WO2021129127A1 - 一种拱形照明装置、具有其的成像系统及成像方法 - Google Patents

一种拱形照明装置、具有其的成像系统及成像方法 Download PDF

Info

Publication number
WO2021129127A1
WO2021129127A1 PCT/CN2020/124703 CN2020124703W WO2021129127A1 WO 2021129127 A1 WO2021129127 A1 WO 2021129127A1 CN 2020124703 W CN2020124703 W CN 2020124703W WO 2021129127 A1 WO2021129127 A1 WO 2021129127A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
housing
image sensor
led light
arch
Prior art date
Application number
PCT/CN2020/124703
Other languages
English (en)
French (fr)
Inventor
弗依斯沃瑟•诺尼
柯布兰•凡
胡冰峰
陈朋飞
Original Assignee
苏州康代智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州康代智能科技股份有限公司 filed Critical 苏州康代智能科技股份有限公司
Publication of WO2021129127A1 publication Critical patent/WO2021129127A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Definitions

  • the invention relates to the field of circuit board detection, in particular to an arched lighting device, an imaging system and an imaging method having the same.
  • PCBs printed circuit boards
  • AOI Automated Optical Inspection
  • the AOI inspection field mainly uses the combination of CCD linear camera, zoom lens and linear light source to realize automatic optical inspection of printed circuit boards.
  • CCD linear camera zoom lens
  • linear light source to realize automatic optical inspection of printed circuit boards.
  • the light source plays an important role in the accuracy of the AOI detection result, and the linear light source of the AOI in the prior art cannot meet the detection tasks of various types of circuit boards.
  • the present invention provides an arched lighting device, an imaging system and an imaging method having the same, and optimizes the light coverage of the linear camera scan to achieve the best light angle to cover the various scanning elements.
  • the technical solutions are as follows:
  • the present invention provides an arched lighting device, which includes a housing with an arched structure and a plurality of LED light sources arranged on the inner wall of the housing, and the housing is provided along the length direction of the housing. Provided with slot through holes, the LED light sources are arranged in an array to form an LED light source array;
  • the LED light source array includes a plurality of LED light source row units arranged along the length direction of the housing, and the luminous intensity and/or luminous color of each LED light source row unit can be independently adjusted.
  • the luminous intensity and/or luminous color of each LED light source can be adjusted independently, so that the optimal light angle can be adjusted and the flexibility is high.
  • the slot through hole is arranged in the center of the arched structure of the housing, and the length of the slot through hole is smaller than the length of the housing, so that the light outlet is arranged in the center and the illumination is more uniform.
  • the LED light sources are arranged in alignment in the arching direction of the housing, or the LED light sources are staggered arranged in the arching direction of the housing.
  • the angular arcs between adjacent LED light source row units are equal, and the LED light sources are evenly distributed, which further improves the light uniformity of illumination.
  • the present invention provides an imaging system, including a lens for magnification and/or focusing, an image sensor for collecting image information, and the arch-shaped lighting device as described above, and the lens is arranged on the arch.
  • the image sensor is arranged above the lens.
  • the imaging system further includes a control unit for adjusting the luminous intensity and/or luminous color of the LED light source of the arch-shaped lighting device.
  • the slot through holes on the housing of the arch-shaped illuminating device have a structure of equal width, and the slot width of the slot through holes is greater than or equal to the width of the photosensitive sheet of the image sensor, which satisfies the requirements of each time of the image sensor. Imaging.
  • the light incident side of the lens and the light incident side of the image sensor are both arranged directly opposite to the slot through hole on the housing of the arch-shaped illuminating device, so that the light transmitted from the slot through hole is directly opposite
  • the incident lens is enlarged and focused, and the incident image sensor is imaged and collected.
  • the imaging system further includes a driving mechanism and a movable base set under the housing of the arch-shaped illuminating device.
  • the base is used to place the target object to be imaged.
  • the base table carries the target object and moves horizontally relative to the housing of the arch-shaped lighting device.
  • the base station can improve the stability of the horizontal movement of the target object.
  • the image sensor is used to perform line scan imaging of different parts of the target object multiple times, and finally the overall image of the target object is obtained by image processing and stitching. .
  • the image sensor is a CCD linear camera or CMOS.
  • the present invention provides an imaging method based on the above imaging system, which includes the following steps:
  • step S2 In the moving process of step S2, the image sensor images multiple times;
  • each time the horizontal movement distance of the target object in step S2 is equal to the width of the photosensitive sheet of the image sensor, and each time the target object moves in step S3, the image sensor will image it once; in step S4, the image Multiple images obtained by multiple imaging of the sensor are stitched according to the imaging time to obtain an imaging image of the target object.
  • each time the horizontal movement distance of the target object in step S2 is less than or equal to the width of the photosensitive sheet of the image sensor, and each time the target object moves in step S3, the image sensor will image it once; in step S4
  • the processing steps include:
  • the first image and the second image are stitched according to the stitching seam, and the above image processing steps are repeated until all the images obtained by imaging are stitched into the image of the target object.
  • the step of adjusting the lighting parameters of the arch-shaped lighting device includes:
  • the pre-adjustment operation of the image sensor includes height adjustment of the image sensor
  • the pre-adjustment operation of the lens includes height adjustment, magnification adjustment, and focus adjustment.
  • the arched lighting device has an array of LEDs on the inner side of the arched surface, so that the measured object can be illuminated at every angle within the range of 180°, which optimizes the light coverage of the linear camera scan;
  • the luminous intensity and color of each LED can be adjusted through software control, and the best light angle can be adjusted to cover the surface of the circuit board with various shapes, textures and other different conditions.
  • Fig. 1 is a schematic structural diagram of an arch-shaped lighting device provided by an embodiment of the present invention
  • Figure 2 is a partial enlarged detail view of Figure 1;
  • Figure 3 is an internal side view of an arched lighting device provided by an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view in the width direction of the arch-shaped lighting device provided by the embodiment of the present invention.
  • Figure 5 is a top view of an arched lighting device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the first state of the imaging system provided by the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a second state of the imaging system provided by an embodiment of the present invention.
  • FIG. 8 is a flowchart of an imaging method provided by an embodiment of the present invention.
  • FIG. 9 is a flowchart of a first image processing method provided by an embodiment of the present invention.
  • FIG. 10 is a flowchart of a second image processing method provided by an embodiment of the present invention.
  • reference signs include: 1-housing, 11-slot through hole, 2-LED light source, 3-lens, 4-image sensor, 5-base, 6-target object.
  • an arched lighting device in one embodiment, includes a housing 1 having an arched structure and a housing 1 arranged on the inner wall of the housing 1.
  • a plurality of LED light sources 2, and the arcuate line of the housing 1 can be a partial ellipse or a circular arc (the arc range is 150°-210°, preferably 150°-210°), the LED light source 2 Evenly distributed, the housing 1 is provided with slot through holes 11 arranged along the length of the housing 1, the LED light sources 2 are arranged in an array to form an LED light source array (as shown in FIG. 3), and the grooves
  • the through hole 11 is preferably arranged in the center of the arched structure of the housing 1, and the length of the slot through hole 11 is smaller than the length of the housing 1, as shown in FIG. 5.
  • the LED light source array includes a plurality of LED light source row units arranged along the length direction of the housing 1, as shown in FIG. 4, viewed from the width side of the arch-shaped lighting device, each LED light source row
  • the units are evenly distributed on the inner arcuate surface of the arched lighting device, that is, the angular arcs between adjacent LED light source row units are equal (except for the two LED light source row units closest to the slot through hole 11),
  • the luminous intensity and/or luminous color of each LED light source row unit can be adjusted independently.
  • the luminous intensity and/or luminous color of each LED light source 2 can be independently adjusted. That is to say, in this embodiment, not only a single LED light source row unit can perform light adjustment independently of other LED light source row units, different LED light sources 2 in the same LED light source row unit or in different LED light source row units The different LED light sources 2 can be adjusted individually.
  • the LED light source 2 is aligned in the arc direction of the housing 1, as shown in FIG. 3; in another embodiment of the present invention, the LED light source 2 is The housing 1 is staggered in the arching direction (not shown).
  • an imaging system including a lens 3 for magnification and/or focusing, an image sensor 4 for collecting image information, and as described in the above embodiment
  • the arch-shaped illuminating device the lens 3 is arranged above the arched surface of the housing 1 of the arch-shaped illuminating device, the image sensor 4 is arranged above the lens 3, and the image sensor 4 is optionally A CCD linear camera or CMOS, and the light incident side of the lens 3 and the light incident side of the image sensor 4 are preferably arranged directly opposite to the slot through hole 11 on the housing 1 of the arch-shaped illuminating device.
  • the imaging system also includes a control unit, which is used to adjust the luminous intensity and/or luminous color of the LED light source 2 of the arch-shaped lighting device.
  • the slot through hole 11 on the housing 1 of the arch-shaped illuminating device has a structure of equal width.
  • the phenomenon that insufficient light-sensing causes part of the image to be blank is avoided.
  • the imaging system further includes a driving mechanism and a movable base 5 arranged under the housing 1 of the arch-shaped illuminating device, and the base 5 is used to place the target to be imaged.
  • the housing 1 of the arch-shaped lighting device can be adjusted up and down according to the thickness of the target object 6, and the housing 1 of the arch-shaped lighting device does not hinder the horizontal movement of the target object 6 Under the premise that the height of the housing 1 of the arch-shaped lighting device is as low as possible.
  • the light reflected by the LED light source 2 of the arch-shaped illuminating device after illuminating the target object 6 passes through the slot through hole 11 and then enters the lens 3 and finally enters the image sensor 4.
  • the base 5 with the target object 6 moves horizontally relative to the housing 1 of the arch-shaped lighting device.
  • the image sensor is used to perform line scan imaging of different parts of the target object multiple times, and finally image processing and stitching are performed to finally achieve the overall image collection of the target object 6, and the base station can improve the level of the target object The smoothness of movement to improve the accuracy of imaging.
  • the array of LED lights are installed on the inside of the arch-shaped housing 1 at equal angles, and the LED lights of different angles are emitted
  • the light converging center of is coincident with the center of the arch-shaped housing 1, and is illuminated at every angle of the arc of the housing 1, to ensure that the measured object is at the center of the light source converging center to obtain a light source with the best brightness, as shown in Figure 4 A kind of non-standard surface of the object to be measured.
  • the schematic diagram shows that no matter what the surface of the object is to be measured, there is always a group of LED light sources in the arched lighting device that can radiate the information on the surface of the object to the lens 3 and image sensor 4. In this way, there will be no missing detection points due to changes in the shape of the object to be detected.
  • the color of the light source lighting is very demanding. When testing objects of different colors, the color of the light source needs to be changed.
  • an imaging method based on the above-mentioned imaging system includes the following steps:
  • the pre-adjustment operation of the image sensor includes height adjustment of the image sensor
  • the pre-adjustment operation of the lens includes height adjustment, magnification adjustment, and focus adjustment.
  • the step of adjusting the illumination parameters of the arch-shaped illumination device includes: performing steps S1-S4 on the sample, and analyzing each imaging parameter of the image sensor and/or the imaging image of the sample obtained by imaging. If the light-sensing flux of the image sensor is lower than the preset light-sensing flux threshold or the brightness value and/or gray value of the local pixel block of the imaged image exceeds the preset eligibility standard, the luminous intensity of the LED light source of the arch-shaped lighting device is performed And/or the luminous color is adjusted until the brightness value and gray value of the overall imaged image of the sample meet the qualification standard, or the photosensitive flux of the image sensor for each imaging reaches the threshold standard.
  • step S2 In the moving process of step S2, the image sensor images multiple times.
  • each time the horizontal movement distance of the target object in step S2 is equal to the width of the photosensitive sheet of the image sensor, and each time the target object moves in step S3, the image sensor pairs It performs imaging once; in step S4, multiple images obtained by multiple imaging of the image sensor are spliced according to the imaging time to obtain an imaging image of the target object.
  • each time the horizontal movement distance of the target object in step S2 is less than or equal to the width of the photosensitive sheet of the image sensor, and each time the target object moves in step S3, the image sensor will image it once;
  • the distance of each horizontal movement is less than the width of the photosensitive film. Therefore, there are overlapping parts in the front and rear images. This overlapping part needs to be removed before image stitching.
  • the image processing steps in step S4 include:
  • the first image and the second image are stitched according to the stitching seam, and the above image processing steps are repeated until all the images obtained by imaging are stitched into the image of the target object.
  • any reference signs placed between parentheses shall not be regarded as restrictive claims.
  • the word “comprising” does not exclude the existence of other elements or steps listed in the claims.
  • the term “a” or “an” as used herein is defined as one or more than one.
  • the use of introductory phrases such as “at least one” and “one or more” in a claim statement should not be interpreted as implying that the introduction of the indefinite article "a” or “an” into another claim element will include such introduction.

Abstract

本发明公开了一种拱形照明装置、具有其的成像系统及成像方法,照明装置包括具有拱形结构的壳体以及设置在所述壳体内壁的多个LED光源,所述壳体上设有沿所述壳体长度方向设置的槽通孔,所述LED光源呈阵列排布形成LED光源阵列;所述LED光源阵列包括多个沿所述壳体长度方向设置的LED光源行单元,每个LED光源行单元的发光强度和/或发光颜色能够被独立调节。本发明的拱形照明装置在拱形面内侧具有阵列LED,使被测物在180°范围内每个角度都能够被照明,且每个LED的发光强度和颜色均能够独立控制,实现调节最佳光角以覆盖电路板各种形状、纹理和其他不同条件的表面。

Description

一种拱形照明装置、具有其的成像系统及成像方法
优先权声明
本申请要求于2019年12月27日提交中国专利局、申请号为201911375658.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电路板检测领域,尤其涉及一种拱形照明装置、具有其的成像系统及成像方法。
背景技术
现如今在高度发展的电子工业时代,印刷电路板(Printed Circuit Board,简称PCB)已成为计算机、电子通信等产品上必不可缺的一样重要部件之一。PCB电路板在制作完成之后,需要经过一道检测流程,行业内普遍采用自动光学检测设备(Automated Optical Inspection,简称AOI),AOI能够检测PCB上的缺陷,然后根据AOI检测到的缺陷进行检修。
目前AOI检测领域主要采用的是CCD线性相机、变焦镜头和线性光源组合起来实现对印刷电路板自动光学检测,随着电子厂推出的电路板种类越来越多,就会出现电路板基材不同,线路形状各异,且会出现镀层颜色不一致等情况,这时,普通的线性光源就不能同时满足这些情况。
在这种情况下,光源对AOI检测结果的准确性起着重要作用,而现有技术中AOI的线性光源无法满足各个种类的电路板的检测任务。
发明内容
为了解决现有技术的问题,本发明提供了一种拱形照明装置、具有其的成像系统及成像方法,优化线性相机扫描的光覆盖范围,以实现最佳的光角覆盖扫描元素的各种形状,纹理和其他不同的表面条件,所述技术方案如下:
一方面,本发明提供了一种拱形照明装置,包括具有拱形结构的壳体以及 设置在所述壳体内壁的多个LED光源,所述壳体上设有沿所述壳体长度方向设置的槽通孔,所述LED光源呈阵列排布形成LED光源阵列;
所述LED光源阵列包括多个沿所述壳体长度方向设置的LED光源行单元,每个LED光源行单元的发光强度和/或发光颜色能够被独立调节。
优选地,每个LED光源的发光强度和/或发光颜色能够被独立调节,使得实现调节最佳光角,灵活度高。
进一步地,所述槽通孔设置在所述壳体的拱形结构的中心,所述槽通孔的长度小于所述壳体的长度,使得出光口设置在中心,照明更均匀。
可选地,所述LED光源在所述壳体的拱形方向上对齐设置,或者,所述LED光源在所述壳体的拱形方向上交错设置。
进一步地,相邻的LED光源行单元之间的角弧度相等,所述LED光源均匀分布,进一步提高照明的光线均匀度。
另一方面,本发明提供了一种成像系统,包括用于放大和/或聚焦的镜头、用于采集图像信息的图像传感器及如上所述的拱形照明装置,所述镜头设置在所述拱形照明装置的壳体拱形面的上方,所述图像传感器设置在所述镜头的上方。
进一步地,所述成像系统还包括控制单元,其用于调节所述拱形照明装置的LED光源的发光强度和/或发光颜色。
进一步地,所述拱形照明装置的壳体上的槽通孔为等宽结构,所述槽通孔的槽宽大于或等于所述图像传感器的感光片宽度,满足所述图像传感器的每一次感光成像。
进一步地,所述镜头的入光侧和图像传感器的入光侧均与所述拱形照明装置的壳体上的槽通孔正对设置,使得从所述槽通孔透出的光线正对射入镜头进行放大和聚焦,以及正对射入图像传感器进行成像采集。
进一步地,所述成像系统还包括驱动机构及设置在所述拱形照明装置的壳体下方可移动的基台,所述基台用于放置待成像的目标物体,在所述驱动机构的驱动下,所述基台带着目标物体相对于所述拱形照明装置的壳体水平移动。所述基台能够提升所述目标物体水平移动的平稳性,在移动过程中,利用图像传感器多次对目标物体的不同局部进行线扫成像,最终经过图像处理拼接得到所述目标物体的整体成像。
可选地,所述图像传感器为CCD线性相机或者CMOS。
再一方面,本发明提供了一种基于上述的成像系统的成像方法,包括以下步骤:
S1、打开完成预调节的图像传感器、镜头以及完成照明参数调节的拱形照明装置,并在所述拱形照明装置下方放置待成像的目标物体;
S2、水平移动目标物体,使所述目标物体从所述拱形照明装置的壳体上的槽通孔的一侧移动到另一侧;
S3、在步骤S2的移动过程中,所述图像传感器多次成像;
S4、对所述图像传感器多次成像得到的多个图像进行图像处理,得到所述目标物体的成像。
优选地,步骤S2中每次目标物体的水平移动距离等于图像传感器的感光片宽度,步骤S3中所述目标物体每移动一次,则所述图像传感器对其进行一次成像;步骤S4中将所述图像传感器多次成像得到的多个图像按照成像时间拼接,得到所述目标物体的成像图像。
可选地,步骤S2中每次目标物体的水平移动距离小于或等于图像传感器的感光片宽度,步骤S3中所述目标物体每移动一次,则所述图像传感器对其进行一次成像;步骤S4中图像处理的步骤包括:
对所述图像传感器连续两次先后成像得到的第一图像和第二图像进行比对,找到第一图像的边缘在第二图像中的位置作为拼接缝;
按照拼接缝将所述第一图像和第二图像进行拼接,重复执行以上图像处理步骤,直至所有成像得到的图像拼接成所述目标物体的成像。
进一步地,所述拱形照明装置的照明参数调节步骤包括:
对样品进行步骤S1-S4的操作,对于所述图像传感器每一次成像参数和/或成像得到的目标物体的成像图像进行分析,若所述图像传感器的感光通量低于预设的感光通量阈值或者成像图像的局部像素块亮度值和/或灰度值超出预设的合格标准,则对所述拱形照明装置的LED光源进行发光强度和/或发光颜色调节。
进一步地,所述图像传感器的预调节操作包括图像传感器的高度调节,所述镜头的预调节操作包括高度调节、放大倍率调节及聚焦倍率调节。
本发明具有如下有益效果:
a.拱形照明装置在拱形面内侧具有阵列LED,使被测物在180°范围内每个 角度都能够被照明,优化了线性相机扫描的光覆盖范围;
b.能够通过软件控制调整每个LED的发光强度和颜色,实现调节最佳光角以覆盖电路板各种形状、纹理和其他不同条件的表面。
附图说明
被视为本发明的主题在说明书的结论部分中被特别指出并清楚地主张权利。然而,当结合附图一起参阅时,通过参考以下详细描述可以最佳地理解本发明的组织、操作方法,以及主题、特征和优点,其中:
图1是本发明实施例提供的拱形照明装置的结构示意图;
图2是图1中的局部放大细节图;
图3是本发明实施例提供的拱形照明装置内侧视图;
图4是本发明实施例提供的拱形照明装置在宽度方向上的剖视图;
图5是本发明实施例提供的拱形照明装置的俯视图;
图6是本发明实施例提供的成像系统的第一状态示意图;
图7是本发明实施例提供的成像系统的第二状态示意图;
图8是本发明实施例提供的成像方法流程图;
图9是本发明实施例提供的第一种图像处理的方法流程图;
图10是本发明实施例提供第二种图像处理的方法流程图。
其中,附图标记包括:1-壳体,11-槽通孔,2-LED光源,3-镜头,4-图像传感器,5-基台,6-目标物体。
具体实施方式
在以下详细描述中,阐述了许多具体细节以便提供对本发明的透彻理解。然而,本领域技术人员将理解,可以在没有这些具体细节的情况下实践本发明。在其他情况下,没有详细描述众所周知的方法,过程和组件,以免模糊本发明。
被视为本发明的主题在说明书的结论部分中被特别指出并清楚地主张权利。然而,当结合附图一起参阅时,通过参考以下详细描述可以最佳地理解本发明的组织、操作方法,以及主题、特征和优点。
应当理解,为了说明的简单和清楚,图中所示的元件不一定按比例绘制。例如,为了清楚起见,一些元件的尺寸可能相对于其他元件被放大。
由于本发明的说明性实施例在很大程度上可使用本领域技术人员熟知的电子元件和电路来实施,如上文所述,在认为必要的范围之外,不会对细节作更大的解释,以便理解和体会本发明的基本概念,以免混淆或分散本发明的教导。
在本发明的一个实施例中,提供了一种拱形照明装置,参见图1至图5,所述拱形照明装置包括具有拱形结构的壳体1以及设置在所述壳体1内壁的多个LED光源2,所述壳体1的拱形线条可以为部分的椭圆,也可以为圆弧(弧度范围为150°-210°,优选为150°-210°),所述LED光源2均匀分布,所述壳体1上设有沿所述壳体1长度方向设置的槽通孔11,所述LED光源2呈阵列排布形成LED光源阵列(如图3所示),所述槽通孔11优选设置在所述壳体1的拱形结构的中心,所述槽通孔11的长度小于所述壳体1的长度,如图5所示。
具体地,所述LED光源阵列包括多个沿所述壳体1长度方向设置的LED光源行单元,如图4所示,从所述拱形照明装置的宽度侧面上看,每个LED光源行单元均匀分布在所述拱形照明装置的内侧拱形面上,即相邻的LED光源行单元之间的角弧度相等(除了最靠近所述槽通孔11的两个LED光源行单元),每个LED光源行单元的发光强度和/或发光颜色能够被独立调节。
以上所述“每个LED光源行单元的发光强度和/或发光颜色能够被独立调节”即可以以LED光源行单元为独立调节单位进行发光强度和/或发光颜色的调节。在本发明的一个更优选实施例中,每个LED光源2的发光强度和/或发光颜色能够被独立调节。也就是说,在本实施例中,不仅是单个LED光源行单元可以独立于其他LED光源行单元进行光调节,在同一个LED光源行单元中的不同LED光源2或者在不同LED光源行单元中的不同LED光源2均可以单独调节。
在本发明的一个实施例中,所述LED光源2在所述壳体1的拱形方向上对齐设置,如图3所示;在本发明的另一个实施例中,所述LED光源2在所述壳体1的拱形方向上交错设置(未图示)。
在本发明的一个实施例中,提供了一种成像系统,参见图6和图7,包括用于放大和/或聚焦的镜头3、用于采集图像信息的图像传感器4及如上实施例所述的拱形照明装置,所述镜头3设置在所述拱形照明装置的壳体1拱形面的上方,所述图像传感器4设置在所述镜头3的上方,所述图像传感器4可选为CCD线性相机或者CMOS,且所述镜头3的入光侧和图像传感器4的入光侧均优选与所述拱形照明装置的壳体1上的槽通孔11正对设置。所述成像系统还包括控制 单元,其用于调节所述拱形照明装置的LED光源2的发光强度和/或发光颜色。
如图5所示,所述拱形照明装置的壳体1上的槽通孔11为等宽结构,所述槽通孔11的槽宽大于或等于所述图像传感器4的感光片宽度,满足所述图像传感器的每一次感光成像,避免感光不足造成部分成像空白的现象。
如图6和图7所示,所述成像系统还包括驱动机构及设置在所述拱形照明装置的壳体1下方可移动的基台5,所述基台5用于放置待成像的目标物体6,优选地,所述拱形照明装置的壳体1能够根据所述目标物体6的厚度而进行上下调节,在所述拱形照明装置的壳体1不阻碍所述目标物体6水平移动的前提下,所述拱形照明装置的壳体1的高度越低越好。
所述拱形照明装置的LED光源2的照射目标物体6后反射的光通过槽通孔11后射入镜头3,最终射入图像传感器4。在所述驱动机构的驱动下,所述基台5带着目标物体6相对于所述拱形照明装置的壳体1水平移动。在移动过程中,利用图像传感器多次对目标物体的不同局部进行线扫成像,最终经过图像处理拼接,最终实现所述目标物体6的整体图像采集,所述基台能够提升所述目标物体水平移动的平稳性,以提高成像的准确性。
参见图4,其示出了所述拱形照明装置对具有不规则表面的目标物体6的照明光路,阵列的LED灯等角度安装在拱形壳体1内侧,且不同角度的LED灯发出来的光汇聚中心与拱形壳体1的中心重合,并在壳体1弧形的每个角度都被照明,保证被测物处于光源汇聚中心位置,以获得最佳亮度的光源,图4展示了一种不规格的被测物表面,通过示意图可知,无论被测物的表面如何,拱形照明装置中总有一组LED光源可以将被测物表面的信息放射到镜头3和图像传感器4中去,这样,就不会出现因为被检测物形状变化而出现遗漏检测点的现象。其次,由于印刷电路板基材不同,分为铜板基材、铝板基材、陶瓷板基材等,对光源照明的颜色要求很高,在针对不同颜色的被检测物时,需要改变光源的颜色,以增强在图像传感器4中采集到的图像的对比度,提高图像质量,这时,就通过单独控制每一个LED的RGB,同时配套控制每一个LED的开光、亮度,以实现最佳的照射颜色和最佳照射角度,从而覆盖扫描元素的各种形状、纹理和表面条件。
在本发明的一个实施例中,提供了一种基于上述的成像系统的成像方法,参见图8,所述成像方法包括以下步骤:
S1、打开完成预调节的图像传感器、镜头以及完成照明参数调节的拱形照明装置,并在所述拱形照明装置下方放置待成像的目标物体。
具体地,所述图像传感器的预调节操作包括图像传感器的高度调节,所述镜头的预调节操作包括高度调节、放大倍率调节及聚焦倍率调节。
具体地,所述拱形照明装置的照明参数调节步骤包括:对样品进行步骤S1-S4的操作,对于所述图像传感器每一次成像参数和/或成像得到的样品的成像图像进行分析,若所述图像传感器的感光通量低于预设的感光通量阈值或者成像图像的局部像素块亮度值和/或灰度值超出预设的合格标准,则对所述拱形照明装置的LED光源进行发光强度和/或发光颜色调节,直至该样品的整体成像图像的亮度值和灰度值均满足合格标准,或者所述图像传感器每一次成像的感光通量都达到阈值标准。
S2、水平移动目标物体,使所述目标物体从所述拱形照明装置的壳体上的槽通孔的一侧移动到另一侧。
S3、在步骤S2的移动过程中,所述图像传感器多次成像。
S4、对所述图像传感器多次成像得到的多个图像进行图像处理,得到所述目标物体的成像。
具体地,在一个实施例中,如图9所示,步骤S2中每次目标物体的水平移动距离等于图像传感器的感光片宽度,步骤S3中所述目标物体每移动一次,则所述图像传感器对其进行一次成像;步骤S4中将所述图像传感器多次成像得到的多个图像按照成像时间拼接,得到所述目标物体的成像图像。
在另一个实施例中,步骤S2中每次目标物体的水平移动距离小于或等于图像传感器的感光片宽度,步骤S3中所述目标物体每移动一次,则所述图像传感器对其进行一次成像;由于每次水平移动的距离小于感光片宽度,因此,前后两个成像中有重叠的部分,这重叠的部分需要在图像拼接前进行去除处理,如图10所示,步骤S4中图像处理的步骤包括:
对所述图像传感器连续两次先后成像得到的第一图像和第二图像进行比对,找到第一图像的边缘在第二图像中的位置作为拼接缝;
按照拼接缝将所述第一图像和第二图像进行拼接,重复执行以上图像处理步骤,直至所有成像得到的图像拼接成所述目标物体的成像。
此外,本领域技术人员将意识到,上述操作之间的界限仅为示例性的。多 个操作可以合并为单个操作,单个操作可以分布于额外操作中,且可在至少部分重叠的时间下执行操作。此外,可选实施例可包括特定操作的多个举例说明,并且操作顺序可在各种其他实施例中变化。
然而,其他修改、变化及替代也是可能的。因此,应在示例性意义上而非限制性意义上看待说明书及附图。
在权利要求声明中,置于圆括号之间的任何参考符号不应被视为限制请求项。词语“包括”并不排除那些列在权利要求声明中的其他元件或步骤的存在。此外,本文所使用的术语“一”或“一个”,被定义为一个或多于一个。而且,引言短语例如权利要求声明中的“至少一个”及“一个或多个”的使用不应该解释为暗示不定冠词“一”或“一个”引入另一个权利要求要素将包含这种引入的权利要求的任何特定权利要求限制于仅包含一个这样的要素的发明,即使同一权利要求包括引言短语“一个或多个”或“至少一个”和不定冠词,如“一个”或“一个”。使用定冠词也是如此。除非另有说明,否则诸如“第一”和“第二”之类的术语用于任意区分这些术语所描述的元素。因此,这些术语不一定旨在表示这些元素的时间或其他优先级。在彼此不同的权利要求中叙述某些措施的仅有事实并不表示这些措施的组合不能加以利用。
虽然本文已经说明和描述了本发明的某些特征,但是本领域普通技术人员现在将想到许多修改、替换、改变和等同物。因此,应该理解,所附权利要求旨在覆盖落入本发明的真正精神内的所有这些修改和变化。

Claims (16)

  1. 一种拱形照明装置,其特征在于,包括具有拱形结构的壳体(1)以及设置在所述壳体(1)内壁的多个LED光源(2),所述壳体(1)上设有沿所述壳体(1)长度方向设置的槽通孔(11),所述LED光源(2)呈阵列排布形成LED光源阵列;
    所述LED光源阵列包括多个沿所述壳体(1)长度方向设置的LED光源行单元,每个LED光源行单元的发光强度和/或发光颜色能够被独立调节。
  2. 根据权利要求1所述的拱形照明装置,其特征在于,每个LED光源(2)的发光强度和/或发光颜色能够被独立调节。
  3. 根据权利要求1所述的拱形照明装置,其特征在于,所述槽通孔(11)设置在所述壳体(1)的拱形结构的中心,所述槽通孔(11)的长度小于所述壳体(1)的长度。
  4. 根据权利要求1所述的拱形照明装置,其特征在于,所述LED光源(2)在所述壳体(1)的拱形方向上对齐设置,或者,所述LED光源(2)在所述壳体(1)的拱形方向上交错设置。
  5. 根据权利要求1所述的拱形照明装置,其特征在于,相邻的LED光源行单元之间的角弧度相等,所述LED光源(2)均匀分布。
  6. 一种成像系统,其特征在于,包括用于放大和/或聚焦的镜头(3)、用于采集图像信息的图像传感器(4)及如权利要求1-5中任意一项所述的拱形照明装置,所述镜头(3)设置在所述拱形照明装置的壳体(1)拱形面的上方,所述图像传感器(4)设置在所述镜头(3)的上方。
  7. 根据权利要求6所述的成像系统,其特征在于,还包括控制单元,其用 于调节所述拱形照明装置的LED光源(2)的发光强度和/或发光颜色。
  8. 根据权利要求6所述的成像系统,其特征在于,所述拱形照明装置的壳体(1)上的槽通孔(11)为等宽结构,所述槽通孔(11)的槽宽大于或等于所述图像传感器(4)的感光片宽度。
  9. 根据权利要求6所述的成像系统,其特征在于,所述镜头(3)的入光侧和图像传感器(4)的入光侧均与所述拱形照明装置的壳体(1)上的槽通孔(11)正对设置。
  10. 根据权利要求6所述的成像系统,其特征在于,还包括驱动机构及设置在所述拱形照明装置的壳体(1)下方可移动的基台(5),所述基台(5)用于放置待成像的目标物体(6),在所述驱动机构的驱动下,所述基台(5)带着目标物体(6)相对于所述拱形照明装置的壳体(1)水平移动。
  11. 根据权利要求6所述的成像系统,其特征在于,所述图像传感器(4)为CCD线性相机或者CMOS。
  12. 一种基于权利要求6-11中任意一项所述的成像系统的成像方法,其特征在于,包括以下步骤:
    S1、打开完成预调节的图像传感器、镜头以及完成照明参数调节的拱形照明装置,并在所述拱形照明装置下方放置待成像的目标物体;
    S2、水平移动目标物体,使所述目标物体从所述拱形照明装置的壳体上的槽通孔的一侧移动到另一侧;
    S3、在步骤S2的移动过程中,所述图像传感器多次成像;
    S4、对所述图像传感器多次成像得到的多个图像进行图像处理,得到所述目标物体的成像。
  13. 根据权利要求12所述的成像方法,其特征在于,步骤S2中每次目标物 体的水平移动距离等于图像传感器的感光片宽度,步骤S3中所述目标物体每移动一次,则所述图像传感器对其进行一次成像;步骤S4中将所述图像传感器多次成像得到的多个图像按照成像时间拼接,得到所述目标物体的成像图像。
  14. 根据权利要求12所述的成像方法,其特征在于,步骤S2中每次目标物体的水平移动距离小于或等于图像传感器的感光片宽度,步骤S3中所述目标物体每移动一次,则所述图像传感器对其进行一次成像;步骤S4中图像处理的步骤包括:
    对所述图像传感器连续两次先后成像得到的第一图像和第二图像进行比对,找到第一图像的边缘在第二图像中的位置作为拼接缝;
    按照拼接缝将所述第一图像和第二图像进行拼接,重复执行以上图像处理步骤,直至所有成像得到的图像拼接成所述目标物体的成像。
  15. 根据权利要求12所述的成像方法,其特征在于,所述拱形照明装置的照明参数调节步骤包括:
    对样品进行步骤S1-S4的操作,对于所述图像传感器每一次成像参数和/或成像得到的目标物体的成像图像进行分析,若所述图像传感器的感光通量低于预设的感光通量阈值或者成像图像的局部像素块亮度值和/或灰度值超出预设的合格标准,则对所述拱形照明装置的LED光源进行发光强度和/或发光颜色调节。
  16. 根据权利要求12所述的成像方法,其特征在于,所述图像传感器的预调节操作包括图像传感器的高度调节,所述镜头的预调节操作包括高度调节、放大倍率调节及聚焦倍率调节。
PCT/CN2020/124703 2019-12-27 2020-10-29 一种拱形照明装置、具有其的成像系统及成像方法 WO2021129127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911375658.XA CN110933282A (zh) 2019-12-27 2019-12-27 一种拱形照明装置、具有其的成像系统及成像方法
CN201911375658.X 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021129127A1 true WO2021129127A1 (zh) 2021-07-01

Family

ID=69862275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124703 WO2021129127A1 (zh) 2019-12-27 2020-10-29 一种拱形照明装置、具有其的成像系统及成像方法

Country Status (3)

Country Link
CN (1) CN110933282A (zh)
TW (1) TWI773032B (zh)
WO (1) WO2021129127A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210807443U (zh) * 2019-12-27 2020-06-19 苏州康代智能科技股份有限公司 一种拱形照明装置及具有其的成像系统
CN110933282A (zh) * 2019-12-27 2020-03-27 苏州康代智能科技股份有限公司 一种拱形照明装置、具有其的成像系统及成像方法
CN112128663A (zh) * 2020-10-28 2020-12-25 江苏善果缘智能科技有限公司 一种用于线性ccd传感器扫描的漫射光源结构及其组装方法
CN113740259B (zh) * 2021-08-31 2022-04-29 苏州天准科技股份有限公司 带观察窗的上光源和采用该上光源的线扫成像用光源
CN117309903A (zh) * 2023-10-10 2023-12-29 青岛峻海物联科技有限公司 一种隧道内缺陷定位方法及装置
CN117147570A (zh) * 2023-10-30 2023-12-01 深圳硬之城信息技术有限公司 基于机器视觉的制造控制方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197450A (ja) * 1996-12-27 1998-07-31 Mitsubishi Nuclear Fuel Co Ltd 外観検査装置
CN101221122A (zh) * 2007-01-08 2008-07-16 牧德科技股份有限公司 可调式光源装置和具有该光源装置的自动光学检测系统
CN102033072A (zh) * 2010-10-30 2011-04-27 华南理工大学 一种用于光学自动检测仪的光源
CN202406192U (zh) * 2012-01-10 2012-08-29 核工业理化工程研究院华核新技术开发公司 一种视觉图像检测装置
CN104246483A (zh) * 2012-02-17 2014-12-24 斯蒂芬·克雷布斯 用于印刷图像控制的设备和方法
US20150226675A1 (en) * 2014-02-12 2015-08-13 ASA Corporation Apparatus and Method for Photographing Glass in Multiple Layers
CN209028015U (zh) * 2018-10-29 2019-06-25 合刃科技(武汉)有限公司 一种线扫描成像的检测装置
CN110933282A (zh) * 2019-12-27 2020-03-27 苏州康代智能科技股份有限公司 一种拱形照明装置、具有其的成像系统及成像方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205807127U (zh) * 2016-07-22 2016-12-14 东莞乐视自动化科技有限公司 一种检测用led隧道线光源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197450A (ja) * 1996-12-27 1998-07-31 Mitsubishi Nuclear Fuel Co Ltd 外観検査装置
CN101221122A (zh) * 2007-01-08 2008-07-16 牧德科技股份有限公司 可调式光源装置和具有该光源装置的自动光学检测系统
CN102033072A (zh) * 2010-10-30 2011-04-27 华南理工大学 一种用于光学自动检测仪的光源
CN202406192U (zh) * 2012-01-10 2012-08-29 核工业理化工程研究院华核新技术开发公司 一种视觉图像检测装置
CN104246483A (zh) * 2012-02-17 2014-12-24 斯蒂芬·克雷布斯 用于印刷图像控制的设备和方法
US20150226675A1 (en) * 2014-02-12 2015-08-13 ASA Corporation Apparatus and Method for Photographing Glass in Multiple Layers
CN209028015U (zh) * 2018-10-29 2019-06-25 合刃科技(武汉)有限公司 一种线扫描成像的检测装置
CN110933282A (zh) * 2019-12-27 2020-03-27 苏州康代智能科技股份有限公司 一种拱形照明装置、具有其的成像系统及成像方法

Also Published As

Publication number Publication date
TWI773032B (zh) 2022-08-01
CN110933282A (zh) 2020-03-27
TW202126024A (zh) 2021-07-01

Similar Documents

Publication Publication Date Title
WO2021129127A1 (zh) 一种拱形照明装置、具有其的成像系统及成像方法
WO2021129283A1 (zh) 一种用于自动光学检测设备的照明装置及成像系统
TWI426261B (zh) End inspection device
WO2018150607A1 (ja) 外観検査装置、照明装置、撮影照明装置
JPH0599861A (ja) 透明容器の検査方法及び装置
JP2001255281A (ja) 検査装置
CN106770307A (zh) 一种电子产品外观表面缺陷检测装置及其检测方法
JP2007064801A (ja) 照明装置及びこれを備えた外観検査装置
JP2001266127A (ja) プリント配線板の検査装置
TWI495867B (zh) Application of repeated exposure to multiple exposure image blending detection method
CN102679236B (zh) 照明系统、包含该照明系统的自动光学检测装置及其方法
TW200819770A (en) Adjustable illumination apparatus and AOI system using the same
JP2004233342A (ja) 印刷回路板の光学検出装置及び検出方法
JP2000028320A (ja) 画像認識装置および画像認識方法
KR101079686B1 (ko) 영상인식장치 및 영상인식방법
TW202122789A (zh) 檢查裝置及檢查方法
JP2007235490A (ja) 自動撮影装置
JP3424536B2 (ja) 電子部品の実装状態検査装置および実装基板の検査方法
KR101123051B1 (ko) 비전검사장치
KR102148965B1 (ko) 검사 장치
TWI290223B (en) Adjustable light sources for image forming apparatus
KR100200213B1 (ko) 인쇄회로기판의 부품 검사장치
JPH0933445A (ja) 印刷配線板検査装置用の照明装置
TWM589791U (zh) 高精度自動化物體表面瑕疵影像擷取裝置
JP3402994B2 (ja) 半田ペースト良否判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907011

Country of ref document: EP

Kind code of ref document: A1