例提供的一种信号接收方法的流程图;
图4为一实施例提供的一种上行传输装置的结构示意图;
图5为一实施例提供的一种信号接收装置的结构示意图;
图6为一实施例提供的一种终端的硬件结构示意图;
图7为一实施例提供的一种服务节点的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在时分双工(Time Division Duplexing,TDD)或频分双工(Frequency Division Duplexing,FDD)系统中,上下行信道之间可能存在完全互易性或者部分互易性。完全互易性指的是上行信道特征可以完全由下行信道测量得到,下行信道特征可以完全由上行信道测量得到。部分互易性指的是上行信道的部分特征可以由下行信道测量得到,例如角度、角度扩展、时延、时延扩展等,下行信道的部分特征也可以由上行信道测量得到。利用完全互易性或者部分互易性,可以提高信道状态信息的反馈精度、降低信道状态信息的反馈开销。
上行传输信号的预编码,通常使用服务节点(例如基站)指示的预编码,所述预编码是从预定义的码本中选择。这种方法使用宽带预编码且预编码精度较低,对于上下行信道存在部分互易性的情况,对上行传输的性能提升有限。相关技术对上行传输信号的预编码精度低,无法保证上行传输的精度和可靠性。
在本申请实施例中,提供一种上行传输方法,应用于终端(User Equipment,UE)。终端根据下行信道信息确定目标参量并利用目标参量对SRS进行波束赋形,通过发送波束赋形后的SRS向服务节点反映出信道状态信息,供服务节点做出决策和指示,终端结合服务节点反馈的预编码信息,发送上行传输信号,从而提高上行传输的精度和可靠性。
图1为一实施例提供的一种上行传输方法的流程图,如图1所示,本实施例提供的方法包括步骤110-130。
在步骤110中,根据目标参量对探测参考信号SRS波束赋形,所述目标参量根据下行信道信息确定。
在步骤120中,接收预编码信息。
在步骤130中,根据所述目标参量和所述预编码信息发送上行传输信号。
本实施例中,终端根据下行信道信息获取目标参量,目标参量反映了下行信道的信道状态信息,利用目标参量对SRS进行波束赋形,波束赋形的过程使得SRS携带了下行信道的信道状态信息,服务节点通过接收经过波束赋形后的SRS,可以获知上行信道的信道状态信息,据此做出决策并向终端反馈预编码信息,从而指示UE利用相应的资源和端口发送上行传输信号,保证上行传输的可靠性,同时也节省了信令开销。步骤120中的预编码信息由服务节点通过接收所述SRS确定。
在一实施例中,目标参量包括第一矩阵,第一矩阵的行数大于或等于列数;第一矩阵的列向量为基矢量;基矢量从预定义的矢量空间中选择,或者根据所述下行信道信息确定。
本实施例中,目标参量包括根据下行信道信息确定的第一矩阵(记为W 1),下行信道信息可通过服务节点发送的下行参考信号获得。W 1的维度可记为N r×L 1(L 1≤N r)。W 1的每一列是一个基矢量,每个基矢量可以是选自预定义的矢量空间,也可以是根据下行信道实时产生的。
在一实施例中,SRS的配置类型包括第一类型和第二类型;第一类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中包含一个SRS资源,一个SRS资源中包含的端口数量与所述目标参量的列数相等;第二类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中的每个SRS资源对应于一个端口,一个SRS资源集合中包含的SRS资源的个数与所述目标参量的列数相等。
本实施例中,SRS的配置可以使用以下方式任意之一:
方式一:一个SRS资源集合关联一个下行参考信号,该SRS资源集合中包 含一个SRS资源,该SRS资源包含L 1个端口。
方式二:一个SRS资源集合关联一个下行参考信号,该SRS资源集合中包含L 1个SRS资源,每一个SRS资源包含一个端口。
在一实施例中,所述根据目标参量对SRS波束赋形,包括:在SRS的配置类型为第一类型的情况下,一个SRS资源中的每个端口的预编码对应于所述目标参量的一个列向量;在SRS的配置类型为第二类型的情况下,一个SRS资源集合中的每个SRS资源的预编码对应于所述目标参量的一个列向量。
本实施例中,对于SRS的配置方式一,波束赋形的方式为:SRS资源的第i个端口(i≤L 1)的预编码,对应为W 1的第i列(第i个基矢量)。
对于SRS的配置方式二,波束赋形的方式为:SRS资源集合中的第i(i≤L 1)个SRS资源的预编码,对应为W 1矩阵的第i列(第i个基矢量)。
在一实施例中,预编码信息用于指示第二矩阵,第二矩阵的行数小于或等于第一矩阵的列数;第二矩阵的列数与上行传输的层数相等。
本实施例中,第二矩阵(记为W 2)的维度为L 2×υ,其中,L 2≤L 1,υ表示上行传输的层数。
在一实施例中,在SRS的配置类型为第一类型的情况下,第二矩阵的行数等于从一个SRS资源包含的端口中选择的目标端口的数量,第二矩阵的行数等于从第一矩阵的列矢量中选择的目标基矢量的个数;在SRS的配置类型为第二类型的情况下,第二矩阵的行数等于从一个SRS资源集合中选择的目标SRS资源的数量,第二矩阵的行数等于从第一矩阵的列矢量中选择的目标基矢量的个数。
本实施例中,对于SRS的配置方式一:L 2表示从一个SRS资源包含的L 1个端口中选择L 2个目标端口,即隐含指示从W 1中的L 1个基矢量中选择L 2个目标基矢量。
对于SRS配置方式二:L 2表示从L 1个SRS资源中选择L 2个目标SRS资源,即隐含指示从W 1中的L 1个基矢量选择L 2个目标基矢量。
在一实施例中,所述第二矩阵包含每个目标基矢量在每一层的加权系数,所述加权系数为复数。
本实施例中,W 2具体表示L 2个目标基矢量中的每个目标基矢量在υ层上的加权系数,终端在获知服务节点指示出的L 2个目标基矢量、上行传输的层数以及加权系数之后,可以确定上行传输信号的预编码,从而保证上行传输的精度和可靠性。
在一实施例中,预编码信息包含以下至少之一:上行传输的层数的指示信息、目标基矢量的选择信息、第二矩阵的量化信息。
本实施例中,预编码信息还可以包含上行传输的层数的指示信息,上行传输的层数的指示信息也可以通过W 2的列数υ隐含指示;预编码信息还可以包含目标基矢量的选择信息,目标基矢量的选择信息也可以根据预设规则隐含指示,例如,W 2的行数L 2已经隐含指示出目标基矢量的个数,终端可以根据预设规则确定如何从W 1的L 1个基矢量中选择出L 2个目标基矢量用于传输上行传输信号,例如可以是选择对应的信道质量最好的L 2个目标基矢量,或者信道状态信息符合传输要求的L 2个目标基矢量等;预编码信息还可以包含第二矩阵的量化信息,这种情况下,W 2中的加权系数量化之后再通过信令发送至终端,加权系数的量化可以采用以下方式之一:
方式一:直接量化,对于W 2中的每一个加权系数,采用A比特量化加权系数的幅度,采用B比特量化加权系数的相位。
方式二:将W 2归一化后再进行量化,即选择一个加权系数作为参考系数,参考系数的默认幅度为1、相位为0,并用C比特指示出该参考系数在W 2中的位置,对于其他各个加权系数,采用A比特量化加权系数的幅度,采用B比特量化加权系数的相位。
在一实施例中,第二矩阵的量化信息包含以下至少之一:加权系数中的参考系数在第二矩阵中的位置、加权系数的量化幅度、加权系数的量化相位。
在一实施例中,所述预编码信息的位宽根据以下至少之一确定:第一矩阵的列数;目标基矢量的数量;上行传输允许的最大层数;加权系数的幅度量化精度;加权系数的相位量化精度。
本实施例中,预编码信息的位宽是固定的,可以根据以下参数至少之一确定:W 1的列数L 1、选择的目标基矢量的数量L 2、上行传输允许的最大层数(记为RI max)、幅度量化精度(记为A)以及相位量化精度(记为B)。其中,上行传输允许的最大层数大于或等于服务节点指示出的用于上行传输的层数,即RI max≥υ,幅度量化精度可以通过用于量化幅度的比特数量A表征,相位量化精度可以通过用于量化相位的比特数量B表征。
在一实施例中,上行传输的层数的指示信息的位宽包含0比特,或者对所述上行传输允许的最大层数取对数的比特。
本实施例中,上行传输的层数υ的指示信息的位宽可以为0比特,即,上行传输的层数由W 2(的行数)隐含指示;也可以为log 2(RI max)比特,每个比特用于表示每一层是否被选中用于传输上行传输信号。
在一实施例中,上行传输的层数的指示信息与以下至少之一存在关联关系:加权系数的幅度量化精度;加权系数的相位量化精度。
本实施例中,上行传输的层数υ和幅度量化精度A可以存在关联关系,例如,在上行传输的层数较小的情况下,幅度量化精度较高,即用于量化幅度的比特数量A更多。上行传输的层数υ也可以和相位量化精度B存在关联关系,例如,在上行传输的层数较小的情况下,相位量化精度较高,即用于量化相位的比特数量B更多。
在一实施例中,目标基矢量的选择信息的位宽包括以下之一:对第一参量取对数的比特,其中,第一参量为从第一矩阵的列向量中选择目标基矢量的最大可能组合数;第一矩阵的列向量个数的比特。
本实施例中,目标基矢量的选择信息的位宽可以为
Figure PCTCN2020138886-appb-000001
比特,其中,
Figure PCTCN2020138886-appb-000002
表示从W 1的L 1个基矢量中选择出L 2个目标基矢量的最大可能组合数;也可以为L 2个比特,每个比特用于表示每个基矢量是否被选择成为目标基矢量。如果L 1=L 2,即所有的基矢量都被选为目标基矢量,则可以不指示目标基矢量的选择信息。
在一实施例中,所述加权系数的量化幅度根据幅度量化精度确定;所述加权系数的量化相位根据相位量化精度确定。
在一实施例中,第二矩阵的量化信息的位宽可以为(A+B)·L 2·RI max个比特,或者为log 2(L 2·RI max)+(L 2·RI max-1)·(A+B)个比特;其中,A为幅度量化精度,B为相位量化精度,L 2为目标基矢量的个数,RI max为上行传输允许的最大层数。
在一实施例中,上行传输信号的预编码矩阵为第三矩阵与第二矩阵的乘积,其中,第三矩阵由从第一矩阵的列矢量中选择的目标基矢量组成;上行传输信号每层的预编码对应于所述预编码矩阵的一列。
本实施例中,上行传输信号的预编码矩阵为W=W 3×W 2,其中,W 3为终端根据服务节点指示的L 2个目标基矢量的选择信息从W 1矩阵中选择出的对应的L 2个目标基矢量组成的矩阵,W 3的维度为υ×L 2。上行传输信号的预编码矩阵中,第j层的预编码基于W的第j列确定。
图2为一实施例提供的一种发送上行传输信号的实现示意图。如图2所示,发送上行传输信息号的实现过程具体包括:
1.终端根据下行信道信息确定W 1,W 1中包含L 1个基矢量;
2.终端根据W 1对SRS进行波束赋形,并将波束赋形后的SRS发送至服务节点;
3.服务节点接收波束赋形后的SRS,经过处理后确定W 2
4.服务节点将预编码信息(包含W 2)发送至终端;
5.终端根据W 3和W 2,对上行传输信道进行预编码,对应的预编码矩阵为W=W 3×W 2,其中,W 3由终端根据W 1和服务节点的预编码信息确定。
本实施例的上行传输方法,终端根据目标参量并利用目标参量对SRS进行波束赋形,通过发送波束赋形后的SRS向服务节点反映出信道状态信息,供服务节点做出决策和指示,终端结合服务节点反馈的预编码信息,发送上行传输信号,从而提高上行传输的精度和可靠性,同时节省了用于指示上行传输的信令开销,服务节点无需单独指示层、端口或者从码本中选择的预编码,提高上行传输的效率。
在本申请实施例中,还提供一种信号接收方法,应用于服务节点。服务节点根据终端发送的经过波束赋形的SRS,据此作出决策并向终端反馈预编码信息,指示终端上传上行传输信号,提高预编码的精度和上行传输的可靠性。
图3为一实施例提供的一种信号接收方法的流程图,如图3所示,本实施例提供的方法包括步骤210-230。未在本实施例中详尽描述的细节可参见上述任意实施例。
在步骤210中,接收SRS。
在步骤220中,根据所述SRS发送预编码信息。
在步骤230中,接收上行传输信号。
本实施例中,服务节点接收的SRS由终端根据目标参量波束赋形,上行传输信号由终端根据所述目标参量和所述预编码信息发送。
在一实施例中,SRS的配置类型包括第一类型和第二类型;第一类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中包含一个SRS资源,一个SRS资源中包含的端口数量与目标参量的列数相等;第二类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中的每个SRS资源对应于一个端口,一个SRS资源集合中包含的SRS资源的个数与目标参量的列数相等。
本实施例中,SRS的配置可以使用以下方式任意之一:
方式一:一个SRS资源集合关联一个下行参考信号,该SRS资源集合中包含一个SRS资源,该SRS资源包含L 1个端口。
方式二:一个SRS资源集合关联一个下行参考信号,该SRS资源集合中包 含L 1个SRS资源,每一个SRS资源包含一个端口。
在一实施例中,目标参量包括第一矩阵,第一矩阵的行数大于或等于列数;第一矩阵的列向量为基矢量;基矢量从预定义的矢量空间中选择,或者根据所述下行信道信息确定。
本实施例中,目标参量包括根据下行信道信息确定的第一矩阵(即为W 1),下行信道信息可通过服务节点发送的下行参考信号获得。W 1的维度可记为N r×L 1(L 1≤N r)。W 1的每一列是一个基矢量,每个基矢量可以是选自预定义的矢量空间,也可以是根据下行信道实时产生的。
在一实施例中,预编码信息用于指示第二矩阵,第二矩阵的行数小于或等于所述第一矩阵的行数;第二矩阵的列数与上行传输的层数相等。
本实施例中,第二矩阵(记为W 2)的维度为L 2×υ,其中,L 2≤L 1,υ表示上行传输的层数。
在一实施例中,还包括:在SRS的配置类型为第一类型的情况下,从SRS资源包含的端口中选择目标端口,第二矩阵的行数等于从第一矩阵的列矢量中选择的目标基矢量的个数;在SRS的配置类型为第二类型的情况下,从SRS资源集合中选择的目标SRS资源,第二矩阵的行数等于从第一矩阵的列矢量中选择的目标基矢量的个数。
本实施例中,根据SRS的配置类型选择目标基矢量,具体包括:
对于SRS的配置方式一:从一个SRS资源包含的L 1个端口中选择L 2个目标端口,即隐含指示从W 1中的L 1个基矢量中选择L 2个目标基矢量。
对于SRS配置方式二:从L 1个SRS资源中选择L 2个目标SRS资源,即隐含指示从W 1中的L 1个基矢量选择L 2个目标基矢量。
在一实施例中,第二矩阵包含每个目标基矢量在每一层的加权系数,加权系数为复数。
本实施例中,W 2具体表示L 2个目标基矢量中的每个目标基矢量在υ层上的加权系数,终端在获知服务节点指示出的L 2个目标基矢量、上行传输的层数以及加权系数之后,可以确定上行传输信号的预编码,从而保证上行传输的精度和可靠性。
在一实施例中,预编码信息包含以下至少之一:上行传输的层数的指示信息、目标基矢量的选择信息、第二矩阵的量化信息;第二矩阵的量化信息包含以下至少之一:加权系数中的参考系数在第二矩阵中的位置、加权系数的量化幅度、加权系数的量化相位。
在一实施例中,预编码信息的位宽根据以下至少之一确定:第一矩阵的列数;目标基矢量的数量;上行传输允许的最大层数;加权系数的幅度量化精度;加权系数的相位量化精度。
在一实施例中,上行传输的层数的指示信息的位宽包含0比特,或者对所述上行传输允许的最大层数取对数的比特。
在一实施例中,标基矢量的选择信息的位宽包括以下之一:对第一参量取对数的比特,其中,所述第一参量为从第一矩阵的列向量中选择目标基矢量的最大可能组合数;第一矩阵的列向量个数的比特。
在一实施例中,还包括以下至少之一:根据加权系数的幅度量化精度对所述加权系数进行量化,得到加权系数的量化幅度;根据加权系数的相位量化精度对所述加权系数进行量化,得到加权系数的量化相位;归一化所述第二矩阵。
本实施例中,W 2中的加权系数量化之后再通过信令发送至终端,加权系数的量化可以采用以下方式之一:
方式一:直接量化,对于W 2中的每一个加权系数,采用A比特量化幅度,A即为幅度量化精度,采用B比特量化相位,B即为相位量化精度。
方式二:将W 2归一化后再进行量化,即选择一个加权系数作为参考系数,参考系数的默认幅度为1、相位为0,并用C比特指示出该参考系数在W 2中的位置,对于其他各个加权系数,采用A比特量化幅度,A即为幅度量化精度,采用B比特量化相位,B即为相位量化精度。
本实施例中,服务节点接收到的上行传输信号的预编码矩阵为:W=W 3×W 2,其中,W 3为终端根据服务节点指示的L 2个目标基矢量的选择信息从W1矩阵中选择出的对应的L 2个目标基矢量组成的矩阵,W 3的维度为υ×L 2。上行传输信号的预编码矩阵中,第j层的预编码基于W的第j列确定。
本实施例的信号接收方法与上述实施例提出的上行传输方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例。
本申请实施例还提供一种上行传输装置。图4为一实施例提供的一种上行传输装置的结构示意图。如图4所示,所述传输装置包括:波束赋形模块310、预编码信息接收模块320和上行传输模块330。
波束赋形模块310,设置为根据目标参量对SRS波束赋形,所述目标参量根据下行信道信息确定;预编码信息接收模块320,设置为接收预编码信息;上行传输模块330,设置为根据所述目标参量和所述预编码信息发送上行传输信 号。
本实施例的信号发送装置,根据下行信道信息确定目标参量并利用目标参量对SRS进行波束赋形,通过发送波束赋形后的SRS向服务节点反映出信道状态信息,供服务节点做出决策和指示,终端结合服务节点反馈的预编码信息,发送上行传输信号,从而提高上行传输的精度和可靠性。
在一实施例中,所述目标参量包括第一矩阵,所述第一矩阵的行数大于或等于列数;所述第一矩阵的列向量为基矢量;所述基矢量从预定义的矢量空间中选择,或者根据所述下行信道信息确定。
在一实施例中,SRS的配置类型包括第一类型和第二类型;所述第一类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中包含一个SRS资源,一个SRS资源中包含的端口数量与所述目标参量的列数相等;所述第二类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中的每个SRS资源对应于一个端口,一个SRS资源集合中包含的SRS资源的个数与所述目标参量的列数相等。
在一实施例中,波束赋形模块310,具体设置为:在SRS的配置类型为第一类型的情况下,一个SRS资源中的每个端口的预编码对应于所述目标参量的一个列向量;在SRS的配置类型为第二类型的情况下,一个SRS资源集合中的每个SRS资源的预编码对应于所述目标参量的一个列向量。
在一实施例中,所述预编码信息用于指示第二矩阵,所述第二矩阵的行数小于或等于所述第一矩阵的列数;所述第二矩阵的列数与上行传输的层数相等。
在一实施例中,在SRS的配置类型为第一类型的情况下,所述第二矩阵的行数等于从一个SRS资源包含的端口中选择的目标端口的数量,所述第二矩阵的行数等于从所述第一矩阵的列矢量中选择的目标基矢量的个数;在SRS的配置类型为第二类型的情况下,所述第二矩阵的行数等于从一个SRS资源集合中选择的目标SRS资源的数量,所述第二矩阵的行数等于从所述第一矩阵的列矢量中选择的目标基矢量的个数。
在一实施例中,所述第二矩阵包含每个目标基矢量在每一层的加权系数,所述加权系数为复数。
在一实施例中,所述预编码信息包含以下至少之一:上行传输的层数的指示信息、目标基矢量的选择信息、第二矩阵的量化信息。
在一实施例中,所述预编码信息的位宽根据以下至少之一确定:第一矩阵的列数;目标基矢量的数量;上行传输允许的最大层数;加权系数的幅度量化精度;加权系数的相位量化精度。
在一实施例中,上行传输的层数的指示信息的位宽包含0比特,或者对所述上行传输允许的最大层数取对数的比特。
在一实施例中,目标基矢量的选择信息的位宽包括以下之一:对第一参量取对数的比特,其中,所述第一参量为从第一矩阵的列向量中选择目标基矢量的最大可能组合数;第一矩阵的列向量个数的比特。
在一实施例中,所述第二矩阵的量化信息包含以下至少之一:加权系数中的参考系数在所述第二矩阵中的位置、加权系数的量化幅度、加权系数的量化相位。
在一实施例中,所述加权系数的量化幅度根据幅度量化精度确定;所述加权系数的量化相位根据相位量化精度确定。
在一实施例中,所述上行传输信号的预编码矩阵为第三矩阵与第二矩阵的乘积,其中,所述第三矩阵由从所述第一矩阵的列矢量中选择的目标基矢量组成;所述上行传输信号每层的预编码对应于所述预编码矩阵的一列。
本实施例提出的上行传输装置与上述实施例提出的上行传输方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例。
本申请实施例还提供一种信号接收装置。图5为一实施例提供的一种信号接收装置的结构示意图。如图5所示,所述传输装置包括:信号接收模块410、预编码信息发送模块420和上行接收模块430。
信号接收模块410,设置为接收SRS;预编码信息发送模块420,设置为根据所述SRS发送预编码信息;上行接收模块430,设置为接收上行传输信号。
本实施例的信号发送装置,通过根据终端发送的经过波束赋形的SRS,据此作出决策并向终端反馈预编码信息,指示终端上传上行传输信号,提高预编码的精度和上行传输的可靠性。
在一实施例中,SRS的配置类型包括第一类型和第二类型;所述第一类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中包含一个SRS资源,一个SRS资源中包含的端口数量与目标参量的列数相等;所述第二类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中的每个SRS资源对应于一个端口,一个SRS资源集合中包含的SRS资源的个数与目标参量的列数相等。
在一实施例中,所述目标参量包括第一矩阵,所述第一矩阵的行数大于或等于列数;所述第一矩阵的列向量为基矢量;所述基矢量从预定义的矢量空间 中选择,或者根据所述下行信道信息确定。
在一实施例中,所述预编码信息用于指示第二矩阵,所述第二矩阵的行数小于或等于所述第一矩阵的行数;所述第二矩阵的列数与上行传输的层数相等。
在一实施例中,还包括:端口选择模块,设置为在所述SRS的配置类型为第一类型的情况下,从所述SRS资源包含的端口中选择目标端口,所述第二矩阵的行数等于从第一矩阵的列矢量中选择的目标基矢量的个数;资源选择模块,设置为在所述SRS的配置类型为第二类型的情况下,从所述SRS资源集合中选择的目标SRS资源,所述第二矩阵的行数等于从第一矩阵的列矢量中选择的目标基矢量的个数。
在一实施例中,所述第二矩阵包含每个目标基矢量在每一层的加权系数,所述加权系数为复数。
在一实施例中,所述预编码信息包含以下至少之一:上行传输的层数的指示信息、目标基矢量的选择信息、第二矩阵的量化信息;
所述第二矩阵的量化信息包含以下至少之一:加权系数中的参考系数在所述第二矩阵中的位置、加权系数的量化幅度、加权系数的量化相位。
在一实施例中,还包括以下至少之一:幅度量化模块,设置为根据加权系数的幅度量化精度对所述加权系数进行量化,得到加权系数的量化幅度;相位量化模块,设置为根据加权系数的相位量化精度对所述加权系数进行量化,得到加权系数的量化相位归一化模块,设置为归一化所述第二矩阵。
在一实施例中,所述上行传输信号的预编码矩阵为第三矩阵与第二矩阵的乘积,其中,所述第三矩阵由从所述第一矩阵的列矢量中选择的目标基矢量组成;所述上行传输信号每层的预编码对应于所述预编码矩阵的一列。
本实施例提出的信号接收装置与上述实施例提出的信号接收方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例。
本申请实施例还提供一种终端。所述上行传输方法可以由传输装置执行,该传输装置可以通过软件和/或硬件的方式实现,并集成在所述终端中。
图6为一实施例提供的一种终端的硬件结构示意图。如图6所示,本实施例提供的一种终端,包括:处理器510和存储装置520。该终端中的处理器可以是一个或多个,图6中以一个处理器510为例,所述设备中的处理器510和存储装置520可以通过总线或其他方式连接,图6中以通过总线连接为例。
所述一个或多个程序被所述一个或多个处理器510执行,使得所述一个或 多个处理器实现上述任一实施例所述的上行传输方法。
该终端中的存储装置520作为一种计算机可读存储介质,可用于存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本发明实施例中传输方法对应的程序指令/模块(例如,附图4所示的上行传输装置中的模块,包括:波束赋形模块310、预编码信息接收模块320和上行传输模块330)。处理器510通过运行存储在存储装置520中的软件程序、指令以及模块,从而执行终端的各种功能应用以及数据处理,即实现上述方法实施例中的上行传输方法。
存储装置520主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等(如上述实施例中的目标参量、预编码信息等)。此外,存储装置520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置520可包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
并且,当上述终端中所包括一个或者多个程序被所述一个或者多个处理器510执行时,实现如下操作:根据目标参量对SRS波束赋形,所述目标参量根据下行信道信息确定;接收预编码信息;根据所述目标参量和所述预编码信息发送上行传输信号。
本实施例提出的终端与上述实施例提出的上行传输方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例。
本申请实施例还提供一种服务节点。所述信号接收方法可以由传输装置执行,该传输装置可以通过软件和/或硬件的方式实现,并集成在所述服务节点中。
图7为一实施例提供的一种服务节点的硬件结构示意图。如图7所示,本实施例提供的一种服务节点,包括:处理器610和存储装置620。该服务节点中的处理器可以是一个或多个,图7中以一个处理器610为例,所述设备中的处理器610和存储装置620可以通过总线或其他方式连接,图7中以通过总线连接为例。
所述一个或多个程序被所述一个或多个处理器610执行,使得所述一个或多个处理器实现上述任一实施例所述的信号接收方法。
该服务节点中的存储装置620作为一种计算机可读存储介质,可用于存储 一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本发明实施例中传输方法对应的程序指令/模块(例如,附图5所示的信号接收装置中的模块,包括:信号接收模块410、预编码信息发送模块420和上行接收模块430)。处理器610通过运行存储在存储装置620中的软件程序、指令以及模块,从而执行服务节点的各种功能应用以及数据处理,即实现上述方法实施例中的信号接收方法。
存储装置620主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等(如上述实施例中的目标参量、预编码信息等)。此外,存储装置620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置620可包括相对于处理器610远程设置的存储器,这些远程存储器可以通过网络连接至服务节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
并且,当上述服务节点中所包括一个或者多个程序被所述一个或者多个处理器610执行时,实现如下操作:接收SRS根据所述SRS发送预编码信息;接收上行传输信号。
本实施例提出的服务节点与上述实施例提出的信号接收方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种上行传输方法或信号接收方法。
通过以上关于实施方式的描述,所属领域的技术人员可以了解到,本申请可借助软件及通用硬件来实现,也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请任意实施例所述的方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和 功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Versatile Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (27)

  1. 一种上行传输方法,包括:
    根据目标参量对探测参考信号SRS波束赋形并发送波束赋形后的SRS,所述目标参量根据下行信道信息确定;
    接收预编码信息;
    根据所述目标参量和所述预编码信息发送上行传输信号。
  2. 根据权利要求1所述的方法,其中,所述目标参量包括第一矩阵,所述第一矩阵的行数大于或等于列数;
    所述第一矩阵的列向量为基矢量;
    所述基矢量从预定义的矢量空间中选择,或者根据所述下行信道信息确定。
  3. 根据权利要求2所述的方法,其中,SRS的配置类型包括第一类型和第二类型;
    所述第一类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中包含一个SRS资源,一个SRS资源中包含的端口数量与所述第一矩阵的列数相等;
    所述第二类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中的每个SRS资源对应于一个端口,一个SRS资源集合中包含的SRS资源的个数与所述第一矩阵的列数相等。
  4. 根据权利要求3所述的方法,其中,所述根据目标参量对SRS波束赋形,包括:
    在SRS的配置类型为所述第一类型的情况下,一个SRS资源中的每个端口的预编码对应于所述第一矩阵的一个列向量;
    在SRS的配置类型为所述第二类型的情况下,一个SRS资源集合中的每个SRS资源的预编码对应于所述第一矩阵的一个列向量。
  5. 根据权利要求3所述的方法,其中,所述预编码信息用于指示第二矩阵,所述第二矩阵的行数小于或等于所述第一矩阵的列数;
    所述第二矩阵的列数与上行传输的层数相等。
  6. 根据权利要求5所述的方法,其中,
    在SRS的配置类型为所述第一类型的情况下,所述第二矩阵的行数等于从所述第一矩阵的列矢量中选择的目标基矢量的个数;
    在SRS的配置类型为所述第二类型的情况下,所述第二矩阵的行数等于从 所述第一矩阵的列矢量中选择的目标基矢量的个数。
  7. 根据权利要求6所述的方法,其中,所述第二矩阵包含每个目标基矢量在每一层的加权系数,所述加权系数为复数。
  8. 根据权利要求7所述的方法,其中,所述预编码信息包含以下至少之一:
    上行传输的层数的指示信息、目标基矢量的选择信息、第二矩阵的量化信息。
  9. 根据权利要求8所述的方法,其中,所述预编码信息的位宽根据以下至少之一确定:
    第一矩阵的列数;
    目标基矢量的数量;
    上行传输允许的最大层数;
    加权系数的幅度量化精度;
    加权系数的相位量化精度。
  10. 根据权利要求9所述的方法,其中,上行传输的层数的指示信息的位宽包含0比特,或者对所述上行传输允许的最大层数取对数的比特。
  11. 根据权利要求9所述的方法,其中,目标基矢量的选择信息的位宽包括以下之一:
    对第一参量取对数的比特,其中,所述第一参量为从第一矩阵的列向量中选择目标基矢量的最大可能组合数;
    第一矩阵的列向量个数的比特。
  12. 根据权利要求8所述的方法,其中,所述第二矩阵的量化信息包含以下至少之一:
    加权系数中的参考系数在所述第二矩阵中的位置、加权系数的量化幅度、加权系数的量化相位。
  13. 根据权利要求12所述的方法,其中,
    所述加权系数的量化幅度根据幅度量化精度确定;
    所述加权系数的量化相位根据相位量化精度确定。
  14. 根据权利要求5-13任一项所述的方法,其中,所述上行传输信号的预编码矩阵为第三矩阵与所述第二矩阵的乘积,其中,所述第三矩阵由从所述第一矩阵的列矢量中选择的目标基矢量组成;
    所述上行传输信号每层的预编码对应于所述预编码矩阵的一列。
  15. 一种信号接收方法,包括:
    接收探测参考信号SRS;
    根据所述SRS发送预编码信息;
    接收上行传输信号。
  16. 根据权利要求15所述的方法,其中,SRS的配置类型包括第一类型和第二类型;
    所述第一类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中包含一个SRS资源,一个SRS资源中包含的端口数量与目标参量的列数相等;
    所述第二类型包括:一个SRS资源集合对应于一个下行参考信号,一个SRS资源集合中的每个SRS资源对应于一个端口,一个SRS资源集合中包含的SRS资源的个数与目标参量的列数相等。
  17. 根据权利要求16所述的方法,其中,所述目标参量包括第一矩阵,所述第一矩阵的行数大于或等于列数;
    所述第一矩阵的列向量为基矢量;
    所述基矢量从预定义的矢量空间中选择,或者根据下行信道信息确定。
  18. 根据权利要求17所述的方法,其中,所述预编码信息用于指示第二矩阵,所述第二矩阵的行数小于或等于所述第一矩阵的行数;
    所述第二矩阵的列数与上行传输的层数相等。
  19. 根据权利要求18所述的方法,还包括:
    在所述SRS的配置类型为第一类型的情况下,从所述SRS资源包含的端口中选择目标端口,所述第二矩阵的行数等于从第一矩阵的列矢量中选择的目标基矢量的个数;
    在所述SRS的配置类型为第二类型的情况下,从所述SRS资源集合中选择的目标SRS资源,所述第二矩阵的行数等于从第一矩阵的列矢量中选择的目标基矢量的个数。
  20. 根据权利要求19所述的方法,其中,所述第二矩阵包含每个目标基矢量在每一层的加权系数,所述加权系数为复数。
  21. 根据权利要求20所述的方法,其中,所述预编码信息包含以下至少之一:
    上行传输的层数的指示信息、目标基矢量的选择信息、第二矩阵的量化信息;
    所述第二矩阵的量化信息包含以下至少之一:
    加权系数中的参考系数在所述第二矩阵中的位置、加权系数的量化幅度、加权系数的量化相位。
  22. 根据权利要求20所述的方法,还包括以下至少之一:
    根据加权系数的幅度量化精度对所述加权系数进行量化,得到加权系数的量化幅度;
    根据加权系数的相位量化精度对所述加权系数进行量化,得到加权系数的量化相位;归一化所述第二矩阵。
  23. 一种上行传输装置,包括:
    波束赋形模块,设置为根据目标参量对探测参考信号SRS波束赋形并发送波束赋形后的SRS,所述目标参量根据下行信道信息确定;
    预编码信息接收模块,设置为接收预编码信息;
    上行传输模块,设置为根据所述目标参量和所述预编码信息发送上行传输信号。
  24. 一种行传输接收装置,包括:
    信号接收模块,设置为接收探测参考信号SRS;
    预编码信息发送模块,设置为根据所述SRS发送预编码信息;
    上行接收模块,设置为接收上行传输信号。
  25. 一种终端,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-14中任一项所述的上行传输方法。
  26. 一种服务节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求15-22任一项所述的信号接收方法。
  27. 一种计算机可读存储介质,存储有计算机程序,该程序被处理器执行时实现如权利要求1-14中任一项所述的上行传输方法或如权利要求15-22任一项所述的信号接收方法。
PCT/CN2020/138886 2019-12-26 2020-12-24 上行传输、信号接收方法、装置、终端、服务节点及介质 WO2021129716A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227013501A KR20220068248A (ko) 2019-12-26 2020-12-24 업링크 전송, 신호 수신 방법, 장치, 단말기, 서비스 노드 및 매체
US17/777,264 US20220416863A1 (en) 2019-12-26 2020-12-24 Uplink transmission method and apparatus, signal receiving method and apparatus, terminal, service node, and medium
EP20907191.9A EP4084353A4 (en) 2019-12-26 2020-12-24 UPLINK TRANSMISSION APPARATUS AND METHOD, SIGNAL RECEIVING APPARATUS AND METHOD, TERMINAL, SERVING NODE AND MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911367563.3 2019-12-26
CN201911367563.3A CN111130607B (zh) 2019-12-26 2019-12-26 上行传输、信号接收方法、装置、终端、服务节点及介质

Publications (1)

Publication Number Publication Date
WO2021129716A1 true WO2021129716A1 (zh) 2021-07-01

Family

ID=70503137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138886 WO2021129716A1 (zh) 2019-12-26 2020-12-24 上行传输、信号接收方法、装置、终端、服务节点及介质

Country Status (5)

Country Link
US (1) US20220416863A1 (zh)
EP (1) EP4084353A4 (zh)
KR (1) KR20220068248A (zh)
CN (1) CN111130607B (zh)
WO (1) WO2021129716A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872650A (zh) * 2021-09-28 2021-12-31 京信网络系统股份有限公司 无线通信方法、装置、设备、系统和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130607B (zh) * 2019-12-26 2024-01-23 中兴通讯股份有限公司 上行传输、信号接收方法、装置、终端、服务节点及介质
CN117498901A (zh) * 2022-07-22 2024-02-02 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029697A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated SIGNALING OF TRANSMISSION RANK AND PRECODER IN A TRANSMISSION BASED ON A UPLINK CODE BOOK
CN109565311A (zh) * 2016-09-26 2019-04-02 Lg 电子株式会社 在无线通信系统中的上行链路发送/接收的方法及其装置
CN109792285A (zh) * 2016-08-10 2019-05-21 Idac控股公司 用于上行链路(ul)信道相互性的方法、装置、系统和过程
CN111130607A (zh) * 2019-12-26 2020-05-08 中兴通讯股份有限公司 上行传输、信号接收方法、装置、终端、服务节点及介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9131457B2 (en) * 2010-08-12 2015-09-08 Samsung Electronics Co., Ltd. Apparatus and method for transmission of uplink sounding reference signals in a wireless network
CN103905104B (zh) * 2012-12-28 2017-12-19 中兴通讯股份有限公司 一种根据探测参考信号的多天线发送方法及终端及基站
CN103475401B (zh) * 2013-09-18 2017-02-01 北京北方烽火科技有限公司 一种下行波束赋形方法与装置
US20190149205A1 (en) * 2016-05-26 2019-05-16 Lg Electronics Inc. Method for transmitting uplink signal in distributed antenna communication system and device for same
CN111213325B (zh) * 2017-06-14 2023-06-20 Lg电子株式会社 在无线通信系统中报告信道状态信息的方法及其装置
CN110149129B (zh) * 2018-02-11 2022-02-01 中兴通讯股份有限公司 确定波束赋型权值的方法、装置及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792285A (zh) * 2016-08-10 2019-05-21 Idac控股公司 用于上行链路(ul)信道相互性的方法、装置、系统和过程
CN109565311A (zh) * 2016-09-26 2019-04-02 Lg 电子株式会社 在无线通信系统中的上行链路发送/接收的方法及其装置
WO2019029697A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated SIGNALING OF TRANSMISSION RANK AND PRECODER IN A TRANSMISSION BASED ON A UPLINK CODE BOOK
CN111130607A (zh) * 2019-12-26 2020-05-08 中兴通讯股份有限公司 上行传输、信号接收方法、装置、终端、服务节点及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "UL MIMO for non-codebook based transmission", 3GPP DRAFT; R1-1714272 UL MIMO FOR NON-CODEBOOK BASED TRANSMISSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051317058 *
See also references of EP4084353A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872650A (zh) * 2021-09-28 2021-12-31 京信网络系统股份有限公司 无线通信方法、装置、设备、系统和存储介质
CN113872650B (zh) * 2021-09-28 2022-11-29 京信网络系统股份有限公司 无线通信方法、装置、设备、系统和存储介质

Also Published As

Publication number Publication date
EP4084353A4 (en) 2024-01-17
CN111130607B (zh) 2024-01-23
EP4084353A1 (en) 2022-11-02
KR20220068248A (ko) 2022-05-25
CN111130607A (zh) 2020-05-08
US20220416863A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
WO2021129716A1 (zh) 上行传输、信号接收方法、装置、终端、服务节点及介质
WO2018171727A1 (zh) 传输信道状态信息的方法、终端设备和网络设备
KR102247005B1 (ko) 더 최적화된 오버헤드를 갖는 멀티-빔 코드북들
US10333596B2 (en) Methods and devices for determining precoder parameters in a wireless communication network
JP7142031B2 (ja) アップリンクプリコーディング方法、装置及びシステム
US10742272B2 (en) Channel information feedback method and apparatus, terminal and base station
WO2018196628A1 (zh) 一种指示及确定预编码向量的方法和设备
WO2018171604A1 (zh) 信息的传输方法和设备
WO2015192777A1 (zh) 一种数据传输的方法和装置
JP5633914B2 (ja) 部分的チャンネル状態情報による多層ビーム成形
WO2021135837A1 (zh) 一种基于信道互易性的预编码矩阵配置方法及装置
WO2017194007A1 (zh) 一种二级预编码方法及装置
WO2017152789A1 (zh) 一种数据传输方法和装置
WO2020024289A1 (en) Methods and devices for reducing channel state information feedback overhead
WO2019120070A1 (zh) 一种获取下行信道信息的方法及装置
WO2019061260A1 (zh) 一种测量方法、网络设备和终端设备
WO2016183835A1 (zh) 传输信号的方法和设备
WO2019047754A1 (zh) 一种信道反馈的方法及相关设备
CN108282204B (zh) 通信方法、装置及系统
WO2017121092A1 (zh) 一种信道估计方法及装置
WO2022116875A1 (zh) 传输方法、装置、设备及可读存储介质
WO2022083412A1 (zh) 一种csi-rs增强传输方法及装置
KR102650303B1 (ko) 송신 채널 상태 전송 방법 및 디바이스, 송신 채널 상태 수신 방법 및 디바이스, 그리고 저장 매체
WO2018137208A1 (zh) 信道状态信息的传输方法、接入网设备和终端设备
WO2020155116A1 (zh) 一种pmi上报方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227013501

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907191

Country of ref document: EP

Effective date: 20220726