WO2019061260A1 - 一种测量方法、网络设备和终端设备 - Google Patents

一种测量方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2019061260A1
WO2019061260A1 PCT/CN2017/104280 CN2017104280W WO2019061260A1 WO 2019061260 A1 WO2019061260 A1 WO 2019061260A1 CN 2017104280 W CN2017104280 W CN 2017104280W WO 2019061260 A1 WO2019061260 A1 WO 2019061260A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
terminal device
network device
beamforming
codebook
Prior art date
Application number
PCT/CN2017/104280
Other languages
English (en)
French (fr)
Inventor
童觊超
高慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17926531.9A priority Critical patent/EP3675378A4/en
Priority to PCT/CN2017/104280 priority patent/WO2019061260A1/zh
Priority to CN201780094943.7A priority patent/CN111095809A/zh
Publication of WO2019061260A1 publication Critical patent/WO2019061260A1/zh
Priority to US16/833,190 priority patent/US11405930B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present application relates to the field of communications, and more particularly to a measurement method, a network device, and a terminal device.
  • the terminal device needs to transmit and transmit measurement pilots to measure and feed back necessary measurement quantities (such as Channel Quality Indicator (CQI) or Rank Indicator (RI)).
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • the terminal device and the network device introduce errors when measuring the Rank, which causes the measured Rank to be inaccurate, thereby affecting the downlink scheduling process of the network device.
  • the present application provides a measurement method, a network device, and a terminal device.
  • the CSI-RS is weighted and transmitted by using a beamforming right, which helps the terminal device improve the accuracy of measuring the Rank, thereby improving the throughput of the user.
  • a measurement method comprising: receiving, by a terminal device, a channel state information reference signal CSI-RS measurement beam sent by a network device, where the CSI-RS measurement beam is passed by the network device by a beamforming right pair CSI- The RS performs weighting, and the beamforming right is used for beamforming the CSI-RS; the terminal device determines a rank indication and a channel quality indicator according to the CSI-RS measurement beam; the terminal device sends the rank to the network device And indicating a channel quality indicator, so that the network device weights and transmits the downlink channel according to the rank indication and the channel quality indicator.
  • the CSI-RS is weighted and transmitted by the beamforming right, which helps improve the accuracy of the measurement Rank, thereby improving the throughput of the user.
  • the terminal device determines the rank indication and the channel quality indicator according to the CSI-RS measurement beam, where the terminal device determines the downlink according to the CSI-RS measurement beam.
  • a CSI-RS channel matrix the terminal device determines a first codebook from the first codebook set according to the downlink CSI-RS channel matrix, where the first codebook set includes a block unit matrix codebook and/or a precoding matrix Instructing a PMI codebook; determining the rank indication and channel quality indicator according to the first codebook.
  • the first codebook is a codebook having the largest channel capacity obtained by weighting the downlink CSI-RS channel matrix.
  • the terminal device determines the first codebook by weighting the downlink CSI-RS channel by using a block unit matrix codebook and a precoding matrix indicator codebook.
  • the precoding matrix indicator codebook includes but is not limited to a Type 1 codebook defined by the 3GPP R15 protocol, a Type 1 and Type 2 combined codebook, and other codebooks defined by 3GPP R8.
  • the number of the CSI-RS ports is 8, and the block unit matrix codebook includes:
  • the method before the determining, by the terminal device, the first codebook according to the downlink CSI-RS channel matrix, the method further includes: receiving, by the terminal device, an indication sent by the network device And the indication information is used to indicate the number of CSI-RS ports; the terminal device determines the first codebook set according to the indication information.
  • the terminal device determines, according to the number of CSI-RS ports carried in the indication information, a block unit matrix codebook in the first codebook set.
  • a measurement method comprising: the network device transmitting, to the terminal device, a channel state information reference signal CSI-RS measurement beam, the CSI-RS measurement beam being passed by the network device by a beamforming right pair CSI-RS Performing weighting, the beamforming right is used for beamforming the CSI-RS; the network device receives a rank indication and a channel quality indicator determined by the terminal device according to the CSI-RS measurement beam; the network device indicates according to the rank And channel quality indication, weighting and transmitting the downlink channel.
  • the CSI-RS is weighted and transmitted by the beamforming right, which helps improve the accuracy of the measurement Rank, thereby improving the throughput of the user.
  • the method further includes: the network device sending, to the terminal device, indication information, where the indication information is used to indicate a number of ports of the CSI-RS.
  • the method before the network device sends the indication information to the terminal device, the method further includes: determining, by the network device, the CSI-RS according to the number of receiving antennas of the terminal device The number of ports; or the network device determines the number of CSI-RS ports according to the cell load; or the network device determines the number of CSI-RS ports according to the distance between the network device and the terminal device.
  • the method before the network device sends the channel state information reference signal CSI-RS measurement beam to the terminal device, the method further includes: the network device receiving the uplink sent by the terminal device The sounding reference signal SRS is determined by the network device according to the SRS.
  • a terminal device in a third aspect, includes: a transceiver module, configured to receive a channel state information reference signal CSI-RS measurement beam sent by the network device, where the CSI-RS measurement beam is beamformed by the network device Weighting the CSI-RS, the beamforming right is used for beamforming the CSI-RS, and the processing module is configured to determine a rank indication and a channel quality indicator according to the CSI-RS measurement beam; the transceiver module further And transmitting, by the network device, the rank indication and the channel quality indicator, so that the network device weights and transmits the downlink channel according to the rank indication and the channel quality indicator.
  • CSI-RS measurement beam is beamformed by the network device Weighting the CSI-RS, the beamforming right is used for beamforming the CSI-RS
  • the processing module is configured to determine a rank indication and a channel quality indicator according to the CSI-RS measurement beam
  • the transceiver module further And transmitting, by the network device, the rank indication and the channel quality indicator, so that the network
  • the processing module is specifically configured to: determine, according to the CSI-RS measurement beam, a downlink CSI-RS channel matrix; the terminal device according to the downlink CSI-RS channel matrix Determining, by the first codebook set, a first codebook, where the first codebook set includes a block unit matrix codebook and/or a precoding matrix indicating a PMI codebook; and determining, according to the first codebook, the rank indication and Channel quality indication.
  • the first codebook is a codebook having the largest channel capacity obtained by weighting the downlink CSI-RS channel matrix.
  • the transceiver module is further configured to receive indication information sent by the network device, where the indication information is used to indicate a CSI-RS port number; the processing module is further configured to The indication information determines the first codebook set.
  • the terminal device in the embodiment of the present application weights and transmits the CSI-RS by using the beamforming right, which helps improve the accuracy of measuring the Rank, thereby improving the throughput of the user.
  • a network device in a fourth aspect, includes: a transceiver module, configured to send a channel state information reference signal CSI-RS measurement beam to the terminal device, where the CSI-RS measurement beam passes the beamforming right of the network device Performing weighting on the CSI-RS, the beamforming right is used for beamforming the CSI-RS; the transceiver module is further configured to receive a rank indication and a channel quality indicator determined by the terminal device according to the CSI-RS measurement beam; And a processing module, configured to weight and transmit the downlink channel according to the rank indication and the channel quality indicator.
  • a transceiver module configured to send a channel state information reference signal CSI-RS measurement beam to the terminal device, where the CSI-RS measurement beam passes the beamforming right of the network device Performing weighting on the CSI-RS, the beamforming right is used for beamforming the CSI-RS
  • the transceiver module is further configured to receive a rank indication and a channel quality indicator determined by the terminal device according to the CSI-RS measurement
  • the transceiver module is further configured to send, to the terminal device, indication information, where the indication information is used to indicate a number of ports of the CSI-RS.
  • the processing module is further configured to: determine the number of the CSI-RS ports according to the number of receiving antennas of the terminal device; or according to a load of a cell where the terminal device is located, Determining the number of the CSI-RS ports; or determining the number of CSI-RS ports according to the distance between the network device and the terminal device.
  • the transceiver module is further configured to receive an uplink sounding reference signal SRS sent by the terminal device; the processing module is further configured to determine the beamforming right according to the SRS.
  • the network device in the embodiment of the present application weights and transmits the CSI-RS by using beamforming right, which helps improve the accuracy of measuring the Rank, thereby improving the throughput of the user.
  • a terminal device comprising a memory and a processor, the memory being used for storing
  • the storage instruction is used by the processor to invoke an instruction in the memory to perform the operations in the method of the first aspect or any of the possible implementations of the first aspect.
  • a network device comprising a memory and a processor, the memory is configured to store an instruction, and the processor is configured to invoke an instruction in the memory to perform the second aspect or the second aspect An operation in a method in a possible implementation.
  • a communication system comprising a terminal device and/or a network device, wherein the terminal device is the terminal device in the third aspect and the fifth aspect, and any possible implementation manner thereof,
  • the network device is the network device in the above fourth and sixth aspects and any possible implementation thereof.
  • a computer readable storage medium is provided, the instructions being stored in the computer readable storage medium, when executed on a computer, causing the computer to perform the method of the various aspects described above.
  • a system chip comprising an input and output interface, at least one processor, at least one memory, and a bus, the at least one memory is configured to store an instruction, and the at least one processor is configured to call the at least one memory
  • the instructions are to perform the operations of the methods of the various aspects described above.
  • FIG. 1 is an application scenario of a technical solution of an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a measurement method according to an embodiment of the present application.
  • FIG. 3 is another schematic flowchart of a measurement method according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is another schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with the terminal device, and the network device may be a Global System of Mobile communication (GSM) system or Code Division Multiple Access (CDMA).
  • Base Transceiver Station which may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station in an LTE system (Evolutional The NodeB, eNB or eNodeB) may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future.
  • the network device in the 5G network or the network device in the PLMN network in the future is not limited in this embodiment.
  • FIG. 1 is an application scenario of the technical solution of the embodiment of the present application.
  • the terminal device needs to send a measurement beam to measure and feed back a necessary measurement quantity, such as a rank.
  • the indicator Rank Indicator, RI
  • CQI Channel Quality Indicator
  • CSI-RS Digital Beam Forming
  • HBF Hybrid Beam Forming
  • the DBF architecture of the 64-channel transceiver channel (TRX) is used as an example.
  • the scheme is the same in the HBF architecture.
  • the difference between the uplink and downlink channels in the digital domain is the channel weighted by the analog beam.
  • FIG. 2 shows a schematic flowchart of a measurement method 100 according to an embodiment of the present application. As shown in FIG. 2, the method 100 includes:
  • the network device sends a channel state information reference signal CSI-RS measurement beam to the terminal device, where the CSI-RS measurement beam is obtained by weighting the CSI-RS by the network device by using a beamforming right, where the beamforming right is used for the CSI -RS for beamforming.
  • the method 100 further includes:
  • the network device determines the beamforming right according to the SRS.
  • the network device may determine the beamforming right according to the SRS sent by the terminal device.
  • FIG. 3 shows another schematic flowchart of a measurement method 100 according to an embodiment of the present application. As shown in FIG. 3, the method 100 includes:
  • the network device receives an SRS sent by the terminal device.
  • the network device determines an uplink channel matrix according to the SRS.
  • the network device obtains an uplink channel matrix H uplink UE_port ⁇ 64 according to the uplink SRS measurement sent by the terminal device, where UE_port represents the total number of ports of the terminal device, and 64 is the TRX number of the network device, where the simplified 64TRX is simplified.
  • this dimension varies with the number of network devices TRX.
  • the network device decomposes the uplink channel matrix to obtain beamforming rights.
  • the network device performs a Singular Value Decomposition (SVD) decomposition on the uplink channel matrix to obtain a first beamforming right R UE_port ⁇ 64 , where
  • H uplinkUE_port ⁇ 64 U UE_port ⁇ UE_port ⁇ UE_port ⁇ UE_port (R UE_port ⁇ 64 ) H (1)
  • the above formula is a formula for SVD decomposition, in which the meanings of UE_port and 64 in the matrix dimension are the same as step S202.
  • the network device weights the CSI-RS by using a beamforming right.
  • the network device obtains beamforming right through S203, weights the CSI-RS, and transmits a channel state information reference signal CSI-RS measurement beam to the terminal device.
  • the terminal device determines a rank indication and a channel quality indicator according to the CSI-RS measurement beam.
  • the terminal device After receiving the CSI-RS measurement beam sent by the network device, the terminal device measures the CSI-RS, determines the Rank and the CQI, and feeds back to the network device.
  • the terminal device determines the rank indication and the channel quality indicator according to the CSI-RS measurement beam, including:
  • the terminal device Determining, by the terminal device, the first codebook from the first codebook set according to the downlink CSI-RS channel matrix, where the first codebook set includes a block unit matrix codebook and/or a precoding matrix indicator PMI codebook;
  • the rank indication and channel quality indication are determined.
  • the first codebook is a codebook with the largest channel capacity obtained by weighting the downlink CSI-RS channel matrix.
  • the precoding matrix indicator codebook includes but is not limited to a Type 1 codebook defined by the 3GPP R15 protocol, a Type 1 and Type 2 combined codebook, and other codebooks defined by 3GPP R8.
  • the method 100 further includes:
  • the terminal device determines a downlink channel matrix according to the CSI-RS measurement beam.
  • the terminal device obtains a downlink CSI-RS equivalent channel matrix after receiving the CSI-RS measurement beam, and the measurement under the 8port is:
  • step S202 The meanings of UE_port and 64 in the matrix dimension in the above equation are the same as step S202.
  • the terminal device determines the first codebook from the first codebook set according to the downlink channel matrix.
  • the beamforming weight measurement is accurate under the power sharing condition, and the channel is similar in the SRS transmission time and the data transmission scheduling time, the beamforming right can be found to optimize the channel capacity.
  • the weighting scheme namely:
  • the H uplink UE_port ⁇ 64 R UE_port ⁇ 64 is the downlink CSI-RS channel estimated by the terminal device, and the meanings of UE_port and 64 in the matrix dimension are the same as step S202.
  • the terminal device may not traverse the original Precoding Matrix Indicator (PMI) codebook W PMI8 ⁇ Rank set, and only needs to traverse the newly added 8 port different Ranks in the first codebook set.
  • PMI Precoding Matrix Indicator
  • the terminal device weights the downlink channel by traversing the eight block unit matrix codebooks in the first codebook set to obtain channel mats of different Ranks:
  • the codebook that can satisfy the channel capacity maximization is selected from the first codebook W opt .
  • the determining of the first codebook may be performed by the terminal device traversing the block unit matrix codebook and/or the PMI codebook, and selecting a codebook that can satisfy the channel capacity maximization as the first codebook, and
  • the first codebook is determined in other ways, and the application is not limited thereto.
  • another method for determining the first codebook is that the terminal device performs SVD decomposition on the downlink CSI-RS channel matrix to obtain a right-hand matrix, and the terminal device obtains a block unit matrix from the first codebook set.
  • the codebook having the highest correlation with the right unit matrix is determined in the codebook as the first codebook.
  • a block unit matrix codebook needs to be added on the terminal device side, but considering the constraint of the first beamforming weight measurement accuracy, the first A beamforming weight is not optimal, and the capacity can be further improved after the terminal device side PMI codebook is corrected.
  • the terminal device still needs to traverse the original PMI codebook.
  • the scheme of the embodiment also adds the above-mentioned different block including the block unit matrix codebook W 8 ⁇ . Rank collection.
  • the terminal device weights the downlink channel by traversing the PMI codebook W PMI8 ⁇ Rank set and the block unit matrix codebook W 8 ⁇ Rank set in the first codebook set to obtain different Rank channel matrices:
  • the codebook that can satisfy the channel capacity maximization is selected, that is, the first codebook W opt .
  • another method for determining the first codebook is that the terminal device performs SVD decomposition on the downlink CSI-RS channel matrix to obtain a right-hand matrix, and the terminal device obtains the block from the first codebook set.
  • the code matrix in the unit matrix codebook and the PMI codebook that has the highest correlation with the right-hand matrix is the first codebook.
  • the method 100 further includes:
  • the network device sends indication information to the terminal device, where the indication information is used to indicate the number of ports of the CSI-RS.
  • the terminal device receives the number of ports carrying the CSI-RS in the indication information sent by the network device, and the terminal device determines the block unit matrix codebook set according to the number of the CSI-RS ports.
  • the block unit matrix codebook W 8 ⁇ Rank set can be used.
  • the following block unit matrix codebook W 4 ⁇ Rank set can be used:
  • the method before the network device sends the indication information to the terminal device, the method further includes:
  • the network device determines the number of the CSI-RS ports according to the number of receiving antennas of the terminal device; or
  • the network device determines the number of the CSI-RS port according to the load of the cell where the terminal device is located; or
  • the network device determines the number of CSI-RS ports according to the distance between the network device and the terminal device.
  • the terminal device determines the RI and the CQI according to the first codebook.
  • the terminal device performs weighting on the CSI-RS equivalent matrix by traversing the PMI codebook W PMI8 ⁇ Rank set and/or the block unit matrix codebook W 8 ⁇ Rank set to determine the first codebook W opt ,
  • the Rank corresponding to the first codebook W opt is the optimal Rank measured by the terminal device, and the minimum matrix mean square error (MMSE) receiver is used for the equivalent matrix H uplink UE_port ⁇ 64 R UE_port ⁇ 64 W opt
  • MMSE minimum matrix mean square error
  • the process can obtain a Signal To Interference plus Noise Ratio (SINR) of each stream, average the SINR of the stream corresponding to each codeword, and obtain a codeword level CQI, and send the signal to the network device after the calculation is completed.
  • the RI and CQI feed back the calculated Rank and CQI to the network device.
  • SINR Signal To Interference plus Noise Ratio
  • the first codebook may be subjected to a filtering operation to obtain a filtered codebook, and the Rank corresponding to the filtered codebook is obtained as the terminal device.
  • Optimal Rank may be obtained after the terminal device determines the first codebook.
  • the terminal device sends the rank indication and a channel quality indicator to the network device.
  • the network device weights and transmits the downlink channel according to the rank indication and the channel quality indicator.
  • the CSI-RS measurement beam is sent to the terminal device, where the CSI-RS measurement beam is obtained by the network device by using a first beamforming right to weight the CSI-RS.
  • the device uses the CSI-RS to measure, obtains a Rank and a CQI, and obtains a Rank and a CQI, and The obtained Rank and CQI are fed back to the network device, and the network device constrains the beamforming right according to the Rank fed back by the terminal device to obtain the second beamforming right, and performs the second beamforming right on the downlink channel in the digital transmission. Weighted and transmitted.
  • the network device determines a Modulation and Coding Scheme (MCS) of the codeword according to the CQI.
  • MCS Modulation and Coding Scheme
  • the downlink channel may be, for example, a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH), or the like. It can also be applied to an uplink channel, such as a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH), or the like.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the CSI-RS based on the weighting of the beamforming weights may be considered to improve the measurement speed in a multi-user scenario.
  • the measurement beam pairing between multiple users may be considered, and the CSI-RS weighting manners of different users may be different, for example, Part is static beam weighting, and part is beamforming weighting. After pairing, the interference between users is corrected by the zero-forcing algorithm.
  • the Beam Forming (BF) weighting method of the Physical Downlink Shared Channel (PDSCH) is the Sounding Reference Signal (SRS) weight (Singular Value Decomposition for SRS)
  • SRS Sounding Reference Signal
  • Rank the rank
  • the CRS is a cell-level pilot, the number of ports is limited and can only support wide beam transmission, and the channel cannot match the beam-formed PDSCH channel.
  • the Rank can only be calculated on the network side. The prediction error is large through the network side.
  • the channel state information reference signal which is used after LTE TM9 and used for downlink measurement in New Ratio (NR), can support user-level beamforming weighting, which brings a lot of flexibility to the measurement.
  • Different CSI-RS beamforming weighting methods and measurement configurations can form multiple measurement schemes for flexible application in different scenarios.
  • the CSI-RS is weighted and transmitted by the beamforming right, which helps improve the accuracy of the measurement Rank, thereby improving the throughput of the user.
  • the following PDSCH weighting scheme configured for the user by the network device describes the beamforming right.
  • the terminal device successfully accesses the cell that is valid in the technical solution of the embodiment of the present application, and the access mode includes initial access, re-access, and handover.
  • the PDSCH weighting scheme configured by the network device for the terminal device is a beamforming right (that is, based on the uplink and downlink reciprocity of the Time Division Duplexing (TDD) system, and the weight of the downlink beamforming is obtained by using the uplink channel information. Program).
  • TDD Time Division Duplexing
  • the network device calculates the beamforming right for use, and uses the beamforming right to weight and transmit the CSI-RS.
  • the maximum number of CSI-RS ports supported by the user is It is determined by the number of terminal devices currently to be measured.
  • the terminal device performs measurement, and after the measurement is completed, the RI and the CQI are fed back to the network device by using the PUCCH or the PUSCH.
  • the network device determines the Rank of the terminal device based on the Rank value indicated in the RI fed back by the terminal device, and selects a beamforming weight feature vector matching the Rank value as a final beamforming right, and weights and transmits the PDSCH. .
  • the measurement method in the embodiment of the present application can ensure that the channel weighted by the beamforming weight is consistent with the downlink data transmission channel in a scenario where the channel is slowly changed in a medium- and low-speed scenario, thereby ensuring the accuracy of CQI and Rank measurement, especially The accuracy of the Rank, which in turn increases the throughput of the responding terminal device.
  • FIG. 4 is a schematic block diagram of a terminal device 200 according to an embodiment of the present disclosure. As shown in FIG. 4, the terminal device 200 includes:
  • the transceiver module 210 is configured to receive a channel state information reference signal CSI-RS measurement beam sent by the network device, where the CSI-RS measurement beam is obtained by weighting the CSI-RS by using the beamforming right, where the beamforming right is used. Beamforming the CSI-RS;
  • the processing module 220 is configured to determine a rank indication and a channel quality indicator according to the CSI-RS measurement beam.
  • the transceiver module 210 is further configured to send the rank indication and the channel quality indicator to the network device, so that the network device weights and transmits the downlink channel according to the rank indication and the channel quality indicator.
  • processing module 220 is specifically configured to:
  • the terminal device Determining, by the terminal device, the first codebook from the first codebook set according to the downlink CSI-RS channel matrix, where the first codebook set includes a PMI codebook indicating a block unit matrix codebook and/or a precoding matrix;
  • the rank indication and channel quality indication are determined.
  • the first codebook is a codebook with the largest channel capacity obtained by weighting the downlink CSI-RS channel matrix.
  • the precoding matrix indicator codebook includes but is not limited to a Type 1 codebook defined by the 3GPP R15 protocol, a Type 1 and Type 2 combined codebook, and other codebooks defined by 3GPP R8.
  • the transceiver module 210 is further configured to receive indication information sent by the network device, where the indication information is used to indicate a number of CSI-RS ports;
  • the processing module 220 is further configured to determine the first codebook set according to the indication information.
  • FIG. 5 shows a schematic block diagram of a network device 300 according to an embodiment of the present application. As shown in FIG. 5, the network device 300 includes:
  • the transceiver module 310 is configured to send a channel state information reference signal CSI-RS measurement beam to the terminal device, where the CSI-RS measurement beam is obtained by weighting the CSI-RS by using the beamforming right, and the beamforming right is used for The CSI-RS performs beamforming;
  • the transceiver module 310 is further configured to receive a rank indication and a channel quality indicator that are determined by the terminal device according to the CSI-RS measurement beam.
  • the processing module 320 is configured to weight and transmit the downlink channel according to the rank indication and the channel quality indicator.
  • the transceiver module 310 is further configured to send, to the terminal device, indication information, where the indication information is used to indicate a number of ports of the CSI-RS.
  • the processing module 320 is further configured to: determine, according to the number of receiving antennas of the terminal device, the CSI-RS end. Number of mouths; or
  • the number of CSI-RS ports is determined according to the distance between the network device and the terminal device.
  • the transceiver module 310 is further configured to receive an uplink sounding reference signal SRS sent by the terminal device;
  • the processing module is further configured to determine the beamforming right according to the SRS.
  • FIG. 6 is a schematic structural diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes a processor 401, a memory 402, a receiver 403, and a transmitter 404. Communication between these components.
  • the memory 402 is configured to store instructions for executing instructions stored by the memory 402 and to control the receiver 403 to receive information and to control the transmitter 404 to transmit information.
  • the processor 401 is configured to execute instructions stored in the memory 402, and the processor 401 can be used to perform corresponding operations and/or functions of the processing module 220 in the terminal device 200.
  • the receiver 403 and the transmitter 404 can be used to The corresponding operations and/or functions of the transceiver module 210 in the terminal device 200 are performed. For brevity, details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes a processor 501, a memory 502, a receiver 503, and a transmitter 504. Communication between these components.
  • the memory 502 is configured to store instructions for executing the instructions stored by the memory 502 and to control the receiver 503 to receive information and to control the transmitter 504 to transmit information.
  • the processor 501 is configured to execute instructions stored in the memory 502, and the processor 501 can be used to perform corresponding operations and/or functions of the processing module 320 in the network device 300.
  • the receiver 503 and the transmitter 504 can be used to The corresponding operations and/or functions of the transceiver module 310 in the network device 300 are performed. For brevity, details are not described herein again.
  • FIG. 8 shows a schematic block diagram of a communication system 600 according to an embodiment of the present application.
  • the communication system 600 includes a terminal device 610 and/or a network device 620, which may be the terminal device 200 or The terminal device 400, the network device 620 may be the network device 300 or the network device 500
  • the embodiment of the present application further provides a system chip, where the system chip includes an input and output interface, at least one processor, at least one memory, and a bus, the at least one memory is configured to store an instruction, and the at least one processor is configured to invoke the at least one The instructions of the memory perform the operations of the methods of the various aspects described above.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be a read-only memory (Read-Only) Memory, ROM, Programmable ROM (PROM), Erasable PROM (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM) or Flash Memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate SDRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DR RAM direct memory bus random access memory
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the computer program product can include one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic disk), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种测量方法、终端设备和网络设备,该测量方法包括:网络设备向终端设备发送信道状态信息参考信号CSI-RS测量波束,该CSI-RS测量波束由该网络设备通过波束成形权对CSI-RS进行加权获得,该波束成形权用于对该CSI-RS进行波束赋形;该网络设备接收该终端设备根据该CSI-RS测量波束确定的秩指示和信道质量指示;该网络设备根据该秩指示和信道质量指示,对下行信道进行加权并发射。本申请实施例的测量方法,通过波束成形权对CSI-RS进行加权并发射,有助于提高测量Rank的准确性,进而提高用户的吞吐量。

Description

一种测量方法、网络设备和终端设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种测量方法、网络设备和终端设备。
背景技术
网络设备下行调度过程中,需要通过发送测量导频让终端设备测量并反馈必要的测量量(如信道质量指示(Channel Quality Indicator,CQI)或秩指示(Rank Indicator,RI))。这些测量量会作为下行调度的基本输入,为调度提供基本依据。测量量的准确性将直接影响最终用户吞吐量以及小区的吞吐量。
目前,虽然支持了Rank计算在终端侧和网络侧进行,但是终端设备和网络设备在测量Rank时会引入误差,导致测量的Rank不准确,从而影响网络设备的下行调度过程。
因此,如何在提高下行调度中Rank的准确性成为了一个亟待解决的问题。
发明内容
本申请提供一种测量方法、网络设备和终端设备,通过波束成形权对CSI-RS进行加权并发射,有助于终端设备提高测量Rank的准确性,进而提高用户的吞吐量。
第一方面,提供了一种测量方法,该方法包括:终端设备接收网络设备发送的信道状态信息参考信号CSI-RS测量波束,该CSI-RS测量波束由该网络设备通过波束成形权对CSI-RS进行加权获得,该波束成形权用于对该CSI-RS进行波束赋形;该终端设备根据该CSI-RS测量波束,确定秩指示和信道质量指示;该终端设备向该网络设备发送该秩指示和信道质量指示,以便于该网络设备根据该秩指示和信道质量指示,对下行信道进行加权并发射。
本申请实施例的测量方法,通过波束成形权对CSI-RS进行加权并发射,有助于提高测量Rank的准确性,进而提高用户的吞吐量。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该CSI-RS测量波束,确定秩指示和信道质量指示,包括:该终端设备根据该CSI-RS测量波束,确定下行CSI-RS信道矩阵;该终端设备根据该下行CSI-RS信道矩阵,从第一码本集合中确定第一码本,该第一码本集合包括分块单位矩阵码本和/或预编码矩阵指示PMI码本;根据该第一码本,确定该秩指示和信道质量指示。
在一些可能的实现方式中,该第一码本为对所述下行CSI-RS信道矩阵进行加权获得的信道容量最大的码本。
在一些可能的实现方式中,该终端设备通过分块单位矩阵码本和预编码矩阵指示码本对下行CSI-RS信道进行加权,确定该第一码本。
在一些可能的实现方式中,该预编码矩阵指示码本包括但不限于3GPP R15协议定义的Type 1码本、Type 1和Type 2结合的码本和3GPP R8定义的其他码本。
在一些可能的实现方式中,该CSI-RS端口数为8,该分块单位矩阵码本包括:
Figure PCTCN2017104280-appb-000001
Figure PCTCN2017104280-appb-000002
Figure PCTCN2017104280-appb-000003
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该下行CSI-RS信道矩阵,确定第一码本之前,该方法还包括:该终端设备接收该网络设备发送的指示信息,该指示信息用于指示CSI-RS端口数;该终端设备根据该指示信息,确定该第一码本集合。
在一些可能的实现方式中,该终端设备根据该指示信息中携带的CSI-RS端口数,确定第一码本集合中的分块单位矩阵码本。
第二方面,提供了一种测量方法,该方法包括:网络设备向终端设备发送信道状态信息参考信号CSI-RS测量波束,该CSI-RS测量波束由该网络设备通过波束成形权对CSI-RS进行加权获得,该波束成形权用于对该CSI-RS进行波束赋形;该网络设备接收该终端设备根据该CSI-RS测量波束确定的秩指示和信道质量指示;该网络设备根据该秩指示和信道质量指示,对下行信道进行加权并发射。
本申请实施例的测量方法,通过波束成形权对CSI-RS进行加权并发射,有助于提高测量Rank的准确性,进而提高用户的吞吐量。
结合第二方面,在第一方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送指示信息,该指示信息用于指示CSI-RS的端口数。
结合第二方面,在第一方面的某些实现方式中,该网络设备向该终端设备发送指示信息之前,该方法还包括:该网络设备根据该终端设备的接收天线数,确定该CSI-RS端口数;或该网络设备根据小区负载,确定该CSI-RS端口数;或该网络设备根据该网络设备和该终端设备之间的距离,确定该CSI-RS端口数。
结合第二方面,在第一方面的某些实现方式中,该网络设备向终端设备发送信道状态信息参考信号CSI-RS测量波束之前,该方法还包括:该网络设备接收该终端设备发送的上行探测参考信号SRS;该网络设备根据该SRS,确定该波束成形权。
第三方面,提供了一种终端设备,该终端设备包括:收发模块,用于接收网络设备发送的信道状态信息参考信号CSI-RS测量波束,该CSI-RS测量波束由该网络设备通过波束成形权对CSI-RS进行加权获得,该波束成形权用于对该CSI-RS进行波束赋形;处理模块,用于根据该CSI-RS测量波束,确定秩指示和信道质量指示;该收发模块还用于向该网络设备发送该秩指示和信道质量指示,以便于该网络设备根据该秩指示和信道质量指示,对下行信道进行加权并发射。
结合第三方面,在第一方面的某些实现方式中,该处理模块具体用于:根据该CSI-RS测量波束,确定下行CSI-RS信道矩阵;该终端设备根据该下行CSI-RS信道矩阵,从第一码本集合中确定第一码本,该第一码本集合包括分块单位矩阵码本和/或预编码矩阵指示PMI码本;根据该第一码本,确定该秩指示和信道质量指示。
在一些可能的实现方式中,第一码本为对该下行CSI-RS信道矩阵进行加权获得的信道容量最大的码本。
结合第三方面,在第一方面的某些实现方式中,该收发模块还用于接收该网络设备发送的指示信息,该指示信息用于指示CSI-RS端口数;该处理模块还用于根据该指示信息,确定该第一码本集合。
本申请实施例的终端设备,通过波束成形权对CSI-RS进行加权并发射,有助于提高测量Rank的准确性,进而提高用户的吞吐量。
第四方面,提供了一种网络设备,该网络设备包括:收发模块,用于向终端设备发送信道状态信息参考信号CSI-RS测量波束,该CSI-RS测量波束由该网络设备通过波束成形权对CSI-RS进行加权获得,该波束成形权用于对该CSI-RS进行波束赋形;该收发模块还用于接收该终端设备根据该CSI-RS测量波束确定的秩指示和信道质量指示;处理模块,用于根据该秩指示和信道质量指示,对下行信道进行加权并发射。
结合第四方面,在第一方面的某些实现方式中,该收发模块还用于向该终端设备发送指示信息,该指示信息用于指示CSI-RS的端口数。
结合第四方面,在第一方面的某些实现方式中,该处理模块还用于:根据该终端设备的接收天线数,确定该CSI-RS端口数;或根据该终端设备所在小区的负载,确定该CSI-RS端口数;或根据该网络设备和该终端设备之间的距离,确定该CSI-RS端口数。
结合第四方面,在第一方面的某些实现方式中,该收发模块还用于接收该终端设备发送的上行探测参考信号SRS;该处理模块还用于根据该SRS,确定该波束成形权。
本申请实施例的网络设备,通过波束成形权对CSI-RS进行加权并发射,有助于提高测量Rank的准确性,进而提高用户的吞吐量。
第五方面,提供了一种终端设备,该终端设备包括存储器和处理器,该存储器用于存 储指令,该处理器用于调用该存储器中的指令,以进行上述第一方面或第一方面的任一种可能的实现方式中的方法中的操作。
第六方面,提供了一种网络设备,该网络设备包括存储器和处理器,该存储器用于存储指令,该处理器用于调用该存储器中的指令,以进行上述第二方面或第二方面的任一种可能的实现方式中的方法中的操作。
第七方面,提供了一种通信系统,该通信系统包括终端设备和/或网络设备,该终端设备为上述第三方面和第五方面及其任一种可能的实现方式中的终端设备,该网络设备为上述第四方面和第六方面及其任一种可能的实现方式中的网络设备。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各个方面的所述的方法。
第九方面,提供了一种系统芯片,该系统芯片包括输入输出接口、至少一个处理器、至少一个存储器和总线,该至少一个存储器用于存储指令,该至少一个处理器用于调用该至少一个存储器的指令,以进行上述各个方面的方法的操作。
附图说明
图1是本申请实施例的技术方案的一种应用场景。
图2是本申请实施例的测量方法的示意性流程图。
图3是本申请实施例的测量方法的另一示意性流程图。
图4是本申请实施例的终端设备的示意性框图。
图5是本申请实施例的网络设备的示意性框图。
图6是本申请实施例的终端设备的另一示意性框图。
图7是本申请实施例的网络设备的另一示意性框图。
图8是本申请实施例的通讯系统的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的 其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是示出了本申请实施例的技术方案的一种应用场景,如图1所示,网络设备下行调度过程中,需要通过发送测量波束让终端设备测量并反馈必要的测量量,例如秩指示(Rank Indicator,RI)和信道质量指示(Channel Quality Indicator,CQI),这些测量会作为下行调度的基本输入,为调度提供基本依据。
应理解,本申请实施例的技术方案可以应用在数字波域束成形(Digital Beam Forming,DBF)DBF架构下,CQI和Rank通过波束成形(beamforming)权(信道状态信息参考信号(Channel State Information Reference Singal,CSI-RS)端口数目可以分配)加权的CSI-RS做测量;也可以应用在混合波束成形(Hybrid Beam Forming,HBF)架构下,CQI和Rank在模拟波束基础上基于波束成形权(CSI-RS端口数目可以分配)加权的CSI-RS做测量。
下面以64收发通道(TRX)的DBF架构为例(HBF架构下方案完全一致,区别在于HBF架构下的数字域上下行信道是经过模拟波束加权后的信道)。
图2示出了根据本申请实施例的测量方法100的示意性流程图,如图2所示,该方法100包括:
S110,网络设备向终端设备发送信道状态信息参考信号CSI-RS测量波束,该CSI-RS测量波束由该网络设备通过波束成形权对CSI-RS进行加权获得,该波束成形权用于对该CSI-RS进行波束赋形。
可选地,在网络设备向终端设备发送信道状态信息参考信号CSI-RS测量波束之前,该方法100还包括:
该网络设备接收该终端设备发送的上行探测参考信号SRS;
该网络设备根据该SRS,确定该波束成形权。
具体而言,网络设备可以根据该终端设备发送的SRS,确定该波束成形权。
图3示出了根据本申请实施例的测量方法100的另一示意性流程图,如图3所示,该方法100包括:
S101,该网络设备接收该终端设备发送的SRS;
S102,该网络设备根据该SRS,确定上行信道矩阵。
具体而言,网络设备根据终端设备发送的上行SRS测量获得上行信道矩阵HuplinkUE_port×64,其中,UE_port表示终端设备的总端口数,64为网络设备的TRX数,此处以常用的64TRX进行简化,但该维度随网络设备TRX数变化而变化。
S103,该网络设备对该上行信道矩阵进行分解,获得波束成形权。
具体而言,网络设备对上述上行信道矩阵进行奇异值分解(Singular Value Decomposition,SVD)分解获得第一波束成形权RUE_port×64,其中,
HuplinkUE_port×64=UUE_port×UE_portUE_port×UE_port(RUE_port×64)H         (1)
上式为SVD分解的公式,其中矩阵维度中UE_port和64的含义同步骤S202。
S104,该网络设备通过波束成形权对CSI-RS进行加权;
具体而言,该网络设备通过S203获得波束成形权,对CSI-RS进行加权,向该终端设备发送信道状态信息参考信号CSI-RS测量波束。
S120,该终端设备根据该CSI-RS测量波束,确定秩指示和信道质量指示。
具体而言,该终端设备收到该网络设备发送的CSI-RS测量波束后,对该CSI-RS进行测量,确定Rank和CQI从而反馈给该网络设备。
可选地,该终端设备根据该CSI-RS测量波束,确定秩指示和信道质量指示,包括:
该终端设备根据该CSI-RS测量波束,确定下行CSI-RS信道矩阵;
该终端设备根据该下行CSI-RS信道矩阵,从第一码本集合中确定第一码本,该第一码本集合包括分块单位矩阵码本和/或预编码矩阵指示PMI码本;
根据该第一码本,确定该秩指示和信道质量指示。
可选地,该第一码本为对所述下行CSI-RS信道矩阵进行加权获得的信道容量最大的码本。
可选地,该预编码矩阵指示码本包括但不限于3GPP R15协议定义的Type 1码本、Type 1和Type 2结合的码本和3GPP R8定义的其他码本。
如图3所示,该方法100还包括:
S121,该终端设备根据该CSI-RS测量波束,确定下行信道矩阵。
具体而言,该终端设备收到CSI-RS测量波束后获得下行CSI-RS等效信道矩阵,8port下测量下为:
HuplinkUE_port×64RUE_port×64
上式中矩阵维度中UE_port和64的含义同步骤S202。
S122,该终端设备根据该下行信道矩阵,从第一码本集合中确定第一码本。
以下以8port为例进行描述。
作为一种具体的实施例,由于在功率均分条件下,假设波束成形权测量准确,且信道在SRS发射时刻与数传调度时刻相似,那么基于波束成形权必然可以找到使得信道容量最优的权值方案,即:
C(HuplinkUE_port×64RUE_port×64W8×Rank)≥C(HuplinkUE_port×64RUE_port×64WPMI8×Rank)       (2)
其中,HuplinkUE_port×64RUE_port×64为该终端设备估计出的下行CSI-RS信道,矩阵维度中UE_port和64的含义同步骤S202。该终端设备可以不遍历原有的预编码指示(Precoding Matrix Indicator,PMI)码本WPMI8×Rank集合,只需要遍历以下第一码本集合中的新增的8port不同Rank的包含分块单位阵的码本W8×Rank集合:
Figure PCTCN2017104280-appb-000004
Figure PCTCN2017104280-appb-000005
Figure PCTCN2017104280-appb-000006
该终端设备通过遍历以上第一码本集合中的8个分块单位矩阵码本,对下行信道进行加权得到不同Rank的信道矩阵:
HuplinkUE_port×64RUE_port×64W8×Rank
从其中选择能满足信道容量最大化的码本,即该第一码本Wopt
应理解,该第一码本的确定可以通过终端设备遍历上述分块单位矩阵码本和/或PMI码本,从中选择能满足信道容量最大化的码本为该第一码本,还可以通过其他方式确定该第一码本,本申请并不限于此。
例如,另一种确定该第一码本的方法为该终端设备对下行CSI-RS信道矩阵进行SVD分解,得到右酉矩阵,该终端设备从上述该第一码本集合中的分块单位矩阵码本中确定与该右酉矩阵相关性最高的码本为该第一码本。
作为另一种具体的实施例,与上一个具体的实施例类似,需要在该终端设备侧新增分块单位矩阵码本,但是考虑到第一波束成形权测量准确性的约束,假设该第一波束成形权非最优,经过该终端设备侧PMI码本修正后,能够进一步提升容量。
因此,该终端设备还是有遍历原有的PMI码本的必要,在原有的PMI码本的基础上,本实施例的方案同样新增了上述不同Rank的包含分块单位矩阵码本W8×Rank集合。
该终端设备通过遍历以上第一码本集合中的所述PMI码本WPMI8×Rank集合和分块单位矩阵码本W8×Rank集合,对下行信道进行加权得到不同的Rank的信道矩阵:
HuplinkUE_port×64RUE_port×64WPMI8×Rank或HuplinkUE_port×64RUE_port×64W8×Rank
从中选取能满足信道容量最大化的码本,即该第一码本Wopt
可选地,另一种确定该第一码本的方法为该终端设备对下行CSI-RS信道矩阵进行SVD分解,得到右酉矩阵,该终端设备从上述该第一码本集合中的分块单位矩阵码本和PMI码本中确定与该右酉矩阵相关性最高的码本为该第一码本。
可选地,在该终端设备确定第一码本之前,该方法100还包括:
S123,该网络设备向该终端设备发送指示信息,该指示信息用于指示CSI-RS的端口数。
具体而言,该终端设备接收该网络设备发送的指示信息中携带了CSI-RS的端口数,该终端设备根据该CSI-RS端口数确定分块单位矩阵码本集合。
例如,若该指示信息中携带的该CSI-RS端口数为8,则可以用上述分块单位矩阵码本W8×Rank集合。
又例如,若该指示信息中携带的该CSI-RS端口数为4,则可以用以下分块单位矩阵码本W4×Rank集合:
Figure PCTCN2017104280-appb-000007
可选地,该网络设备向该终端设备发送指示信息之前,该方法还包括:
该网络设备根据该终端设备的接收天线数,确定该CSI-RS端口数;或
该网络设备根据该终端设备所在小区的负载,确定该CSI-RS端口数;或
该网络设备根据该网络设备和该终端设备之间的距离,确定该CSI-RS端口数。
S124,该终端设备根据该第一码本,确定RI和CQI。
具体而言,该终端设备通过遍历PMI码本WPMI8×Rank集合和/或分块单位矩阵码本W8×Rank集合对CSI-RS等效矩阵进行加权确定第一码本Wopt后,该第一码本Wopt对应的Rank即该终端设备测量获得的最优Rank,通过最小均方误差法(Minimum Mean Square Error,MMSE)接收机对等效矩阵HuplinkUE_port×64RUE_port×64Wopt进行处理可以获得每个流的信干噪比(Signal To Interference plus Noise Ratio,SINR),对每个码字对应的流的SINR进行平均并量化获得码字级CQI,计算完成后向网络设备发送RI和CQI,将计算得到的Rank和CQI反馈给该网络设备。
应理解,该终端设备确定该第一码本后,可以对该第一码本进行滤波操作,得到滤波后的码本,并将该滤波后的码本对应的Rank作为该终端设备测量获得的最优Rank。
S130,该终端设备向该网络设备发送该秩指示和信道质量指示;
S140,该网络设备根据该秩指示和信道质量指示,对下行信道进行加权并发射。
具体而言,当该网络设备需要进行下行调度时,向该终端设备发送CSI-RS测量波束,该CSI-RS测量波束由该网络设备通过第一波束成形权对CSI-RS加权获得,该终端设备在收到该网络设备的CSI-RS测量波束后,利用该CSI-RS进行测量,获得Rank和CQI,并 将获得的Rank和CQI反馈给该网络设备,该网络设备根据该终端设备反馈的Rank,对波束成形权进行约束,获得第二波束成形权,数传时对下行信道用第二波束成形权进行加权并发射。该网络设备根据CQI确定码字的调制与编码策略(Modulation and Coding Scheme,MCS)。
应理解,对于同一个信道而言,通过波束成形权相比于通过静态波束(如DFT权)加权能够获得更大的天线阵列增益,因此基于波束成形权加权可以应用在所有支持用户级配置的导频和信道上,例如,上述下行信道可以为如物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)等。还可以应用到上行信道,例如物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)等。
还应理解,基于波束成形权加权的CSI-RS在多用户场景下,为提高测量速度,可以考虑进行多个用户间的测量波束配对,不同用户的CSI-RS加权方式可以不同,例如,可以部分是静态波束加权,部分是波束成形权加权,配对后用户间的干扰通过迫零算法修正。
在长期演进(Long Term Evolution,LTE)传输模式TM9之前,测量通过小区参考信号(Cell Reference Singal,CRS)导频进行。当物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的波束赋行(Beam Forming,BF)加权方式为上行探测参考信号(Sounding Reference Signal,SRS)权(对SRS进行矩阵奇异值分解(Singular Value Decomposition,SVD)分解后获得的特征向量)时,无法准确测量得到CQI与秩(Rank)。这是由于CRS是小区级导频,天线(port)数有限且只能支持宽波束发射,信道无法与经过波束赋形的PDSCH信道匹配。在终端设备测量不准的情况下,Rank只能在网络侧计算。而通过网络侧进行预测误差较大。
在LTE TM9之后引入的,在新空口技术(New Ratio,NR)中被用于做下行测量的信道状态信息参考信号,可以支持用户级波束赋形加权,给测量带来了很多灵活性。不同的CSI-RS的波束赋形加权方式和测量配置可以形成多种测量方案灵活应用于不同的场景中。
本申请实施例的测量方法,通过波束成形权对CSI-RS进行加权并发射,有助于提高测量Rank的准确性,进而提高用户的吞吐量。
作为一个具体的实施方式,以下通过网络设备为用户配置的PDSCH权值方案为波束成形权进行描述。
(1)终端设备成功接入到本申请实施例的技术方案生效的小区,该接入方式包括初始接入、重新接入和切换等。
(2)网络设备为该终端设备配置的PDSCH权值方案为波束成形权(即基于时分双工(Time Division Duplexing,TDD)系统上下行互易性,利用上行信道信息获取下行波束成形的权值方案)。
(3)在该终端设备的SRS全部上报完成后,网络设备计算该用的波束成形权,并用该波束成形权对CSI-RS进行加权并发射,CSI-RS port数由用户支持的最大流数和当前待测量的终端设备的数量决定。
(4)该终端设备进行测量,测量完成后,通过PUCCH或PUSCH随路给网络设备反馈RI和CQI。
(5)网络设备基于该终端设备反馈的RI中指示的Rank值决定该终端设备的Rank,并选择与该Rank值匹配的波束成形权特征向量作为最终的波束成形权,对PDSCH进行加权并发射。
本申请实施例的测量方法,可以保证在中低速场景,信道慢变的场景下,通过保证波束成形权加权后的信道与下行数传信道一致,从而保证CQI和Rank测量的准确性,尤其是Rank的准确性,进而提高响应终端设备的吞吐量。
以上结合图2和图3,详细得描述了本申请实施例的测量方法,下面结合图4至图7,详细描述本申请实施例的终端设备和网络设备。
图4示出了根据本社请实施例的终端设备200的示意性框图,如图4所示,该终端设备200包括:
收发模块210,用于接收网络设备发送的信道状态信息参考信号CSI-RS测量波束,该CSI-RS测量波束由该网络设备通过波束成形权对CSI-RS进行加权获得,该波束成形权用于对该CSI-RS进行波束赋形;
处理模块220,用于根据该CSI-RS测量波束,确定秩指示和信道质量指示;
该收发模块210还用于向该网络设备发送该秩指示和信道质量指示,以便于该网络设备根据该秩指示和信道质量指示,对下行信道进行加权并发射。
可选地,该处理模块220具体用于:
根据该CSI-RS测量波束,确定下行CSI-RS信道矩阵;
该终端设备根据该下行CSI-RS信道矩阵,从第一码本集合中确定第一码本,该第一码本集合包括为分块单位矩阵码本和/或预编码矩阵指示PMI码本;
根据该第一码本,确定该秩指示和信道质量指示。
可选地,该第一码本为对所述下行CSI-RS信道矩阵进行加权获得的信道容量最大的码本。
可选地,该预编码矩阵指示码本包括但不限于3GPP R15协议定义的Type 1码本、Type 1和Type 2结合的码本和3GPP R8定义的其他码本。
可选地,该收发模块210还用于接收该网络设备发送的指示信息,该指示信息用于指示CSI-RS端口数;
该处理模块220还用于根据该指示信息,确定该第一码本集合。
图5示出了根据本申请实施例的网络设备300的示意性框图,如图5所示,该网络设备300包括:
收发模块310,用于向终端设备发送信道状态信息参考信号CSI-RS测量波束,该CSI-RS测量波束由该网络设备通过波束成形权对CSI-RS进行加权获得,该波束成形权用于对该CSI-RS进行波束赋形;
该收发模块310还用于接收该终端设备根据该CSI-RS测量波束确定的秩指示和信道质量指示;
处理模块320,用于根据该秩指示和信道质量指示,对下行信道进行加权并发射。
可选地,该收发模块310还用于向该终端设备发送指示信息,该指示信息用于指示CSI-RS的端口数。
可选地,该处理模块320还用于:根据该终端设备的接收天线数,确定该CSI-RS端 口数;或
根据该终端设备所在小区的负载,确定该CSI-RS端口数;或
根据该网络设备和该终端设备之间的距离,确定该CSI-RS端口数。
可选地,该收发模块310还用于接收该终端设备发送的上行探测参考信号SRS;
该处理模块还用于根据该SRS,确定该波束成形权。
图6是根据本申请实施例的终端设备400的结构示意图。如图6所示,该终端设备400包括处理器401、存储器402、接收器403和发送器404。这些部件之间通信连接。该存储器402用于存储指令,该处理器401用于执行该存储器402存储的指令,并控制该接收器403接收信息以及控制该发送器404发送信息。
其中,该处理器401用于执行该存储器402存储的指令,该处理器401可以用于执行终端设备200中处理模块220相应的操作和/或功能,该接收器403和发送器404可以用于执行终端设备200中收发模块210相应的操作和/或功能,为了简洁,此处不再赘述。
图7是根据本申请实施例的网络设备500的结构示意图。如图7所示,该网络设备500包括处理器501、存储器502、接收器503和发送器504。这些部件之间通信连接。该存储器502用于存储指令,该处理器501用于执行该存储器502存储的指令,并控制该接收器503接收信息以及控制该发送器504发送信息。
其中,该处理器501用于执行该存储器502存储的指令,该处理器501可以用于执行网络设备300中处理模块320相应的操作和/或功能,该接收器503和发送器504可以用于执行网络设备300中收发模块310相应的操作和/或功能,为了简洁,此处不再赘述。
图8示出了根据本申请实施例的通信系统600的示意性框图,如图8所示,该通信系统600包括终端设备610和/或网络设备620,该终端设备610可以是终端设备200或终端设备400,该网络设备620可以是网络设备300或网络设备500
本申请实施例还提供了一种系统芯片,该系统芯片包括输入输出接口、至少一个处理器、至少一个存储器和总线,该至少一个存储器用于存储指令,该至少一个处理器用于调用该至少一个存储器的指令,以进行上述各个方面的方法的操作。
在本申请实施例中,应注意,本申请实施例上述的方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only  Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品可以包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁盘)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (15)

  1. 一种测量方法,其特征在于,包括:
    网络设备向终端设备发送信道状态信息参考信号CSI-RS测量波束,所述CSI-RS测量波束由所述网络设备通过波束成形权对CSI-RS进行加权获得,所述波束成形权用于对所述CSI-RS进行波束赋形;
    所述网络设备接收所述终端设备根据所述CSI-RS测量波束确定的秩指示和信道质量指示;
    所述网络设备根据所述秩指示和信道质量指示,对下行信道进行加权并发射。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于向所述终端设备指示CSI-RS的端口数。
  3. 根据权利要求2所述的方法,其特征在于,所述网络设备向所述终端设备发送指示信息之前,所述方法还包括:
    所述网络设备根据所述终端设备的接收天线数,确定所述CSI-RS端口数;或
    所述网络设备根据所述终端设备所在小区的负载,确定所述CSI-RS端口数;或
    所述网络设备根据所述网络设备和所述终端设备之间的距离,确定所述CSI-RS端口数。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述网络设备向终端设备发送信道状态信息参考信号CSI-RS测量波束之前,所述方法还包括:
    所述网络设备接收所述终端设备发送的上行探测参考信号SRS;
    所述网络设备根据所述SRS,确定所述波束成形权。
  5. 一种测量方法,其特征在于,包括:
    终端设备接收网络设备发送的信道状态信息参考信号CSI-RS测量波束,所述CSI-RS测量波束由所述网络设备通过波束成形权对CSI-RS进行加权获得,所述波束成形权用于对所述CSI-RS进行波束赋形;
    所述终端设备根据所述CSI-RS测量波束,确定秩指示和信道质量指示;
    所述终端设备向所述网络设备发送所述秩指示和信道质量指示,以便于所述网络设备根据所述秩指示和信道质量指示,对下行信道进行加权并发射。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备根据所述CSI-RS测量波束,确定秩指示和信道质量指示,包括:
    所述终端设备根据所述CSI-RS测量波束,确定下行CSI-RS信道矩阵;
    所述终端设备根据所述下行CSI-RS信道矩阵,从第一码本集合中确定第一码本,所述第一码本集合包括分块单位矩阵码本和/或预编码矩阵指示PMI码本;
    所述终端设备根据所述第一码本,确定所述秩指示和信道质量指示。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据所述下行CSI-RS信道矩阵,确定第一码本之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于指示CSI-RS端 口数;
    所述终端设备根据所述CSI-RS端口数,确定所述第一码本集合。
  8. 一种网络设备,其特征在于,包括:
    收发模块,用于向终端设备发送信道状态信息参考信号CSI-RS测量波束,所述CSI-RS测量波束由所述网络设备通过波束成形权对CSI-RS进行加权获得,所述波束成形权用于对所述CSI-RS进行波束赋形;
    所述收发模块还用于接收所述终端设备根据所述CSI-RS测量波束确定的秩指示和信道质量指示;
    处理模块,用于根据所述秩指示和信道质量指示,对下行信道进行加权并发射。
  9. 根据权利要求8所述的网络设备,其特征在于,所述收发模块还用于向所述终端设备发送指示信息,所述指示信息用于向所述终端设备指示CSI-RS的端口数。
  10. 根据权利要求9所述的网络设备,其特征在于,所述处理模块还用于:根据所述终端设备的接收天线数,确定所述CSI-RS端口数;或
    根据所述终端设备所在小区的负载,确定所述CSI-RS端口数;或
    根据所述网络设备和所述终端设备之间的距离,确定所述CSI-RS端口数。
  11. 根据权利要求8至10中任一项所述的网络设备,其特征在于,所述收发模块还用于接收所述终端设备发送的上行探测参考信号SRS;
    所述处理模块还用于根据所述SRS,确定所述波束成形权。
  12. 一种终端设备,其特征在于,包括:
    收发模块,用于接收网络设备发送的信道状态信息参考信号CSI-RS测量波束,所述CSI-RS测量波束由所述网络设备通过波束成形权对CSI-RS进行加权获得,所述波束成形权用于对所述CSI-RS进行波束赋形;
    处理模块,用于根据所述CSI-RS测量波束,确定秩指示和信道质量指示;
    所述收发模块还用于向所述网络设备发送所述秩指示和信道质量指示,以便于所述网络设备根据所述秩指示和信道质量指示,对下行信道进行加权并发射。
  13. 根据权利要求12所述的终端设备,其特征在于,所述处理模块具体用于:
    根据所述CSI-RS测量波束,确定下行CSI-RS信道矩阵;
    所述终端设备根据所述下行CSI-RS信道矩阵,从第一码本集合中确定第一码本,所述第一码本集合包括分块单位矩阵码本和/或预编码矩阵指示PMI码本;
    根据所述第一码本,确定所述秩指示和信道质量指示。
  14. 根据权利要求13所述的终端设备,其特征在于,所述收发模块还用于接收所述网络设备发送的指示信息,所述指示信息用于向所述终端设备指示CSI-RS端口数;
    所述处理模块还用于根据所述指示信息,确定所述第一码本集合。
  15. 一种通信系统,其特征在于,包括:终端设备和/或网络设备,其中,所述终端设备为权利要求8-11中任一项所述的网络设备,所述网络设备为权利要求12-14中任一项所述的终端设备。
PCT/CN2017/104280 2017-09-29 2017-09-29 一种测量方法、网络设备和终端设备 WO2019061260A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17926531.9A EP3675378A4 (en) 2017-09-29 2017-09-29 MEASUREMENT PROCESS, NETWORK DEVICE AND TERMINAL DEVICE
PCT/CN2017/104280 WO2019061260A1 (zh) 2017-09-29 2017-09-29 一种测量方法、网络设备和终端设备
CN201780094943.7A CN111095809A (zh) 2017-09-29 2017-09-29 一种测量方法、网络设备和终端设备
US16/833,190 US11405930B2 (en) 2017-09-29 2020-03-27 Measurement method, network device, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104280 WO2019061260A1 (zh) 2017-09-29 2017-09-29 一种测量方法、网络设备和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/833,190 Continuation US11405930B2 (en) 2017-09-29 2020-03-27 Measurement method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2019061260A1 true WO2019061260A1 (zh) 2019-04-04

Family

ID=65902190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104280 WO2019061260A1 (zh) 2017-09-29 2017-09-29 一种测量方法、网络设备和终端设备

Country Status (4)

Country Link
US (1) US11405930B2 (zh)
EP (1) EP3675378A4 (zh)
CN (1) CN111095809A (zh)
WO (1) WO2019061260A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118035A (zh) * 2019-06-21 2020-12-22 中兴通讯股份有限公司 一种实现波束赋形的方法及装置
CN114788198A (zh) * 2019-12-31 2022-07-22 华为技术有限公司 一种信道信息反馈方法及通信装置
CN114884633A (zh) * 2021-02-05 2022-08-09 大唐移动通信设备有限公司 下行调度处理方法、网络设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923936B2 (en) * 2019-11-22 2024-03-05 Qualcomm Incorporated Methods and apparatus for beam training based on beam configuration information over sidelink
CN115134822A (zh) * 2021-03-24 2022-09-30 华为技术有限公司 一种通信协作方法及装置
CN115379470A (zh) * 2021-05-21 2022-11-22 华为技术有限公司 波束成形方法及相关装置
CN117616702A (zh) * 2021-07-09 2024-02-27 瑞典爱立信有限公司 稳健的端口选择

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247289A (zh) * 2012-02-23 2014-12-24 韩国电子通信研究院 大规模天线系统中的多输入和多输出通信方法
CN106452544A (zh) * 2016-08-31 2017-02-22 上海华为技术有限公司 一种无线通信方法、基站及终端
WO2017078798A1 (en) * 2015-11-03 2017-05-11 Intel Corporation Antenna port multiplexing
CN107210801A (zh) * 2015-02-05 2017-09-26 Lg 电子株式会社 无线通信系统中的csi反馈的方法及其装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9236916B2 (en) * 2012-03-15 2016-01-12 Telefonaktiebolaget Lm Ericsson Node and method for generating beamformed for downlink communications
US20130343299A1 (en) * 2012-06-21 2013-12-26 Samsung Electronics Co., Ltd Method for cqi feedback without spatial feedback (pmi/ri) for tdd coordinated multi-point and carrier aggregation scenarios
US9178583B2 (en) * 2013-01-08 2015-11-03 Samsung Electronics Co., Ltd. Channel state information feedback design in advanced wireless communication systems
CN105207705A (zh) * 2014-06-23 2015-12-30 北京三星通信技术研究有限公司 有源天线系统中的参考信号收发方法及设备
JP6680676B2 (ja) * 2014-07-25 2020-04-15 株式会社Nttドコモ 無線送信局および無線通信ネットワーク
US10476563B2 (en) * 2014-11-06 2019-11-12 Futurewei Technologies, Inc. System and method for beam-formed channel state reference signals
WO2016163843A1 (ko) * 2015-04-10 2016-10-13 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
CN106686620B (zh) * 2015-11-06 2021-06-22 索尼公司 无线通信设备和无线通信方法
CN107204794B (zh) * 2016-03-18 2020-02-21 电信科学技术研究院 一种csi反馈方法及装置
US11522743B2 (en) * 2016-04-27 2022-12-06 Futurewei Technologies, Inc. Sounding reference signal (SRS) design for cellular time division duplex (TDD) mmWave systems
KR102414697B1 (ko) * 2016-07-29 2022-06-29 삼성전자 주식회사 다수의 배열 안테나를 사용하는 이동통신 시스템에서 csi-rs 포트 공유를 위한 기준신호 설정 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247289A (zh) * 2012-02-23 2014-12-24 韩国电子通信研究院 大规模天线系统中的多输入和多输出通信方法
CN107210801A (zh) * 2015-02-05 2017-09-26 Lg 电子株式会社 无线通信系统中的csi反馈的方法及其装置
WO2017078798A1 (en) * 2015-11-03 2017-05-11 Intel Corporation Antenna port multiplexing
CN106452544A (zh) * 2016-08-31 2017-02-22 上海华为技术有限公司 一种无线通信方法、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3675378A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118035A (zh) * 2019-06-21 2020-12-22 中兴通讯股份有限公司 一种实现波束赋形的方法及装置
WO2020253419A1 (zh) * 2019-06-21 2020-12-24 中兴通讯股份有限公司 一种实现波束赋形的方法及装置
CN112118035B (zh) * 2019-06-21 2023-09-26 中兴通讯股份有限公司 一种实现波束赋形的方法及装置
CN114788198A (zh) * 2019-12-31 2022-07-22 华为技术有限公司 一种信道信息反馈方法及通信装置
CN114788198B (zh) * 2019-12-31 2024-03-26 华为技术有限公司 一种信道信息反馈方法及通信装置
CN114884633A (zh) * 2021-02-05 2022-08-09 大唐移动通信设备有限公司 下行调度处理方法、网络设备和存储介质
CN114884633B (zh) * 2021-02-05 2023-11-10 大唐移动通信设备有限公司 下行调度处理方法、网络设备和存储介质

Also Published As

Publication number Publication date
CN111095809A (zh) 2020-05-01
US11405930B2 (en) 2022-08-02
EP3675378A1 (en) 2020-07-01
EP3675378A4 (en) 2020-09-09
US20200229201A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
US10917159B2 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
US11405930B2 (en) Measurement method, network device, and terminal device
EP3588794B1 (en) Method for transmitting channel state information, terminal device and network device
US11101853B2 (en) Method for determining precoding matrix indicator, user equipment, and base station
JP7403459B2 (ja) 測定報告方法、端末装置及びネットワーク装置
US10420090B2 (en) Communication technique using CSI-RS in mobile communication system
JP6052468B2 (ja) プリコーディング行列インジケータを決定するための方法、ユーザ機器、及び、基地局
US11601835B2 (en) Beam detection method and apparatus
WO2017020749A1 (zh) 一种fd mimo系统信道状态信息反馈方法及相关设备
US10291308B2 (en) Channel state information feedback method, device and system
WO2018170691A1 (zh) 上行传输的方法、终端设备和网络设备
US10263673B2 (en) Signal transmission method and device
CN113746573A (zh) 一种信道测量方法及装置
US10149306B2 (en) Methods and apparatus for precoding control in a wireless communication network
JP6583409B2 (ja) 無線通信制御方法、無線通信システム、受信装置および送信装置
WO2016026350A1 (zh) 一种三维信道状态信息确定方法及装置
WO2019137445A1 (zh) 信道状态信息的测量方法和装置
WO2018094709A1 (zh) 一种确定预编码矩阵的方法、装置及系统
CN111835390B (zh) 一种信道测量方法、通信装置及计算机可读介质
WO2018137642A1 (zh) 信道质量信息的上报方法、多用户调度方法及装置
WO2018039860A1 (zh) 信道质量的测量和反馈方法和装置
CN117674928A (zh) 预编码矩阵指示pmi修正方法、装置、电子设备及存储介质
WO2019200595A1 (zh) 通信方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017926531

Country of ref document: EP

Effective date: 20200323

NENP Non-entry into the national phase

Ref country code: DE