WO2021129503A1 - 一种改善激光可焊性的聚酰胺复合物 - Google Patents

一种改善激光可焊性的聚酰胺复合物 Download PDF

Info

Publication number
WO2021129503A1
WO2021129503A1 PCT/CN2020/137130 CN2020137130W WO2021129503A1 WO 2021129503 A1 WO2021129503 A1 WO 2021129503A1 CN 2020137130 W CN2020137130 W CN 2020137130W WO 2021129503 A1 WO2021129503 A1 WO 2021129503A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polyamide
dimethyl
diamine
laser
Prior art date
Application number
PCT/CN2020/137130
Other languages
English (en)
French (fr)
Inventor
林洁龙
杨波
丁正亚
张超
徐洪耀
肖军华
夏建盟
袁绍彦
叶士兵
王飞
安朋
付大炯
黄河生
王琦玲
Original Assignee
上海金发科技发展有限公司
江苏金发科技新材料有限公司
东华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海金发科技发展有限公司, 江苏金发科技新材料有限公司, 东华大学 filed Critical 上海金发科技发展有限公司
Publication of WO2021129503A1 publication Critical patent/WO2021129503A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the invention belongs to the field of laser welding, and particularly relates to a polyamide composite for improving laser weldability.
  • Plastic parts are used in automobiles, home appliances, power tools, electronic appliances, and medical equipment, benefiting from its advantages of high specific gravity, low cost, high design freedom, and easy recycling.
  • complex parts are generally difficult to form at one time, and need to be processed into smaller parts before completing the connection. Therefore, many connection technologies using plastic parts have been developed, including glue connection, mechanical fastening, and fusion bonding.
  • Welding and other methods, and welding methods are also diversified. According to the difference of heat generation methods, they are divided into vibration welding, hot plate welding, laser welding, ultrasonic welding, etc.
  • Laser welding is a very suitable method for connecting thermoplastic polymers. Unlike other welding methods, laser welding does not require contact with the parts due to the heat generated by laser radiation.
  • This non-contact welding operation can achieve high-quality welding.
  • the effect is that it has the advantages of ability transmission without contacting the welding interface, avoiding internal stress, and not generating thermal load.
  • the energy given by the laser beam is precisely controlled in terms of area and time.
  • the width of the weld is generally in the 100 ⁇ m level, and the welding reaction time is in the ms level. Therefore, laser welding has the potential for short cycle, automation, and high integration.
  • Polyamide materials have a certain laser transmittance, and have certain application prospects as laser absorption materials or laser transmission materials.
  • engineering plastics they have been widely used in many structural parts, functional parts, and housing parts.
  • laser welding technology With the popularity of laser welding technology, product assembly technology is facing upgrading, and polyamide modification technology will usher in a new trend. How to make it more suitable for diversified connection technologies, including laser welding.
  • Mitsubishi US2019/0002692 A1 is improved by adjusting the structure of xylylenediamine and long-chain dicarboxylic acid, while Solvay US2017/0368762 A1 uses cyclic aliphatic structure of diamine/carboxylic acid and p- or Copolymerization of isophthalic acid.
  • the laser weldability cannot meet the actual requirements.
  • the technical problem to be solved by the present invention is to provide a polyamide composite with improved laser weldability. After improving the structure of the polyamide resin, the laser weldability can be effectively improved, the application range of laser welding is further improved, and the laser transparency is improved. And laser welding strength.
  • the present invention provides a polyamide composite for improving laser weldability, which includes at least one polyamide resin;
  • the polyamide resin is formed by the polymerization reaction of the following monomers: 1) At least 10 mol% of the repeating units of the diamine-derived structure constituting the polyamide are derived from an odd number of carbon atoms and/or the number of carbon atoms in the main chain is An odd number of at least one aliphatic diamine and/or alicyclic diamine; 2) At least 10 mol% of the repeating units of the dicarboxylic acid-derived structure constituting the polyamide are derived from at least one with a total number of carbon atoms of 4-18 Aliphatic dicarboxylic acid;
  • At least 10 mol% of the dicarboxylic acid-derived structure repeating unit constituting the polyamide is derived from at least one aliphatic dicarboxylic acid and/or with an odd total number of carbon atoms and/or an odd number of carbon atoms in the main chain Alicyclic dicarboxylic acid; 4) At least 10 mol% of the diamine-derived structure repeating unit constituting the polyamide is derived from at least one aliphatic diamine and/or alicyclic diamine with a total number of carbon atoms of 4-18 ;
  • the polyamide resin accounts for 25%-90% of the total weight of the polyamide composite.
  • the aliphatic diamine is ethylenediamine, 1-butyl-ethylenediamine, 1,3-propanediamine, 1,2-propanediamine, 1,3-butanediamine, 1,4-butanediamine Amine, 1,1-dimethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 1,3-dimethyl-1,4-butanediamine, 1,4-Dimethyl-1,4-butanediamine, 2,3-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,5-pentane Diamine, 2-methyl-1,5-pentanediamine, 1,6-hexanediamine, 2,5-dimethyl-1,6-hexanediamine, 2,4-dimethyl-1, 6-Hexane diamine, 3,3-Dimethyl-1,6-Hexane diamine, 2,2-Dimethyl-1,6-Hexane diamine, 2,4-Diethyl-1,6- Hexan
  • the monomer mixture forming the polyamide contains a diamine which is an aliphatic diamine with an odd total number of carbon atoms and/or an odd number of carbon atoms in the main chain, the content of the aliphatic diamine accounts for the formation of the aliphatic diamine.
  • Polyamide is at least 10 mol% of all diamines; preferably, the content of the aliphatic diamine accounts for at least 30 mol% of all the diamines that form the polyamide; more preferably, the content of the aliphatic diamine accounts for at least 30 mol% of all the diamines that form the polyamide
  • the amide is at least 50 mol% of all diamines; particularly preferably, the content of the aliphatic diamine accounts for at least 70 mol% of all the diamines forming the polyamide.
  • the alicyclic diamine with an odd total number of carbon atoms and/or an odd number of carbon atoms in the main chain is bis(3-methyl-4-aminocyclohexyl)methane MACM, bis(4-aminocyclohexyl) Methane PACM, 2,2-bis(3-methyl-4-aminocyclohexyl)propane, 1,3-bis(aminomethyl)cyclohexane BAC, 1,4-bis(aminomethyl)cyclohexane , At least one of 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, and isophorone diamine IPDA.
  • the alicyclic diamine is selected from bis(3-methyl-4-aminocyclohexyl)methane (MACM), bis(4-aminocyclohexyl)methane (PACM), 1,3-bis( At least one of aminomethyl)cyclohexane (BAC) and isophorone diamine (IPDA).
  • MCM bis(3-methyl-4-aminocyclohexyl)methane
  • PAM bis(4-aminocyclohexyl)methane
  • BAC 1,3-bis( At least one of aminomethyl)cyclohexane
  • IPDA isophorone diamine
  • the monomer mixture used to form the polyamide may also contain other aromatic diamines, preferably but not limited to bis(4-aminophenyl) ether (4,,4'-ODA), 3,4'-bis (Aminophenyl) ether (3,,4'-ODA), para-phenylenediamine (PPD), meta-phenylenediamine (MPD), para-xylylenediamine (PXDA), meta-xylylenediamine At least one of (MXDA) and bis(aminomethyl)decalin.
  • aromatic diamines preferably but not limited to bis(4-aminophenyl) ether (4,,4'-ODA), 3,4'-bis (Aminophenyl) ether (3,,4'-ODA), para-phenylenediamine (PPD), meta-phenylenediamine (MPD), para-xylylenediamine (PXDA), meta-xylylenediamine At least one of (MXDA) and
  • the monomer mixture used to form the polyamide may also contain other aliphatic diamines other than the above-mentioned diamines, preferably but not limited to ethylenediamine, 1-butyl-ethylenediamine, 1,4-butane Diamine, 1,1-dimethyl-1,4-butanediamine, 1,2-dimethyl-1,4-butanediamine, 1,3-dimethyl-1,4-butanediamine , 1,4-dimethyl-1,4-butanediamine, 2,3-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,6- Hexane diamine, 2,5-dimethyl-1,6-hexamethylene diamine, 2,4-dimethyl-1,6-hexamethylene diamine, 3,3-dimethyl-1,6-hexamethylene diamine Amine, 2,2-dimethyl-1,6-hexanediamine, 2,4-diethyl-1,6-hexanediamine, 1,8-oc
  • the number of the kinds of diamines used to form the monomer mixture of the polyamide may be one, two or more.
  • the monomer mixture used to form the polyamide may also include other types of monomers, such as aliphatic amino acids derived from partial and/or complete natural separation and purification and/or artificial synthesis as part of the monomer mixture.
  • the aliphatic amino acids that are partially and/or completely separated and purified from nature are preferably but not limited to alanine, aspartic acid, asparagine, arginine, cysteine, glutamine, glycine, group Acid, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, ornithine, proline, tyrosine, tryptophan, valine At least one of them.
  • the partially and/or completely artificially synthesized aliphatic amino acid is preferably but not limited to at least one of hydroxytryptophan, 1-aminodecanoic acid, 1-aminoundecanoic acid, and 1-aminododecanoic acid.
  • the monomer mixture used to form the polyamide may also contain other types of monomers, such as lactams.
  • lactams are preferably but not limited to ⁇ -propiolactam, ⁇ -butyrolactam, and ⁇ -valerolactam. At least one of amide, ⁇ -caprolactam, and ⁇ -laurolactam.
  • the aliphatic dicarboxylic acid with a total number of carbon atoms of 4 to 18 is succinic acid, glutaric acid, 2,2-dimethyl-glutaric acid, adipic acid, 2,4,4-trimethyl- Adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid At least one of carbodiacid and hexadecanedioic acid.
  • the content of the aliphatic dicarboxylic acid accounts for all the dicarboxylic acids that form the polyamide
  • the content of the aliphatic dicarboxylic acid accounts for at least 30 mol% of all dicarboxylic acids that form the polyamide; more preferably, the content of the aliphatic dicarboxylic acid accounts for all the two dicarboxylic acids that form the polyamide
  • At least 50 mol% of the carboxylic acid particularly preferably, the content of the aliphatic dicarboxylic acid accounts for at least 70 mol% of all the dicarboxylic acids that form the polyamide.
  • the monomer mixture forming the polyamide contains a dicarboxylic acid derived from at least one aliphatic dicarboxylic acid and/or cycloaliphatic with an odd total number of carbon atoms and/or an odd number of carbon atoms in the main chain Dicarboxylic acid; preferably, the content of the dicarboxylic acid accounts for at least 15 mol% of all the dicarboxylic acids that form the polyamide; more preferably, the content of the dicarboxylic acid accounts for all the dicarboxylic acids that form the polyamide Particularly preferably, the content of the dicarboxylic acid accounts for at least 50 mol% of all the dicarboxylic acids forming the polyamide; especially preferably, the content of the dicarboxylic acid accounts for the total amount of the two dicarboxylic acids forming the polyamide At least 70 mol% of carboxylic acid.
  • the monomer mixture used to form the polyamide may also contain aromatic dicarboxylic acids other than the above-mentioned dicarboxylic acids.
  • aromatic dicarboxylic acids are preferably, but not limited to, terephthalic acid and isophthalic acid.
  • 2-Chloro-terephthalic acid sodium 5-sulfoisophthalate, hexahydroterephthalic acid, hexahydroisophthalic acid, 5-isobutyl-isophthalic acid, 2,6-naphthalene di Carboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 1,2-naphthalenedicarboxylic acid, 2, 5-naphthalenedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, 3,5-pyridinedicarboxylic acid, 2,2-bis(4-carboxyphenyl)hexafluoropropane, 2,2-bis(3-carboxyphenyl)propane, 2,2-bis(4-carboxyphenyl)methane, bis(3-carboxy
  • the number of the kinds of dicarboxylic acids used to form the monomer mixture of the polyamide may be one, two or more.
  • the polyamide preferably contains the following main repeating structural units, which are formed by the polymerization of the following monomer mixtures:
  • PACM dodecanedioic acid
  • diamine or “dicarboxylic acid” described in the present invention for the polymerization reaction of polyamide should be understood as a monomer having a structure containing at least two active amine groups or carboxylic acid functional groups that can satisfy the amide reaction. That is, there are derivative structures that may contain other heteroatoms, functional groups, and salts.
  • the polyamide can be capped with a capping agent, and the capping agent can react with the end of the chain growth of the polyamide polymerization process to achieve control of the polyamide molecular weight or change the type or activity of the end group.
  • the capping agent is selected from amines containing only one reactive amino group and/or carboxylic acids containing only one reactive carboxyl group.
  • the described "contains only one reactive amino group” should be understood to mean that the amine acts as a capping agent, and its structure can contain one, two or more amino groups and/or other derivative functional groups, but only one has the ability to grow with the polyamide chain.
  • terminal reactive activity the description of "contains only one reactive carboxyl group” should be understood as the carboxylic acid as a capping agent, and its structure may contain one, two or more carboxyl groups and/or other derivative functional groups, but only One has the activity to react with the growing end of the polyamide chain.
  • the amine blocking agent is preferably and not limited to at least one of methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, octylamine, aniline, toluidine, dimethylamine, and cyclohexylamine. .
  • the carboxylic acid capping agent is preferably but not limited to at least one of acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, dodecanoic acid, stearic acid, cyclohexanoic acid, and benzoic acid. .
  • the content of the amine blocking agent is not less than 0.1 mol/% based on the total amount of the diamine reactive monomers constituting the polyamide; preferably, the amine blocking agent The content of amine is not less than 0.5 mol/% based on the total amount of the diamine reactive monomers constituting the polyamide; more preferably, the content of the amine capping agent is not less than the content of the diamine reactive monomers based on the polyamide.
  • the content of the amine end-capping agent is not less than 1.0 mol/% based on the total amount of the diamine reactive monomers constituting the polyamide; usually, the The content of the amine capping agent is not higher than 6.0 mol/% based on the total amount of the diamine reactive monomers constituting the polyamide; preferably, the content of the amine capping agent is not higher than the content of the diamine-based reactive monomers constituting the polyamide.
  • the content of the amine end-capping agent is not higher than 5.5 mol/% based on the total amount of diamine reactive monomers constituting the polyamide; particularly preferably Preferably, the content of the amine end-capping agent is not higher than 5.0 mol/% based on the total amount of the diamine reactive monomers constituting the polyamide.
  • the content of the carboxylic acid blocking agent is not less than 0.1 mol/% based on the total amount of the dicarboxylic acid reactive monomers constituting the polyamide; preferably, the carboxylic acid
  • the content of the acid end-capping agent is not less than 0.5 mol/% based on the total amount of the dicarboxylic acid reactive monomers constituting the polyamide; more preferably, the content of the carboxylic acid end-capping agent is not less than 0.8mol/% of the total amount of dicarboxylic acid reactive monomers; particularly preferably, the content of the carboxylic acid end-capping agent is not less than 1.0mol based on the total amount of dicarboxylic acid reactive monomers constituting the polyamide /%; Generally, the content of the carboxylic acid end-capping agent is not higher than 6.0 mol/% based on the total amount of the dicarboxylic acid reactive monomers constituting the polyamide; preferably, the carboxylic acid end
  • the content of the polyamide is not less than 25% by weight based on the total amount of the polyamide composite; preferably, the content of the polyamide is preferably not less than 30% by weight based on the total amount of the polyamide composite; More preferably, the content of the polyamide is preferably not less than 35% by weight based on the total weight of the polyamide composite; particularly preferably, the content of the polyamide is preferably not less than the total weight based on the polyamide composite.
  • the content of the polyamide is not higher than 90% by weight based on the total amount of the polyamide composite; preferably, the content of the polyamide is preferably not higher than the content based on the polyamide composite 85% by weight of the total amount; more preferably, the content of the polyamide is preferably not higher than 80% by weight based on the total amount of the polyamide composite; particularly preferably, the content of the polyamide is preferably not high Based on 75% by weight of the total amount of the polyamide composite.
  • the polyamide composite for improving laser weldability of the present invention may include other polyamide resins besides the polyamide,
  • polyamide resins include polyamide resins obtained by polymerization of lactam and/or aminocarboxylic acid, and polyamide resins obtained by polymerization of at least one diamine and dicarboxylic acid, wherein diamine is preferred but not It is limited to aliphatic diamines that are different from the aforementioned diamines, and include an even number of carbon atoms and/or an even number of carbon atoms in the main chain; or their copolymers.
  • the other polyamide resin is selected from but not limited to at least one of polyamide 66, polyamide 6, polyamide 66/6, polyamide 12, polyamide 610, and polyamide 612.
  • the polyamide composite also includes glass fibers and/or laser-transmitting colorants; wherein the content of the glass fibers is 40-70%.
  • composition of the glass fiber can be formed using A-, C-, D-, E-, M-, R-, S-glass or a mixture thereof, preferably E-glass.
  • the glass fiber used in the present invention may be monofilament yarn or twisted yarn.
  • the glass fiber can be selected from different forms, suitable forms include continuous glass fiber, chopped glass fiber (cut into a size of 1-10mm) and finely ground glass fiber (ground into a size of 10-500 ⁇ m), different forms
  • suitable forms include continuous glass fiber, chopped glass fiber (cut into a size of 1-10mm) and finely ground glass fiber (ground into a size of 10-500 ⁇ m), different forms
  • the glass fiber can be mixed and used.
  • the glass fiber can be selected from different cross-sectional shapes, preferably but not limited to circular, elliptical, and pseudo-rectangular cross-sectional shapes, more preferably non-circular cross-sectional morphology, and particularly preferably pseudo-rectangular cross-sectional shapes.
  • the described pseudo-rectangular shape should be understood as having a general shape similar to a rectangle, and the main variant included is that the rectangular right angle is changed to a rounded corner with a certain curvature.
  • the reciprocal of the curvature is not more than 50% of the long diameter of the quasi-rectangular, preferably, the reciprocal of the curvature is not more than 25% of the long diameter of the quasi-rectangular; more preferably, the reciprocal of the curvature is not more than the quasi-rectangular long diameter.
  • the reciprocal of the curvature is not greater than 12.5% of the long diameter of the pseudo-rectangular; meanwhile, the reciprocal of the curvature is not less than 8% of the short diameter of the pseudo-rectangular; preferably, the curvature
  • the reciprocal of is not less than 12.5% of the short diameter of the pseudo-rectangular; more preferably, the reciprocal of the curvature is not less than 25% of the short diameter of the pseudo-rectangular; particularly preferably, the reciprocal of the curvature is not less than 40 of the short diameter of the pseudo-rectangular. %.
  • the long-diameter/short-diameter ratio of the glass fiber having a pseudo-rectangular cross-section is 1.5-10; preferably, the long-diameter/short-diameter ratio is 2.5-8; more preferably, the long-diameter/short-diameter ratio is 2.5-8.
  • the diameter ratio is 2.5-5.
  • the glass fiber preferably has a weight average fiber length of 1-40 ⁇ m and a chopped length of 1-10 mm.
  • the polyamide composite for improving laser weldability of the present invention contains not less than 10% by weight of glass fibers; preferably, not less than 20% by weight of glass fibers; more preferably, not less than 30% by weight At the same time, the polyamide composite for improving laser weldability of the present invention contains no more than 70% by weight of glass fiber; preferably, the polyamide composite for improving laser weldability of the present invention contains no more than 65 % By weight of glass fiber; more preferably, the polyamide composite for improving laser weldability of the present invention contains no more than 60% by weight of glass fiber; particularly preferably, the polyamide composite for improving laser weldability of the present invention The material contains no more than 55% by weight of glass fiber.
  • the glass fibers contained in the polyamide composite for improving laser weldability of the present invention can be one, two or a combination of two or more in composition, form, and cross-sectional morphology. When there are two or more glass fibers, the total content of glass fibers still applies to the above range.
  • the described laser transmission should be understood as the performance of transmitting light with a wavelength of 800-1400nm, under normal circumstances, it should be more accurately understood as the performance of incomplete absorption of light with a wavelength of 800-1400nm;
  • the laser transmission colorant is preferably and not limited to nigrosine, phthalocyanine group, naphthalocyanine group, porphyrin group, perylene group, anthraquinone group, azo group, bisazo group, heterocyclic group, Coloring agents such as quinacridone-based.
  • the laser-transmitting colorant does not contain carbon black or other light-absorbing coloring agents in principle.
  • the described non-containing content should be understood as the content should not be higher than 1000 ppm; more preferably, the content should not be higher than 500 ppm; particularly preferably, the content should not be higher than 250 ppm; especially preferably, the content should not be higher than 100 ppm.
  • the polyamide composite for improving laser weldability of the present invention may contain one, two, or more types.
  • a variety of colorants with different tones are selected for combination. For example, a combination of a red colorant, a yellow colorant, and a blue colorant; a combination of a red colorant, a yellow colorant, and a green colorant; a combination of an orange colorant and a blue colorant; a combination of a purple colorant, a yellow colorant, and a green colorant And so on can become the main component of the black colorant.
  • a combination of orange colorant, blue colorant and red colorant is used to obtain a black color appearance; more preferably, the colorant is (mono/di)azo, anthraquinone, quinacrine At least one of a pyridone group and an anilino group.
  • the polyamide composite for improving laser weldability of the present invention contains a laser-transmitting colorant content of not less than 0.01% by weight of the total weight of the resin; preferably, the content of the laser-transmitting colorant is not less than the total weight of the resin.
  • the content of the laser-transmitting colorant is not less than 0.1% by weight of the total weight of the resin; particularly preferably, the content of the laser-transmitting colorant is not less than 0.2% of the total weight of the resin
  • the content of the laser transmission colorant is not more than 6% by weight of the total weight of the resin; preferably, the content of the laser transmission colorant is not more than 5% by weight of the total weight of the resin; more preferably, the laser
  • the content of the transmission colorant is not more than 4% by weight of the total weight of the resin; particularly preferably, the content of the laser transmission colorant is not more than 3% by weight of the total weight of the resin; particularly preferably, the laser transmission colorant
  • the content is not more than 2.5% by weight of the total weight of the resin; according to a preferred embodiment, the content of the laser-transmitting colorant is 0.2-2.5%.
  • the polyamide composite for improving laser weldability of the present invention uses the laser-transmitting colorant to show the characteristics of transmitting or incompletely absorbing light with a wavelength of 800-1400 nm. It has a transmittance of not less than 35% for light at a wavelength of 980nm; preferably, a transmittance of not less than 38% for light at a wavelength of 980nm; more preferably, a transmittance of not less than 38% for light at a wavelength of 980nm Have a transmittance of not less than 40%; particularly preferably, have a transmittance of not less than 42% for light at a wavelength of 980nm; particularly preferably, have a transmittance of not less than 45% for light at a wavelength of 980nm There is no special limit on the upper limit of light transmittance at a wavelength of 980nm.
  • It has a transmittance of not less than 45% for light at a wavelength of 1064nm; particularly preferably, a transmittance of not less than 48% for light at a wavelength of 1064nm; particularly preferably, a transmittance of not less than 48% for light at a wavelength of 1064nm.
  • Light has a transmittance of not less than 50%; there is no special limit on the upper limit of the transmittance at a wavelength of 1064 nm.
  • the polyamide composite also includes a nucleating agent and/or other additives.
  • the nucleating agent is preferably and not limited to PA22, talc, saturated or unsaturated fatty acid salt, granular mineral fillers such as silicate, wollastonite, zeolite, mica, sericite, kaolin, bentonite, pyrophyllite, oxide At least one of aluminum, silicon oxide, calcium carbonate, magnesium carbonate, calcium sulfate, magnesium hydroxide, aluminum hydroxide, boron nitride, and silicon carbide.
  • the described nucleating agent is capable of allowing the polyamide to form more crystalline sites to accelerate the crystallization while reducing the spherulite size of the polyamide composite.
  • the other additives are light stabilizers, ultraviolet light absorbers, heat stabilizers, antioxidants, flame retardants, flame retardant synergists, anti-dripping agents, flow modifiers, plasticizers, toughening agents, One or more of mold release agents, fluorescent whitening agents, and antibacterial agents.
  • the polyamide composite has a laser transmittance of not less than 48% measured according to the standards ISO13468-1 and ISO13468-2 for a laser with a wavelength of 980nm, and measured according to the standards ISO13468-1 and ISO13468-2 for a wavelength of 1064nm
  • the laser has a laser transmittance of not less than 54%.
  • the production method of the polyamide composite with improved laser weldability of the present invention is not particularly restricted, and is carried out by using blending equipment such as an internal mixer, a single-screw or twin-screw extruder.
  • the order of addition of the components is not particularly limited. It can be added at the same time or in a certain order. Two or more components can be selected from all components for pre-mixing or banburying, for example, laser transmission.
  • the colorant can be extruded by forming a masterbatch in advance, and then adding it to the melt of other components in a set ratio in the manner of a masterbatch.
  • thermoplastic resin used in the masterbatch can be the polyamide resin described in the present invention or other resins, preferably PA6 and PA66.
  • PA6 and PA66 a resin that is preferably PA6 and PA66.
  • the method for molding or producing parts using the polyamide composite for improving laser weldability of the present invention is not particularly limited, and is applicable to any molding method applied to thermoplastics, such as injection molding, blow molding, extrusion, compression molding, and the like.
  • the present invention also provides a composition including a polyamide composite for improving laser weldability, and the composition further includes a laser absorbing resin composite.
  • the composition is suitable for laser welding to improve the laser weldability of the polyamide composite and the laser absorbing resin composite to form a connected structure, more specifically, the composition improves the laser weldability of the polyamide composite, laser
  • the parts formed by the absorbent resin composites respectively correspond to the laser transmission part and the laser absorption part. When laser welding is used, there must be a flat or curved joint surface in close contact between the two parts.
  • the laser absorbing resin composite may include a thermoplastic resin and a laser absorbing filler, and may also include an inorganic filler.
  • the thermoplastic resin used in the laser absorbing resin composite may be polyamide resin, polyester resin, polycarbonate resin, polyolefin resin, styrene-based resin, polyphenylene ether resin, polyvinyl resin, acrylic resin, Acetal resin, etc.
  • the thermoplastic resin is preferably not limited to polyamide resin, polyester resin, and polycarbonate resin. More preferably, the thermoplastic resin is a polyamide resin.
  • thermoplastic resin used in the laser absorbing resin composite can be one, two or more.
  • the thermoplastic resin is used for the laser absorbing resin composite, and the type of polyamide resin used is not particularly limited, and it can be the polyamide or other polyamides described in the present invention for improving the laser weldability of the polyamide composite.
  • the polyamide resin used in the laser absorbing resin composite uses at least one polyamide selected from the polyamide composite described in the present invention for improving laser weldability.
  • the resin component used in the laser-absorbable resin composite and the polyamide composite to improve the laser weldability has more than 10% of the same component; preferably, more than 30% The same components; more preferably, there are more than 50% of the same components; particularly preferably, there are more than 70% of the same components; especially preferably, there are more than 90% of the same components.
  • the laser absorbing filler for the laser absorbing resin composite may be laser absorbing colorant, carbon fiber, carbon nanotube, graphene, silica, aluminum, inorganic mineral filler, glass fiber, metal oxide such as indium Tin oxide, antimony tin oxide.
  • the laser absorption colorant is carbon black. Based on the absorption of almost all wavelengths at visible light wavelengths.
  • carbon black has obvious absorption of light with a wavelength of 800-1064nm. Commonly used carbon blacks include acetylene black, lamp black, furnace black, channel black, and thermal pyrolysis carbon black. Carbon black can be added by a masterbatch method.
  • the thermoplastic resin used as a masterbatch carrier can be the polyamide resin described in the present invention or other resins, preferably PA6 or PA66.
  • the laser absorbing filler can also be other colorants that absorb laser light, such as white pigment titanium dioxide and red pigment iron oxide red.
  • the content of the laser absorbing colorant used in the laser absorbing resin composite is 0.01-3% by weight of the total weight of the resin; preferably, the content of the laser absorbing colorant is 0.5-3% by weight of the total weight of the resin.
  • the inorganic filler used in the laser absorbing resin composite is preferably glass fiber, and the type and content are the same as those of the polyamide resin for improving laser permeability of the present invention as described above with respect to glass fiber.
  • the present invention relates to the use of a laser welding method to form a connection between the composition (including a polyamide compound for improving laser weldability and a laser absorbing resin compound).
  • the laser transmission resin and laser absorption are improved.
  • the resin forms the laser transmission part and the laser absorption part respectively, and there is no special limitation on the shape of the parts, except that the bonding surface between the parts is required to be in close contact.
  • the laser is irradiated from the laser penetrating part and penetrates the laser penetrating part, reaches the joint surface and is absorbed by the laser absorbing part and converted into heat, so that the laser weldability on both sides of the joint surface is improved.
  • the polyamide composite and the laser absorbing resin composite melt and form a firm bond after cooling.
  • the laser-transmitting parts formed by polyamide composites have high laser transmittance. According to the requirements of the strength and color appearance of the parts, the type or content of the glass fiber or laser-transmitting colorant will not be affected.
  • Polyamide resin has the characteristics of high laser transmittance.
  • Diode lasers, yttrium aluminum garnet lasers, and fiber lasers commonly used in industry can usually generate lasers with wavelengths in the near-infrared band. According to laser characteristics, different wavelengths determine different levels of oscillation and also mean different penetration depths. Therefore, considering the type and wavelength distribution of laser light sources commonly used in the industry, and the composition of the polyamide composite, the thickness of the laser transmission component is not greater than 5mm; preferably, the thickness of the laser transmission component is not greater than 4mm; more preferably, the laser The thickness of the penetrating part is not more than 3mm. There is no particular limitation on the thickness of the laser absorbing part.
  • the thickness of the laser absorbing part is preferably not less than 0.2mm; more preferably, the thickness of the laser absorbing part is not less than 0.5mm; in particular, Preferably, the thickness of the laser absorbing member is not less than 1 mm.
  • the combined component after laser welding has high bonding strength.
  • the combined component can be a semi-finished product, a finished product, or a component forming them.
  • the composite part obtained by laser welding of the present invention has high mechanical properties, bonding strength, less use or no need for post-treatment, and no obvious thermal or mechanical damage. It can be applied to parts with a hollow structure, such as various containers, auto parts, home appliance parts, office automation equipment parts, electronic and electrical parts, etc., more specifically, such as automotive hollow structure parts such as intake manifolds, filter housings, etc. Body, control unit housing, ignition coil components, cosmetic containers, food containers, pharmaceutical containers, hollow electronic and electrical parts such as switch parts, sensor parts, connector parts, relay parts, transformer parts. Circuit breaker parts, coil parts, etc.
  • the improved polyamide resin structure of the present invention can effectively improve laser weldability, further enhance the application range of laser welding, and improve laser transparency and laser welding strength.
  • Polyamide is manufactured by melt polymerization. For example, a salt solution containing dicarboxylic acid and diamine is continuously removed under an environment of increased temperature and pressure to continuously remove the solution water and condensation product water; it is also possible to use the diamine
  • the dicarboxylic acid added to the molten state is polycondensed. In order to maintain a uniform liquid state, it is advisable to gradually and continuously add diamine to the molten dicarboxylic acid.
  • the temperature is constantly increased and adjusted The temperature is not lower than the melting point of the polyamide oligomer and polyamide product, and polycondensation is performed. In order to promote amidation and prevent yellowing in the polycondensation process, a small amount of phosphorus-containing compound sodium hypophosphite is selected.
  • PAD6 is obtained by the following synthesis method:
  • PA 56 is obtained by the following synthesis method:
  • the synthesis method is basically the same as the above, except that the diamine (1,5-pentanediamine) is changed, and the polyamide resin is obtained by the same synthesis method.
  • PA 910 is obtained by the following synthesis method:
  • the synthesis method is basically the same as the above, except that the dicarboxylic acid (sebacic acid) and the diamine (nonanediamine) are changed, and the polyamide resin is obtained by the same synthesis method.
  • PA D12 is obtained by the following synthesis method:
  • PA D6/66 is obtained through the following methods:
  • the synthesis method is basically the same as the above, except that the diamine (2-methyl-1,5-pentanediamine and hexamethylenediamine, molar ratio 70:30) is changed, and the polyamide resin is obtained by the same synthesis method.
  • PA 66/D6 is obtained through the following methods:
  • the synthesis method is basically the same as the above, except that the diamine (2-methyl-1,5-pentanediamine and hexamethylenediamine, molar ratio 10:90) is changed, and the polyamide resin is obtained by the same synthesis method.
  • PA 56/66 is obtained through the following methods:
  • the synthesis method is basically the same as the above, except that the diamine (1,5-pentamethylenediamine and hexamethylenediamine, molar ratio 70:30) is changed, and the polyamide resin is obtained by the same synthesis method.
  • PA 66/56 is obtained through the following methods:
  • the synthesis method is basically the same as the above, except that the diamine (1,5-pentamethylenediamine and hexamethylenediamine, molar ratio 10:90) is changed, and the polyamide resin is obtained by the same synthesis method.
  • PAPACM12 is obtained by the following methods:
  • the synthesis method is basically the same as the above, except for changing the dicarboxylic acid (dodecanedioic acid) and changing the diamine (PACM), the same synthesis method is used to obtain the polyamide resin.
  • PAMACM12 is obtained by the following methods:
  • the synthesis method is basically the same as the above, except that the dicarboxylic acid (dodecanedioic acid) and the diamine (MACM) are changed, the pressure is appropriately adjusted and the internal temperature is lowered, and the polyamide resin is obtained by the same synthesis method.
  • PA 6/D6 is obtained by the following method:
  • PA 6/56 is obtained through the following methods:
  • the synthesis method is basically the same as the above, except that the diamine (1,5-pentanediamine) is changed, and the polyamide resin is obtained by the same synthesis method.
  • PA DT/DI is obtained through the following methods:
  • the synthesis method is basically the same as the above, except that the diamine (2-methyl-1,5-pentanediamine), dicarboxylic acid (terephthalic acid and isophthalic acid by molar ratio 70:30) are changed, The same synthesis method is used to obtain polyamide resin.
  • PA65 is obtained by the following synthesis method:
  • the 50% aqueous solution of dicarboxylic acid (glutaric acid) and diamine (hexamethylene diamine) salt containing a small amount of sodium hypophosphite in the reactor is controlled to increase the speed of addition and increase the temperature during the addition. Keep the melt in a uniform liquid phase so that the molar amount of diamine is gradually equal to the molar amount of dicarboxylic acid.
  • diamine hexamethylene diamine
  • PA PACM11 is obtained by the following synthesis method:
  • PA66/65 and PA65/66 are based on the method of PA65, except that the dicarboxylic acid is changed to adipic acid and glutaric acid, respectively, according to the ratio of 90:10 and 30:70.
  • PA66 grade EPR24, purchased from Pingdingshan Shenma;
  • PA6 brand HY-2500A, purchased from Jiangsu Haiyang Chemical Fiber;
  • PA6/66 brand HYZ2500, purchased from Jiangsu Haiyang Chemical Fiber;
  • PA66/6 brand Vydyne 86XFS, purchased from Solutia
  • PA6T6I purchased from Kingfa Technology
  • PA610 Ultramid S3K, purchased from BASF;
  • PA612, 153HSL NC010 purchased from DuPont;
  • Glass fiber ECS301HP-3, purchased from Chongqing Glass Fiber;
  • Glass fiber ECS301HP-M3, purchased from Chongqing Glass Fiber, the ratio of long diameter/short diameter is about 3;
  • Glass fiber TFG4355, purchased from Taishan Glass Fiber, the ratio of long diameter/short diameter is about 4, and the reciprocal of curvature is about 50% of the short diameter;
  • Carbon black RM717, purchased from BIRLA;
  • Laser transmission colorants methine orange, phthalocyanine blue, phthalocyanine green, azo orange, anthraquinone blue, quinacridone red, and 2:1 azochromium metal complex are all commercially available brands.
  • Antioxidant 1098, PEP-36, purchased from Adike;
  • Nucleating agent talc powder TYT-717, purchased from Liaoning Beihai Industry.
  • the resin, glass fiber, laser transparent colorant and other components are weighed in proportion, mixed and extruded with a twin-screw extruder for granulation.
  • the glass fiber is filled through the side feeding port during the extrusion process.
  • the temperature of the extruder is set at 280°C-320°C.
  • the polyamide compound with improved laser weldability obtained above was dried in an oven at 120°C for 4 hours, and molded into a sample plate (thickness 2mm) of 80mm ⁇ 50mm ⁇ 2mm using an injection molding machine.
  • the barrel temperature was 280°C and the mold temperature was 120°C.
  • a near-infrared spectrometer (wavelength 900-1700nm, Ocean Optics NIRQuest spectrometer) was used to measure the light transmittance of the sample near the gate and the far gate, and the transmittance at the wavelengths of 980nm and 1064nm were measured.
  • the evaluation method of light transmittance at 980nm is as follows:
  • One of the transmittances of the near gate position and the far crossing position is less than 45%, and the other is ⁇ 45 but less than 50%;
  • the evaluation method of light transmittance at 1064nm is as follows:
  • One of the transmittances of the near gate position and the far crossing position is less than 50%, and the other is ⁇ 50 but less than 55%;
  • the polyamide compound and laser-absorbent resin compound with improved laser weldability obtained above were dried in an oven at 120°C for 4 hours, and molded into a spline (thickness 2mm) of 130mm ⁇ 14mm ⁇ 2mm using an injection molding machine.
  • the barrel The temperature is 280°C, and the mold temperature is 120°C.
  • the spline of the polyamide composite for improving the laser weldability and the spline of the laser absorbing resin composite are superimposed, and the spline of the polyamide composite for improving the laser weldability is placed toward the laser focusing window for laser welding.
  • Laser welding operation put the superimposed spline in the plastic material laser welding system (Han's Laser, model WFD120W-PCTS333SP), two lasers (wavelength is 915nm), laser radius 200 ⁇ m, welding power 20W, welding speed 20mm/s, The welding length is 130mm ⁇ 3 (in order to reduce the error, three independent welds without overlapping are carried out, and each pass is parallel, with an interval of 6mm), and the pressure of the pneumatic holding device is 0.5MPa.
  • the sample After laser welding, the sample is placed in a 50% relative humidity, 23 ⁇ 2°C environment for 4 hours, and then a tensile testing machine (zwick/roell z010) is used to test the shear failure force. Hold both ends in the long axis direction with a span of 120mm and a tensile speed of 5mm/min for tensile testing. The average value of shear failure force under 3 parallel welding conditions is recorded as the welding strength.
  • a tensile testing machine zwick/roell z010
  • *Other additive combinations are 0.3% release agent MB50-002, 0.2% antioxidant 1098, 0.2% antioxidant PEP-36 and 0.3% talc TYT-717.
  • *Other additive combinations are 0.3% release agent MB50-002, 1.0% flow modifier ZnSt, 0.2% antioxidant 1098, 0.2% antioxidant PEP-36 and 0.3% talc TYT-717.
  • *Other additive combinations are 0.3% release agent MB50-002, 0.2% antioxidant 1098, 0.2% antioxidant PEP-36 and 0.3% talc TYT-717.
  • *Other additives include 0.3% release agent MB50-002, 0.2% antioxidant 1098, 0.2% antioxidant PEP-36 and 0.3% talc TYT-717.
  • *Other additive combinations are 0.3% release agent MB50-002, 0.2% antioxidant 1098, 0.2% antioxidant PEP-36 and 0.3% talc TYT-717.
  • *Other additive combinations are 0.3% release agent MB50-002, 0.2% antioxidant 1098, 0.2% antioxidant PEP-36 and 0.3% talc TYT-717.
  • *Other additive combinations are 0.3% release agent MB50-002, 0.2% antioxidant 1098, 0.2% antioxidant PEP-36 and 0.3% talc TYT-717.
  • *Other additive combinations are 0.3% release agent MB50-002, 0.2% antioxidant 1098, 0.2% antioxidant PEP-36 and 0.3% talc TYT-717.
  • *Other additive combinations are 0.3% release agent MB50-002, 1.0% flow modifier ZnSt, 0.2% antioxidant 1098, 0.2% antioxidant PEP-36 and 0.3% talc TYT-717.
  • Example 64 From the comparison between Example 64 and Comparative Example 25, it is found that although the structure with alicyclic diamine can have higher light transmittance, the welding strength is also significantly reduced, indicating that crystallization can improve the higher welding strength, although In this way, the undecane dibasic acid of the present invention can still improve the welding strength correspondingly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyamides (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

一种改善激光可焊性的聚酰胺复合物,包括至少一种聚酰胺树脂,所述聚酰胺树脂经由以下单体聚合反应而成:1)构成所述聚酰胺的二胺衍生结构重复单元的至少10mol%衍生于碳原子总数为奇数和/或位于主链的碳原子数量为奇数的至少一种脂肪族二胺和/或脂环族二胺;2)构成所述聚酰胺的二羧酸衍生结构重复单元的至少10mol%衍生于碳原子总数为4-18的至少一种脂肪族二羧酸;或者3)构成该聚酰胺的二羧酸衍生结构重复单元的至少10mol%衍生于碳原子总数为奇数和/或位于主链的碳原子数量为奇数的至少一种脂肪族二羧酸和/或脂环族二羧酸;4)构成所述聚酰胺的二胺衍生结构重复单元的至少10mol%衍生于碳原子总数为4-18的至少一种脂肪族二胺和/或脂环族二胺;所述聚酰胺树脂占聚酰胺复合物总重量的25%-90%。经过改进聚酰胺树脂的结构可以有效改善激光可焊性,进一步提升了激光焊接的应用范围,改善激光透明性和激光焊接强度。

Description

一种改善激光可焊性的聚酰胺复合物 技术领域
本发明属于激光焊接领域,特别涉及一种改善激光可焊性的聚酰胺复合物。
背景技术
塑料制件应用于汽车、家电、电动工具、电子电器、医疗器械,受益于它高比重强度、低成本、高设计自由度、易回收等优点。但复杂的制件一般很难通过一次成型,而需要先加工成更小的零件后再完成连接,因此也发展了许多应用塑料制件的连接技术,包括粘胶连接、机械紧固、熔融结合、焊接等方式,而焊接方式也呈多样化,根据产热方式的差异划分有振动焊接、热板焊接、激光焊接、超声波焊接等。激光焊接是一种非常适合用于热塑性聚合物连接方式,有别于其他焊接方式,激光焊接由于通过激光辐射产生热量不需要与零件发生接触,这种非接触性焊接操作可以获得高质量的焊接效果,具有能力传输无需接触焊接界面、避免产生内应力、不产生热负荷的优点。通过激光束给予的能量在区域及时间上得到精准控制,焊缝的宽度一般属于100μm级别,而焊接反应时间属于ms级别,因此激光焊接具备周期短、自动化、高度集成的潜力。
聚酰胺材料具备一定的激光透过率,作为激光吸收材料或者激光透过材料而言存在一定的应用前景,本身作为工程塑料在许多结构件、功能件、壳体零件上已有大量的应用,对激光焊接技术的普及,产品装配技术面临升级,聚酰胺改性技术也会迎来新的潮流,如何使它更适合多样化的连接技术,包括激光焊接。三菱US2019/0002692 A1通过调整苯二甲基二胺及长链二元羧酸的结构继而获得改善,而索尔维US2017/0368762 A1通过使用环状脂肪结构的二元胺/羧酸及对或间苯二甲酸共聚。但是,仍然存在激光可焊性达不到实际要求的问题。
发明内容
本发明所要解决的技术问题是提供一种改善激光可焊性的聚酰胺复合物,经过改进聚酰胺树脂的结构可以有效改善激光可焊性,进一步提升了激光焊接的应用范围,改善激光透明性和激光焊接强度。
本发明提供了一种改善激光可焊性的聚酰胺复合物,包括至少一种聚酰胺树脂;
所述聚酰胺树脂经由以下单体聚合反应而成:1)构成所述聚酰胺的二胺衍生结构重复单元的至少10mol%衍生于碳原子总数为奇数和/或位于主链的碳原子数量为奇数的至少一种脂肪族二胺和/或脂环族二胺;2)构成所述聚酰胺的二羧酸衍生结构重复单元的至少10mol%衍生于碳原子总数为4-18的至少一种脂肪族二羧酸;
或者3)构成该聚酰胺的二羧酸衍生结构重复单元的至少10mol%衍生于碳原子总数为奇数和/或位于主链的碳原子数量为奇数的至少一种脂肪族二羧酸和/或脂环族二羧酸;4)构成所述聚酰胺的二胺衍生结构重复单元的至少10mol%衍生于碳原子总数为4-18的至少一种脂肪族二胺和/或脂环族二胺;
所述聚酰胺树脂占聚酰胺复合物总重量的25%-90%。
所述脂肪族二胺为乙二胺、1-丁基-乙二胺、1,3-丙二胺、1,2-丙二胺、1,3-丁二胺、1,4-丁二胺、1,1-二甲基-1,4-丁二胺、1,2-二甲基-1,4-丁二胺、1,3-二甲基-1,4-丁二胺、1,4-二甲基-1,4-丁二胺、2,3-二甲基-1,4-丁二胺、1-乙基-1,4-丁二胺、1,5-戊二胺、2-甲基-1,5-戊二胺、1,6-己二胺、2,5-二甲基-1,6-己二胺、2,4-二甲基-1,6-己二胺、3,3-二甲基-1,6-己二胺、2,2-二甲基-1,6-己二胺、2,4-二乙基-1,6-己二胺、2,2,4-三甲基-1,,6-己二胺、2,4,4-三甲基-1,,6-己二胺、1,7-庚二胺、2,3-二甲基-1,7-庚二胺、2,4-二甲基-1,7-庚二胺、2,2-二甲基-1,7-庚二胺、1,8-辛二胺、1,3-二甲基-1,8-辛二胺、1,4-二甲基-1,8-辛二胺、2,4-二甲基-1,8-辛二胺、3,4-二甲基-1,8-辛二胺、4,5-二甲基-1,8-辛二胺、2,2-二甲基-1,8-辛二胺、3,3-二甲基-1,8-辛二胺、4,4-二甲基-1,8-辛二胺、1,9-壬二胺、5-甲基-1,9-壬二胺、1,10-癸二胺、1,11-十一碳二元胺、1,12-十二碳二元胺、1,13-十三碳二元胺、1,14-十四碳二元胺、1,15-十五碳二元胺、1,16-十六碳二元胺中的至少一种。特别优选地,脂肪族二胺选自2-甲基-1,5-戊二胺、1,5-戊二胺和1,9-壬二胺中的至少一种。
如果形成所述聚酰胺的单体混合物中含有二元胺为碳原子总数为奇数和/或位于主链的碳原子数量为奇数的脂肪族二胺,所述脂肪族二胺的含量占形成该聚酰胺所有二胺的至少10mol%;优选地,所述脂肪族二胺的含量占形成该聚酰胺所有二胺的至少30mol%;更优选地,所述脂肪族二胺的含量占形成该聚酰胺所有二胺的至少50mol%;特别优选地,所述脂肪族二胺的含量占形成该聚酰胺所有二胺的至少70mol%。
所述碳原子总数为奇数和/或位于主链的碳原子数量为奇数的脂环族二胺为双(3-甲基-4-氨基环己基)甲烷MACM、双(4-氨基环己基)甲烷PACM、2,2-双(3-甲基-4-氨基环己基)丙烷,1,3-双(氨基甲基)环己烷BAC、1,4-双(氨基甲基)环己烷,1,3-二胺基环己烷、1,4-二胺基环己烷、异氟尔酮二胺IPDA中的至少一种。优选地,所述的脂环族二胺选自双(3-甲基-4-氨基环己基)甲烷(MACM),双(4-氨基环己基)甲烷(PACM)、1,3-双(氨基甲基)环己烷(BAC)、异氟尔酮二胺(IPDA)中的至少一种。
用于形成所述聚酰胺的单体混合物还可以包含其他芳香族二胺,优选且不局限于双(4-氨基苯基)醚(4,,4'-ODA)、3,4'-双(氨基苯基)醚(3,,4'-ODA)、对位苯二胺(PPD)、间 位苯二胺(MPD)、对位苯二甲胺(PXDA)、间位苯二甲胺(MXDA)、双(氨基甲基)萘烷中的至少一种。
用于形成所述聚酰胺的单体混合物还可以包含不同于上述二胺的其他脂肪族二元胺,优选且不局限于乙二胺、1-丁基-乙二胺、1,4-丁二胺、1,1-二甲基-1,4-丁二胺、1,2-二甲基-1,4-丁二胺、1,3-二甲基-1,4-丁二胺、1,4-二甲基-1,4-丁二胺、2,3-二甲基-1,4-丁二胺、1-乙基-1,4-丁二胺、1,6-己二胺、2,5-二甲基-1,6-己二胺、2,4-二甲基-1,6-己二胺、3,3-二甲基-1,6-己二胺、2,2-二甲基-1,6-己二胺、2,4-二乙基-1,6-己二胺、1,8-辛二胺、1,3-二甲基-1,8-辛二胺、1,4-二甲基-1,8-辛二胺、2,4-二甲基-1,8-辛二胺、3,4-二甲基-1,8-辛二胺、4,5-二甲基-1,8-辛二胺、2,2-二甲基-1,8-辛二胺、3,3-二甲基-1,8-辛二胺、4,4-二甲基-1,8-辛二胺、1,10-癸二胺、1,12-十二碳二元胺、1,14-十四碳二元胺、1,16-十六碳二元胺中的至少一种。
用于形成所述聚酰胺的单体混合物的二胺的种类的数量可以是一种、两种或者更多。
用于形成所述聚酰胺的单体混合物还可以包含其他种类的单体,如包含源自于部分和/或完全自然界分离提纯和/或人工合成的脂肪族氨基酸适合作为单体混合物的一部分。所述的部分和/或完全自然界分离提纯的脂肪族氨基酸优选且不局限于丙氨酸、天冬氨酸、天冬酰胺酸、精氨酸、半管氨酸、谷氨酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯基丙氨酸、苏氨酸、鸟氨酸、脯氨酸、络氨酸、色氨酸、缬氨酸中的至少一种。部分和/或完全人工合成的脂肪族氨基酸优选且不局限于羟色氨酸、1-氨基癸酸、1-氨基十一酸、1-氨基十二酸中的至少一种。
用于形成所述聚酰胺的单体混合物还可以包含其他种类的单体,如内酰胺,所述的内酰胺优选但不局限于β-丙内酰胺、γ-丁内酰胺、δ-戊内酰胺、ε-己内酰胺、ω-十二碳内酰胺中的至少一种。
所述碳原子总数为4至18的脂肪族二羧酸为丁二酸、戊二酸、2,2-二甲基-戊二酸、己二酸、2,4,4-三甲基-己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一碳二酸酸、十二碳二元酸、十三碳二元酸、十四碳二元酸、十五碳二元酸、十六碳二元酸中的至少一种。
如果形成所述聚酰胺的单体混合物中含有二元羧酸为碳原子总数为4至18的脂肪族二羧酸,所述脂肪族二羧酸的含量占形成该聚酰胺所有二羧酸的至少10mol%;优选地,所述脂肪族二羧酸的含量占形成该聚酰胺所有二羧酸的至少30mol%;更优选地,所述脂肪族二羧酸的含量占形成该聚酰胺所有二羧酸的至少50mol%;特别优选地,所述脂肪族二羧酸的含量占形成该聚酰胺所有二羧酸的至少70mol%。
如果形成所述聚酰胺的单体混合物中含有二元羧酸衍生于碳原子总数为奇数和/或位 于主链的碳原子数量为奇数的至少一种脂肪族二羧酸和/或脂环族二羧酸;优选地,所述的二羧酸的含量占形成该聚酰胺所有二羧酸的至少15mol%;更优选地,所述的二羧酸的含量占形成该聚酰胺所有二羧酸的至少30mol%;特别优选地,所述的二羧酸的含量占形成该聚酰胺所有二羧酸的至少50mol%;尤其优选地,所述的二羧酸的含量占形成该聚酰胺所有二羧酸的至少70mol%。
用于形成所述聚酰胺的单体混合物中还可以包含不同于上述二羧酸的芳香族二羧酸,所述的芳香族二羧酸优选但不局限于对苯二甲酸、间苯二甲酸、2-氯-对苯二甲酸、5-磺基间苯二甲酸钠、六氢化对苯二甲酸、六氢化间苯二甲酸、5-异丁基-间苯二甲酸、2,6-萘二羧酸、2,7-萘二羧酸、1,4-萘二羧酸、2,3-萘二羧酸、1,8-萘二羧酸、1,2-萘二羧酸、2,5-萘二羧酸、2,4-吡啶二羧酸、2,5-吡啶二羧酸、3,5-吡啶二羧酸、2,2-双(4-羧基苯基)六氟丙烷、2,2-双(3-羧基苯基)丙烷、2,2-双(4-羧基苯基)甲烷、双(3-羧基苯基)甲烷、双(3-羧基苯基)甲苯、2,2-双(4-羧基苯基)丙酮、2,2-双(3-羧基苯基)丙酮、4,4’-双(4-羧基苯基)砜。优选地,所述的芳香族二羧酸为间苯二甲酸、对苯二甲酸中的至少一种。
用于形成所述聚酰胺的单体混合物的二羧酸的种类的数量可以是一种、两种或者更多。
最优选的,所述的聚酰胺优选包含以下主要重复结构单元,所述的重复结构单元通过以下单体混合物聚合反应形成:
(1)PACM、十二碳二元酸;
(2)MACM、十二碳二元酸;
(3)2-甲基-1,5-戊二胺、己二酸;
(4)戊二胺、己二酸;
(5)壬二胺、己二酸;
(6)2-甲基-1,5-戊二胺,对苯二甲酸、间苯二甲酸;
(7)2-甲基-1,5-戊二胺,己二胺、对苯二甲酸、己二酸。
本发明有关用于聚酰胺的聚合反应所描述的“二胺”或“二羧酸”应当理解为可满足酰胺反应的包含有至少两个活性胺基或羧酸基官能团的结构的单体,即存在可能包含有如其他杂原子、官能团、盐的衍生物结构。
所述的聚酰胺可以使用封端剂进行封端,所述的封端剂可与聚酰胺聚合过程的链增长的链段末端发生反应,实现控制该聚酰胺分子量或者改变端基种类或活性的其他目的,所述的封端剂选自仅含有一个反应活性氨基的胺和/或仅含有一个反应活性羧基的羧酸。所描 述的“仅含有一个反应活性氨基”应理解为该胺作为封端剂,其结构可以包含一个、两个或者多个氨基和/或其他衍生官能团,但仅有一个具备与聚酰胺链增长末端发生反应的活性;所描述的“仅含有一个反应活性羧基”应理解为该羧酸作为封端剂,其结构可以包含一个、两个或者多个羧基和/或其他衍生官能团,但仅有一个具备与聚酰胺链增长末端发生反应的活性。
所述的胺封端剂优选且不局限于甲胺、乙胺、丙胺、丁胺、戊胺、己胺、辛胺、苯胺、甲苯胺、二甲胺、环己胺中的至少一种。。
所述的羧酸封端剂优选且不局限于乙酸、丙酸、丁酸、戊酸、己酸、辛酸、十二酸、硬脂酸、环己酸、苯甲酸中的至少一种。。
若使用的封端剂为胺,所述的胺封端剂的含量不低于基于构成聚酰胺的二元胺反应单体总量的0.1mol/%;优选地,所述的胺封端剂的含量不低于基于构成聚酰胺的二元胺反应单体总量的0.5mol/%;更优选地,所述的胺封端剂的含量不低于基于构成聚酰胺的二元胺反应单体总量的0.8mol/%;特别优选地,所述的胺封端剂的含量不低于基于构成聚酰胺的二元胺反应单体总量的1.0mol/%;通常情况下,所述的胺封端剂的含量不高于基于构成聚酰胺的二元胺反应单体总量的6.0mol/%;优选地,所述的胺封端剂的含量不高于基于构成聚酰胺的二元胺反应单体总量的5.8mol/%;更优选地,所述的胺封端剂的含量不高于基于构成聚酰胺的二元胺反应单体总量的5.5mol/%;特别优选地,所述的胺封端剂的含量不高于基于构成聚酰胺的二元胺反应单体总量的5.0mol/%。
若使用的封端剂为羧酸,所述的羧酸封端剂的含量不低于基于构成聚酰胺的二元羧酸反应单体总量的0.1mol/%;优选地,所述的羧酸封端剂的含量不低于基于构成聚酰胺的二元羧酸反应单体总量的0.5mol/%;更优选地,所述的羧酸封端剂的含量不低于基于构成聚酰胺的二元羧酸反应单体总量的0.8mol/%;特别优选地,所述的羧酸封端剂的含量不低于基于构成聚酰胺的二元羧酸反应单体总量的1.0mol/%;通常情况下,所述的羧酸封端剂的含量不高于基于构成聚酰胺的二元羧酸反应单体总量的6.0mol/%;优选地,所述的羧酸封端剂的含量不高于基于构成聚酰胺的二元羧酸反应单体总量的5.8mol/%;更优选地,所述的羧酸封端剂的含量不高于基于构成聚酰胺的二元羧酸反应单体总量的5.5mol/%;特别优选地,所述的羧酸封端剂的含量不高于基于构成聚酰胺的二元羧酸反应单体总量的5.0mol/%。
所述的聚酰胺的含量不低于基于该聚酰胺复合物总量的25%重量;优选地,所述的聚酰胺的含量优选不低于基于该聚酰胺复合物总量的30%重量;更优选地,所述的聚酰胺的 含量优选不低于基于该聚酰胺复合物总量的35%重量;特别优选地,所述的聚酰胺的含量优选不低于基于该聚酰胺复合物总量的40%重量;同时,所述的聚酰胺的含量不高于基于该聚酰胺复合物总量的90%重量;优选地,所述的聚酰胺的含量优选不高于基于该聚酰胺复合物总量的85%重量;更优选地,所述的聚酰胺的含量优选不高于基于该聚酰胺复合物总量的80%重量;特别优选地,所述的聚酰胺的含量优选不高于基于该聚酰胺复合物总量的75%重量。
本发明的改善激光可焊性聚酰胺复合物可包含除了所述聚酰胺以外的其他聚酰胺树脂,
其他适合的聚酰胺树脂包括经由内酰胺和/或氨基羧酸聚合反应得到的聚酰胺树脂、以及经由包含至少一种二胺和二羧酸聚合反应得到的聚酰胺树脂,其中二胺优选但不局限于异于前文所述的二胺,包含碳原子总数为偶数和/或位于主链的碳原子数量为偶数的脂肪族二胺;或者它们的共聚物。
优选地,所述的其他聚酰胺树脂选自但不局限于聚酰胺66、聚酰胺6、聚酰胺66/6、聚酰胺12、聚酰胺610、聚酰胺612中的至少一种。
所述聚酰胺复合物还包括玻璃纤维和/或激光透过着色剂;其中,玻璃纤维含量为40-70%。
所述的玻璃纤维的组成可以使用A-、C-、D-、E-、M-、R-、S-玻璃或者它们的混合物形成,优选E-玻璃。
本发明使用的玻璃纤维可以是单丝纱或加捻纱。
所述的玻璃纤维可以选自不同的形式,合适的形式包括连续玻璃纤维、短切玻璃纤维(切成1-10mm的尺寸)和细磨玻纤(磨成10-500μm的尺寸),不同形式的玻璃纤维可以混合使用。
所述的玻璃纤维可以选自不同的横截面形状、优选但不局限于圆形、椭圆形、拟长方形的横截面形状,更优选非圆形的横截面的形貌,特别优选拟长方形的横截面形貌,所描述的拟长方形应理解为具有类似长方形的大致形状,主要包含的变体为长方形的直角改为具有一定曲率的圆角。所述的曲率的倒数不大于拟长方形长直径的50%,优选地,所述的曲率的倒数不大于拟长方形长直径的25%;更优选地,所述的曲率的倒数不大于拟长方形长直径的10%;特别优选地,所述的曲率的倒数不大于拟长方形长直径的12.5%;同时,所述的曲率的倒数不小于拟长方形短直径的8%;优选地,所述的曲率的倒数不小于拟长方形短直径的12.5%;更优选的,所述的曲率的倒数不小于拟长方形短直径的25%;特别 优选的,所述的曲率的倒数不小于拟长方形短直径的40%。根据优选的实施例,所述的玻璃纤维具有拟长方形横截面的长直径/短直径比率为1.5-10;优选地,长直径/短直径比率为2.5-8;更优选地,长直径/短直径比率为2.5-5。
所述的玻璃纤维优选具有重均纤维长度1-40μm和短切长度为1-10mm。
本发明的改善激光可焊性的聚酰胺复合物包含不低于10%重量的玻璃纤维;优选地,包含不低于20%重量的玻璃纤维;更优选地,包含不低于30%重量的玻璃纤维;同时,本发明的改善激光可焊性的聚酰胺复合物包含不高于70%重量的玻璃纤维;优选地,本发明的改善激光可焊性的聚酰胺复合物包含不高于65%重量的玻璃纤维;更优选地,本发明的改善激光可焊性的聚酰胺复合物包含不高于60%重量的玻璃纤维;特别优选地,本发明的改善激光可焊性的聚酰胺复合物包含不高于55%重量的玻璃纤维。
本发明的改善激光可焊性的聚酰胺复合物包含的玻璃纤维分别在组成、形式、横截面形貌上可以是一种、两种或多种的组合。当存在两种或多种以上玻璃纤维,玻璃纤维的总含量依然适用上述范围。
所描述的激光透过应理解为对波长为800-1400nm的光表现透过的性能,通常情况下,应更准确地理解为对波长为800-1400nm的光表现为不完全吸收的性能;所述的激光透过着色剂优选且不局限于苯胺黑、酞菁基、萘菁基、卟啉基、二萘嵌苯基、蒽醌基、偶氮基、双偶氮基、杂环基、喹吖啶酮基等着色剂。优选地,所述的激光透过着色剂原则上不含有炭黑或其他光吸收性的着色剂。所描述的原则上不含有应理解为其含量不得高于1000ppm;更优选的,含量不得高于500ppm;特别优选的,含量不得高于250ppm;尤其优选地,含量不得高于100ppm。
本发明的改善激光可焊性的聚酰胺复合物可以包含一种、两种、或多种。通常为了获得黑色的颜色外观,会选择多种不同色调的着色剂进行组合。例如红色着色剂、黄色着色剂和蓝色着色剂组合;红色着色剂、黄色着色剂和绿色着色剂组合;橙色着色剂和蓝色着色剂组合;紫色着色剂、黄色着色剂和绿色着色剂组合等都可以成为获得黑色着色剂的主要组成部分。根据优选的实施例,采用橙色着色剂、蓝色着色剂和红色着色剂组合获得黑色的颜色外观;更优选地,所述着色剂为(单/双)偶氮基、蒽醌基、喹吖啶酮基、苯胺基中的至少一种。
本发明的改善激光可焊性的聚酰胺复合物包含的激光透过着色剂含量为不低于占树脂总重的0.01%重量;优选地,激光透过着色剂含量为不低于占树脂总重的0.05%重量;更优选地,激光透过着色剂含量为不低于占树脂总重的0.1%重量;特别优选地,激光透过 着色剂含量为不低于占树脂总重的0.2%重量;同时,激光透过着色剂含量为不高于占树脂总重的6%重量;优选地,激光透过着色剂含量为不高于占树脂总重的5%重量;更优选地,激光透过着色剂含量为不高于占树脂总重的4%重量;特别优选地,激光透过着色剂含量为不高于占树脂总重的3%重量;尤其优选地,激光透过着色剂含量为不高于占树脂总重的2.5%重量;根据优选的实施例,所述的激光透过着色剂含量为0.2~2.5%。
本发明的改善激光可焊性聚酰胺复合物使用所述的激光透过着色剂表现出对波长为800-1400nm的光有透过或者不完全吸收的特性。在对于波长980nm处的光具有不低于35%的透过率;优选地,在对于波长980nm处的光具有不低于38%的透过率;更优选地,在对于波长980nm处的光具有不低于40%的透过率;特别优选地,在对于波长980nm处的光具有不低于42%的透过率;尤其优选地,在对于波长980nm处的光具有不低于45%的透过率;对于波长980nm处的光透过率上限值没有特殊的限定。在对于波长1064nm处的光具有不低于45%的透过率;特别优选地,在对于波长1064nm处的光具有不低于48%的透过率;尤其优选地,在对于波长1064nm处的光具有不低于50%的透过率;对于波长1064nm处的光透过率上限值没有特殊的限定。
所述聚酰胺复合物还包括成核剂和/或其他添加剂。
所述的成核剂优选且不局限于PA22、滑石、饱和或不饱和脂肪酸盐、颗粒状矿物填料如硅酸盐、硅灰石、沸石、云母、绢云母、高岭土、膨润土、叶腊石、氧化铝、氧化硅、碳酸钙、碳酸镁、硫酸钙、氢氧化镁、氢氧化铝、氮化硼、碳化硅中的至少一种。所描述的成核剂具备使聚酰胺形成更多的结晶位点而加速结晶同时减少聚酰胺复合物的球晶尺寸。
所述其他添加剂为光稳定剂、紫外光吸收剂、热稳定剂、抗氧剂、阻燃剂、阻燃协效剂、抗滴落剂、流动改性剂、增塑剂、增韧剂、脱模剂、荧光增白剂、抗菌剂中的一种或几种。
所述聚酰胺复合物根据标准ISO13468-1和ISO13468-2测得针对波长为980nm的激光具有不低于48%的激光透过率,根据标准ISO13468-1和ISO13468-2测得针对波长为1064nm的激光具有不低于54%的激光透过率。
本发明的改善激光可焊性聚酰胺复合物的生产方法没有特殊严格限定,使用共混设备例如密炼机、单螺杆或双螺杆挤出机进行。组分之间的添加顺序没有特殊严格限定,可以采用同时加入也可按一定顺序加入,可以从所有组分中选择两种或多种组分进行预先的混合或密炼,例如,激光透过着色剂可以通过预先形成色母粒,再以母粒的方式按照设定的 比例添加至其他组分的熔体中,进行挤出。在设备混合能力允许的条件下,也可以在模制或生产部件时,将母粒与其他组分形成的粒子按设定的比例进行混合熔融加工。母粒中使用的热塑性树脂可以是本发明所描述的聚酰胺树脂,也可以是其他树脂,优选PA6、PA66。为了克服玻纤在挤出过程发生折损,优选在其他组分充分形成熔体之后,在挤出设备中部按设定的比例加入。
使用本发明的改善激光可焊性聚酰胺复合物模制或生产部件的方法没有特殊的限定,适用于任何应用于热塑性塑料的成型方法,例如注塑、吹塑、挤出、压塑等。
本发明还提供了一种包括改善激光可焊性的聚酰胺复合物的组合物,所述组合物还包括激光吸收性树脂复合物。
所述的组合物适合通过激光焊接使改善激光可焊性聚酰胺复合物及激光吸收性树脂复合物形成连接的结构,更具体的,该组合物的改善激光可焊性聚酰胺复合物、激光吸收性树脂复合物分别各自形成的部件,分别对应得到激光透过部件和激光吸收部件,使用激光焊接时,两个部件之间必须存在紧密接触的平面或曲面的结合面,激光从位于激光透过部件一侧的光源进行辐照,穿过激光透过部件,到达结合面并被激光吸收部件吸收转化为热量,使激光吸收部件位于结合面位置的激光吸收性树脂复合物熔融,热量传递给位于结合面的激光透过部件使改善激光可焊性聚酰胺复合物熔融,它们形成的熔池经过冷却固化后形成连接。
所述的激光吸收性树脂复合物可以包含热塑性树脂和激光吸收填充剂,还可包含一种无机填料。
所述热塑性树脂用于激光吸收性树脂复合物可以是聚酰胺树脂、聚酯树脂、聚碳酸酯树脂、聚烯烃树脂、苯乙烯基树脂、聚苯醚树脂、聚乙烯基树脂、丙烯酸类树脂、缩醛树脂等。为了形成更强焊接性能并考虑相容性的影响,所述热塑性树脂优选并不局限于聚酰胺树脂、聚酯树脂、聚碳酸酯树脂,更优选地,所述的热塑性树脂为聚酰胺树脂。
所述的热塑性树脂用于激光吸收性树脂复合物可以是一种、两种或者多种。
所述的热塑性树脂用于激光吸收性树脂复合物,使用聚酰胺树脂的种类没有特殊限定,可以是本发明所描述的用于改善激光可焊性聚酰胺复合物的聚酰胺或其他聚酰胺。优选地,所述的用于激光吸收性树脂复合物的聚酰胺树脂使用至少一种选自本发明所描述的用于改善激光可焊性聚酰胺复合物的聚酰胺。并且出于改善相容性的考虑,激光吸收性性树脂复合物和改善激光可焊性聚酰胺复合物所使用的树脂组分有10%以上的相同组分;优选地,有30%以上的相同组分;更优选地,有50%以上的相同组分;特别优选地,有70% 以上的相同组分;尤其优选地,有90%以上的相同组分。
所述的用于激光吸收性树脂复合物的激光吸收填充剂可以是吸收激光着色剂、碳纤维、碳纳米管、石墨烯、二氧化硅、铝、无机矿物填料、玻纤、金属氧化物如铟锡氧化物、锑锡氧化物。所述的激光吸收着色剂为炭黑。基于在可见光波长下对基本所有波长存在吸收。作为激光吸收填充剂,炭黑对波长为800-1064nm的光存在明显的吸收,常用的炭黑有乙炔黑、灯黑、炉黑、槽黑、热裂解炭黑等。炭黑可以通过母粒方法添加,作为母粒载体的热塑性树脂,可以是本发明所描述的聚酰胺树脂,也可以是其他树脂,优选PA6或PA66。
所述的激光吸收填充剂还可以是吸收激光的其他着色剂,如白色颜料二氧化钛、红色颜料氧化铁红。
所述的用于激光吸收性树脂复合物的吸收激光着色剂含量为占树脂总重的0.01-3%重量;优选地,吸收激光着色剂含量为占树脂总重的0.5-3%重量。
所述的用于激光吸收性树脂复合物的无机填料优选玻璃纤维,并且种类和含量与本发明的改善激光透过性聚酰胺树脂以上关于玻璃纤维的说明相同。
本发明涉及采用激光焊接的方法使组合物(包含改善激光可焊性聚酰胺复合物、激光吸收性树脂复合物)之间形成连接,为了实现上述目的,改善激光透过性树脂、激光吸收性树脂分别形成激光透过部件和激光吸收部件,对部件的形状没有特殊的限定,除了要求部件之间存在紧密接触的结合面。在激光焊接的过程中,激光从激光透过部件一测辐照并穿透激光透过部件,到达结合面被激光吸收部件吸收并转化为热量,使位于结合面两侧的改善激光可焊性聚酰胺复合物和激光吸收性树脂复合物熔融,冷却后形成牢固的结合。
改善激光可焊性聚酰胺复合物形成的激光透过部件具有高激光透过率,根据对部件强度及颜色外观的要求对玻璃纤维或激光透过着色剂进行种类或含量的调整都不影响其聚酰胺树脂高激光透过率的特性。
工业上常使用的二极管激光、钇铝石榴石激光、光纤激光通常可产生波长位于近红外波段的激光,根据激光特点,不同波长决定了不同层级的振荡也意味着不同的穿透深度。因此,考虑到工业常用激光光源的种类及波长分布,考虑聚酰胺复合物的组成,激光透过部件的厚度不大于5mm;优选地,激光透过部件的厚度不大于4mm;更优选地,激光透过部件的厚度不大于3mm。对于激光吸收部件的厚度并没有特殊的限定,出于不受吸收激光熔融热量的过度影响,优选激光吸收部件的厚度不小于0.2mm;更优选地,激光吸收部件的厚度不小于0.5mm;特别优选地,激光吸收部件的厚度不小于1mm。
根据本发明,经过激光焊接后的组合部件具有高结合强度,需要说明的是组合部件既可以是半成品、成品,也可以是形成它们的一个组件。区别于传统的连接方式,本发明通过激光焊接得到的组合部件具有高机械性能、结合强度、少使用或无需后处理、无明显的热或机械损伤。可应用于具有中空结构的部件,例如各种容器、汽车部件、家电部件、办公自动化设备部件、电子电器部件等用途,更具体地,如汽车中空结构部件如进气歧管、滤清器壳体,控制单元壳体、点火线圈部件,化妆品容器、食品容器、药品容器、电子电器中空部件如开关部件、传感器部件、连接器部件、继电器部件、变压器部件。电流断路器部件、线圈部件等。
有益效果
本发明经过改进聚酰胺树脂的结构可以有效改善激光可焊性,进一步提升了激光焊接的应用范围,提高激光透明性和激光焊接强度。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
聚酰胺通过熔融聚合法制造,例如,将包含了二羧酸和二胺的盐溶液,在增加温度和压力的环境下不断地除去溶液水及缩合产物水的聚合方法;也可以采用将二胺添加至熔融状态下的二羧酸进行缩聚,为了保持均匀的液相状态,宜选用逐渐连续添加二元胺至熔融二元羧酸的方式,在发生聚合反应的过程,不断地升高调整温度使温度不低于聚酰胺低聚物和聚酰胺产物的熔点,进行缩聚。为了促进酰胺化并防止缩聚过程黄变,选择添加少量含磷化合物次磷酸钠。
PAD6通过以下合成方法得到:
在氮气的氛围下将反应釜内的含有少量次磷酸钠的二元羧酸(己二酸)加热熔融,待二元羧酸充分熔融后,持续不停搅拌反应釜内容物边缓慢添加二元胺(2-甲基-1,5-戊二胺),控制添加的添加速度以及添加过程升高温度使熔体保持均匀的液相状态,使得二元胺摩尔量逐渐等于二元羧酸的摩尔量,待二元胺添加结束后,继续升高温度至260℃并持续反应1小时,将聚合物从反应釜下方的射嘴放出,冷却造粒,干燥得到聚酰胺树脂。使用的原料如表1所示。
PA 56通过以下合成方法得到:
与上述的合成方法基本相同,除了更改二元胺(1,5-戊二胺),同样的合成方法得到聚酰胺树脂。
PA 910通过以下合成方法得到:
与上述的合成方法基本相同,除了更改二元羧酸(癸二酸)和更改二元胺(壬二胺),同样的合成方法得到聚酰胺树脂。
PA D12通过以下合成方法得到:
与上述的合成方法基本相同,除了更改二元羧酸(十二碳二元酸),同样的合成方法得到聚酰胺树脂。
PA D6/66通过以下的方法得到:
与上述的合成方法基本相同,除了更改二元胺(2-甲基-1,5-戊二胺和己二胺,按摩尔比70:30),同样的合成方法得到聚酰胺树脂。
PA 66/D6通过以下的方法得到:
与上述的合成方法基本相同,除了更改二元胺(2-甲基-1,5-戊二胺和己二胺,按摩尔比10:90),同样的合成方法得到聚酰胺树脂。
PA 56/66通过以下的方法得到:
与上述的合成方法基本相同,除了更改二元胺(1,5-戊二胺和己二胺,按摩尔比70:30),同样的合成方法得到聚酰胺树脂。
PA 66/56通过以下的方法得到:
与上述的合成方法基本相同,除了更改二元胺(1,5-戊二胺和己二胺,按摩尔比10:90),同样的合成方法得到聚酰胺树脂。
PAPACM12通过以下的方法得到:
与上述的合成方法基本相同,除了更改二元羧酸(十二碳二元酸)和更改二元胺(PACM),同样的合成方法得到聚酰胺树脂。
PAMACM12通过以下的方法得到:
与上述的合成方法基本相同,除了更改二元羧酸(十二碳二元酸)和更改二元胺(MACM),适当地调整压力和降低内温,同样的合成方法得到聚酰胺树脂。
PA 6/D6通过以下的方法得到:
在反应釜内将己内酰胺与己二酸2-甲基-戊二胺盐按9:1摩尔比混合,在氮气的氛围下持续搅拌,缓慢升温至260℃并持续反应1小时,在发生聚合反应的过程,不断地升高调 整温度使温度不低于聚酰胺低聚物和聚酰胺产物的熔点,进行缩聚。
PA 6/56通过以下的方法得到:
与上述的合成方法基本相同,除了更改二元胺(1,5-戊二胺),同样的合成方法得到聚酰胺树脂。
PA DT/DI通过以下的方法得到:
与上述的合成方法基本相同,除了更改二元胺(2-甲基-1,5-戊二胺),二元羧酸(对苯二甲酸和间苯二甲酸按摩尔比70:30),同样的合成方法得到聚酰胺树脂。
PA65通过以下合成方法得到:
在氮气的氛围下将反应釜内的含有少量次磷酸钠的二元羧酸(戊二酸)和二元胺(己二胺)盐50%水溶液,控制添加的添加速度以及添加过程升高温度使熔体保持均匀的液相状态,使得二元胺摩尔量逐渐等于二元羧酸的摩尔量,待二元胺添加结束后,继续升高温度至260℃并持续反应1小时,将聚合物从反应釜下方的射嘴放出,冷却造粒,干燥得到聚酰胺树脂。
PA PACM11通过以下合成方法得到:
与上述的合成方法基本相同,除了更改二元胺(PACM),二元羧酸(十一碳二元酸)同样的合成方法得到聚酰胺树脂。
PA66/65及PA65/66的合成方法根据PA65的方法,除了更改其中二元羧酸为己二酸和戊二酸,分别按照比例90:10及30:70。
表1
原料 供应商
PACM 张家港雅瑞化工有限公司
MACM 张家港雅瑞化工有限公司
2-甲基-1,5-戊二胺 上海澄绍生物科技有限公司
1,5-戊二胺 凯赛生物产业有限公司
1,6-己二胺 上海孜凌国际贸易有限公司
1,9-壬二胺 山东西亚化学工业有限公司
己内酰胺 上海孜凌国际贸易有限公司
己二酸 南京和田化工有限公司
十二碳二元酸 杭州施特安化工有限公司
癸二酸 湖北远成赛创科技有限公司
对苯二甲酸 南京和田化工有限公司
间苯二甲酸 南京和田化工有限公司
其他原料
PA66,牌号EPR24,购自平顶山神马;
PA6,牌号HY-2500A,购自江苏海阳化纤;
PA6/66,牌号HYZ2500,购自江苏海阳化纤;
PA66/6,牌号Vydyne 86XFS,购自美国首诺;
PA6T6I,购自金发科技;
PA610,Ultramid S3K,购自巴斯夫;
PA612,
Figure PCTCN2020137130-appb-000001
153HSL NC010,购自杜邦;
玻璃纤维:ECS301HP-3,购自重庆玻纤;
玻璃纤维:ECS301HP-M3,购自重庆玻纤,长直径/短直径比率约为3;
玻璃纤维:TFG4355,购自泰山玻纤,长直径/短直径比率约为4,曲率倒数约为短直径50%;
炭黑:RM717,购自BIRLA;
激光透过着色剂:次甲基橙、酞菁蓝、酞菁绿、偶氮橙、蒽醌蓝、喹吖啶酮红、2:1型偶氮铬金属络合物均为市售牌号。
脱模剂:MB50-002,购自道康宁;
抗氧剂:1098,PEP-36,购自艾迪科;
成核剂:滑石粉TYT-717,购自辽宁北海实业。
根据表2-6的配方组成将树脂、玻纤、激光透明着色剂及其他组分按比例称重,混合并使用双螺杆挤出机挤出造粒,挤出过程玻纤通过侧喂口填喂。挤出机温度设定280℃-320℃。
[光透过率测试]
将上述得到的改善激光可焊性聚酰胺复合物置于120℃烘箱干燥4小时,使用注塑机分别模制成80mm×50mm×2mm的样板(厚度2mm),料筒温度280℃,模具温度120℃。采用近红外光谱仪(波长为900-1700nm,海洋光学公司NIRQuest光谱仪)对样板近浇口和远浇口位置分别测定了透光率,分别测定波长为980nm和1064nm处的透过率。关于 980nm处光透过率的评价方法如下:
A:近浇口位置和远交口位置的透过率均≥50%;
B:近浇口位置和远交口位置的透过率中1个≥50%,另1个≥45但<50%;
C:近浇口位置和远交口位置的透过率均≥45但<50%;
D:近浇口位置和远交口位置的透过率中1个<45%,另1个≥45但<50%;
E:近浇口位置和远交口位置的透过率均<45%;
关于1064nm处光透过率的评价方法如下:
A:近浇口位置和远交口位置的透过率均≥55%;
B:近浇口位置和远交口位置的透过率中1个≥55%,另1个≥50但<55%;
C:近浇口位置和远交口位置的透过率均≥50但<55%;
D:近浇口位置和远交口位置的透过率中1个<50%,另1个≥50但<55%;
E:近浇口位置和远交口位置的透过率均<50%;
[激光可焊性测试]
将上述得到的改善激光可焊性聚酰胺复合物和激光吸收性树脂复合物置于120℃烘箱干燥4小时,使用注塑机分别模制成130mm×14mm×2mm的样条(厚度2mm),料筒温度280℃,模具温度120℃。
将改善激光可焊性聚酰胺复合物的样条和激光吸收性树脂复合物的样条进行叠合,使改善激光可焊性聚酰胺复合物的样条朝向激光聚焦窗口放置,进行激光焊接。
激光焊接操作:将叠合的样条置于塑料材料激光焊接系统(大族激光,型号WFD120W-PCTS333SP),二激光激光(波长为915nm),激光半径200μm,焊接功率20W,焊接速度20mm/s,焊接长度130mm×3(为了降低误差,进行了不重叠的3道独立的焊接,每道焊道之间平行,间隔6mm),气动加持装置压力0.5MPa。
经过激光焊接后的样条置于50%相对湿度,23±2℃的环境下调节4小时后采用拉伸试验机(zwick/roell z010)进行测试剪切破坏力,沿着焊接后样条的长轴方向加持两端,跨距120mm,拉伸速度5mm/min进行拉伸测试。记录3个平行焊接条件下剪切破坏力的均值为焊接强度。
表2
Figure PCTCN2020137130-appb-000002
Figure PCTCN2020137130-appb-000003
*其他添加剂组合为0.3%的脱模剂MB50-002,0.2%的抗氧剂1098,0.2%的抗氧剂PEP-36和0.3%的滑石TYT-717。
*激光透过着色剂组合1为(次甲基橙:酞菁蓝:酞菁绿=50:25:25)。
表3
Figure PCTCN2020137130-appb-000004
Figure PCTCN2020137130-appb-000005
*其他添加剂组合为0.3%的脱模剂MB50-002,1.0%的流动改性剂ZnSt,0.2%的抗氧剂1098,0.2%的抗氧剂PEP-36和0.3%的滑石TYT-717。
*激光透过着色剂组合1为(次甲基橙:酞菁蓝:酞菁绿=50:25:25。
表4
Figure PCTCN2020137130-appb-000006
Figure PCTCN2020137130-appb-000007
*其他添加剂组合为0.3%的脱模剂MB50-002,0.2%的抗氧剂1098,0.2%的抗氧剂PEP-36和0.3%的滑石TYT-717。
*激光透过着色剂组合1为(次甲基橙:酞菁蓝:酞菁绿=50:25:25)。
表5
Figure PCTCN2020137130-appb-000008
Figure PCTCN2020137130-appb-000009
*其他添加剂含有0.3%的脱模剂MB50-002,0.2%的抗氧剂1098,0.2%的抗氧剂PEP-36和0.3%的滑石TYT-717。
*激光透过着色剂组合1为(次甲基橙:酞菁蓝:酞菁绿=50:25:25);组合2(偶氮橙:蒽醌蓝:喹吖啶酮红=25:15:60);组合3(2:1型偶氮铬金属络合物)。
表6
Figure PCTCN2020137130-appb-000010
*其他添加剂组合为0.3%的脱模剂MB50-002,0.2%的抗氧剂1098,0.2%的抗氧剂PEP-36和0.3%的滑石TYT-717。
*激光透过着色剂组合2(偶氮橙:蒽醌蓝:喹吖啶酮红=25:15:60)。
表7
Figure PCTCN2020137130-appb-000011
Figure PCTCN2020137130-appb-000012
*其他添加剂组合为0.3%的脱模剂MB50-002,0.2%的抗氧剂1098,0.2%的抗氧剂PEP-36和0.3%的滑石TYT-717。
*激光透过着色剂组合1为(次甲基橙:酞菁蓝:酞菁绿=50:25:25)。
表8
Figure PCTCN2020137130-appb-000013
Figure PCTCN2020137130-appb-000014
*其他添加剂组合为0.3%的脱模剂MB50-002,0.2%的抗氧剂1098,0.2%的抗氧剂PEP-36和0.3%的滑石TYT-717。
表9
Figure PCTCN2020137130-appb-000015
Figure PCTCN2020137130-appb-000016
*其他添加剂组合为0.3%的脱模剂MB50-002,0.2%的抗氧剂1098,0.2%的抗氧剂PEP-36和0.3%的滑石TYT-717。
*激光透过着色剂组合1为(次甲基橙:酞菁蓝:酞菁绿=50:25:25)
从对比例20-23可以看出随着玻纤含量的增加,在980nm和1064nm处的波长的激光透过等级分别降低,说明玻纤会降低PA66的光透过率,并导致焊接强度逐渐降低。本发明的实施例52-55中,随着玻纤含量的增加,光透过率等级没有明显的下降,反而焊接强度由于玻纤含量的增加而有所增强,说明玻纤的加入在焊接结合面起到增强效果。此外根据本发明,将PA66与PA65进行一定比例的共混改性同样可以获得明显改善的光透过率和焊接强度。
表10
Figure PCTCN2020137130-appb-000017
Figure PCTCN2020137130-appb-000018
Figure PCTCN2020137130-appb-000019
*其他添加剂组合为0.3%的脱模剂MB50-002,1.0%的流动改性剂ZnSt,0.2%的抗氧剂1098,0.2%的抗氧剂PEP-36和0.3%的滑石TYT-717。
*激光透过着色剂组合2为(偶氮橙:蒽醌蓝:喹吖啶酮红=25:15:60)。
从实施例64与对比例25的对比发现,具有脂环族二胺的结构可以虽具备更高光透过率,但也焊接强度明显降低,说明结晶对获得有更高焊接强度有改善作用,尽管如此使用本发明的十一碳二元酸仍可相应提高焊接强度。

Claims (10)

  1. 一种改善激光可焊性的聚酰胺复合物,其特征在于:包括至少一种聚酰胺树脂;
    所述聚酰胺树脂经由以下单体聚合反应而成:1)构成所述聚酰胺的二胺衍生结构重复单元的至少10mol%衍生于碳原子总数为奇数和/或位于主链的碳原子数量为奇数的至少一种脂肪族二胺和/或脂环族二胺;2)构成所述聚酰胺的二羧酸衍生结构重复单元的至少10mol%衍生于碳原子总数为4-18的至少一种脂肪族二羧酸;
    或者3)构成该聚酰胺的二羧酸衍生结构重复单元的至少10mol%衍生于碳原子总数为奇数和/或位于主链的碳原子数量为奇数的至少一种脂肪族二羧酸和/或脂环族二羧酸;4)构成所述聚酰胺的二胺衍生结构重复单元的至少10mol%衍生于碳原子总数为4-18的至少一种脂肪族二胺和/或脂环族二胺;
    所述聚酰胺树脂占聚酰胺复合物总重量的25%-90%。
  2. 根据权利要求1所述的聚酰胺复合物,其特征在于:所述脂肪族二胺为乙二胺、1-丁基-乙二胺、1,3-丙二胺、1,2-丙二胺、1,3-丁二胺、1,4-丁二胺、1,1-二甲基-1,4-丁二胺、1,2-二甲基-1,4-丁二胺、1,3-二甲基-1,4-丁二胺、1,4-二甲基-1,4-丁二胺、2,3-二甲基-1,4-丁二胺、1-乙基-1,4-丁二胺、1,5-戊二胺、2-甲基-1,5-戊二胺、1,6-己二胺、2,5-二甲基-1,6-己二胺、2,4-二甲基-1,6-己二胺、3,3-二甲基-1,6-己二胺、2,2-二甲基-1,6-己二胺、2,4-二乙基-1,6-己二胺、2,2,4-三甲基-1,,6-己二胺、2,4,4-三甲基-1,,6-己二胺、1,7-庚二胺、2,3-二甲基-1,7-庚二胺、2,4-二甲基-1,7-庚二胺、2,2-二甲基-1,7-庚二胺、1,8-辛二胺、1,3-二甲基-1,8-辛二胺、1,4-二甲基-1,8-辛二胺、2,4-二甲基-1,8-辛二胺、3,4-二甲基-1,8-辛二胺、4,5-二甲基-1,8-辛二胺、2,2-二甲基-1,8-辛二胺、3,3-二甲基-1,8-辛二胺、4,4-二甲基-1,8-辛二胺、1,9-壬二胺、5-甲基-1,9-壬二胺、1,10-癸二胺、1,11-十一碳二元胺、1,12-十二碳二元胺、1,13-十三碳二元胺、1,14-十四碳二元胺、1,15-十五碳二元胺、1,16-十六碳二元胺中的至少一种。
  3. 根据权利要求1所述的聚酰胺复合物,其特征在于:所述脂环族二胺为双(3-甲基-4-氨基环己基)甲烷MACM、双(4-氨基环己基)甲烷PACM、2,2-双(3-甲基-4-氨基环己基)丙烷,1,3-双(氨基甲基)环己烷BAC、1,4-双(氨基甲基)环己烷,1,3-二胺基环己烷、1,4-二胺基环己烷、异氟尔酮二胺IPDA中的至少一种。
  4. 根据权利要求1所述的聚酰胺复合物,其特征在于:所述脂肪族二羧酸为丁二酸、戊二酸、2,2-二甲基-戊二酸、己二酸、2,4,4-三甲基-己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一碳二酸酸、十二碳二元酸、十三碳二元酸、十四碳二元酸、十五碳二元酸、十六碳二元酸中的至少一种。
  5. 根据权利要求1所述的聚酰胺复合物,其特征在于:所述聚酰胺复合物经由以下单体聚 合反应而成:
    PACM和十二碳二元酸;
    或者MACM和十二碳二元酸;
    或者2-甲基-1,5-戊二胺和十二碳二元酸;
    或者2-甲基-1,5-戊二胺和己二酸;
    或者1,5-戊二胺和己二酸;
    或者1,5-戊二胺、己二胺和己二酸;
    或者己二胺和戊二酸;
    或者己二胺、己二酸和戊二酸;
    或者壬二胺和己二酸;
    或者壬二胺和癸二酸;
    或者2-甲基-1,5-戊二胺、对苯二甲酸和间苯二甲酸;
    或者2-甲基-1,5-戊二胺、己二胺和己二酸;
    或者2-甲基-1,5-戊二胺、己内酰胺和己二酸;
    或者2-甲基-1,5-戊二胺、己二胺、对苯二甲酸和己二酸。
  6. 根据权利要求1所述的聚酰胺复合物,其特征在于:所述聚酰胺树脂还包括封端剂。
  7. 根据权利要求1所述的聚酰胺复合物,其特征在于:所述聚酰胺复合物还包括玻璃纤维和/或激光透过着色剂。
  8. 根据权利要求1所述的聚酰胺复合物,其特征在于:所述聚酰胺复合物还包括成核剂和/或其他添加剂。
  9. 一种包括如权利要求1所述的改善激光可焊性的聚酰胺复合物的组合物,其特征在于:所述组合物还包括激光吸收性树脂复合物。
  10. 根据权利要求9所述的组合物,其特征在于:所述激光吸收性树脂复合物包括热塑性树脂、激光吸收填充剂和无机填料。
PCT/CN2020/137130 2019-12-26 2020-12-17 一种改善激光可焊性的聚酰胺复合物 WO2021129503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911363125.XA CN111138852B (zh) 2019-12-26 2019-12-26 一种改善激光可焊性的聚酰胺复合物
CN201911363125.X 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021129503A1 true WO2021129503A1 (zh) 2021-07-01

Family

ID=70520163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137130 WO2021129503A1 (zh) 2019-12-26 2020-12-17 一种改善激光可焊性的聚酰胺复合物

Country Status (2)

Country Link
CN (1) CN111138852B (zh)
WO (1) WO2021129503A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063686A (zh) * 2023-01-04 2023-05-05 万华化学集团股份有限公司 一种耐醇擦透明尼龙及其制备方法
WO2023122877A1 (zh) * 2021-12-27 2023-07-06 上海凯赛生物技术股份有限公司 一种聚酰胺及其制备方法与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138852B (zh) * 2019-12-26 2022-07-08 上海金发科技发展有限公司 一种改善激光可焊性的聚酰胺复合物
CN114163631B (zh) * 2020-09-10 2023-12-08 上海凯赛生物技术股份有限公司 一种聚酰胺及其制备方法与应用
CN112375376A (zh) * 2020-11-27 2021-02-19 上海金发科技发展有限公司 一种适合液体辅助成型的聚酰胺组合物及其制备方法
CN112694748A (zh) * 2020-12-15 2021-04-23 江苏金发科技新材料有限公司 一种耐高温醇解激光透过增强pa66复合材料及其制备方法
CN114163632A (zh) * 2022-01-04 2022-03-11 上海东睿化学有限公司 一种耐黄变共聚酰胺及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060292387A1 (en) * 2005-01-28 2006-12-28 Degussa Ag Process for production of a composite
CN101175791A (zh) * 2005-03-18 2008-05-07 可乐丽股份有限公司 半芳族聚酰胺树脂
CN102015899A (zh) * 2008-04-30 2011-04-13 Ems专利股份公司 用于生产气候测试中低变形透明模塑部件的含共聚酰胺的聚酰胺模塑料
CN102558854A (zh) * 2010-12-02 2012-07-11 Ems专利股份公司 基于由透明共聚酰胺和脂族均聚酰胺制得的混合物用于生产透明模塑品的聚酰胺模塑组合物
CN108203507A (zh) * 2016-12-16 2018-06-26 Ems 专利股份公司 具有高断裂拉伸应变的透明聚酰胺模制组合物
CN111117235A (zh) * 2019-12-31 2020-05-08 会通新材料(上海)有限公司 一种增加激光透射率的聚酰胺56组合物及其应用
CN111138852A (zh) * 2019-12-26 2020-05-12 上海金发科技发展有限公司 一种改善激光可焊性的聚酰胺复合物
CN111171564A (zh) * 2019-12-31 2020-05-19 会通新材料(上海)有限公司 具有增加激光透射率和改善成型缺陷的聚酰胺组合物及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290004B1 (de) * 2009-07-31 2016-08-31 Ems-Patent Ag Polyamid-Blend-Formmasse
KR20200104411A (ko) * 2018-02-16 2020-09-03 미쯔이가가꾸가부시끼가이샤 폴리아미드 수지 조성물 및 그의 성형체, 레이저 용착체의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060292387A1 (en) * 2005-01-28 2006-12-28 Degussa Ag Process for production of a composite
CN101175791A (zh) * 2005-03-18 2008-05-07 可乐丽股份有限公司 半芳族聚酰胺树脂
CN102015899A (zh) * 2008-04-30 2011-04-13 Ems专利股份公司 用于生产气候测试中低变形透明模塑部件的含共聚酰胺的聚酰胺模塑料
CN102558854A (zh) * 2010-12-02 2012-07-11 Ems专利股份公司 基于由透明共聚酰胺和脂族均聚酰胺制得的混合物用于生产透明模塑品的聚酰胺模塑组合物
CN108203507A (zh) * 2016-12-16 2018-06-26 Ems 专利股份公司 具有高断裂拉伸应变的透明聚酰胺模制组合物
CN111138852A (zh) * 2019-12-26 2020-05-12 上海金发科技发展有限公司 一种改善激光可焊性的聚酰胺复合物
CN111117235A (zh) * 2019-12-31 2020-05-08 会通新材料(上海)有限公司 一种增加激光透射率的聚酰胺56组合物及其应用
CN111171564A (zh) * 2019-12-31 2020-05-19 会通新材料(上海)有限公司 具有增加激光透射率和改善成型缺陷的聚酰胺组合物及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122877A1 (zh) * 2021-12-27 2023-07-06 上海凯赛生物技术股份有限公司 一种聚酰胺及其制备方法与应用
CN116063686A (zh) * 2023-01-04 2023-05-05 万华化学集团股份有限公司 一种耐醇擦透明尼龙及其制备方法

Also Published As

Publication number Publication date
CN111138852B (zh) 2022-07-08
CN111138852A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2021129503A1 (zh) 一种改善激光可焊性的聚酰胺复合物
JP7100447B2 (ja) 高破断点引張ひずみを有する透明ポリアミド成形組成物
EP1757636B1 (en) Polyamide resin and hinged molded articles
CN111770965B (zh) 聚酰胺树脂组合物及其成型体、激光熔接体的制造方法
WO2016102217A1 (en) Laser weldable composition and method using the same
JP7412355B2 (ja) 樹脂組成物、成形品、キットおよび成形品の製造方法
JP6941488B2 (ja) 樹脂組成物、キット、成形品の製造方法および成形品
US11397372B2 (en) Molded article and method for manufacturing molded article
JP6934756B2 (ja) 樹脂組成物、キット、成形品の製造方法および成形品
JP2017165935A (ja) 透明ポリアミド組成物、成形体およびその製造方法
US10421224B2 (en) Method for producing molded articles, injection welding material, and molded article
CA2299545A1 (en) Polyamide composition for welding
CN109716011B (zh) 中空成型品及中空成型品的制造方法
CN115667415B (zh) 激光熔敷用透光性树脂组合物、组合物组合、成型品、以及成型品的制造方法
JP2007204683A (ja) 溶着接合用部材および成形品
CN110951248B (zh) 一种黑色led支架料及制备方法
CN112375376A (zh) 一种适合液体辅助成型的聚酰胺组合物及其制备方法
CN115885013A (zh) 树脂组合物、组合物组合、成型品、以及成型品的制造方法
JP2015058608A (ja) ポリアミド樹脂を含有する成形品
JP2000038444A (ja) 共重合ポリアミド、その製造方法およびそれから得られる繊維、成形品
JP2023168133A (ja) 樹脂組成物、成形品、キット、および、成形品の製造方法
JP2020523445A (ja) 3−(アミノメチル)安息香酸から得ることができるコポリアミド
JP2020523449A (ja) 3−(アミノアルキル)安息香酸から得ることができるポリアミド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907163

Country of ref document: EP

Kind code of ref document: A1