WO2017121092A1 - 一种信道估计方法及装置 - Google Patents

一种信道估计方法及装置 Download PDF

Info

Publication number
WO2017121092A1
WO2017121092A1 PCT/CN2016/091958 CN2016091958W WO2017121092A1 WO 2017121092 A1 WO2017121092 A1 WO 2017121092A1 CN 2016091958 W CN2016091958 W CN 2016091958W WO 2017121092 A1 WO2017121092 A1 WO 2017121092A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
end device
array
grouping
receiving end
Prior art date
Application number
PCT/CN2016/091958
Other languages
English (en)
French (fr)
Inventor
吴晔
刘瑾
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017121092A1 publication Critical patent/WO2017121092A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel estimation method and apparatus.
  • the receiving end device in order to achieve spatial multiplexing, the receiving end device, such as a terminal, usually performs CSI (Channel State Information) after receiving a pilot transmitted by a transmitting device such as a base station.
  • the measurement is performed, and the precoding vector is obtained, and then the precoding vector is quantized to obtain a PMI (Precoding matrix indicator) and an RI (Rank indicator) corresponding to the precoding codebook.
  • the end device sends the RMI and the RI to ensure that the sender device obtains the CSI and implements concurrency of the multi-stream data.
  • the receiving end device usually needs to perform eigenvalue decomposition on the channel matrix or the channel autocorrelation matrix, and the complexity of eigenvalue decomposition is approximated to the third power of the number of antenna ports.
  • LTE/LTE-A Long Term Evolution/Long Term Evolution-Advanced, 3GPP Long Term Evolution/3GPP Subsequent Long Term Evolution
  • the number of antennas of the transmitting device is also rapidly increasing. Therefore, using the above method to implement precoding generation often results in a large amount of antenna ports in the transmitting end device, which results in a large amount of calculation of the eigenvalue decomposition process, thereby increasing the complexity of performing the eigenvalue decomposition process, thereby increasing the implementation.
  • the invention titled “Channel Information Feedback Method and Apparatus for Antenna Array” proposes a method of grouping antenna arrays by A technical solution for reducing the computational complexity of the transmitting device. Although this technical solution can effectively solve the complex process of eigenvalue decomposition The problem that the spatial multiplexing is difficult is caused by the high degree of heterogeneity. However, the current process of reporting the packet information of the antenna array is not flexible enough. Therefore, it is also necessary to provide a notification method applied to the antenna array after grouping.
  • the embodiment of the invention provides a channel estimation method and device, which can provide a notification mode applied to an antenna array after grouping.
  • the embodiment of the present invention adopts the following technical solutions:
  • an embodiment of the present invention provides a channel estimation method, including:
  • the transmitting end device receives an antenna packet indication sent by the receiving end device, where the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the sending end device into multiple antenna sub-arrays according to the antenna grouping pattern;
  • the transmitting end device divides the antenna array into the plurality of antenna sub-arrays according to the antenna grouping pattern.
  • the method further includes:
  • the transmitting end device receives channel information that is fed back by the receiving end device according to the channel estimation indication, where the channel information includes subchannel information of each antenna sub-array of the multiple antenna sub-arrays;
  • the transmitting end device calculates channel information corresponding to the antenna array based on channel information fed back by the receiving end device.
  • the method before the sending end device receives the antenna packet indication sent by the receiving end device, the method also includes:
  • the sending end device sends an antenna grouping command to the receiving end device, where the antenna grouping command is used to instruct the receiving end device to send the antenna grouping indication.
  • an embodiment of the present invention provides a channel estimation method, including:
  • the receiving end device determines the antenna grouping pattern
  • the receiving end device sends an antenna grouping indication to the sending end device, where the day
  • the line grouping indication is used to instruct the sending end device to divide the antenna array of the sending end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the method further includes:
  • the receiving end device indicates feedback channel information based on the channel estimation, so that the sending end device calculates channel information corresponding to the antenna array based on the channel information fed back by the receiving end device, and the feedback channel information includes the multiple Subchannel information for each antenna sub-array in the antenna sub-array.
  • the method before the receiving end device determines the antenna grouping pattern, the method further includes:
  • the receiving end device determines the antenna grouping pattern, including:
  • the receiving end device determines the antenna grouping pattern based on the antenna grouping command.
  • an embodiment of the present invention provides a channel estimation apparatus, including:
  • a receiving module configured to receive an antenna group indication sent by the receiving end device, where the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the sending end device into multiple antenna sub-arrays according to the antenna grouping pattern;
  • a processing module configured to divide the antenna array into the plurality of antenna sub-arrays according to the antenna grouping pattern.
  • the device further includes:
  • a sending module configured to send a channel estimation indication to the receiving end device
  • the receiving module is further configured to receive channel information that is sent by the receiving end device according to the channel estimation indication, where the channel information includes subchannel information of each antenna sub-array of the multiple antenna sub-arrays;
  • the processing module is further configured to calculate a channel information based on feedback by the receiving device Calculating channel information corresponding to the antenna array.
  • the sending module is further configured to send, by the sending end device, the receiving end device An antenna grouping command, the antenna grouping command is used to instruct the receiving end device to send the antenna grouping indication.
  • an embodiment of the present invention provides a channel estimation apparatus, including:
  • a processing module configured to determine an antenna grouping pattern
  • a sending module configured to send an antenna grouping indication to the sending end device, where the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the sending end device into multiple antennas according to the antenna grouping pattern Array.
  • the device further includes:
  • a receiving module configured to receive a channel estimation indication sent by the sending end device
  • the sending module is further configured to: according to the channel estimation indication feedback channel information, so that the sending end device calculates channel information corresponding to the antenna array based on the channel information fed back by the receiving end device, where the feedback channel information includes Subchannel information for each of the plurality of antenna sub-arrays.
  • the receiving module is further configured to receive an antenna grouping command sent by the sending end device;
  • the processing module is specifically configured to determine the antenna grouping pattern based on the antenna grouping command.
  • a receiving end device determines an antenna grouping pattern, and sends an antenna grouping indication to a transmitting end device, and the transmitting end device receives an antenna grouping indication sent by the receiving end device, and according to the antenna
  • the grouping pattern divides the antenna array into a plurality of antenna sub-arrays.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the transmitting end device determines the CSI by acquiring the PMI and RI corresponding to the precoding used by the receiving end device to indicate all antenna ports.
  • the invention may divide the antenna port into a plurality of antenna sub-arrays by grouping the antenna ports constituting the antenna array, so that the receiving end device generates precoding for each antenna sub-array, and feeds back each antenna to the transmitting end device.
  • the PMI and the RI corresponding to the precoding of the sub-array, and then the CSI corresponding to each antenna sub-array is determined after the transmitting end device receives the PMI and RI corresponding to each antenna sub-array, thereby obtaining the CSI corresponding to all the antenna sub-arrays.
  • the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem that the spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process is provided.
  • a notification method applied to the antenna array is provided, so that the grouping information of the antenna array is reported in the process. More flexible.
  • FIG. 1 is a flowchart of a channel estimation method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an antenna array grouping according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another antenna array grouping according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an antenna array according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another antenna array grouping according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of performance of an antenna port in a case of grouping and not grouping according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of another channel estimation method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another channel estimation method according to an embodiment of the present invention.
  • FIG. 9 is a signaling interaction diagram of a channel estimation method according to an embodiment of the present invention.
  • FIG. 10 is a signaling interaction of another channel estimation method according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of another channel estimation method according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of another channel estimation method according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of another channel estimation method according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a channel estimation apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another channel estimation apparatus according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a device at a transmitting end according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a receiving end device according to an embodiment of the present invention.
  • the embodiment of the present invention can be applied to a network communication system in which a transmitting end device such as a base station and the like, and a receiving end device such as a terminal.
  • the sending end device may send the downlink signaling to the terminal to trigger the receiving end device to periodically or aperiodically transmit the antenna grouping indication to the sending end device, where the antenna grouping indication may carry the antenna grouping pattern identifier, and the antenna grouping
  • the group pattern identifier may specifically include a GN (Antenna Port Grouping Number) + GPI (Antenna Port Grouping Pattern Index).
  • the sub-channel information of each sub-array is sent by the receiving end device to the transmitting end device, so that the transmitting device obtains the CSI and according to the CSI.
  • Spatial multiplexing is implemented, wherein the subchannel information may specifically carry PMI and RI.
  • An embodiment of the present invention provides a channel estimation method. As shown in FIG. 1 , the method is performed by a source device, where the method includes:
  • the sending end device receives an antenna grouping indication sent by the receiving end device.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the antenna grouping indication may specifically carry an antenna grouping pattern identifier, and the antenna grouping pattern identifier may specifically include a GN+GPI, wherein the GN is an antenna array corresponding to the antenna grouping pattern and is divided into the number of antenna sub-arrays, and the antenna The array is composed of a plurality of antenna ports.
  • GN may be represented by P, and P is usually an integer greater than or equal to 2.
  • the GPI sent by the receiving end device to the sending end device may be specifically X. Wherein Q is usually an integer equal to or greater than 0, and X is any one of 0 to Q-1. That is to say, the receiving end device feeds back the specific values of the GN and the GPI to the transmitting end device by feeding back the P+X to the transmitting end device, that is, feeding back the antenna grouping pattern identifier to the transmitting end device.
  • the sending end device may preset the grouping mode, that is, in the implementation manner of the embodiment of the present invention, in order to ensure that the transmitting end device can determine the grouping of the antenna ports of the antenna array according to the GN+GPI fed back by the receiving device.
  • the specific grouping manner of the antenna port is preset.
  • the packet mode includes the correspondence between all antenna sub-arrays and antenna ports, and the number of all antenna sub-arrays is the same as GN.
  • the antenna ports of 64 unsorted source devices are labeled with numbers 0 to 63, respectively.
  • the packet mode corresponding to the antenna port is not limited to the above manner, and the specific packet mode is not specifically limited in the embodiment of the present invention.
  • the number of antenna ports included in each antenna sub-array may be the same, partially different, or completely. different.
  • the packet mode of the antenna port that is, the manner in which the antenna array formed by the antenna port is divided into the antenna sub-array, is transparent to the receiving device, that is, the receiving device does not need to care about the antenna array and the antenna sub-array. Contains specific relationships between them. In order to ensure that the CSI acquired by the transmitting device is accurate, it should be ensured that there is no repeated antenna element between the antenna sub-arrays, and after the antenna array is divided into multiple antenna sub-arrays, there should be no undivided antenna elements. Among them, each antenna array can be composed of two antennas.
  • the GPI can also be preset by the transmitting device. Therefore, in order to simplify the process of acquiring the CSI, in general, each antenna is provided. The number of antenna ports in the array is the same.
  • the GN+GPI can be fed back to the sending device at the same time, or carried in different uplink signaling, and fed back to the transmitting device at different times. If the receiving device only feeds back the GPI to the transmitting device, the transmitting device may determine the grouping of the antenna port according to the last received GN and the GPI that is received by the receiving device, thereby determining that the receiving device should The number of reported subchannel information, that is, the number of PMI+RIs that the receiving device needs to report.
  • the GN+GPI can correspond not only to all antenna ports but also to some antenna ports. That is, the antenna port The grouping process is only implemented for the antenna ports that are used, and is not grouped for antenna ports that are not used.
  • the transmitting device divides the antenna array into multiple antenna sub-arrays according to the antenna grouping pattern.
  • one antenna port corresponds to at least one physical antenna.
  • one antenna port is directly connected to one antenna array.
  • one antenna port and at least two antenna elements pass through a TXRU (Tranceiver Unit). Indirect connection, wherein the physical antenna corresponds to the antenna array one-to-one.
  • TXRU Transmissioniver Unit
  • the antenna array composed of antenna ports can be divided into four antenna sub-arrays, namely antenna sub-array 1, antenna sub-array 2, antenna sub-array 3, and antenna sub-array.
  • Array 4 CSI-RS (Channel State Information-Reference Signal) port, that is, an antenna port.
  • the antenna sub-array 1 corresponds to a CSI-RS port 0, a CSI-RS port 1, a CSI-RS port 8, and a CSI-RS port 9, and the antenna sub-array 2 corresponds to a CSI-RS port 2, a CSI-RS port 3, and a CSI-RS port.
  • antenna sub-array 3 corresponds to CSI-RS port 4, CSI-RS port 5, CSI-RS port 12 and CSI-RS port 13, and antenna sub-array 4 corresponds to CSI-RS port 6, CSI- RS port 7, CSI-RS port 14 and CSI-RS port 15.
  • each TXRU and the antenna array sub-array have independent mapping relationship between the TXRU and the CSI-RS port, each TXRU corresponds to a different antenna element, that is, each antenna sub-array corresponds to a different antenna. A while.
  • FIG. 6 it is a schematic diagram of the performance of the antenna port in the case of grouping and non-grouping.
  • the horizontal axis is used to indicate SNR (Signal Noise Ratio), and the vertical axis is used to indicate SER (Symbol Error Rate).
  • SNR Signal Noise Ratio
  • SER Symbol Error Rate
  • the antenna port constituting the antenna array is divided into four antenna sub-arrays, and each antenna sub-array includes 16 antenna ports, and the terminal calculation complexity is 4 ⁇ 16 3 . That is, 1/6 of the complexity of the calculation using the prior art method, the reduction of the SVD complexity is likely to reduce the complexity of the entire receiving device in the calculation process by 5%.
  • the transmitting end device receives the antenna grouping indication sent by the receiving end device, and divides the antenna array into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the transmitting end device determines the CSI by acquiring the PMI and the RI corresponding to the precoding used to represent all the antenna ports generated by the receiving end device, and the present invention may adopt the grouping of the antenna ports constituting the antenna array.
  • the antenna port is divided into a plurality of antenna sub-arrays, so that the receiving end device generates precoding for each antenna sub-array, and feeds back the PMI and RI corresponding to the pre-coding of each antenna sub-array to the transmitting device, and then When the transmitting device receives the PMI and RI corresponding to each antenna sub-array, the CSI corresponding to each antenna sub-array is determined, thereby obtaining CSI corresponding to all antenna sub-arrays. Moreover, in the process of precoding generation, the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem that the spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process is provided.
  • a notification method applied to the antenna array is provided, so that the grouping information of the antenna array is reported in the process. More flexible.
  • the sending end device may trigger the receiving end device to send the channel estimation indication to the receiving end device, in order to ensure that the transmitting end device can successfully obtain the subchannel information of each antenna sub-array.
  • the transmitting device feeds back information information including subchannel information of each antenna sub-array. Therefore, as shown in FIG. 7, the method further includes steps 103 to 105:
  • the sending end device sends a channel estimation indication to the receiving end device.
  • the sending end device receives a channel that is received by the receiving end device according to the channel estimation indication feedback. information.
  • the channel information includes subchannel information of each of the plurality of antenna sub-arrays, and the subchannel information may specifically be PMI and RI.
  • the transmitting end device may determine the CSI corresponding to each antenna sub-array according to the PMI and the RI corresponding to all the antenna sub-arrays, so that the transmitting end device performs spatial multiplexing according to the CSI corresponding to all the antenna sub-arrays.
  • the PMI and the RI can play a certain role after determining the GN and the GPI, the PMI and the RI can be fed back to the transmitting end by using the same uplink signaling with the GN and the GPI, that is, the uplink signaling is not only Carrying the antenna packet pattern, and carrying the channel estimation indication, or after the terminal first feeds back the GN and the GPI to the transmitting end, the terminal then feeds back the PMI and RI corresponding to all the antenna sub-arrays to the transmitting end, that is, One uplink signaling carries an antenna packet pattern, and another uplink signaling carries a channel estimation indication, and the two uplink signalings are separately sent to the transmitting device, so that the transmitting device obtains the antenna grouping map. Sample and channel estimation indication.
  • the sending end device calculates channel information corresponding to the antenna array based on the channel information fed back by the receiving end device.
  • the application date is May 29, 2015, and the international application number is “PCT/CN2015/079290”.
  • the invention titled “Channel Information Feedback Method and Apparatus for Antenna Array” proposes a method of grouping antenna arrays to reduce transmission.
  • the technical solution of the computational complexity of the end device A specific method for calculating the channel information corresponding to the antenna array based on the channel information fed back by the receiving device is proposed.
  • the channel information of the N ⁇ M subchannels between the antenna array of the first network device and the antenna array of the second network device includes RI and PMI, or is precoded.
  • the second network device may obtain channel information of the N ⁇ M subchannels in response to a reference signal (RS) from the first network device, or may acquire channel information of the N ⁇ M subchannels according to channel reciprocity.
  • RS reference signal
  • the first network device may be a transmitting device
  • the second network device may be a receiving device.
  • the channel between the first network device and the second network device may be grouped according to the predetermined sub-array configuration information to obtain K subchannels:
  • H (H 1 ,H 2 ,...,H k ,...H K )
  • H k dimension is L ⁇ M k
  • M k is the number of antenna ports of the kth antenna group.
  • the RI k and PMI k of the K subchannels are obtained from the autocorrelation matrix of the channel matrix of the K subchannels.
  • the steps of obtaining the RI and the PMI of the K subchannels include:
  • the second network device acquires an autocorrelation matrix of the K subchannels according to the K subchannels
  • Eigenvalue decomposition (EVD) or singular value decomposition is performed on the autocorrelation matrix corresponding to the K subchannels to obtain the corresponding precoding U k .
  • the second network device may feed back the K subchannels corresponding precoding U k to the first network device.
  • the codebook corresponding to U k is quantized, and RI k and PMI k of the K subchannels are respectively obtained and fed back to the first network device.
  • the dimension of each codeword in the precoding codebook used by the first network device and the second network device is Mk ⁇ r, where Mk is the number of antenna ports of the kth antenna group, and r is the number of streams.
  • the first network device generates an antenna array of the first network device according to channel information of the N ⁇ M subchannels between the antenna array of the first network device from the second network device and the antenna array of the second network device, and the Channel information of a channel between antenna arrays of the second network device.
  • the first network device obtains the antenna array of the first network device and the second network device according to the precoding U k of the K subchannels.
  • the precoding U of the channel between the antenna arrays is obtained according to the following expression:
  • the first network device quantizes the precoding U to obtain the RI and PMI of the channel between the antenna array of the first network device and the antenna array of the second network device.
  • the rank indicator RI k of the K subchannels is combined with the precoding indication PMI k , or through the capacity.
  • the maximization algorithm, or other algorithm obtains the RI and PMI of the channel between the antenna array of the first network device and the antenna array of the second network device.
  • a transmitting end device sends a channel estimation indication to a receiving end device, and receives channel information that is received by the receiving end device based on the channel estimation indication, and then calculates an antenna array based on the channel information fed back by the receiving end device. Corresponding channel information.
  • the channel information based on the channel estimation indication feedback includes subchannel information of each of the plurality of antenna sub-arrays.
  • the transmitting end device determines the CSI by acquiring the PMI and the RI corresponding to the precoding used to represent all the antenna ports generated by the receiving end device, and the present invention may adopt the grouping of the antenna ports constituting the antenna array.
  • the antenna port is divided into a plurality of antenna sub-arrays, so that the receiving end device generates precoding for each antenna sub-array, and feeds back the PMI and RI corresponding to the pre-coding of each antenna sub-array to the transmitting device, and then When the transmitting device receives the PMI and RI corresponding to each antenna sub-array, the CSI corresponding to each antenna sub-array is determined, thereby obtaining CSI corresponding to all antenna sub-arrays. Moreover, in the process of precoding generation, the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem that the spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process is provided.
  • a notification method applied to the antenna array is provided, so that the grouping information of the antenna array is reported in the process. More flexible.
  • the sending end device may trigger the receiving end device to feed back to the sending end device by sending a channel estimation indication to the receiving end device, including Information information of the subchannel information of each antenna sub-array, so that the transmitting end device calculates the channel information corresponding to the antenna array based on the channel information fed back by the receiving end device.
  • the sending end device may trigger the receiving end device to feed back the antenna grouping indication to the sending end device by sending an antenna grouping command to the receiving end device.
  • the sending end device receives the antenna packet indication sent by the receiving end device, and may perform step 106:
  • the sending end device sends an antenna grouping command to the receiving end device.
  • the antenna grouping command is used to instruct the receiving end device to send an antenna grouping indication.
  • the antenna grouping command may also carry the first feedback period and The second feedback period is such that the receiving device feeds back the antenna grouping command to the transmitting device according to the feedback period, and is confident to the information.
  • the first feedback period is a feedback period of the GN
  • the second feedback period is a feedback period of the GPI
  • the first feedback period and the second feedback period may be the same or different. It should be noted that the first feedback period and the second feedback period may be fixed parameters that are preset in advance, or may be variable parameters that are set according to requirements of the source device for acquiring GN and GPI.
  • Feedback antenna grouping commands for GN and GPI It should be noted that, in this case, the antenna packet command sent by the source device does not carry the first feedback period and the second feedback period.
  • the transmitting end device receives When the GPI fed back by the receiving device can be received according to the GN that is received by the receiving device and the device that is sent by the current transmitting device The GPI fed back to the receiving device determines the grouping of the current antenna array.
  • the receiving end device can simultaneously feed the GN and the GPI to the transmitting end device by using the same uplink signaling that carries the antenna packet indication according to the feedback period, as shown in FIG. 10 .
  • the receiving end device may separately feed the GN and the GPI to the transmitting end device at different times by using different uplink signaling that respectively carry the partial antenna grouping indication.
  • the type of the downlink signaling that is sent by the transmitting device to the receiving device and that carries the antenna packet command is not limited to at least one of UE specific signaling, UE group specific signaling, and cell specific signaling. It is an antenna grouping command that carries the GN and GPI that triggers the receiving end device to send to the transmitting end device.
  • the transmitting end device sends an antenna grouping command to the receiving end device, and then the transmitting end device receives the antenna grouping indication sent by the receiving end device, and divides the antenna array into the antenna grouping according to the antenna grouping pattern. Multiple antenna sub-arrays.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the transmitting end device determines the CSI by acquiring the PMI and the RI corresponding to the precoding used to represent all the antenna ports generated by the receiving end device, and the present invention may adopt the grouping of the antenna ports constituting the antenna array.
  • the antenna port is divided into a plurality of antenna sub-arrays, so that the receiving end device generates precoding for each antenna sub-array, and feeds back the PMI and RI corresponding to the pre-coding of each antenna sub-array to the transmitting device, and then When the transmitting device receives the PMI and RI corresponding to each antenna sub-array, the CSI corresponding to each antenna sub-array is determined, thereby obtaining CSI corresponding to all antenna sub-arrays. Moreover, in the process of precoding generation, the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem of achieving spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process, and a notification method applied to the antenna array after packet grouping is provided, so that the grouping information of the antenna array is More flexible in the reporting process.
  • the sending end device may trigger the receiving end device to feed back the antenna grouping indication to the sending end device by sending an antenna grouping command to the receiving end device.
  • An embodiment of the present invention provides a channel estimation method. As shown in FIG. 11, the method is performed by a receiving device, and the method includes:
  • the receiving end device determines an antenna grouping pattern.
  • the number of packets of the antenna port not only affects the computational complexity of the precoding process of the receiving device, but also affects the performance of the data transmission process between the transmitting device and the receiving device, that is, the error in the communication process.
  • the code rate therefore, the antenna packet pattern can be determined based on actual needs in the current communication process. It should be noted that the more the number of packets that are divided into the antenna ports of the antenna array, the higher the error rate in the communication process, but this greatly reduces the complexity of the calculation by the receiving device.
  • the manner of determining the antenna grouping pattern is not specifically limited.
  • the receiving end device sends an antenna grouping indication to the sending end device.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the downlink signaling can carry not only the antenna packet indication but also the feedback mode, in order to ensure that the GN and the GPI fed back by the receiving device to the transmitting device can meet the requirements of the transmitting device.
  • the feedback mode may include a bandwidth mode or a subband mode.
  • the receiving end device may determine whether to use the bandwidth mode for GN and GPI feedback according to the feedback mode carried in the downlink signaling, or use the subband mode to perform GN and GPI feedback.
  • the use of the bandwidth mode for GN and GPI feedback can effectively reduce the data content carried by the uplink signaling and reduce the resources consumed in the signaling interaction process.
  • the GN and GPI feedback can be improved by using the subband mode for GN and GPI feedback.
  • the accuracy of the GPI is more accurate in feeding back the GN and GPI to the transmitting end.
  • the sending end device may determine, according to the current CSI requirement that the receiving end device, feeds back uplink signaling to the transmitting end according to the bandwidth mode or the subband mode. That is, carrying in the downlink signaling sent by the sending end device to the receiving end device With the information used to indicate the feedback mode, as shown in Table 1, the different meanings of the fields indicating the feedback mode in the downlink signaling are indicated under different bits.
  • the meaning expressed when the field is 00, the meaning expressed is N/A (Not Applicable, not applicable); when the field is 01, the meaning expressed is Feedback mode 1 (feedback mode 1); When this field is 01, the meaning expressed is Feedback mode 2 (Feedback Mode 2).
  • the feedback mode 1 may be a bandwidth mode
  • the feedback mode 2 may be a sub-band mode, as shown in Table 2.
  • the receiving end device determines the antenna grouping pattern, and sends an antenna grouping indication to the transmitting end device, so that the sending end device receives the antenna grouping indication sent by the receiving end device, and according to the antenna.
  • the grouping pattern divides the antenna array into a plurality of antenna sub-arrays.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the transmitting end device determines the CSI by acquiring the PMI and the RI corresponding to the precoding used to represent all the antenna ports generated by the receiving end device, and the present invention may adopt the grouping of the antenna ports constituting the antenna array.
  • the antenna port is divided into a plurality of antenna sub-arrays, so that the receiving end device generates precoding for each antenna sub-array, and feeds back to the transmitting device, the pre-coding of each antenna sub-array.
  • the corresponding PMI and RI after the transmitting device receives the PMI and RI corresponding to each antenna sub-array, determines the CSI corresponding to each antenna sub-array, thereby obtaining the CSI corresponding to all the antenna sub-arrays.
  • the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem that the spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process is provided.
  • a notification method applied to the antenna array is provided, so that the grouping information of the antenna array is reported in the process. More flexible.
  • the receiving end device may receive the channel estimation indication sent by the sending end device to the sending end device, in order to ensure that the transmitting end device can successfully obtain the subchannel information of each antenna sub-array.
  • the feedback includes information information of subchannel information of each antenna sub-array. Therefore, as shown in FIG. 12, the method may further include steps 203 and 204:
  • the receiving end device receives a channel estimation indication sent by the sending end device.
  • the receiving end device returns the channel information according to the channel estimation indication, so that the sending end device calculates the channel information corresponding to the antenna array based on the channel information fed back by the receiving end device.
  • the channel information includes subchannel information of each of the plurality of antenna sub-arrays.
  • the receiving end device receives the channel estimation indication sent by the sending end device, and returns the channel information based on the channel estimation indication, so that the transmitting end device calculates the antenna array based on the channel information fed back by the receiving end device.
  • the channel information includes subchannel information of each of the plurality of antenna sub-arrays.
  • the transmitting end device determines the CSI by acquiring the PMI and the RI corresponding to the precoding used to represent all the antenna ports generated by the receiving end device, and the present invention may adopt the grouping of the antenna ports constituting the antenna array.
  • the antenna port is divided into a plurality of antenna sub-arrays, so that the receiving end device generates precoding for each antenna sub-array, and feeds back each antenna sub-array to the transmitting device.
  • the PMI and the RI corresponding to the precoding, and then the CSI corresponding to each antenna sub-array is determined after the transmitting device receives the PMI and RI corresponding to each antenna sub-array, thereby obtaining the CSI corresponding to all the antenna sub-arrays.
  • the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem of achieving spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process. It should be noted that, by receiving the channel estimation indication sent by the sending end device, the receiving end device may feed back information information of the subchannel information including each antenna sub-array to the transmitting end device, so that the transmitting end device feedbacks based on the receiving end device.
  • the channel information calculates channel information corresponding to the antenna array.
  • the receiving device may determine, according to the antenna grouping command sent by the sending device, that the receiving device needs to send the antenna packet to the transmitting device. Antenna grouping pattern. Therefore, on the basis of the implementation shown in FIG. 11, the implementation may be implemented as shown in FIG. 13, and before the step 201 determines that the antenna grouping pattern is determined by the receiving end device, step 205 may be performed, and Step 201 can be specifically performed as step 2011:
  • the receiving end device receives an antenna grouping command sent by the sending end device.
  • the receiving device determines the antenna grouping pattern based on the antenna grouping command.
  • the antenna array of the transmitting device may include M sub-arrays
  • the antenna array of the receiving device may include N sub-arrays
  • the channel between the antenna array of the transmitting device and the antenna array of the receiving device includes N.
  • M subchannels, M and N are positive integers and are not equal to 1
  • M subarrays and N subarrays include at least two antennas.
  • the transmitting end device receives the channel information of the N ⁇ M subchannels sent by the receiving end device, and generates, according to the channel information of the N ⁇ M subchannels from the receiving end device, between the antenna array of the transmitting end device and the antenna array of the receiving end device. Channel information of the channel.
  • the channel information of the N ⁇ M subchannels may include the RI and the PMI, and each of the N ⁇ M subchannels corresponds to one subchannel matrix, and the N ⁇ M subchannels.
  • the channel information is obtained by acquiring an autocorrelation matrix of the subchannel matrix corresponding to the N ⁇ M subchannels, and then obtaining the RI and the PMI of the N ⁇ M subchannels according to the autocorrelation matrix of the channel matrix of the N ⁇ M subchannels.
  • the channel information of the N ⁇ M subchannels may further include precoding, and each of the N ⁇ M subchannels corresponds to one subchannel matrix, and the channel information of the N ⁇ M subchannels is obtained as follows: acquiring N ⁇ M subchannels An autocorrelation matrix of the corresponding subchannel matrix, and then precoding of N ⁇ M subchannels is obtained according to an autocorrelation matrix of a channel matrix of N ⁇ M subchannels.
  • the transmitting device may further send the sub-array configuration information to the receiving device, where the sub-array configuration information is used to divide the antenna array of the transmitting device into M sub-arrays, where M is greater than or equal to 2. A positive integer.
  • the sub-array configuration information includes at least one pattern, and the M sub-arrays are determined according to at least one pattern; the sub-array configuration information may include a starting port number of each sub-array, and each sub-array of the M sub-arrays is based on the starting port.
  • the number determination may be performed by the physical downlink common control channel PDCCH, the radio link layer control protocol RLC signaling, or the physical broadcast channel PBCH.
  • a receiving end device receives an antenna grouping command sent by a transmitting end device, determines an antenna grouping pattern based on an antenna grouping command, and then sends an antenna grouping indication to the transmitting end device, so as to be sent.
  • the end device receives the antenna packet indication sent by the receiving end device, and divides the antenna array into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the transmitting end device determines the CSI by acquiring the PMI and the RI corresponding to the precoding used to represent all the antenna ports generated by the receiving end device, and the present invention may adopt the grouping of the antenna ports constituting the antenna array.
  • the antenna port is divided into a plurality of antenna sub-arrays, so that the receiving end device generates precoding for each antenna sub-array, and feeds back the PMI and RI corresponding to the pre-coding of each antenna sub-array to the transmitting device, and then When the transmitting device receives the PMI and RI corresponding to each antenna sub-array, determines the CSI corresponding to each antenna sub-array, thereby obtaining all antenna sub-arrays. Corresponding CSI.
  • the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem that the spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process is provided.
  • a notification method applied to the antenna array is provided, so that the grouping information of the antenna array is reported in the process. More flexible.
  • the receiving end device may determine an antenna grouping pattern that needs to be sent to the sending end device according to an antenna grouping command sent by the sending end device.
  • the embodiment of the present invention provides a channel estimation apparatus 30. As shown in FIG. 14, the apparatus 30 is configured to perform the method flow shown in FIG. 1, FIG. 7, or FIG.
  • the receiving module 31 is configured to receive an antenna grouping indication sent by the receiving end device, where the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the sending end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the processing module 32 is configured to divide the antenna array into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the device 30 further includes:
  • the sending module 33 is configured to send a channel estimation indication to the receiving end device.
  • the receiving module 31 is further configured to receive channel information that is received by the receiving end device based on the channel estimation indication, where the channel information includes subchannel information of each of the plurality of antenna sub-arrays.
  • the processing module 32 is further configured to calculate channel information corresponding to the antenna array based on the channel information fed back by the receiving device.
  • the sending module 33 is further configured to send, by the sending end device, an antenna grouping command to the receiving end device, where the antenna grouping command is used to instruct the receiving end device to send an antenna grouping indication.
  • a transmitting end device receives an antenna grouping indication sent by a receiving end device, and divides the antenna array according to an antenna grouping pattern. It is a multiple antenna sub-array.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the transmitting end device determines the CSI by acquiring the PMI and the RI corresponding to the precoding used to represent all the antenna ports generated by the receiving end device, and the present invention may adopt the grouping of the antenna ports constituting the antenna array.
  • the antenna port is divided into a plurality of antenna sub-arrays, so that the receiving end device generates precoding for each antenna sub-array, and feeds back the PMI and RI corresponding to the pre-coding of each antenna sub-array to the transmitting device, and then When the transmitting device receives the PMI and RI corresponding to each antenna sub-array, the CSI corresponding to each antenna sub-array is determined, thereby obtaining CSI corresponding to all antenna sub-arrays. Moreover, in the process of precoding generation, the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem that the spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process is provided.
  • a notification method applied to the antenna array is provided, so that the grouping information of the antenna array is reported in the process. More flexible.
  • the embodiment of the present invention provides a channel estimation apparatus 40. As shown in FIG. 15, the apparatus 40 is configured to perform the method flow shown in any one of FIGS. 11 to 13.
  • the apparatus 40 includes:
  • the processing module 41 is configured to determine an antenna grouping pattern.
  • the sending module 42 is configured to send an antenna grouping indication to the sending end device, where the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the sending end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the device 40 further includes:
  • the receiving module 43 is configured to receive a channel estimation indication sent by the sending end device.
  • the sending module 42 is further configured to: according to the channel estimation indication feedback channel information, so that the sending end device calculates the channel information corresponding to the antenna array based on the channel information fed back by the receiving end device, where the feedback channel information includes each antenna of the multiple antenna sub-arrays Subchannel information for the subarray.
  • the receiving module 43 is further configured to receive an antenna grouping command sent by the sending end device.
  • the processing module 41 is specifically configured to determine an antenna grouping pattern based on the antenna grouping command.
  • the receiving end device determines an antenna grouping pattern, and sends an antenna grouping indication to the transmitting end device, so that the transmitting end device receives the antenna grouping indication sent by the receiving end device, and according to the antenna.
  • the grouping pattern divides the antenna array into a plurality of antenna sub-arrays.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the transmitting end device determines the CSI by acquiring the PMI and the RI corresponding to the precoding used to represent all the antenna ports generated by the receiving end device, and the present invention may adopt the grouping of the antenna ports constituting the antenna array.
  • the antenna port is divided into a plurality of antenna sub-arrays, so that the receiving end device generates precoding for each antenna sub-array, and feeds back the PMI and RI corresponding to the pre-coding of each antenna sub-array to the transmitting device, and then When the transmitting device receives the PMI and RI corresponding to each antenna sub-array, the CSI corresponding to each antenna sub-array is determined, thereby obtaining CSI corresponding to all antenna sub-arrays.
  • the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem that the spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process is provided.
  • a notification method applied to the antenna array is provided, so that the grouping information of the antenna array is reported in the process. More flexible.
  • the embodiment of the present invention provides a transmitting end device 50.
  • the transmitting end device 50 is configured to execute the method flow shown in FIG. 1, FIG. 7, or FIG.
  • the source device 50 includes a processor 51 and an interface circuit 52, which also shows a memory 53 and a bus 54, which are connected by a bus 54 and perform communication with each other.
  • the processor 51 herein may be a processing component or a collective name of multiple processing components.
  • the processing element can be a central processor (Central Processing Unit, CPU), may also be an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention, such as one or more microprocessors (digital singnal processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSP digital singnal processor
  • FPGAs Field Programmable Gate Arrays
  • the memory 53 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the operation of the access network management device. And the memory 53 may include random access memory (RAM), and may also include non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • RAM random access memory
  • non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • the bus 54 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus 54 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 16, but it does not mean that there is only one bus or one type of bus.
  • the transmitting device 50 may further include input and output means connected to the bus 54 for connection to other portions such as the processor 51 via the bus 54.
  • the processor 51 calls the program code in the memory 53 for performing the operations performed by the source device 50 in the above method embodiment.
  • the processor 51 calls the program code in the memory 53 for performing the operations performed by the source device 50 in the above method embodiment.
  • the program code include:
  • the interface circuit 52 is configured to receive an antenna group indication sent by the receiving end device, where the antenna grouping indication is used to instruct the transmitting end device to divide the antenna array of the sending end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the processor 51 is configured to divide the antenna array into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the interface circuit 52 is further configured to send a channel estimation indication to the receiving end device.
  • the interface circuit 52 is further configured to receive channel information that is received by the receiving end device based on the channel estimation indication, where the channel information includes a sub-letter of each of the plurality of antenna sub-arrays Road information.
  • the processor 51 is further configured to calculate channel information corresponding to the antenna array based on channel information fed back by the receiving device.
  • the interface circuit 52 before the interface circuit 52 receives the antenna packet indication sent by the receiving device, the interface circuit 52 is further configured to send an antenna grouping command to the receiving device, where the antenna grouping command is used to indicate the receiving end.
  • the device sends an antenna packet indication.
  • the embodiment of the present invention provides a transmitting end device, where the transmitting end device receives an antenna grouping indication sent by the receiving end device, and divides the antenna array into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the transmitting end device determines the CSI by acquiring the PMI and the RI corresponding to the precoding used to represent all the antenna ports generated by the receiving end device, and the present invention may adopt the grouping of the antenna ports constituting the antenna array.
  • the antenna port is divided into a plurality of antenna sub-arrays, so that the receiving end device generates precoding for each antenna sub-array, and feeds back the PMI and RI corresponding to the pre-coding of each antenna sub-array to the transmitting device, and then When the transmitting device receives the PMI and RI corresponding to each antenna sub-array, the CSI corresponding to each antenna sub-array is determined, thereby obtaining CSI corresponding to all antenna sub-arrays. Moreover, in the process of precoding generation, the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem that the spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process is provided.
  • a notification method applied to the antenna array is provided, so that the grouping information of the antenna array is reported in the process. More flexible.
  • the embodiment of the present invention provides a receiving end device 60. As shown in FIG. 17, the receiving end device 60 is configured to perform the method flow shown in any one of FIG. 11 to FIG.
  • the receiving end device 60 includes a processor 61 and an interface circuit 62, which also shows a memory 63 and a bus 64.
  • the processor 61, the interface circuit 62 and the memory 63 pass The bus 64 connects and completes communication with each other.
  • the processor 61 herein may be a processing component or a general term of multiple processing components.
  • the processing component may be a Central Processing Unit (CPU), an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 63 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the operation of the access network management device. And the memory 63 may include random access memory (RAM), and may also include non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • RAM random access memory
  • the bus 64 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus 64 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 17, but it does not mean that there is only one bus or one type of bus.
  • the receiving device 60 may also include input and output devices coupled to the bus 64 for connection to other portions, such as the processor 61, via the bus 64.
  • the processor 61 calls the program code in the memory 63 for performing the operations performed by the receiving device 60 in the above method embodiment.
  • the processor 61 calls the program code in the memory 63 for performing the operations performed by the receiving device 60 in the above method embodiment. For example, include:
  • the processor 61 is configured to determine an antenna grouping pattern.
  • the interface circuit 62 is configured to send an antenna group indication to the sending end device, where the antenna grouping indication is used to instruct the transmitting end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the interface circuit 62 is further configured to receive a channel estimation indication sent by the sending end device.
  • the processor 61 is further configured to: according to the channel estimation indication feedback channel information, so that the sending end device calculates the channel information corresponding to the antenna array based on the channel information fed back by the receiving end device, where the feedback channel information includes each antenna of the multiple antenna sub-arrays Subchannel information for the subarray.
  • the interface circuit 62 is further configured to receive an antenna grouping command sent by the sending end device, before the receiving end device determines the antenna grouping pattern.
  • the processor 61 is specifically configured to determine an antenna grouping pattern based on the antenna grouping command.
  • a receiving end device provided by the embodiment of the present invention, the receiving end device determines an antenna grouping pattern, and sends an antenna grouping indication to the transmitting end device, so that the sending end device receives the antenna grouping indication sent by the receiving end device, and according to the antenna.
  • the grouping pattern divides the antenna array into a plurality of antenna sub-arrays.
  • the antenna grouping indication is used to instruct the sending end device to divide the antenna array of the transmitting end device into multiple antenna sub-arrays according to the antenna grouping pattern.
  • the transmitting end device determines the CSI by acquiring the PMI and the RI corresponding to the precoding used to represent all the antenna ports generated by the receiving end device, and the present invention may adopt the grouping of the antenna ports constituting the antenna array.
  • the antenna port is divided into a plurality of antenna sub-arrays, so that the receiving end device generates precoding for each antenna sub-array, and feeds back the PMI and RI corresponding to the pre-coding of each antenna sub-array to the transmitting device, and then When the transmitting device receives the PMI and RI corresponding to each antenna sub-array, the CSI corresponding to each antenna sub-array is determined, thereby obtaining CSI corresponding to all antenna sub-arrays.
  • the antenna sub-arrays are divided by the antenna ports constituting the antenna array.
  • the complexity of eigenvalue decomposition approximates the sum of the powers of the antenna ports of each antenna sub-array, and is much smaller than the third power of all antenna ports. Therefore, not only the solution is solved.
  • the problem that the spatial multiplexing is difficult due to the high complexity of the eigenvalue decomposition process is provided.
  • a notification method applied to the antenna array is provided, so that the grouping information of the antenna array is reported in the process. More flexible.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种信道估计方法及装置,涉及通信技术领域,能够提供一种应用于天线阵列分组后的通知方式。本发明实施例的方法包括:发送端设备接收接收端设备发出的天线分组指示,所述天线分组指示用于指示所述发送端设备依照天线分组图样将所述发送端设备的天线阵列划分为多个天线子阵列;所述发送端设备依照所述天线分组图样将所述天线阵列划分为所述多个天线子阵列。本发明适用于一种网络通信系统。

Description

一种信道估计方法及装置
本申请要求于2016年1月11日提交中国专利局、申请号为201610018689.X、发明名称为“一种信道估计方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种信道估计方法及装置。
背景技术
随着通信技术的发展,为了实现空间复用,通常由诸如终端等数据的接收端设备在接收到诸如基站等数据的发送端设备发送的导频之后,进行CSI(Channel State Information,信道状态信息)测量,并经过计算得到预编码向量,之后对预编码向量进行量化,得到预编码码本对应的PMI(Precoding matrix indicator,预编码矩阵指示)和RI(Rank indicator,秩指示),并向发送端设备发送RMI和RI,以确保发送端设备获取到CSI,实现多流数据的并发。在生成预编码的过程中,接收端设备通常需要对信道矩阵或信道的自相关矩阵进行特征值分解,而进行特征值分解的复杂度近似于天线端口数的3次方。
随着LTE/LTE-A(Long Term Evolution/Long Term Evolution-Advanced,3GPP长期演进/3GPP后续长期演进)的后续演进,发送端设备的天线数量也处于快速增长的状态。因此,采用上述方法来实现预编码的生成,往往由于发送端设备存在大量的天线端口,而导致特征值分解过程的计算量较大,从而增加了进行特征值分解过程的复杂度,进而增加实现空间复用的难度。因此,申请日为2015年5月29日,国际申请号为“PCT/CN2015/079290”,发明名称为“天线阵列的信道信息反馈方法与装置”提出了一种通过对天线阵列进行分组,以降低发送端设备的计算复杂度的技术方案。采用该技术方案虽然能够有效解决因进行特征值分解过程的复 杂度较高而导致的实现空间复用难度较大的问题,但是,目前对天线阵列的分组信息进行上报的流程不够灵活,因此,还需要提供一种应用于天线阵列分组后的通知方式。
发明内容
本发明实施例提供一种信道估计方法及装置,能够提供一种应用于天线阵列分组后的通知方式。
为达到上述目的,本发明实施例采用如下技术方案:
第一方面,本发明实施例提供一种信道估计方法,包括:
发送端设备接收接收端设备发出的天线分组指示,所述天线分组指示用于指示所述发送端设备依照天线分组图样将所述发送端设备的天线阵列划分为多个天线子阵列;
所述发送端设备依照所述天线分组图样将所述天线阵列划分为所述多个天线子阵列。
结合第一方面,在第一方面第一种可能的实现方式中,所述方法还包括:
所述发送端设备向所述接收端设备发送信道估计指示;
所述发送端设备接收所述接收端设备基于所述信道估计指示反馈的信道信息,所述信道信息包括所述多个天线子阵列中每个天线子阵列的子信道信息;
所述发送端设备基于所述接收端设备反馈的信道信息计算所述天线阵列对应的信道信息。
结合第一方面,或第一方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,在所述发送端设备接收接收端设备发出的天线分组指示之前,所述方法还包括:
所述发送端设备向所述接收端设备发送天线分组命令,所述天线分组命令用于指示所述接收端设备发送所述天线分组指示。
第二方面,本发明实施例提供一种信道估计方法,包括:
接收端设备确定天线分组图样;
所述接收端设备向所述发送端设备发送天线分组指示,所述天 线分组指示用于指示所述发送端设备依照所述天线分组图样将所述发送端设备的天线阵列划分为多个天线子阵列。
结合第二方面,在第二方面第一种可能的实现方式中,所述方法还包括:
所述接收端设备接收所述发送端设备发送的信道估计指示;
所述接收端设备基于所述信道估计指示反馈信道信息,以便于所述发送端设备基于所述接收端设备反馈的信道信息计算所述天线阵列对应的信道信息,反馈的信道信息包括所述多个天线子阵列中每个天线子阵列的子信道信息。
结合第二方面,或第二方面第一种可能的实现方式,在第二方面第二种可能的实现方式中,在所述接收端设备确定天线分组图样之前,所述方法还包括:
所述接收端设备接收所述发送端设备发出的天线分组命令;
所述接收端设备确定所述天线分组图样,包括:
所述接收端设备基于所述天线分组命令确定所述天线分组图样。
第三方面,本发明实施例提供一种信道估计装置,包括:
接收模块,用于接收接收端设备发出的天线分组指示,所述天线分组指示用于指示发送端设备依照天线分组图样将所述发送端设备的天线阵列划分为多个天线子阵列;
处理模块,用于依照所述天线分组图样将所述天线阵列划分为所述多个天线子阵列。
结合第三方面,在第三方面第一种可能的实现方式中,所述装置还包括:
发送模块,用于向所述接收端设备发送信道估计指示;
所述接收模块,还用于接收所述接收端设备基于所述信道估计指示反馈的信道信息,所述信道信息包括所述多个天线子阵列中每个天线子阵列的子信道信息;
所述处理模块,还用于基于所述接收端设备反馈的信道信息计 算所述天线阵列对应的信道信息。
结合第三方面,或第三方面第一种可能的实现方式,在第三方面第二种可能的实现方式中,所述发送模块,还用于所述发送端设备向所述接收端设备发送天线分组命令,所述天线分组命令用于指示所述接收端设备发送所述天线分组指示。
第四方面,本发明实施例提供一种信道估计装置,包括:
处理模块,用于确定天线分组图样;
发送模块,用于向发送端设备发送天线分组指示,所述天线分组指示用于指示所述发送端设备依照所述天线分组图样将所述发送端设备的天线阵列划分为多个天线子阵列。
结合第四方面,在第四方面第一种可能的实现方式中,所述装置还包括:
接收模块,用于接收所述发送端设备发送的信道估计指示;
所述发送模块,还用于基于所述信道估计指示反馈信道信息,以便于所述发送端设备基于所述接收端设备反馈的信道信息计算所述天线阵列对应的信道信息,反馈的信道信息包括所述多个天线子阵列中每个天线子阵列的子信道信息。
结合第四方面,或第四方面第一种可能的实现方式,在第四方面第二种可能的实现方式中,所述接收模块,还用于接收所述发送端设备发出的天线分组命令;
所述处理模块,具体用于基于所述天线分组命令确定所述天线分组图样。
本发明实施例提供的一种信道估计方法及装置,接收端设备确定天线分组图样,并向发送端设备发送天线分组指示,发送端设备接收接收端设备发出的天线分组指示,并依照天线分组图样将天线阵列划分为多个天线子阵列。其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本 发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列的预编码所对应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题,同时提供了一种应用于天线阵列分组后的通知方式,使天线阵列的分组信息在上报过程中更加灵活。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的一种信道估计方法流程图;
图2为本发明实施例提供的一种天线阵列分组的示意图;
图3为本发明实施例提供的另一种天线阵列分组的示意图;
图4为本发明实施例提供的一种天线阵列的示意图;
图5为本发明实施例提供的另一种天线阵列分组的示意图;
图6为本发明实施例提供的一种天线端口在分组与不分组两种情况下的性能示意图;
图7为本发明实施例提供的另一种信道估计方法流程图;
图8为本发明实施例提供的另一种信道估计方法流程图;
图9为本发明实施例提供的一种信道估计方法的信令交互图;
图10为本发明实施例提供的另一种信道估计方法的信令交互 图;
图11为本发明实施例提供的另一种信道估计方法流程图;
图12为本发明实施例提供的另一种信道估计方法流程图;
图13为本发明实施例提供的另一种信道估计方法流程图;
图14为本发明实施例提供的一种信道估计装置的结构示意图;
图15为本发明实施例提供的另一种信道估计装置的结构示意图;
图16为本发明实施例提供的一种发送端设备的结构示意图;
图17为本发明实施例提供的一种接收端设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例可以用于一种网络通信系统,该网络通信系统中设置有诸如基站等数据的发送端设备,以及诸如终端等数据的接收端设备。发送端设备可以通过向终端发送下行信令,以触发接收端设备向发送端设备周期性或非周期性发送天线分组指示,其中,天线分组指示具体可以携带天线分组图样标识,该天线分组图样标识具体可以包括GN(Antenna Port Grouping Number,天线端口的分组数量)+GPI(Antenna Port Grouping Pattern Index,天线端口的分组模式的标识)。并在GN和GPI确定的前提条件下,按照已经划分好的天线子阵列,由接收端设备将每个子阵列的子信道信息发送至发送端设备,以便于发送端设备获取到CSI,并根据CSI实现空间复用,其中,子信道信息具体可以携带PMI和RI。
本发明实施例提供一种信道估计方法,如图1所示,该方法由发送端设备来执行,该方法包括:
101、发送端设备接收接收端设备发出的天线分组指示。
其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。
天线分组指示具体可以携带天线分组图样标识,该天线分组图样标识具体可以包括GN+GPI,其中,GN为天线分组图样对应的天线阵列被划分为天线子阵列的数量,天线阵列由若干个天线端口组成,在本发明实施例中,GN可以用P来表示,P通常为大于或等于2的整数。需要说明的是,组成天线阵列的天线端口可以有若干个划分方式,比如:先确定将天线阵列划分为4个天线子阵列,其中,每个天线子阵列所包括的天线端口数量相同,之后再确定将天线阵列划分为4个天线子阵列的每种划分方式对应的GPI。也就是在确定了被划分的天线子阵列的数量之后,由于天线阵列可以存在多种可能的划分方式,因此,在本发明实施例中,当GN=P时,天线阵列可以有Q种划分方式,而接收端设备向发送端设备发送的GPI可以具体为X。其中,Q通常为等于或大于0的整数,X为0至Q-1中任一数值。也就是说,接收端设备通过向发送端设备反馈P+X,来向发送端设备反馈GN和GPI的具体数值,也就是向发送端设备反馈天线分组图样标识。
为了确保发送端设备可以根据接收端设备反馈的GN+GPI来确定组成天线阵列的天线端口的分组情况,在本发明实施例的一个实现方式中,发送端设备可以预先设置好分组模式,也就是在GN+GPI确定的情况下,对天线端口的具体分组方式进行预先的设置。其中,分组模式包括所有天线子阵列与天线端口的对应关系,所有天线子阵列的数量与GN相同。
例如:如图2所示,为64个未分组的发送端设备的天线端口,分别用标号0至63进行标注。当GN=4时,发送端设备可以预先设置4种天线端口的分组模式,分别为GPI=0、GPI=1、GPI=2和GPI=3。其中,GPI=0时,天线阵列可以具体被划分为:天线子阵列1对应天线端口0至7和天线端口16至23,天线子阵列2对应天线端口8至15和天线端口24至31,天线子阵列3对应天线端口32至39和 天线端口48至55,天线子阵列4对应天线端口40至47和天线端口56至63;GPI=1时,天线阵列可以具体被划分为:天线子阵列1对应天线端口0至7、天线端口16至19、天线端口32至35和天线端口48至51,天线子阵列2对应天线端口8至11、天线端口24至27、天线端口40至43和天线端口56至59,天线子阵列3对应天线端口4至7、天线端口20至23、天线端口36至39和天线端口52至55,天线子阵列4对应天线端口12至15、天线端口28至31、天线端口44至47和天线端口60至63;GPI=2时,如图3所示;GPI=3时,如图4所示。需要说明的是,对于天线端口对应的分组模式不仅限于上述方式,具体的分组模式在本发明实施例中不作具体限定,每个天线子阵列所包括的天线端口的数量可以相同、部分不同或完全不同。
需要说明的是,天线端口的分组模式,即将天线端口组成的天线阵列划分成天线子阵列的方式,对接收端设备而言是透明的,也就是接收端设备不需要关心天线阵列与天线子阵列之间具体包含关系。为了确保发送端设备获取的CSI准确无误,应确保各个天线子阵列之间不存在重复的天线阵子,同时将天线阵列划分成多个天线子阵之后,也不应存在未被划分的天线阵子。其中,每一个天线阵子可以由两个天线组成。在本发明实施例中,由于GN可以由发送端设备预先设置,且当GN确定之后,GPI也可以由发送端设备预先设置,因此,为了简化获取CSI的过程,一般情况下,每个天线子阵列中的天线端口数是相同的。
需要说明的是,GN+GPI可以由终端同时反馈给发送端设备,或是携带在不同的上行信令,在不同时刻反馈给发送端设备。如果接收端设备仅将GPI反馈给发送端设备,则发送端设备可以根据上一次接收到的GN和本次接收到接收端设备反馈的GPI来确定天线端口的分组情况,从而确定接收端设备应该上报的子信道信息数量,也就是接收端设备需要上报的PMI+RI的数量。GN+GPI不仅可以对应于所有天线端口,还可以对应于部分天线端口。也就是将天线端口 的分组过程仅实现于被使用的天线端口,对于不使用的天线端口不进行分组。
102、发送端设备依照天线分组图样将天线阵列划分为多个天线子阵列。
需要说明的是,一个天线端口对应至少一个物理天线。当一个天线端口对应一个物理天线时,一个天线端口与一个天线阵子直接连接,当一个天线端口对应至少两个物理天线时,一个天线端口与至少两个天线阵子通过TXRU(Tranceiver Unit,收发单元)间接连接,其中,物理天线与天线阵子一一对应。
例如:如图5所示,当GN=4时,由天线端口组成的天线阵列可以被划分为4个天线子阵列,分别为天线子阵列1、天线子阵列2、天线子阵列3和天线子阵列4。CSI-RS(Channel State Information-Reference Signal,信道状态信息-参考信号)端口,即天线端口。天线子阵列1对应CSI-RS端口0、CSI-RS端口1、CSI-RS端口8和CSI-RS端口9,天线子阵列2对应CSI-RS端口2、CSI-RS端口3、CSI-RS端口10和CSI-RS端口11,天线子阵列3对应CSI-RS端口4、CSI-RS端口5、CSI-RS端口12和CSI-RS端口13,天线子阵列4对应CSI-RS端口6、CSI-RS端口7、CSI-RS端口14和CSI-RS端口15。需要说明的是,虽然TXRU与天线阵子列,TXRU与CSI-RS端口都有独立的映射关系,但是,由于每个TXRU对应不同的天线阵子,也就是每个天线子阵列对应的也是不同的天线阵子。
如图6所示,为天线端口在分组与不分组两种情况下的性能示意图。其中,横轴用于表示SNR(Signal Noise Ratio,信噪比),纵轴用于表示SER(Symbol Error Rate,误码率)。由于当组成天线阵列的天线端口的数量为O时,SVD(Singular Value Decomposition,奇异值分解)的复杂度为O3,也就是当O达到几十的量级时,SVD的复杂度可以达到整个计算复杂度的90%,甚至更高。比如:当O=64时,采用现有技术的方法进行计算,使终端的计算复杂度为643。在采用本发明实施例所提供的方法之后,也就是将组成 天线阵列的天线端口划分为4个天线子阵列,每个天线子阵列包括16个天线端口,则终端计算复杂度为4×163,也就是采用现有技术的方法进行计算的复杂度的1/6,则SVD复杂度的降低,很可能会使整个接收端设备在计算过程中的复杂度降低5%。
本发明实施例提供的一种信道估计方法,发送端设备接收接收端设备发出的天线分组指示,并依照天线分组图样将天线阵列划分为多个天线子阵列。其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列的预编码所对应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题,同时提供了一种应用于天线阵列分组后的通知方式,使天线阵列的分组信息在上报过程中更加灵活。
为了确保发送端设备可以成功获取到每个天线子阵列的子信道信息,在本发明实施例的一个实现方式中,发送端设备可以通过向接收端设备发送信道估计指示,来触发接收端设备向发送端设备反馈包括每个天线子阵列的子信道信息的信息信息。因此,如图7所示,该方法还包括步骤103至步骤105:
103、发送端设备向接收端设备发送信道估计指示。
104、发送端设备接收接收端设备基于信道估计指示反馈的信道 信息。
其中,信道信息包括多个天线子阵列中每个天线子阵列的子信道信息,子信道信息具体可以为PMI和RI。
在本发明实施例中,发送端设备可以根据所有天线子阵列对应的PMI和RI,分别确定每个天线子阵列对应的CSI,以便于发送端设备根据所有天线子阵列对应的CSI实现空间复用。
需要说明的是,由于PMI和RI是在确定GN和GPI之后才能够起到一定作用,因此,PMI和RI可以与GN和GPI采用同一条上行信令反馈给发射端,也就是上行信令不仅携带有天线分组图样,还携带有信道估计指示,或者,由终端先将GN和GPI反馈给发射端之后,再由终端将所有天线子阵列对应的PMI和RI反馈给发射端,也就是一条上行信令携带有天线分组图样,另一条上行信令携带有信道估计指示,并且通过将这两条上行信令分别发送至发送端设备,以使发送端设备获取到天线分组图样和信道估计指示。
105、发送端设备基于接收端设备反馈的信道信息计算天线阵列对应的信道信息。
申请日为2015年5月29日,国际申请号为“PCT/CN2015/079290”,发明名称为“天线阵列的信道信息反馈方法与装置”提出了一种通过对天线阵列进行分组,以降低发送端设备的计算复杂度的技术方案。其中,提出了一种发送端设备基于接收端设备反馈的信道信息计算天线阵列对应的信道信息的具体方法。
第一网络设备的天线阵列与第二网络设备的天线阵列之间的N×M个子信道的信道信息包括RI与PMI,或者是预编码。第二网络设备可以响应来自第一网络设备的参考信号(Reference Signal,RS)获取上述N×M个子信道的信道信息,或者可以基于信道互易性获取上述N×M个子信道的信道信息。需要说明的是,在本发明实施例中,第一网络设备具体可以为发送端设备,第二网络设备具体可以为接收端设备。
在本发明实施例中,设K=N×M,K个子信道的信道信息根据以下步骤获得:
获取K个子信道的信道矩阵的自相关矩阵。具体可以根据预定的子阵配置信息,对第一网络设备与第二网络设备之间的信道进行分组获得K个子信道:
H=(H1,H2,…,Hk,…HK)
其中,Hk维度为L×Mk
Figure PCTCN2016091958-appb-000001
Mk为第k个天线组的天线端口数。
根据K个子信道的信道矩阵的自相关矩阵获得K个子信道的RIk与PMIk。其中,获得K个子信道的RI与PMI的步骤包括:
第二网络设备根据K个子信道获取K个子信道的自相关矩阵;
对K个子信道对应的自相关矩阵进行特征值分解(Eigenvalue decomposition,EVD)或者奇异值分解获得相应的预编码Uk
第二网络设备可以将K个子信道对应预编码Uk反馈给第一网络设备。或者进一步地,对Uk对应的码本进行量化,分别获得K个子信道的RIk与PMIk并反馈给第一网络设备。具体的,第一网络设备与第二网络设备使用的预编码码本中每个码字的维度为Mk×r,其中Mk为第k个天线组的天线端口数,r为流数。
可见,当第一网络设备的天线数量较大时,上述SVD或者EVD的复杂度较高。通过对第一网络设备与第二网络设备之间天线阵列进行分组,会大大降低SVD或者EVD的复杂度。
之后,第一网络设备根据来自第二网络设备的第一网络设备的天线阵列与第二网络设备的天线阵列之间的N×M个子信道的信道信息生成第一网络设备的天线阵列与所述第二网络设备的天线阵列之间的信道的信道信息。
当第一网络设备接收到的N×M个子信道的信道信息为预编码Uk时,第一网络设备根据K个子信道的预编码Uk获得第一网络设备的天线阵列与第二网络设备的天线阵列之间的信道的预编码U,具体根据以下表达式获得:
Figure PCTCN2016091958-appb-000002
第一网络设备对预编码U进行量化,获得第一网络设备天线阵列与第二网络设备的天线阵列之间的信道的RI与PMI。当第一网络设备接收到的N×M个子信道的信道信息为秩指标RIk与预编码指示PMIk时,对K个子信道的秩指标RIk与预编码指示PMIk进行合并,或者通过容量最大化算法,或者其它算法获得第一网络设备天线阵列与第二网络设备的天线阵列之间的信道的RI与PMI。
本发明实施例提供的一种信道估计方法,发送端设备向接收端设备发送信道估计指示,并接收接收端设备基于信道估计指示反馈的信道信息,之后基于接收端设备反馈的信道信息计算天线阵列对应的信道信息。其中,基于信道估计指示反馈的信道信息包括多个天线子阵列中每个天线子阵列的子信道信息。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列的预编码所对应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题,同时提供了一种应用于天线阵列分组后的通知方式,使天线阵列的分组信息在上报过程中更加灵活。需要说明的是,发送端设备可以通过向接收端设备发送信道估计指示,来触发接收端设备向发送端设备反馈包括 每个天线子阵列的子信道信息的信息信息,以便于发送端设备基于接收端设备反馈的信道信息计算天线阵列对应的信道信息。
在本发明实施例的一个实现方式中,发送端设备可以通过向接收端设备发送天线分组命令,来触发接收端设备向发送端设备反馈天线分组指示。在如图1所示的实现方式的基础上,还可以实现为如图8所示的实现方式。其中,在执行步骤101发送端设备接收接收端设备发出的天线分组指示之前,还可以执行步骤106:
106、发送端设备向接收端设备发送天线分组命令。
其中,天线分组命令用于指示接收端设备发送天线分组指示。
为了减少发送端设备发送下行信令的次数,也就是避免发送端设备每次需要获取天线端口的GN和GPI时都需要向终端下行信令,天线分组命令中还可以携带有第一反馈周期和第二反馈周期,以便于接收端设备按照反馈周期向发送端设备反馈天线分组命令,以及自信到信息。其中,第一反馈周期为GN的反馈周期,第二反馈周期为GPI的反馈周期,第一反馈周期与第二反馈周期可以相同或不同。需要说明的是,第一反馈周期和第二反馈周期可以是预先设定好的固定不变的参数,也可以是根据发送端设备需要获取GN和GPI的需求,设定的可变的参数。
如图9所示,为发送端设备每次需要向接收端设备获取GN和GPI时,发送端设备与接收端设备需要进行的信令交互流程。也就是在发送端设备第一次需要获取GN和GPI时,以及发送端设备第二次需要获取GN和GPI时,发送端设备均需要向接收端设备发送携带了触发接收端设备向发送端设备反馈GN和GPI的天线分组命令。需要说明的是,此时发送端设备发送的天线分组命令中未携带第一反馈周期和第二反馈周期。
在本发明实施例中,若发送端设备发送的天线分组命令中未携带第一反馈周期和第二反馈周期,则当第一反馈周期和第二反馈周期不相同时,在发送端设备接收到接收端设备反馈的GPI时,可以根据上一次接收到的接收端设备反馈的GN与本次发送端设备接收 到接收端设备反馈的GPI来确定当前天线阵列的分组情况。当第一反馈周期和第二反馈周期相同时,接收端设备可以同时将GN和GPI按照反馈周期,采用携带了天线分组指示的同一上行信令反馈给发送端设备,如图10所示。或者,接收端设备可以采用分别携带了部分天线分组指示的不同的上行信令在同一时刻分别将GN和GPI反馈给发送端设备。
需要说明的是,发送端设备向接收端设备发送的携带了天线分组命令的下行信令的种类不仅限于UE specific信令、UE group specific信令和cell specific信令中的至少一种,还可以是其他携带有触发接收端设备向发送端设备发送GN和GPI的天线分组命令。
本发明实施例提供的一种信道估计方法,发送端设备向接收端设备发送天线分组命令,之后发送端设备接收接收端设备发出的天线分组指示,并依照天线分组图样将天线阵列划分为多个天线子阵列。其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列的预编码所对应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题,同时提供了一种应用于天线阵列分组后的通知方式,使天线阵列的分组信息在 上报过程中更加灵活。需要说明的是,发送端设备可以通过向接收端设备发送天线分组命令,来触发接收端设备向发送端设备反馈天线分组指示。
本发明实施例提供一种信道估计方法,如图11所示,该方法由接收端设备来执行,该方法包括:
201、接收端设备确定天线分组图样。
由于天线端口的分组数量不仅会影响到接收端设备进行预编码过程中计算的复杂度,还会影响到发送端设备和接收端设备之间数据传输过程的性能,也就是影响通信过程中的误码率,因此,天线分组图样可以根据当前通信过程中的实际需求来进行确定。需要说明的是,组成天线阵列的天线端口被划分的分组数量越多,则通信过程中的误码率越高,但是这样会大幅度降低接收端设备进行计算的复杂度。在本发明实施例中,对于天线分组图样的确定方式不作具体限定。
202、接收端设备向发送端设备发送天线分组指示。
其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。
为了确保接收端设备向发送端设备反馈的GN和GPI可以满足发送端设备的需求,在本发明实施例的一个实现方式中,下行信令不仅能够携带有天线分组指示,还可以携带有反馈模式,反馈模式可以包括带宽模式或子带模式。接收端设备可以根据下行信令中所携带的反馈模式,来确定是采用带宽模式进行GN和GPI的反馈,还是采用子带模式进行GN和GPI的反馈。其中,采用带宽模式进行GN和GPI的反馈,可以有效减少上行信令所携带的数据内容,降低信令交互过程中所耗费的资源;采用子带模式进行GN和GPI的反馈,可以提高GN和GPI的精度,更加准确的将GN和GPI反馈给发射端。
在本发明实施例中,发送端设备可以根据当前所要确定的CSI的需求,来确定接收端设备按照带宽模式或子带模式向发射端反馈上行信令。也就是在发送端设备向接收端设备发送的下行信令中携 带有用于表示反馈模式的信息,如表一所示,为下行信令中表示反馈模式的字段在不同比特下所表示的不同含义。
表一
比特 00 01 10
含义 N/A Feedback mode 1 Feedback mode 2
需要说明的是,当该字段为00时,所表示的含义为N/A(Not Applicable,不适用);当该字段为01时,所表示的含义为Feedback mode 1(反馈模式1);当该字段为01时,所表示的含义为Feedback mode 2(反馈模式2)。在本发明实施例中,反馈模式1具体可以为带宽模式,反馈模式2具体可以为子带模式,如表二所示。
表二
Figure PCTCN2016091958-appb-000003
需要说明的是,表二所示内容为当反馈模式为反馈模式1,以及反馈模式2时,反馈模式对应的类型,以及需要反馈的信息。在本发明实施例中,接收端设备对于GN和GPI的反馈,也可以采用相同反馈模式,不同上行信令的方法来进行GN和GPI的反馈。
本发明实施例提供的一种信道估计方法,接收端设备确定天线分组图样,并向发送端设备发送天线分组指示,以便于发送端设备接收接收端设备发出的天线分组指示,并依照天线分组图样将天线阵列划分为多个天线子阵列。其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列的预编码所对 应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题,同时提供了一种应用于天线阵列分组后的通知方式,使天线阵列的分组信息在上报过程中更加灵活。
为了确保发送端设备可以成功获取到每个天线子阵列的子信道信息,在本发明实施例的一个实现方式中,接收端设备可以通过接受发送端设备发送的信道估计指示,来向发送端设备反馈包括每个天线子阵列的子信道信息的信息信息。因此,如图12所示,该方法还可以包括步骤203和步骤204:
203、接收端设备接收发送端设备发送的信道估计指示。
204、接收端设备基于信道估计指示反馈信道信息,以便于发送端设备基于接收端设备反馈的信道信息计算天线阵列对应的信道信息。
其中,信道信息包括多个天线子阵列中每个天线子阵列的子信道信息。
本发明实施例提供的一种信道估计方法,接收端设备接收发送端设备发送的信道估计指示,并基于信道估计指示反馈信道信息,以便于发送端设备基于接收端设备反馈的信道信息计算天线阵列对应的信道信息。其中,信道信息包括多个天线子阵列中每个天线子阵列的子信道信息。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列 的预编码所对应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题。需要说明的是,接收端设备可以通过接收发送端设备发送的信道估计指示,来向发送端设备反馈包括每个天线子阵列的子信道信息的信息信息,以便于发送端设备基于接收端设备反馈的信道信息计算天线阵列对应的信道信息。
为了确保接收端设备能够准确向发送端设备发送天线分组图样,在本发明实施例的一个实现方式中,接收端设备可以根据发送端设备发出的天线分组命令来确定需要向发送端设备发送的天线分组图样。因此,在如图11所示的实现方式的基础上,还可以实现为如图13所示的实现方式,在执行步骤201接收端设备确定天线分组图样之前,还可以执行步骤205,且步骤201具体可以执行为步骤2011:
205、接收端设备接收发送端设备发出的天线分组命令。
2011、接收端设备基于天线分组命令确定天线分组图样。
在本发明实施例中,发送端设备的天线阵列可以包括M个子阵,接收端设备的天线阵列可以包括N个子阵,发送端设备的天线阵列与接收端设备的天线阵列之间的信道包括N×M个子信道,M和N为正整数且不同时为1,M个子阵和N个子阵中包括至少两根天线。
发送端设备接收接收端设备发送的N×M个子信道的信道信息,并根据来自接收端设备的N×M个子信道的信道信息生成发送端设备的天线阵列与接收端设备的天线阵列之间的信道的信道信息。
需要说明的是,N×M个子信道的信道信息可以包括RI与PMI,N×M个子信道中每个子信道对应一个子信道矩阵,N×M个子信道的 信道信息的获取方式如下:获取N×M个子信道对应的子信道矩阵的自相关矩阵,之后根据N×M个子信道的信道矩阵的自相关矩阵获得N×M个子信道的RI与PMI。
此外,N×M个子信道的信道信息还可以包括预编码,N×M个子信道中每个子信道对应一个子信道矩阵,N×M个子信道的信道信息的获取方式如下:获取N×M个子信道对应的子信道矩阵的自相关矩阵,之后根据N×M个子信道的信道矩阵的自相关矩阵获得N×M个子信道的预编码。
在本发明实施例中,发送端设备还可以向接收端设备发送子阵配置信息,子阵配置信息用于将发送端设备的天线阵列划分为M个子阵,其中,M为大于或者等于2的正整数。
需要说明的是,子阵配置信息包括至少一个图样,M个子阵根据至少一个图样确定;子阵配置信息可以包括每个子阵的起始端口号,M个子阵中的每个子阵根据起始端口号确定;子阵配置信息可以通过物理下行公共控制信道PDCCH、无线链路层控制协议RLC信令或者物理广播信道PBCH发送。
本发明实施例提供的一种信道估计方法,接收端设备接收发送端设备发出的天线分组命令,并基于天线分组命令确定天线分组图样,之后向发送端设备发送天线分组指示,以便于发送端设备接收接收端设备发出的天线分组指示,并依照天线分组图样将天线阵列划分为多个天线子阵列。其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列的预编码所对应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列 对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题,同时提供了一种应用于天线阵列分组后的通知方式,使天线阵列的分组信息在上报过程中更加灵活。需要说明的是,接收端设备可以根据发送端设备发出的天线分组命令来确定需要向发送端设备发送的天线分组图样。
本发明实施例提供一种信道估计装置30,如图14所示,该装置30用于执行如图1、图7或图8所示的方法流程,该装置30包括:
接收模块31,用于接收接收端设备发出的天线分组指示,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。
处理模块32,用于依照天线分组图样将天线阵列划分为多个天线子阵列。
在本发明实施例的一个实现方式中,装置30还包括:
发送模块33,用于向接收端设备发送信道估计指示。
接收模块31,还用于接收接收端设备基于信道估计指示反馈的信道信息,信道信息包括多个天线子阵列中每个天线子阵列的子信道信息。
处理模块32,还用于基于接收端设备反馈的信道信息计算天线阵列对应的信道信息。
在本发明实施例的一个实现方式中,发送模块33,还用于发送端设备向接收端设备发送天线分组命令,天线分组命令用于指示接收端设备发送天线分组指示。
本发明实施例提供的一种信道估计装置,发送端设备接收接收端设备发出的天线分组指示,并依照天线分组图样将天线阵列划分 为多个天线子阵列。其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列的预编码所对应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题,同时提供了一种应用于天线阵列分组后的通知方式,使天线阵列的分组信息在上报过程中更加灵活。
本发明实施例提供一种信道估计装置40,如图15所示,该装置40用于执行如图11至13中任一所示的方法流程,该装置40包括:
处理模块41,用于确定天线分组图样。
发送模块42,用于向发送端设备发送天线分组指示,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。
在本发明实施例的一个实现方式中,装置40还包括:
接收模块43,用于接收发送端设备发送的信道估计指示。
发送模块42,还用于基于信道估计指示反馈信道信息,以便于发送端设备基于接收端设备反馈的信道信息计算天线阵列对应的信道信息,反馈的信道信息包括多个天线子阵列中每个天线子阵列的子信道信息。
在本发明实施例的一个实现方式中,接收模块43,还用于接收发送端设备发出的天线分组命令。
处理模块41,具体用于基于天线分组命令确定天线分组图样。
本发明实施例提供的一种信道估计装置,接收端设备确定天线分组图样,并向发送端设备发送天线分组指示,以便于发送端设备接收接收端设备发出的天线分组指示,并依照天线分组图样将天线阵列划分为多个天线子阵列。其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列的预编码所对应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题,同时提供了一种应用于天线阵列分组后的通知方式,使天线阵列的分组信息在上报过程中更加灵活。
本发明实施例提供一种发送端设备50,如图16所示,该发送端设备50用于执行如图1、图7或图8所示的方法流程。该发送端设备50包括处理器51和接口电路52,图中还示出了存储器53和总线54,该处理器51、接口电路52和存储器53通过总线54连接并完成相互间的通信。
需要说明的是,这里的处理器51可以是一个处理元件,也可以是多个处理元件的统称。例如,该处理元件可以是中央处理器 (Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
存储器53可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或接入网管理设备运行所需要参数、数据等。且存储器53可以包括随机存储器(RAM),也可以包括非易失性存储器(non-volatile memory),例如磁盘存储器,闪存(Flash)等。
总线54可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线54可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
该发送端设备50还可以包括输入输出装置,连接于总线54,以通过总线54与处理器51等其它部分连接。
其中,处理器51调用存储器53中的程序代码,用于执行以上方法实施例中发送端设备50执行的操作。例如,包括:
接口电路52,用于接收接收端设备发出的天线分组指示,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。
处理器51,用于依照天线分组图样将天线阵列划分为多个天线子阵列。
在本发明实施例的一个实现方式中,接口电路52,还用于向接收端设备发送信道估计指示。
接口电路52,还用于接收接收端设备基于信道估计指示反馈的信道信息,信道信息包括多个天线子阵列中每个天线子阵列的子信 道信息。
处理器51,还用于基于接收端设备反馈的信道信息计算天线阵列对应的信道信息。
在本发明实施例的一个实现方式中,在接口电路52接收接收端设备发出的天线分组指示之前,接口电路52,还用于向接收端设备发送天线分组命令,天线分组命令用于指示接收端设备发送天线分组指示。
本发明实施例提供的一种发送端设备,发送端设备接收接收端设备发出的天线分组指示,并依照天线分组图样将天线阵列划分为多个天线子阵列。其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列的预编码所对应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题,同时提供了一种应用于天线阵列分组后的通知方式,使天线阵列的分组信息在上报过程中更加灵活。
本发明实施例提供一种接收端设备60,如图17所示,该接收端设备60用于执行如图11至13中任一所示的方法流程,
该接收端设备60包括处理器61和接口电路62,图中还示出了存储器63和总线64,该处理器61、接口电路62和存储器63通过 总线64连接并完成相互间的通信。
需要说明的是,这里的处理器61可以是一个处理元件,也可以是多个处理元件的统称。例如,该处理元件可以是中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
存储器63可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或接入网管理设备运行所需要参数、数据等。且存储器63可以包括随机存储器(RAM),也可以包括非易失性存储器(non-volatile memory),例如磁盘存储器,闪存(Flash)等。
总线64可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线64可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
该接收端设备60还可以包括输入输出装置,连接于总线64,以通过总线64与处理器61等其它部分连接。
其中,处理器61调用存储器63中的程序代码,用于执行以上方法实施例中接收端设备60执行的操作。例如,包括:
处理器61,用于确定天线分组图样。
接口电路62,用于向发送端设备发送天线分组指示,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。
在本发明实施例的一个实现方式中,接口电路62,还用于接收发送端设备发送的信道估计指示。
处理器61,还用于基于信道估计指示反馈信道信息,以便于发送端设备基于接收端设备反馈的信道信息计算天线阵列对应的信道信息,反馈的信道信息包括多个天线子阵列中每个天线子阵列的子信道信息。
在本发明实施例的一个实现方式中,在接收端设备确定天线分组图样之前,接口电路62,还用于接收发送端设备发出的天线分组命令。
处理器61,具体用于基于天线分组命令确定天线分组图样。
本发明实施例提供的一种接收端设备,接收端设备确定天线分组图样,并向发送端设备发送天线分组指示,以便于发送端设备接收接收端设备发出的天线分组指示,并依照天线分组图样将天线阵列划分为多个天线子阵列。其中,天线分组指示用于指示发送端设备依照天线分组图样将发送端设备的天线阵列划分为多个天线子阵列。相比较于现有技术中发送端设备通过获取接收端设备生成的用于表示所有天线端口的预编码所对应的PMI和RI来确定CSI,本发明可以采用对组成天线阵列的天线端口进行分组的方式,将天线端口划分为若干个天线子阵列,以便于接收端设备针对每个天线子阵生成预编码,并向发送端设备反馈每个天线子阵列的预编码所对应的PMI和RI,之后当发送端设备接收到每个天线子阵列对应的PMI和RI后确定每个天线子阵列对应的CSI,从而得到所有天线子阵列对应的CSI。并且,在预编码生成的过程中,由于对组成天线阵列的天线端口进行了天线子阵列的划分。随着天线数量的大幅度增加,进行特征值分解的复杂度近似于每个天线子阵列的天线端口数的3次方之和,且远小于所有天线端口数的3次方,因此,不仅解决了因进行特征值分解过程的复杂度较高而导致的实现空间复用难度较大的问题,同时提供了一种应用于天线阵列分组后的通知方式,使天线阵列的分组信息在上报过程中更加灵活。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与 其他实施例的不同之处。尤其,对于设备实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (12)

  1. 一种信道估计方法,其特征在于,包括:
    发送端设备接收接收端设备发出的天线分组指示,所述天线分组指示用于指示所述发送端设备依照天线分组图样将所述发送端设备的天线阵列划分为多个天线子阵列;
    所述发送端设备依照所述天线分组图样将所述天线阵列划分为所述多个天线子阵列。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述发送端设备向所述接收端设备发送信道估计指示;
    所述发送端设备接收所述接收端设备基于所述信道估计指示反馈的信道信息,所述信道信息包括所述多个天线子阵列中每个天线子阵列的子信道信息;
    所述发送端设备基于所述接收端设备反馈的信道信息计算所述天线阵列对应的信道信息。
  3. 根据权利要求1或者2所述的方法,其特征在于,在所述发送端设备接收接收端设备发出的天线分组指示之前,所述方法还包括:
    所述发送端设备向所述接收端设备发送天线分组命令,所述天线分组命令用于指示所述接收端设备发送所述天线分组指示。
  4. 一种信道估计方法,其特征在于,包括:
    接收端设备确定天线分组图样;
    所述接收端设备向所述发送端设备发送天线分组指示,所述天线分组指示用于指示所述发送端设备依照所述天线分组图样将所述发送端设备的天线阵列划分为多个天线子阵列。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述接收端设备接收所述发送端设备发送的信道估计指示;
    所述接收端设备基于所述信道估计指示反馈信道信息,以便于所述发送端设备基于所述接收端设备反馈的信道信息计算所述天线阵列对应的信道信息,所述信道信息包括所述多个天线子阵列中每个天 线子阵列的子信道信息。
  6. 根据权利要求4或者5所述的方法,其特征在于,在所述接收端设备确定天线分组图样之前,所述方法还包括:
    所述接收端设备接收所述发送端设备发出的天线分组命令;
    所述接收端设备确定所述天线分组图样,包括:
    所述接收端设备基于所述天线分组命令确定所述天线分组图样。
  7. 一种信道估计装置,其特征在于,包括:
    接收模块,用于接收接收端设备发出的天线分组指示,所述天线分组指示用于指示发送端设备依照天线分组图样将所述发送端设备的天线阵列划分为多个天线子阵列;
    处理模块,用于依照所述天线分组图样将所述天线阵列划分为所述多个天线子阵列。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述接收端设备发送信道估计指示;
    所述接收模块,还用于接收所述接收端设备基于所述信道估计指示反馈的信道信息,所述信道信息包括所述多个天线子阵列中每个天线子阵列的子信道信息;
    所述处理模块,还用于基于所述接收端设备反馈的信道信息计算所述天线阵列对应的信道信息。
  9. 根据权利要求7或者8所述的装置,其特征在于,所述发送模块,还用于所述发送端设备向所述接收端设备发送天线分组命令,所述天线分组命令用于指示所述接收端设备发送所述天线分组指示。
  10. 一种信道估计装置,其特征在于,包括:
    处理模块,用于确定天线分组图样;
    发送模块,用于向发送端设备发送天线分组指示,所述天线分组指示用于指示所述发送端设备依照所述天线分组图样将所述发送端设备的天线阵列划分为多个天线子阵列。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述发送端设备发送的信道估计指示;
    所述发送模块,还用于基于所述信道估计指示反馈信道信息,以便于所述发送端设备基于所述接收端设备反馈的信道信息计算所述天线阵列对应的信道信息,反馈的信道信息包括所述多个天线子阵列中每个天线子阵列的子信道信息。
  12. 根据权利要求10或者11所述的装置,其特征在于,所述接收模块,还用于接收所述发送端设备发出的天线分组命令;
    所述处理模块,具体用于基于所述天线分组命令确定所述天线分组图样。
PCT/CN2016/091958 2016-01-11 2016-07-27 一种信道估计方法及装置 WO2017121092A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610018689.X 2016-01-11
CN201610018689.XA CN106961401B (zh) 2016-01-11 2016-01-11 一种信道估计方法及装置

Publications (1)

Publication Number Publication Date
WO2017121092A1 true WO2017121092A1 (zh) 2017-07-20

Family

ID=59310698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091958 WO2017121092A1 (zh) 2016-01-11 2016-07-27 一种信道估计方法及装置

Country Status (2)

Country Link
CN (1) CN106961401B (zh)
WO (1) WO2017121092A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842435A (zh) * 2017-11-24 2019-06-04 上海诺基亚贝尔股份有限公司 一种用于执行预编码的方法和装置
CN112054831B (zh) * 2019-06-06 2022-04-12 华为技术有限公司 信道状态信息的反馈方法及装置
CN112751590B (zh) * 2019-10-31 2023-03-31 中国移动通信有限公司研究院 信道信息反馈的方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008992A1 (ko) * 2013-07-14 2015-01-22 엘지전자 주식회사 매시브 안테나를 지원하는 무선 접속 시스템에서 안테나 상관도를 이용한 데이터 심볼 송수신 방법
CN104662811A (zh) * 2012-09-18 2015-05-27 Lg电子株式会社 在多天线无线通信系统中发送有效反馈的方法及其设备
CN104885499A (zh) * 2013-01-08 2015-09-02 三星电子株式会社 高级无线通信系统中的信道状态信息反馈设计
WO2016000556A1 (zh) * 2014-07-01 2016-01-07 索尼公司 通信设备、基站和通信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60214340T2 (de) * 2002-04-30 2007-05-16 Motorola, Inc., Schaumburg Drahtlose Kommunikation mittels Vielfachsende- und Vielfachempfangs-Antennenanordnung
JP2009529810A (ja) * 2006-01-13 2009-08-20 エルジー エレクトロニクス インコーポレイティド フィードバック情報に基づくアンテナ選択を使用して伝送ダイバーシティ及び空間多重化を達成するための方法及び装置
CN101674122A (zh) * 2008-09-11 2010-03-17 大唐移动通信设备有限公司 一种在tdd系统中获取上行完整信道矩阵的方法和装置
CN102111204A (zh) * 2009-12-29 2011-06-29 中兴通讯股份有限公司 一种终端空间到达角度的上报方法及系统
CN103199905B (zh) * 2012-01-09 2015-10-14 光宝电子(广州)有限公司 天线阵列控制方法与使用该方法的通信装置
WO2015096161A1 (zh) * 2013-12-27 2015-07-02 华为技术有限公司 一种天线阵列、信号映射的方法及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662811A (zh) * 2012-09-18 2015-05-27 Lg电子株式会社 在多天线无线通信系统中发送有效反馈的方法及其设备
CN104885499A (zh) * 2013-01-08 2015-09-02 三星电子株式会社 高级无线通信系统中的信道状态信息反馈设计
WO2015008992A1 (ko) * 2013-07-14 2015-01-22 엘지전자 주식회사 매시브 안테나를 지원하는 무선 접속 시스템에서 안테나 상관도를 이용한 데이터 심볼 송수신 방법
WO2016000556A1 (zh) * 2014-07-01 2016-01-07 索尼公司 通信设备、基站和通信方法

Also Published As

Publication number Publication date
CN106961401B (zh) 2020-08-25
CN106961401A (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
US10193609B2 (en) Method for feeding back channel state information, base station and user equipment
US10205499B2 (en) Systems and methods for adapting a codebook for use with multiple antenna configurations
CN109845126B (zh) 具有进一步优化的开销的多波束码本
JP7450625B2 (ja) 無線通信ネットワークにおけるフィードバック報告のための方法および装置
WO2018171727A1 (zh) 传输信道状态信息的方法、终端设备和网络设备
WO2017157082A1 (zh) 一种csi反馈方法、预编码方法、终端及基站
WO2017020749A1 (zh) 一种fd mimo系统信道状态信息反馈方法及相关设备
US20200204233A1 (en) Data transmission method and apparatus
WO2015192777A1 (zh) 一种数据传输的方法和装置
US10574409B2 (en) Information notification method and channel state information process execution method
WO2017166281A1 (zh) 一种预编码矩阵指示的反馈方法及装置
WO2017020730A1 (zh) 一种反馈和接收信道状态信息csi的方法及装置
US11239895B2 (en) Data transmission method, terminal device, and network device
KR20160086948A (ko) 채널 상태 정보의 피드백 방법 및 장치
TW201642610A (zh) 一種通道狀態資訊回饋方法和終端
WO2017118382A1 (zh) 信道状态信息csi上报的方法及装置
CN110958097B (zh) Csi的上报方法、装置、终端及网络侧设备
WO2018171604A1 (zh) 信息的传输方法和设备
WO2017194007A1 (zh) 一种二级预编码方法及装置
WO2017124827A1 (zh) 多天线数据传输的方法、网络设备、终端设备及系统
WO2016026350A1 (zh) 一种三维信道状态信息确定方法及装置
WO2014166448A1 (zh) 反馈信道状态信息的方法、终端及获取预编码的基站
WO2017121092A1 (zh) 一种信道估计方法及装置
WO2016124078A1 (zh) 一种信道测量方法及装置
WO2017076208A1 (zh) 一种信道状态信息反馈、数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884646

Country of ref document: EP

Kind code of ref document: A1