WO2021129215A1 - 光伏电缆护套材料及其制备方法 - Google Patents
光伏电缆护套材料及其制备方法 Download PDFInfo
- Publication number
- WO2021129215A1 WO2021129215A1 PCT/CN2020/128361 CN2020128361W WO2021129215A1 WO 2021129215 A1 WO2021129215 A1 WO 2021129215A1 CN 2020128361 W CN2020128361 W CN 2020128361W WO 2021129215 A1 WO2021129215 A1 WO 2021129215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zone
- working temperature
- optionally
- photovoltaic cable
- zinc
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K2003/026—Phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/014—Additives containing two or more different additives of the same subgroup in C08K
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/08—Stabilised against heat, light or radiation or oxydation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Definitions
- the application belongs to the field of cable insulation materials, and specifically relates to a photovoltaic cable jacket material and a preparation method thereof.
- Cable is an important component of photovoltaic equipment. As the backbone of solar photovoltaic power generation facilities, it is directly related to the safety, reliability and advancement of solar photovoltaic power generation systems. A large number of DC cables in photovoltaic power stations need to be laid outdoors, and the environmental conditions are harsh. During the installation and operation and maintenance of photovoltaic power stations, the cables may be routed in the soil below the ground, in weeds and rocks, on the sharp edges of the roof structure, and exposed to the air. , The cable may bear the impact of various external forces. If the cable sheath is not strong enough, the cable insulation layer will be damaged, which will affect the service life of the entire cable, or cause short-circuit, fire, and personal injury hazards. The cable material should be determined according to the conditions of resistance to ultraviolet rays, ozone, severe temperature changes and chemical erosion.
- CN103881166A discloses a low-smoke halogen-free flame-retardant material suitable for photovoltaic cables and a manufacturing method thereof.
- the process is simple and easy to industrially promote production.
- the produced materials are low-smoke environmentally friendly products, and do not contain halogen, heavy metals and other environmentally harmful products. It is a substance, and the material has good surface properties, good insulation, excellent water resistance, acid and alkali corrosion resistance, high and low temperature resistance.
- the insulation resistance and smoke density of the cable material are relatively low, which cannot meet the requirements of photovoltaic cables.
- CN109810372A discloses a preparation method of radiation cross-linked polyolefin sheath material for photovoltaic cables, which comprises the following weight percentage components: ethylene vinyl acetate copolymer (EVA) 50-60%, linear low-density polyethylene 20-30% , Ethylene octene copolymer 15-25%, maleic anhydride grafted polyethylene 10-20%, aluminum hydroxide 100-160%, silicone masterbatch 3-8%, composite antioxidant 0.5-2%, poly Vinyl wax 1-3%, ultraviolet light absorber 1-3%, char-forming smoke suppressant 2-5%, organic montmorillonite 8-15%, activated wollastonite powder 10-15%, carbon black 1-2% .
- the photovoltaic cable improves the flame retardant performance of the material by increasing the amount of flame retardant, but increasing the amount of flame retardant will cause problems such as degradation of the material's mechanical properties and low temperature resistance.
- the purpose of this application is to provide a photovoltaic cable sheath material and a preparation method thereof.
- the photovoltaic cable sheath material has extremely high insulation resistance, excellent flame retardancy, good mechanical strength and smoke density and light transmittance. Through a single vertical combustion, it can fully meet the performance requirements in the IEC62930 standard and can be applied to the field of photovoltaic cables.
- the present application provides a photovoltaic cable sheath material.
- the photovoltaic cable sheath material includes, by weight percentage: 20-40% of hyperbranched polyethylene, 40-60% of flame retardant, and grafted maleic anhydride. EVA 5-10%, stabilizer 1-5%, silicone masterbatch 1-5% and silane coupling agent 1-5%.
- hyperbranched polyethylene has a compact dendritic spherical structure, low viscosity, and good solubility and flow properties.
- Hyperbranched polymers contain a large number of polar end groups that are easily compatible with inorganic components.
- the molecular weight distribution of the unit and the terminal unit is polydisperse, the molecule has a compact structure similar to a spherical shape, and the hydrodynamic radius of gyration is small; the molecular entanglement is less, so the increase in the relative molecular mass has little effect on the viscosity, so the prepared photovoltaic
- the cable sheath material has higher insulation resistance, excellent flame retardancy, and good mechanical strength.
- maleic anhydride grafted EVA introduces strong polar side groups on the main chain of the EVA molecule.
- the maleic anhydride grafted EVA improves the adhesion and phase properties of hyperbranched polyethylene and other inorganic materials. Capacitive bridge.
- Maleic anhydride grafted EVA, flame retardant, stabilizer, silicone masterbatch and silane coupling agent cooperate with each other and synergistically, which can further improve the compatibility and adhesion between the hyperbranched polyethylene matrix and the inorganic flame retardant interface Improve the dispersibility and compatibility of inorganic components in hyperbranched polyethylene, thereby maximizing the flame retardancy of the prepared cable material, reducing the smoke index, smoke generation, heat generation and carbon monoxide generation , Increase the oxygen index, improve the dripping performance, and then significantly improve the mechanical strength and heat resistance of the obtained photovoltaic cable jacket material.
- the weight percentage of the hyperbranched polyethylene is 20-40%, for example, it can be 20%, 22%, 24%, 26%, 28%, 30%, 32%, 34%, 36%, 38%. %, 40%.
- the weight percentage of the flame retardant is 40-60%, for example, it can be 40%, 42%, 44%, 46%, 48%, 50%, 52%, 54%, 56%, 58% , 60%.
- the weight percentage of the maleic anhydride grafted EVA is 5-10%, for example, it can be 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9% , 9.5%, 10%.
- the weight percentage of the stabilizer is 1-5%, for example, it can be 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%.
- the weight percentage of the silicone masterbatch is 1-5%, for example, it can be 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%.
- the weight percentage of the silane coupling agent is 1-5%, for example, it can be 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%.
- the degree of branching of the hyperbranched polyethylene is 100-130 branches/1000C, for example, 102 branches/1000C, 104 branches/1000C, 106 branches/1000C, 108 branches/1000C, 110 branch/1000C, 112 branch/1000C, 114 branch/1000C, 116 branch/1000C, 118 branch/1000C, 120 branch/1000C, 122 branch/1000C, 124 branch/1000C, 126 branch Chain/1000C, 128 branches/1000C, 130 branches/1000C.
- Branch degree refers to the average number of branches per 1,000 carbon atoms in a hyperbranched polyethylene molecule.
- the number average molecular weight of the hyperbranched polyethylene is 5 ⁇ 10 5 -7 ⁇ 10 5 , for example, 5 ⁇ 10 5 , 5.2 ⁇ 10 5 , 5.4 ⁇ 10 5 , 5.6 ⁇ 10 5 , 5.8 ⁇ 10 5 , 6 ⁇ 10 5 , 6.2 ⁇ 10 5 , 6.4 ⁇ 10 5 , 6.8 ⁇ 10 5 , 7 ⁇ 10 5 .
- the flame retardant is a mixture of aluminum hydroxide and microcapsule red phosphorus.
- the combined use of the aluminum hydroxide and the microcapsule red phosphorus can improve the flame retardancy of the photovoltaic cable sheath material; at the same time, during the heating process, a carbon foam layer can be quickly formed to protect the polymer.
- Adiabatic and oxygen-proof the smoke density and toxic gas during combustion can be greatly reduced, and hydrogen halide gas is not generated; aluminum hydroxide is low in cost, and can produce a large amount of water vapor when heated and decomposed. It has a certain flame retardant effect, but it will be reduced when added in large amounts.
- the mechanical properties of the material can improve the flame retardancy of the photovoltaic cable sheath material; at the same time, during the heating process, a carbon foam layer can be quickly formed to protect the polymer.
- Adiabatic and oxygen-proof the smoke density and toxic gas during combustion can be greatly reduced, and hydrogen halide gas is not generated; aluminum hydroxide is low in cost, and can produce a large amount of water vapor when heated and decomposed. It
- the mass ratio of the aluminum hydroxide and the microcapsule red phosphorus is (5-8):1, for example, it may be 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5 :1, 8:1.
- the fineness of the aluminum hydroxide is 1-2 ⁇ m, for example, it may be 1 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m, 1.6 ⁇ m, 1.7 ⁇ m, 1.8 ⁇ m, 2 ⁇ m.
- the microcapsule red phosphorus has a fineness of 5-10 ⁇ m, for example, 5 ⁇ m, 5.5 ⁇ m, 6 ⁇ m, 6.5 ⁇ m, 7 ⁇ m, 7.5 ⁇ m, 8 ⁇ m, 8.5 ⁇ m, 9 ⁇ m, 9.5 ⁇ m, 10 ⁇ m.
- the grafting rate of the maleic anhydride grafted EVA is 1-5%, for example, it can be 1%, 1.2%, 1.4%, 1.6%, 1.8%, 2%, 2.2%, 2.4%, 2.6%. %, 2.8%, 3%, 3.2%, 3.4%, 3.6%, 3.8%, 4%, 4.2%, 4.4%, 4.6%, 4.8%, 5%.
- the melt index of the maleic anhydride grafted EVA is 5-10g/10min, for example, it can be 5g/10min, 5.5g/10min, 6g/10min, 6.5g/10min, 7g/10min, 7.5g/10min. 10min, 8g/10min, 8.5g/10min, 9g/10min, 9.5g/10min, 10g/10min.
- the weight percentage of EVA in the maleic anhydride grafted EVA is 30-40%, for example, it can be 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%. %, 38%, 39%, 40%.
- the stabilizer is a mixture of calcium salt and zinc salt.
- the mass ratio of the calcium salt and zinc salt is (1-3):1, for example, it can be 1:1, 1.2:1, 1.4:1, 1.6:1, 1.8:1, 2:1, 2.2:1, 2.4:1, 2.6:1, 2.8:1, 3:1.
- the calcium salt includes any one of calcium stearate, calcium palmitate, calcium oleate, calcium laurate, calcium pentadecanoate, calcium benzoate or calcium dodecylbenzenesulfonate or A mixture of at least two.
- the zinc salt includes zinc stearate, zinc palmitate, zinc oleate, zinc laurate, zinc seventeen-carbon fatty acid, zinc pentadecyl fatty acid, zinc benzoate or zinc dodecylbenzene sulfonate Any one or a mixture of at least two of them.
- the silane coupling agent includes ⁇ -aminopropyltriethoxysilane, ⁇ -(2,3-glycidoxy)propyltrimethoxysilane, ⁇ -(methacryloxy) ) Any one or a mixture of at least two of propyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, or ⁇ -aminoethylaminopropyltrimethoxysilane.
- the present application provides a method for preparing a photovoltaic cable jacket material as described in the first aspect, and the preparation method includes the following steps:
- step (2) The blended particles obtained in step (1) are made into a wire, and then the wire is irradiated and crosslinked to obtain the photovoltaic cable sheath material.
- the melt blending in step (1) is performed by an internal mixer.
- the melt blending temperature in step (1) is 160-175°C, for example, it can be 160°C, 162°C, 165°C, 170°C, 172°C, or 175°C.
- the melt blending time in step (1) is 15-25 min, for example, it may be 15 min, 16 min, 17 min, 20 min, 21 min, 22 min, 24 min or 25 min.
- the extrusion in step (1) is performed by a single screw extruder.
- the single-screw extruder includes a first zone, a second zone, a third zone, a fourth zone, a fifth zone, a sixth zone, and a seventh zone connected in sequence.
- the working temperature of the first zone is 110-115°C (for example, it can be 110°C, 111°C, 112°C, 113°C, 114°C, or 115°C, etc.), and the working temperature of the second zone is 115-115°C.
- the working temperature of the third zone is 115-120°C (for example, 115°C, 116°C, 117°C, 118°C, 119°C or 120°C, etc.)
- the working temperature of the fourth zone is 120-125°C (for example, it can be 120°C, 121°C, 122°C, 123°C, 124°C or 125°C, etc.)
- the working temperature is 120-125°C (for example, it can be 120°C, 121°C, 122°C, 123°C, 124°C, or 125°C, etc.).
- the working temperature of the sixth zone is 120-130°C (for example, it can be 120°C, 122°C, etc.). °C, 124°C, 126°C, 128°C or 130°C etc.), the working temperature of the seventh zone is 125-130°C (for example, it can be 125°C, 126°C, 127°C, 128°C, 129°C or 130°C etc.) .
- the wire made in step (2) is performed by a wire extruder.
- the wire extruder includes a zone A, a zone B, a zone C, and a zone D connected in sequence.
- the working temperature of the A zone is 110-120°C (for example, it can be 110°C, 112°C, 114°C, 116°C, 118°C or 120°C, etc.), and the working temperature of the B zone is 135-145°C (For example, it can be 135°C, 137°C, 139°C, 140°C, 142°C or 145°C, etc.), the working temperature of zone C is 145-155°C (for example, it can be 145°C, 147°C, 150°C, 151°C, 152°C or 155°C, etc.), the working temperature of zone D is 150-160°C (for example, it can be 150°C, 152°C, 154°C, 156°C, 158°C or 160°C, etc.).
- the radiation crosslinking is performed by an electron accelerator, and the radiation dose is 5-15 Mrad, for example, 5 Mrad, 6 Mrad, 7 Mrad, 8 Mrad, 9 Mrad, 10 Mrad, 11 Mrad, 12 Mrad, 13 Mrad, 14 Mrad, 15 Mrad.
- the preparation method includes the following steps:
- the single-screw extruder includes the first zone, the second zone, the third zone, the fourth zone, the fifth zone, the sixth zone and the seventh zone connected in sequence.
- the working temperature of the first zone is 110-115°C
- the working temperature of the second zone is 115-120°C
- the working temperature of the third zone is 115-120°C
- the working temperature of the fourth zone 120-125°C
- the working temperature of the fifth zone is 120-125°C
- the working temperature of the sixth zone is 120-130°C
- the working temperature of the seventh zone is 125-130°C;
- the pellets prepared by the single-screw extruder are added to the wire extruder, the wire extruder includes the A zone, the B zone, the C zone and the D zone connected in sequence, and the pellets pass through each zone in turn,
- the working temperature of the A zone is 110-120°C
- the working temperature of the B zone is 135-145°C
- the working temperature of the C zone is 145-155°C
- the working temperature of the D zone is 150-160°C.
- an electron accelerator is used for irradiation cross-linking, and the irradiation dose is 5-15 Mrad to obtain the photovoltaic cable sheath material
- the photovoltaic cable sheath material described in this application has extremely high insulation resistance, excellent flame retardancy, good mechanical strength and smoke density and light transmittance, and has excellent high temperature resistance, aging resistance, low temperature resistance and oil resistance
- the performance can be burned vertically by a single wire, which can fully meet the performance requirements in the IEC62930 standard, and can be applied to the field of photovoltaic cables.
- the photovoltaic cable sheath material includes, by weight percentage, hyperbranched polyethylene (branching degree is 100 branches/1000C, number average molecular weight is 5 ⁇ 10 5 ) 40 %, aluminum hydroxide (fineness of 1 ⁇ m) 42%, microcapsule red phosphorus (fineness of 5 ⁇ m) 7%, maleic anhydride grafted EVA (grafting rate 3%, melt index 6g/10min, EVA The weight percentage is 30%) 6%, calcium stearate 1%, zinc stearate 1%, silicone masterbatch 2% and ⁇ -(2,3-glycidoxy) propyl trimethoxy Silane 1%.
- the single-screw extruder includes the first zone, The second zone, the third zone, the fourth zone, the fifth zone, the sixth zone and the seventh zone, the material passes through each zone in turn, the working temperature of the first zone is 110°C, and the working temperature of the second zone is 115°C , The working temperature of the third zone is 115-°C, the working temperature of the fourth zone is 120°C, the working temperature of the fifth zone is 120°C, the working temperature of the sixth zone is 120°C, and the working temperature of the seventh zone is 125 °C;
- the pellets prepared by the single-screw extruder are added to the wire extruder, the wire extruder includes the A zone, the B zone, the C zone and the D zone connected in sequence, and the pellets pass through each zone in turn,
- the working temperature of the A zone is 110°C
- the working temperature of the B zone is 135°C
- the working temperature of the C zone is 145°C
- the working temperature of the D zone is 150°C.
- an electron accelerator is used for irradiation.
- the radiation dose is 5 Mrad to obtain the photovoltaic cable sheath material.
- the photovoltaic cable sheath material includes, by weight percentage, hyperbranched polyethylene (branching degree is 130 branches/1000C, number average molecular weight is 6 ⁇ 10 5 ) 20 %, aluminum hydroxide (fineness of 2 ⁇ m) 50%, microcapsule red phosphorus (fineness of 10 ⁇ m) 10%, maleic anhydride grafted EVA (grafting rate of 5%, melt index of 10g/10min, EVA The weight percentage is 40%) 10%, calcium laurate 3%, zinc laurate 1%, silicone master batch 3%, and ⁇ -mercaptopropyltriethoxysilane 3%.
- the single-screw extruder includes a first zone, a second zone, a third zone, and a fourth zone connected in sequence.
- the fifth zone, the sixth zone and the seventh zone, the material passes through each zone in turn, the working temperature of the first zone is 115°C, the working temperature of the second zone is 120°C, and the working temperature of the third zone is 120°C, The operating temperature of the fourth zone is 125°C, the operating temperature of the fifth zone is 125°C, the operating temperature of the sixth zone is 130°C, and the operating temperature of the seventh zone is 130°C;
- the pellets prepared by the single-screw extruder are added to the wire extruder, the wire extruder includes the A zone, the B zone, the C zone and the D zone connected in sequence, and the pellets pass through each zone in turn,
- the working temperature of the A zone is 120°C
- the working temperature of the B zone is 145°C
- the working temperature of the C zone is 155°C
- the working temperature of the D zone is 160°C.
- an electron accelerator is used for irradiation.
- the radiation dose is 15 Mrad to obtain the photovoltaic cable jacket material.
- the photovoltaic cable sheath material includes hyperbranched polyethylene (branching degree of 110 branches/1000C, number average molecular weight of 7 ⁇ 10 5 ) by weight percentage. %, aluminum hydroxide (fineness of 1 ⁇ m) 40%, microcapsule red phosphorus (fineness of 10 ⁇ m) 5%, maleic anhydride grafted EVA (grafting rate 4%, melt index 5g/10min, EVA The weight percentage is 35%) 8%, calcium palmitate 3%, zinc palmitate 1%, silicone master batch 1%, and ⁇ -aminoethylaminopropyltrimethoxysilane 2%.
- the single-screw extruder includes a first zone, a second zone, a third zone, and a second zone connected in sequence.
- the material passes through each zone in turn, the working temperature of the first zone is 110°C, the working temperature of the second zone is 115°C, and the working temperature of the third zone is 115 -°C, the working temperature of the fourth zone is 120°C, the working temperature of the fifth zone is 120°C, the working temperature of the sixth zone is 120°C, and the working temperature of the seventh zone is 125°C;
- the pellets prepared by the single-screw extruder are added to the wire extruder, the wire extruder includes the A zone, the B zone, the C zone and the D zone connected in sequence, and the pellets pass through each zone in turn,
- the working temperature of the A zone is 110°C
- the working temperature of the B zone is 135°C
- the working temperature of the C zone is 145°C
- the working temperature of the D zone is 150°C.
- an electron accelerator is used for irradiation delivery.
- the radiation dose is 5 Mrad to obtain the photovoltaic cable sheath material.
- This embodiment provides a photovoltaic cable jacket material. Compared with embodiment 1, the only difference is that the aluminum hydroxide content is 7%, the microcapsule red phosphorus content is 42%, and the content of other components and the preparation method are the same as those in the implementation. example 1.
- This embodiment provides a photovoltaic cable jacket material. Compared with embodiment 1, the only difference is that the aluminum hydroxide content is 44.1%, the microcapsule red phosphorus content is 4.9%, and the content of other components and the preparation method are the same
- This embodiment provides a photovoltaic cable jacket material. Compared with embodiment 1, the only difference is that the flame retardant does not contain red phosphorus microcapsules, and the content of aluminum hydroxide (fineness of 1 ⁇ m) is increased to 49%. The content of other components and the preparation method are the same as in Example 1.
- This embodiment provides a photovoltaic cable jacket material. Compared with Embodiment 1, the difference is that the flame retardant does not contain aluminum hydroxide, and the content of microcapsule red phosphorus (fineness of 5 ⁇ m) is increased to 49%. The content of other components and the preparation method are the same as in Example 1.
- This embodiment provides a photovoltaic cable jacket material. Compared with embodiment 1, the difference is that the calcium stearate content is 1.6%, the zinc stearate content is 0.4%, and the content of other components and the preparation method are the same Example 1.
- This embodiment provides a photovoltaic cable jacket material. Compared with embodiment 1, the difference is that the calcium stearate content is 0.4%, the zinc stearate content is 1.6%, and the content of other components and the preparation method are the same Example 1.
- This comparative example provides a photovoltaic cable sheath material. Compared with Example 1, the only difference is: replacing the hyperbranched polyethylene with linear low-density polyethylene (ExxonMobil Chemical, brand number 3518CB), and others The component content and preparation method are the same as in Example 1.
- This comparative example provides a photovoltaic cable jacket material. Compared with Example 1, the only difference is that the photovoltaic cable jacket material does not contain maleic anhydride grafted EVA, and the content of the hyperbranched polyethylene is increased to 46. %, the content of other components and the preparation method are the same as in Example 1.
- This comparative example provides a photovoltaic cable jacket material. Compared with Example 1, the only difference is: the maleic anhydride grafted EVA is replaced with non-grafted EVA (Mitsui Chemicals, Japan, the brand is EV560), and others The component content and preparation method are the same as in Example 1.
- This comparative example provides a photovoltaic cable jacket material. Compared with Example 1, the only difference is: the photovoltaic cable jacket material does not contain stabilizers, the content of the hyperbranched polyethylene is increased to 42%, and the other groups The content and preparation method are the same as in Example 1.
- This comparative example provides a photovoltaic cable sheath material. Compared with Example 1, the only difference is that the photovoltaic cable sheath material does not contain silicone masterbatch, and the content of the hyperbranched polyethylene is increased to 42%. The content of other components and the preparation method are the same as in Example 1.
- This comparative example provides a photovoltaic cable sheath material. Compared with Example 1, the only difference is that the photovoltaic cable sheath material does not contain a silane coupling agent, and the content of the hyperbranched polyethylene is increased to 41%. The content of other components and the preparation method are the same as in Example 1.
- the performance of the cable materials prepared in the foregoing Examples 1-9 and Comparative Examples 1-6 was tested.
- the test standards include: tensile strength, elongation at break: GB/T2951; smoke density and light transmittance: GB/T19651- 1998; Thermal extension: GB/T2951.11-2008, oxygen index (oxygen index refers to the minimum oxygen concentration required for flaming combustion of a material in a mixture of oxygen and nitrogen under specified conditions, in terms of the volume occupied by oxygen It is expressed as a percentage value. A high oxygen index indicates that the material is not easy to burn, and a low oxygen index indicates that the material is easy to burn): ISO 4586, single vertical burning: GB/T18380-2008, the specific test results are shown in Table 1:
- the thermal aging test method is: heating the cable material to (150 ⁇ 2)°C and maintaining it for 168h Afterwards, record the tensile strength and elongation at break before and after the test respectively, calculate the rate of change in tensile and elongation at break;
- Low temperature bending test method cool the cable material to a temperature of (-40 ⁇ 2)°C for 16h, The diameter of the test rod is 4 to 5 times the outer diameter of the cable, and it is wound 3 to 4 times.
- the tensile change rate is less than 30%, and the breaking elongation change rate is less than 30%; the surface of the cable material in the low-temperature bending test There is no crack; the residual rate of tensile strength in the oil resistance test is more than 40%, and the residual rate of change rate of elongation at break is more than 60%.
- the cable material of the application also has excellent heat aging resistance, oil resistance and low temperature resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Insulated Conductors (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种光伏电缆护套材料及其制备方法。所述光伏电缆护套材料按重量百分比计包括:超支化聚乙烯20-40%、阻燃剂40-60%、马来酸酐接枝EVA 5-10%、安定剂1-5%、硅酮母粒1-5%和硅烷偶联剂1-5%。所述光伏电缆护套材料具有极高的绝缘电阻、优异的阻燃性、良好的机械强度和烟密度透光率,可通过单根垂直燃烧,完全满足IEC62930标准中的性能要求。
Description
本申请属于电缆绝缘材料领域,具体涉及一种光伏电缆护套材料及其制备方法。
电缆是光伏设备的一个重要组件,作为太阳能光伏发电设施电能传输的主干,直接关系到太阳能光伏发电系统的安全性、可靠性和先进性。光伏电站中大量的直流电缆需户外铺设,环境条件恶劣,光伏电站安装和运行维护期间,电缆可能在地面以下土壤内、杂草丛生乱石中、屋顶结构的锐边上布线、裸露在空气中,电缆有可能承受各种外力的冲击。如果电缆护套强度不够,电缆绝缘层将会受到损坏,从而影响整个电缆的使用寿命,或者导致短路、火灾和人员伤害危险等问题的出现。其电缆材料应根据抗紫外线、臭氧、剧烈温度变化和化学侵蚀情况而定。
CN103881166A公开了一种适用于光伏电缆的低烟无卤阻燃材料及其制造方法,工艺简单,易于工业化推广生产,生产出的材料为低烟环保产品,不含卤素、重金属及其他环境有害的物质,而且材料表面性能良好、绝缘性好、具有优异的耐水性、耐酸碱腐蚀性、耐高低温性。该电缆料的绝缘电阻和烟密度透光率较低,并不能满足光伏电缆的使用要求。
CN109810372A公开了一种光伏电缆用辐照交联聚烯烃护套料的制备方法,包括以下重量百分比组分:乙烯醋酸乙烯共聚物(EVA)50-60%、线性低密度聚乙烯20-30%、乙烯辛烯共聚物15-25%、马来酸酐接枝聚乙烯10-20%,氢氧化铝100-160%、硅酮母粒3-8%、复合抗氧剂0.5-2%、聚乙烯蜡1-3%、紫 外光吸收剂1-3%、成炭抑烟剂2-5%、有机蒙脱土8-15%、活性硅灰石粉10-15%、炭黑1-2%。该光伏电缆通过增大阻燃剂用量来提高材料阻燃性能,但是增大阻燃剂添加量会引起材料力学性能、耐低温等性能的下降等问题。
因此,开发一种具有高机械强度、高阻燃性的光伏电缆护套材料是具有重要意义的。
发明内容
本申请的目的在于提供一种光伏电缆护套材料及其制备方法,所述光伏电缆护套材料具有极高的绝缘电阻、优异的阻燃性、良好的机械强度和烟密度透光率,可通过单根垂直燃烧,完全满足IEC62930标准中的性能要求,可以应用于光伏电缆领域。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供一种光伏电缆护套材料,所述光伏电缆护套材料按重量百分比计包括:超支化聚乙烯20-40%、阻燃剂40-60%、马来酸酐接枝EVA5-10%、安定剂1-5%、硅酮母粒1-5%和硅烷偶联剂1-5%。
本申请中,超支化聚乙烯(HBPE)具有紧凑的树枝状球形结构,粘度低,溶解性和流动性能好。超支化聚合物含有大量易与无机组分相容的极性端基基团,由于超支化聚合物的支链的生长是随机的,超支化聚合物中有三种重复单元:树形单元、线性单元和端基单元,分子量分布具有多分散性,分子具有类似球形的紧凑结构,流体力学回转半径小;分子缠结少,所以相对分子质量的增加对粘度的影响较小,因此制得的光伏电缆护套材料具有更高的绝缘电阻、优异的阻燃性、良好的机械强度。
本申请中,马来酸酐接枝EVA是在EVA分子主链上引入了强极性的侧基, 所述马来酸酐接枝EVA是增进超支化聚乙烯与其他无机材料的粘接性和相容性的桥梁。马来酸酐接枝EVA、阻燃剂、安定剂、硅酮母粒和硅烷偶联剂相互配合,协同增效,能够进一步改善超支化聚乙烯基体与无机阻燃界面的相容性和粘接性,提高无机组分在超支化聚乙烯中的分散性及相容性,从而最大限度的提高制备得到的电缆料的阻燃性,降低烟指数、发烟量、发热量和一氧化碳的产生量,提升氧指数,改善滴落性能,进而显著提高所得光伏电缆护套材料的机械强度和耐热性能。
本申请中,所述超支化聚乙烯的重量百分比为20-40%,例如可以是20%、22%、24%、26%、28%、30%、32%、34%、36%、38%、40%。
本申请中,所述阻燃剂的重量百分比为40-60%,例如可以是40%、42%、44%、46%、48%、50%、52%、54%、56%、58%、60%。
本申请中,所述马来酸酐接枝EVA的重量百分比为5-10%,例如可以是5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%。
本申请中,所述安定剂的重量百分比为1-5%,例如可以是1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%。
本申请中,所述硅酮母粒的重量百分比为1-5%,例如可以是1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%。
本申请中,所述硅烷偶联剂的重量百分比为1-5%,例如可以是1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%。
可选地,所述超支化聚乙烯的支化度为100-130支链/1000C,例如可以是102支链/1000C、104支链/1000C、106支链/1000C、108支链/1000C、110支链/1000C、112支链/1000C、114支链/1000C、116支链/1000C、118支链/1000C、 120支链/1000C、122支链/1000C、124支链/1000C、126支链/1000C、128支链/1000C、130支链/1000C。(“支化度”指的是:超支化聚乙烯分子中每1000个碳原子上含有的平均支链数。)
可选地,所述超支化聚乙烯的数均分子量为5×10
5-7×10
5,例如可以是5×10
5、5.2×10
5、5.4×10
5、5.6×10
5、5.8×10
5、6×10
5、6.2×10
5、6.4×10
5、6.8×10
5、7×10
5。
可选地,所述阻燃剂为氢氧化铝和微胶囊红磷的混合物。
本申请中,所述氢氧化铝和微胶囊红磷配合使用可提高所述光伏电缆护套材料的阻燃性;同时在加热过程中,可快速形成碳泡沫层,对聚合物起保护作用,绝热隔氧,燃烧时的烟密度和毒性气体可以大幅减少,同时不产生卤化氢气体;氢氧化铝成本低廉,受热分解时可产生大量水汽,具有一定的阻燃效果,但是大量添加时会降低材料的机械性能。
可选地,所述氢氧化铝和微胶囊红磷的质量比为(5-8):1,例如可以是5:1、5.5:1、6:1、6.5:1、7:1、7.5:1、8:1。
可选地,所述氢氧化铝的细度为1-2μm,例如可以是1μm、1.1μm、1.2μm、1.3μm、1.4μm、1.5μm、1.6μm、1.7μm、1.8μm、2μm。
可选地,所述微胶囊红磷的细度为5-10μm,例如可以是5μm、5.5μm、6μm、6.5μm、7μm、7.5μm、8μm、8.5μm、9μm、9.5μm、10μm。
可选地,所述马来酸酐接枝EVA的接枝率为1-5%,例如可以是1%、1.2%、1.4%、1.6%、1.8%、2%、2.2%、2.4%、2.6%、2.8%、3%、3.2%、3.4%、3.6%、3.8%、4%、4.2%、4.4%、4.6%、4.8%、5%。
可选地,所述马来酸酐接枝EVA的熔融指数为5-10g/10min,例如可以是 5g/10min、5.5g/10min、6g/10min、6.5g/10min、7g/10min、7.5g/10min、8g/10min、8.5g/10min、9g/10min、9.5g/10min、10g/10min。
可选地,所述马来酸酐接枝EVA中EVA的重量百分含量为30-40%,例如可以是30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%。
可选地,所述安定剂为钙盐和锌盐的混合物。
可选地,所述钙盐和锌盐的质量比为(1-3):1,例如可以是1:1、1.2:1、1.4:1、1.6:1、1.8:1、2:1、2.2:1、2.4:1、2.6:1、2.8:1、3:1。
可选地,所述钙盐包括硬脂酸钙、棕榈酸钙、油酸钙、月桂酸钙、十五碳脂肪酸钙、苯甲酸钙或十二烷基苯磺酸钙中的任意一种或至少两种的混合物。
可选地,所述锌盐包括硬脂酸锌、棕榈酸锌、油酸锌、月桂酸锌、十七碳脂肪酸锌、十五碳脂肪酸锌、苯甲酸锌或十二烷基苯磺酸锌中的任意一种或至少两种的混合物。
可选地,所述硅烷偶联剂包括γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、γ-巯丙基三乙氧基硅烷或γ-氨乙基氨丙基三甲氧基硅烷中的任意一种或至少两种的混合物。
第二方面,本申请提供一种如第一方面所述的光伏电缆护套材料的制备方法,所述制备方法包括以下步骤:
(1)按配方量将超支化聚乙烯、阻燃剂、马来酸酐接枝EVA、安定剂、硅酮母粒和硅烷偶联剂进行混合后,进行熔融共混、挤出,得到共混颗粒;
(2)将步骤(1)得到的共混颗粒制成线材,再对所述线材进行辐照交联,得到所述光伏电缆护套材料。
可选地,步骤(1)中所述熔融共混通过密炼机进行。
可选地,步骤(1)中所述熔融共混的温度为160-175℃,例如可以是160℃、162℃、165℃、170℃、172℃或175℃等。
可选地,步骤(1)中所述熔融共混的时间为15-25min,例如可以是15min、16min、17min、20min、21min、22min、24min或25min等。
可选地,步骤(1)所述挤出通过单螺杆挤出机进行。
可选地,所述所述单螺杆挤出机包括依次连接的第一区、第二区、第三区、第四区、第五区、第六区和第七区。
可选地,所述第一区的工作温度为110-115℃(例如可以是110℃、111℃、112℃、113℃、114℃或115℃等),第二区的工作温度为115-120℃(例如可以是115℃、116℃、117℃、118℃、119℃或120℃等),第三区的工作温度为115-120℃(例如可以是115℃、116℃、117℃、118℃、119℃或120℃等),第四区的工作温度为120-125℃(例如可以是120℃、121℃、122℃、123℃、124℃或125℃等),第五区的工作温度为120-125℃(例如可以是120℃、121℃、122℃、123℃、124℃或125℃等),第六区的工作温度为120-130℃(例如可以是120℃、122℃、124℃、126℃、128℃或130℃等),第七区的工作温度为125-130℃(例如可以是125℃、126℃、127℃、128℃、129℃或130℃等)。
可选地,步骤(2)所述制成线材通过线材挤出机进行。
可选地,所述线材挤出机包括依次连接的A区、B区、C区和D区。
可选地,所述A区的工作温度为110-120℃(例如可以是110℃、112℃、114℃、116℃、118℃或120℃等),B区的工作温度为135-145℃(例如可以是135℃、137℃、139℃、140℃、142℃或145℃等),C区的工作温度为145-155℃(例如可以是145℃、147℃、150℃、151℃、152℃或155℃等),D区的工作 温度为150-160℃(例如可以是150℃、152℃、154℃、156℃、158℃或160℃等)。
可选地,所述辐照交联通过电子加速器进行,辐照剂量为5-15Mrad,例如可以是5Mrad、6Mrad、7Mrad、8Mrad、9Mrad、10Mrad、11Mrad、12Mrad、13Mrad、14Mrad、15Mrad。
可选地,所述制备方法包括以下步骤:
(1)按配方量将超支化聚乙烯、阻燃剂、马来酸酐接枝EVA、安定剂、硅酮母粒和硅烷偶联剂进行混合后,使用密炼机160-175℃熔融共混15-25min,再通过单螺杆挤出机制成颗粒,单螺杆挤出机包括依次连接的第一区、第二区、第三区、第四区、第五区、第六区和第七区,物料依次通过各区,所述第一区的工作温度为110-115℃,第二区的工作温度为115-120℃,第三区的工作温度为115-120℃,第四区的工作温度为120-125℃,第五区的工作温度为120-125℃,第六区的工作温度为120-130℃,第七区的工作温度为125-130℃;
(2)将单螺杆挤出机制备得到的颗粒加入至线材挤出机中,所述线材挤出机包括依次连接的A区、B区、C区和D区,所述颗粒依次通过各区,所述所述A区的工作温度为110-120℃,B区的工作温度为135-145℃,C区的工作温度为145-155℃,D区的工作温度为150-160℃,得到线材之后使用电子加速器进行辐照交联,辐照剂量为5-15Mrad,得到所述光伏电缆护套材料
相对于现有技术,本申请具有以下有益效果:
(1)本申请所述光伏电缆护套材料具有极高的绝缘电阻、优异的阻燃性、良好的机械强度和烟密度透光率,并具有优异的耐高温、耐老化、耐低温和耐油性能,可通过单根垂直燃烧,完全满足IEC62930标准中的性能要求,可以应 用于对光伏电缆领域。
(2)本申请所述光伏电缆护套材料抗张强度在8MPa以上,断裂伸长率在150%以上,烟密度透光率在70%以上,氧指数在32%以上,单根垂直燃烧均通过。
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种光伏电缆护套材料,所述光伏电缆护套材料按重量百分比计包括:超支化聚乙烯(支化度为100支链/1000C、数均分子量为5×10
5)40%、氢氧化铝(细度为1μm)42%、微胶囊红磷(细度为5μm)7%、马来酸酐接枝EVA(接枝率为3%、熔融指数为6g/10min、EVA的重量百分含量为30%)6%、硬脂酸钙1%、硬脂酸锌1%、硅酮母粒2%和γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷1%。
本实施例提供的光伏电缆护套材料的制备方法包括以下步骤:
(1)按配方量将超支化聚乙烯、氢氧化铝、微胶囊红磷、马来酸酐接枝EVA、硬脂酸钙、硬脂酸锌、硅酮母粒和γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷进行混合后,使用密炼机160℃熔融共混15min,再通过单螺杆挤出机制成颗粒,单螺杆挤出机包括依次连接的第一区、第二区、第三区、第四区、第五区、第六区和第七区,物料依次通过各区,所述第一区的工作温度为110℃,第二区的工作温度为115℃,第三区的工作温度为115-℃,第四区的工作温度为120℃,第五区的工作温度为120℃,第六区的工作温度为120℃,第七区的工作温度为 125℃;
(2)将单螺杆挤出机制备得到的颗粒加入至线材挤出机中,所述线材挤出机包括依次连接的A区、B区、C区和D区,所述颗粒依次通过各区,所述所述A区的工作温度为110℃,B区的工作温度为135℃,C区的工作温度为145℃,D区的工作温度为150℃,得到线材之后使用电子加速器进行辐照交联,辐照剂量为5Mrad,得到所述光伏电缆护套材料。
实施例2
本实施例提供一种光伏电缆护套材料,所述光伏电缆护套材料按重量百分比计包括:超支化聚乙烯(支化度为130支链/1000C、数均分子量为6×10
5)20%、氢氧化铝(细度为2μm)50%、微胶囊红磷(细度为10μm)10%、马来酸酐接枝EVA(接枝率为5%、熔融指数为10g/10min、EVA的重量百分含量为40%)10%、月桂酸钙3%、月桂酸锌1%、硅酮母粒3%和γ-巯丙基三乙氧基硅烷3%。
本实施例提供的光伏电缆护套材料的制备方法包括以下步骤:
(1)按配方量将超支化聚乙烯、氢氧化铝、微胶囊红磷、马来酸酐接枝EVA、月桂酸钙、月桂酸锌、硅酮母粒和γ-巯丙基三乙氧基硅烷进行混合后,使用密炼机175℃熔融共混25min,再通过单螺杆挤出机制成颗粒,单螺杆挤出机包括依次连接的第一区、第二区、第三区、第四区、第五区、第六区和第七区,物料依次通过各区,所述第一区的工作温度为115℃,第二区的工作温度为120℃,第三区的工作温度为120℃,第四区的工作温度为125℃,第五区的工作温度为125℃,第六区的工作温度为130℃,第七区的工作温度为130℃;
(2)将单螺杆挤出机制备得到的颗粒加入至线材挤出机中,所述线材挤出机包括依次连接的A区、B区、C区和D区,所述颗粒依次通过各区,所述所 述A区的工作温度为120℃,B区的工作温度为145℃,C区的工作温度为155℃,D区的工作温度为160℃,得到线材之后使用电子加速器进行辐照交联,辐照剂量为15Mrad,得到所述光伏电缆护套材料。
实施例3
本实施例提供一种光伏电缆护套材料,所述光伏电缆护套材料按重量百分比计包括:超支化聚乙烯(支化度为110支链/1000C、数均分子量为7×10
5)40%、氢氧化铝(细度为1μm)40%、微胶囊红磷(细度为10μm)5%、马来酸酐接枝EVA(接枝率为4%、熔融指数为5g/10min、EVA的重量百分含量为35%)8%、棕榈酸钙3%、棕榈酸锌1%、硅酮母粒1%和γ-氨乙基氨丙基三甲氧基硅烷2%。
本实施例提供的光伏电缆护套材料的制备方法包括以下步骤:
(1)按配方量将超支化聚乙烯、氢氧化铝、微胶囊红磷、马来酸酐接枝EVA、棕榈酸钙、棕榈酸锌、硅酮母粒和γ-氨乙基氨丙基三甲氧基硅烷进行混合后,使用密炼机170℃熔融共混10min,再通过单螺杆挤出机制成颗粒,单螺杆挤出机包括依次连接的第一区、第二区、第三区、第四区、第五区、第六区和第七区,物料依次通过各区,所述第一区的工作温度为110℃,第二区的工作温度为115℃,第三区的工作温度为115-℃,第四区的工作温度为120℃,第五区的工作温度为120℃,第六区的工作温度为120℃,第七区的工作温度为125℃;
(2)将单螺杆挤出机制备得到的颗粒加入至线材挤出机中,所述线材挤出机包括依次连接的A区、B区、C区和D区,所述颗粒依次通过各区,所述所述A区的工作温度为110℃,B区的工作温度为135℃,C区的工作温度为145℃, D区的工作温度为150℃,得到线材之后使用电子加速器进行辐照交联,辐照剂量为5Mrad,得到所述光伏电缆护套材料。
实施例4
本实施例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于,所述氢氧化铝含量为7%,微胶囊红磷含量42%,其它组分含量及制备方法同实施例1。
实施例5
本实施例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于,所述氢氧化铝含量为44.1%,微胶囊红磷含量4.9%,其它组分含量及制备方法同
实施例1。
实施例6
本实施例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于,所述阻燃剂不含微胶囊红磷,氢氧化铝(细度为1μm)含量增至49%,其它组分含量及制备方法同实施例1。
实施例7
本实施例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于,所述阻燃剂不含氢氧化铝,微胶囊红磷(细度为5μm)含量增至49%,其它组分含量及制备方法同实施例1。
实施例8
本实施例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于,所述硬脂酸钙含量为1.6%,硬脂酸锌含量0.4%,其它组分含量及制备方法同实施例1。
实施例9
本实施例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于,所述硬脂酸钙含量为0.4%,硬脂酸锌含量1.6%,其它组分含量及制备方法同实施例1。
对比例1
本对比例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于:将所述超支化聚乙烯替换为线性低密度聚乙烯(埃克森美孚化工,牌号为3518CB),其它组分含量及制备方法同实施例1。
对比例2
本对比例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于:所述光伏电缆护套材料不含马来酸酐接枝EVA,所述超支化聚乙烯的含量增至46%,其它组分含量及制备方法同实施例1。
对比例3
本对比例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于:将所述马来酸酐接枝EVA替换为非接枝的EVA(日本三井化学,牌号为EV560),其它组分含量及制备方法同实施例1。
对比例4
本对比例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于:所述光伏电缆护套材料不含安定剂,所述超支化聚乙烯的含量增至42%,其它组分含量及制备方法同实施例1。
对比例5
本对比例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于:所 述光伏电缆护套材料不含硅酮母粒,所述超支化聚乙烯的含量增至42%,其它组分含量及制备方法同实施例1。
对比例6
本对比例提供一种光伏电缆护套材料,与实施例1相比,区别仅在于:所述光伏电缆护套材料不含硅烷偶联剂,所述超支化聚乙烯的含量增至41%,其它组分含量及制备方法同实施例1。
试验例1
对上述实施例1-9和对比例1-6制备的的电缆材料的性能进行测试,测试标准包括:抗张强度、断裂伸长率:GB/T2951;烟密度透光率:GB/T19651-1998;热延伸:GB/T2951.11-2008,氧指数(氧指数是指在规定的条件下,材料在氧氮混合气流中进行有焰燃烧所需的最低氧浓度,以氧所占的体积百分数的数值来表示。氧指数高表示材料不易燃烧,氧指数低表示材料容易燃烧):ISO 4586,单根垂直燃烧:GB/T18380-2008,具体测试结果如表1所示:
表1
由上述测试结果可知,本实施例1-9制备的电缆材料的抗张强度在8MPa以上,断裂伸长率在150%以上,烟密度透光率在70%以上,氧指数在32%以上,这充分说明了本申请所述电缆材料中各组分相互配合,协同增效,不仅有效提高了电缆材料的抑烟阻燃性,而且还能使电缆材料具有良好的机械强度和电气性能。
试验例2
依照JB/T10436标准,对上述实施例1-9和对比例1-6提供的电缆材料的耐温性性能进行测试热老化测试方法为:将电缆材料加热至(150±2)℃并维持168h后,分别记录测试前后的抗张强度和断裂伸长率,计算抗张变化率和断裂伸长变化率;低温弯曲试验方法:将电缆材料冷却至温度(-40±2)℃,时间16h,试棒直径为电缆外径的4~5倍,绕3~4圈,试验后表面不应有目力可见裂纹;耐油试验:将电缆材料加热至(121±2)℃维持18h后,测试绝抗张残率和断裂伸长变化率残率,具体测试结果间表2。
表2
由上述测试结果可知,本实施例1-9制备的电缆材料经热老化处理后,抗张变化率在30%以下,断裂伸长变化率在30%以下;低温弯曲试验中所述电缆材料表面均无裂纹;耐油实验中抗张残率在40%以上,断裂伸长变化率残率在60%以上。这充分说明了本申请所述电缆材料中各组分相互配合,协同增效,不仅有效提高了电缆材料的抑烟阻燃性,而且可以提高电缆的强度,有效地减少机械损伤,延长电缆使用寿命。本申请电缆料还具有优良的耐热老化性、耐油和耐低温性能。
申请人声明,本申请通过上述实施例来说明本申请所述光伏电缆护套材料及其制备方法,但本申请并不局限于上述实施例,即不意味着本申请必须依赖上述实施例才能实施。
Claims (11)
- 一种光伏电缆护套材料,其按重量百分比计包括:超支化聚乙烯20-40%、阻燃剂40-60%、马来酸酐接枝EVA 5-10%、安定剂1-5%、硅酮母粒1-5%和硅烷偶联剂1-5%。
- 根据权利要求1所述的光伏电缆护套材料,其中,所述超支化聚乙烯的支化度为100-130支链/1000C。
- 根据权利要求1或2所述的光伏电缆护套材料,其中,所述超支化聚乙烯的数均分子量为5×10 5-7×10 5。
- 根据权利要求1-3中任一项所述的光伏电缆护套材料,其中,所述阻燃剂为氢氧化铝和微胶囊红磷的混合物;可选地,所述氢氧化铝和微胶囊红磷的质量比为(5-8):1;可选地,所述氢氧化铝的细度为1-2μm;可选地,所述微胶囊红磷的细度为5-10μm。
- 根据权利要求1-4中任一项所述的光伏电缆护套材料,其中,所述马来酸酐接枝EVA的接枝率为1-5%;可选地,所述马来酸酐接枝EVA的熔融指数为5-10g/10min;可选地,所述马来酸酐接枝EVA中EVA的重量百分含量为30-40%。
- 根据权利要求1-5中任一项所述的光伏电缆护套材料,其中,所述安定剂为钙盐和锌盐的混合物;可选地,所述钙盐和锌盐的质量比为(1-3):1;可选地,所述钙盐包括硬脂酸钙、棕榈酸钙、油酸钙、月桂酸钙、十五碳脂肪酸钙、苯甲酸钙或十二烷基苯磺酸钙中的任意一种或至少两种的混合物;可选地,所述锌盐包括硬脂酸锌、棕榈酸锌、油酸锌、月桂酸锌、十七碳 脂肪酸锌、十五碳脂肪酸锌、苯甲酸锌或十二烷基苯磺酸锌中的任意一种或至少两种的混合物。
- 根据权利要求1-6中任一项所述的光伏电缆护套材料,其中,所述硅烷偶联剂包括γ-氨丙基三乙氧基硅烷、γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、γ-巯丙基三乙氧基硅烷或γ-氨乙基氨丙基三甲氧基硅烷中的任意一种或至少两种的混合物。
- 根据权利要求1-7中任一项所述的光伏电缆护套材料的制备方法,其包括以下步骤:(1)按配方量将超支化聚乙烯、阻燃剂、马来酸酐接枝EVA、安定剂、硅酮母粒和硅烷偶联剂进行混合后,进行熔融共混、挤出,得到共混颗粒;(2)将步骤(1)得到的共混颗粒制成线材,再对所述线材进行辐照交联,得到所述光伏电缆护套材料。
- 根据权利要求8所述的制备方法,其中,步骤(1)中所述熔融共混通过密炼机进行;可选地,步骤(1)中所述熔融共混的温度为160-175℃;可选地,步骤(1)中所述熔融共混的时间为15-25min;可选地,步骤(1)所述挤出通过单螺杆挤出机进行;可选地,所述所述单螺杆挤出机包括依次连接的第一区、第二区、第三区、第四区、第五区、第六区和第七区;可选地,所述第一区的工作温度为110-115℃,第二区的工作温度为115-120℃,第三区的工作温度为115-120℃,第四区的工作温度为120-125℃,第五区的工作温度为120-125℃,第六区的工作温度为120-130℃,第七区的工 作温度为125-130℃。
- 根据权利要求8或9所述的制备方法,其中,步骤(2)所述制成线材通过线材挤出机进行;可选地,所述线材挤出机包括依次连接的A区、B区、C区和D区;可选地,所述所述A区的工作温度为110-120℃,B区的工作温度为135-145℃,C区的工作温度为145-155℃,D区的工作温度为150-160℃;可选地,所述辐照交联通过电子加速器进行,辐照剂量为5-15Mrad。
- 根据权利要求8-10中任一项所述的制备方法,其包括以下步骤:(1)按配方量将超支化聚乙烯、阻燃剂、马来酸酐接枝EVA、安定剂、硅酮母粒和硅烷偶联剂进行混合后,使用密炼机160-175℃熔融共混15-25min,再通过单螺杆挤出机制成颗粒,单螺杆挤出机包括依次连接的第一区、第二区、第三区、第四区、第五区、第六区和第七区,物料依次通过各区,所述第一区的工作温度为110-115℃,第二区的工作温度为115-120℃,第三区的工作温度为115-120℃,第四区的工作温度为120-125℃,第五区的工作温度为120-125℃,第六区的工作温度为120-130℃,第七区的工作温度为125-130℃;(2)将单螺杆挤出机制备得到的颗粒加入至线材挤出机中,所述线材挤出机包括依次连接的A区、B区、C区和D区,所述颗粒依次通过各区,所述所述A区的工作温度为110-120℃,B区的工作温度为135-145℃,C区的工作温度为145-155℃,D区的工作温度为150-160℃,得到线材之后使用电子加速器进行辐照交联,辐照剂量为5-15Mrad,得到所述光伏电缆护套材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911384033.XA CN111073109B (zh) | 2019-12-28 | 2019-12-28 | 一种光伏电缆护套材料及其制备方法 |
CN201911384033.X | 2019-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021129215A1 true WO2021129215A1 (zh) | 2021-07-01 |
Family
ID=70319169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/128361 WO2021129215A1 (zh) | 2019-12-28 | 2020-11-12 | 光伏电缆护套材料及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111073109B (zh) |
WO (1) | WO2021129215A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114267482A (zh) * | 2021-12-24 | 2022-04-01 | 苏州宝兴电线电缆有限公司 | 高阻燃耐油微逆变器用电缆 |
CN115991903A (zh) * | 2023-03-22 | 2023-04-21 | 潍坊学院 | 一种高导热防垢功能型地暖管材 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111073109B (zh) * | 2019-12-28 | 2022-05-13 | 江苏达胜高聚物股份有限公司 | 一种光伏电缆护套材料及其制备方法 |
CN112625331B (zh) * | 2020-12-08 | 2023-04-14 | 江苏达胜高聚物股份有限公司 | 一种阻燃pe电缆料及其制备方法和应用 |
CN114031837A (zh) * | 2021-12-20 | 2022-02-11 | 全球能源互联网研究院有限公司 | 一种高压电缆用可交联聚乙烯绝缘材料、制备方法及其用途 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1847552A1 (en) * | 2006-04-18 | 2007-10-24 | Borealis Technology Oy | Catalytic system |
CN101747551A (zh) * | 2009-12-15 | 2010-06-23 | 上海新上化高分子材料有限公司 | 热塑性无卤低烟阻燃聚烯烃护套塑料及其制备方法和应用 |
CN102432937A (zh) * | 2011-08-18 | 2012-05-02 | 长园集团股份有限公司 | 一种核电站用1e级k1类无卤阻燃热缩管及其制备方法 |
CN103709486A (zh) * | 2013-12-31 | 2014-04-09 | 广东三凌塑料管材有限公司 | 一种聚乙烯电缆护套管 |
CN104262785A (zh) * | 2014-09-25 | 2015-01-07 | 广东银禧科技股份有限公司 | 一种低气味、高流动性的软触感聚烯烃组合物及其制备方法 |
CN105400044A (zh) * | 2015-12-16 | 2016-03-16 | 青岛文晟汽车零部件有限公司 | 一种无卤阻燃电缆材料 |
CN105622803A (zh) * | 2014-11-17 | 2016-06-01 | 中国科学院化学研究所 | 一种无规超支化聚乙烯的新用途 |
US20160362509A1 (en) * | 2015-06-15 | 2016-12-15 | Braskem America, Inc. | Long-chain branched polymers and production processes |
CN111073109A (zh) * | 2019-12-28 | 2020-04-28 | 江苏达胜高聚物股份有限公司 | 一种光伏电缆护套材料及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4434258A (en) * | 1982-01-15 | 1984-02-28 | E. I. Du Pont De Nemours And Company | Organic acid containing filled and plasticized thermoplastic compositions based on ethylene interpolymers |
US7368496B2 (en) * | 2001-12-27 | 2008-05-06 | Lg Chem, Ltd. | Nanocomposite composition having super barrier property and article using the same |
CN101597397B (zh) * | 2009-06-03 | 2011-10-19 | 宝胜科技创新股份有限公司 | 核电站电缆用耐辐照无卤低烟阻燃护套材料及制备方法 |
CN103980596B (zh) * | 2014-05-13 | 2016-05-11 | 浙江大学 | 一种聚乙烯橡胶及其加工方法 |
CN108314850B (zh) * | 2017-01-13 | 2021-05-14 | 杭州星庐科技有限公司 | 橡胶组合物及加工方法,及应用其的橡胶制品和生产方法 |
CN108299743B (zh) * | 2017-01-13 | 2022-06-21 | 杭州星庐科技有限公司 | 橡胶组合物及加工方法与应用,及生产阻燃制品的方法 |
-
2019
- 2019-12-28 CN CN201911384033.XA patent/CN111073109B/zh active Active
-
2020
- 2020-11-12 WO PCT/CN2020/128361 patent/WO2021129215A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1847552A1 (en) * | 2006-04-18 | 2007-10-24 | Borealis Technology Oy | Catalytic system |
CN101747551A (zh) * | 2009-12-15 | 2010-06-23 | 上海新上化高分子材料有限公司 | 热塑性无卤低烟阻燃聚烯烃护套塑料及其制备方法和应用 |
CN102432937A (zh) * | 2011-08-18 | 2012-05-02 | 长园集团股份有限公司 | 一种核电站用1e级k1类无卤阻燃热缩管及其制备方法 |
CN103709486A (zh) * | 2013-12-31 | 2014-04-09 | 广东三凌塑料管材有限公司 | 一种聚乙烯电缆护套管 |
CN104262785A (zh) * | 2014-09-25 | 2015-01-07 | 广东银禧科技股份有限公司 | 一种低气味、高流动性的软触感聚烯烃组合物及其制备方法 |
CN105622803A (zh) * | 2014-11-17 | 2016-06-01 | 中国科学院化学研究所 | 一种无规超支化聚乙烯的新用途 |
US20160362509A1 (en) * | 2015-06-15 | 2016-12-15 | Braskem America, Inc. | Long-chain branched polymers and production processes |
CN105400044A (zh) * | 2015-12-16 | 2016-03-16 | 青岛文晟汽车零部件有限公司 | 一种无卤阻燃电缆材料 |
CN111073109A (zh) * | 2019-12-28 | 2020-04-28 | 江苏达胜高聚物股份有限公司 | 一种光伏电缆护套材料及其制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114267482A (zh) * | 2021-12-24 | 2022-04-01 | 苏州宝兴电线电缆有限公司 | 高阻燃耐油微逆变器用电缆 |
CN115991903A (zh) * | 2023-03-22 | 2023-04-21 | 潍坊学院 | 一种高导热防垢功能型地暖管材 |
CN115991903B (zh) * | 2023-03-22 | 2023-06-02 | 潍坊学院 | 一种高导热防垢功能型地暖管材 |
Also Published As
Publication number | Publication date |
---|---|
CN111073109B (zh) | 2022-05-13 |
CN111073109A (zh) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021129215A1 (zh) | 光伏电缆护套材料及其制备方法 | |
US8586665B2 (en) | Clean flame retardant compositions with carbon nano tube for enhancing mechanical properties for insulation of wire and cable | |
US8173255B2 (en) | Clean flame retardant insulation composition to enhance mechanical properties and flame retardancy for wire and cable | |
US10497489B2 (en) | Cable | |
US8263674B2 (en) | Eco friendly crosslinked flame retardant composition for wire and cable | |
CN111234358A (zh) | 一种光伏电缆用125℃辐照交联型无卤阻燃聚烯烃电缆料及其制备方法 | |
WO2021129217A1 (zh) | 一种低烟无卤建筑线电缆材料及其制备方法 | |
JP5652452B2 (ja) | ノンハロゲン難燃性絶縁電線 | |
CN102382358A (zh) | 一种铁路机车用无卤阻燃电缆护套材料及其制造方法 | |
WO2021129219A1 (zh) | 一种光伏线缆绝缘材料及其制备方法 | |
JP2015021120A (ja) | ノンハロゲン架橋性樹脂組成物を用いた車両用絶縁電線及び車両用ケーブル | |
CN103102596A (zh) | 一种核电站用电缆护套绝缘材料及其制备方法 | |
SA110310828B1 (ar) | مركبات عوازل الأسلاك والكوابل المشبّكة تصالبياً والنظيفة والمعيقة للّهب لتحسين الخواص الميكانيكية ولزيادة تثبيط اللهب | |
CN115181356A (zh) | 105℃船舰用低烟无卤阻燃聚烯烃电缆料、制备方法及应用 | |
CN111961274A (zh) | 一种光伏电缆用绝缘材料及其制备方法 | |
CN114672095A (zh) | 一种高阻燃性低烟无卤电缆护套料及制备方法 | |
CN103890084A (zh) | 耐热阻燃树脂组合物、绝缘电线和管 | |
CN110845784A (zh) | 一种硅烷交联低烟无卤阻燃聚烯烃料及其制备方法 | |
WO2015029621A1 (ja) | ハロゲンフリー難燃絶縁電線 | |
WO2014010508A1 (ja) | 耐熱難燃性樹脂組成物及び絶縁電線、チューブ | |
CN101328294B (zh) | 一种低烟无卤高阻燃电线电缆用塑料 | |
CN105175905A (zh) | 一种电缆用抗撕裂无卤阻燃聚合物护套绝缘材料的制备方法 | |
CN108203531B (zh) | 一种耐水油阻燃辐照交联绝缘材料及其制备方法 | |
CN112795079B (zh) | 一种含有新型胶囊阻燃剂的低烟无卤电缆料及其制备 | |
ES2954249T3 (es) | Cable eléctrico ignífugo |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20905012 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20905012 Country of ref document: EP Kind code of ref document: A1 |