WO2021128999A1 - 射线标定设备和方法 - Google Patents

射线标定设备和方法 Download PDF

Info

Publication number
WO2021128999A1
WO2021128999A1 PCT/CN2020/116867 CN2020116867W WO2021128999A1 WO 2021128999 A1 WO2021128999 A1 WO 2021128999A1 CN 2020116867 W CN2020116867 W CN 2020116867W WO 2021128999 A1 WO2021128999 A1 WO 2021128999A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
translation
component
rotating
samples
Prior art date
Application number
PCT/CN2020/116867
Other languages
English (en)
French (fr)
Inventor
张丽
郭卫军
黄清萍
沈乐
丁辉
方志强
刘俊豪
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Publication of WO2021128999A1 publication Critical patent/WO2021128999A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques

Definitions

  • the invention relates to the field of ray calibration, in particular to a ray calibration device and a ray calibration method.
  • X-ray sources which can provide radiation, and two-dimensional or even three-dimensional images of the goods can be obtained by irradiating the goods with the radiation.
  • the ray source used in security inspection needs to be calibrated before leaving the factory and during the post-maintenance period. That is, by scanning the workpiece of specific material, the reconstructed image value is compared with the real value of the workpiece, and the final calibration parameters are determined in order to obtain reliable image values.
  • the embodiment of the present disclosure provides a radiographic calibration device, including:
  • At least one calibration component is installed on the moving platform, and each calibration component has multiple calibration samples;
  • the moving platform can translate and/or rotate the at least one calibration component so as to allow a combination of multiple calibration samples to be aligned with each other. Radiation in all directions.
  • each of the plurality of calibration samples of each calibration component is set to have a set length and the transverse section in the length direction has a stepped shape, so that the radiation beam penetrates one or more of the plurality of calibration samples transversely.
  • the thickness of the calibration sample through which the radiation beam passes is different, so as to realize the calibration of different energy rays.
  • each of the calibration components is configured so that each of the plurality of calibration samples can be divided into a plurality of sub-calibration sample segments in the length direction.
  • the at least one calibration component includes a first calibration component and a second calibration component
  • the first calibration component includes a plurality of first calibration samples
  • the second calibration component includes a plurality of second calibration samples.
  • one of the plurality of first calibration samples and/or one of the plurality of second calibration samples can constitute a required calibration combination.
  • the motion platform includes a first translation part and/or a second translation part that can be individually translated in a first direction, the first calibration component is installed on the first translation part, and the second calibration component is installed on the second translation part.
  • the first translation part and/or a second translation part that can be individually translated in a first direction
  • the first calibration component is installed on the first translation part
  • the second calibration component is installed on the second translation part.
  • the motion platform further includes a rotating seat, and a first translation part and a second translation part that can be rotatably mounted on the rotating seat are configured.
  • the motion platform further includes a slide rail base, wherein the rotating seat can reciprocate and translate on the slide rail base, and the slide rail base is arranged along the first direction.
  • the first translation part includes a first translation rail installed on the rotating seat and extending along the first direction, a first translation platform installed on the first translation rail and capable of being translated along the first translation rail, and a first translation platform installed on the rotating seat.
  • the second translation part includes a second translation rail installed on the rotating seat and extending in the first direction, a second translation platform installed on the second translation rail and capable of translation along the second translation rail, and installed on the rotating seat in the second translation rail.
  • the second synchronous belt of the stage and the second synchronous motor wherein the second synchronous belt forms a loop and is driven by the second synchronous motor to move the second translation stage back and forth in the first direction.
  • the rotating base includes: a translation base installed on the slide rail base for reciprocating sliding on the slide rail base; a rotating table installed on the translation base and a translation base installed on the A transmission mechanism and a rotary drive motor on the base for driving the rotation of the rotary table, wherein the rotary table includes an upper bearing plate and a lower transmission base, and the transmission mechanism includes a transmission worm installed on the translation base and a lower transmission base installed on the rotary table The upper transmission worm, the transmission worm is engaged with the corresponding transmission worm, so that the transmission worm rotates under the drive of the rotary driving motor, thereby driving the rotating table to rotate.
  • the radiographic calibration equipment further includes a calibration frame installed on the rotating seat, and the upper ends of the plurality of first calibration samples of the first calibration component and the plurality of second calibration samples of the second calibration component are slidably connected To the upper sliding rail of the upper part of the calibration frame, the lower ends of the plurality of first calibration samples of the first calibration assembly and the plurality of second calibration samples of the second calibration assembly are respectively installed on the first translation part and the second translation part.
  • the motion platform includes:
  • the first translation part installed on the rotating seat can translate along the first direction
  • the first calibration component is installed on the first translation part, and the second calibration component is installed on the rotating seat.
  • the rotating base includes: a translation base installed on the slide rail base for reciprocating sliding on the slide rail base; a rotating table installed on the translation base and a translation base installed on the A transmission mechanism and a rotary drive motor on the base for driving the rotation of the rotary table, wherein the rotary table includes an upper bearing plate and a lower transmission base, and the transmission mechanism includes a transmission worm installed on the translation base and a lower transmission base installed on the rotary table The upper transmission worm, the transmission worm is engaged with the corresponding transmission worm and the corresponding transmission worm on the lower transmission seat of the rotating table, so that the transmission worm rotates under the driving of the rotating driving motor, thereby driving the rotating table to rotate.
  • the radiographic calibration equipment further includes a calibration frame installed on the rotating seat, and the upper ends of the plurality of first calibration samples of the first calibration component and the plurality of second calibration samples of the second calibration component are slidably connected To the upper slide rail of the upper part of the calibration frame, the lower ends of the plurality of first calibration samples of the first calibration assembly are installed on the first translation part, and the lower ends of the plurality of second calibration samples of the second calibration assembly are installed on the rotation of the rotating seat On stage.
  • the motion platform further includes:
  • a slide rail base, the first translation part and the second translation part are mounted on the slide rail base;
  • a first rotating part installed on the first translation part and a second rotating part installed on the second translation part.
  • the first calibration component is installed on the first rotating part of the first translation part
  • the second calibration component is installed on the first rotating part of the first translation part.
  • the radiographic calibration device further includes a first sub-calibration frame installed on the first rotating part and a second sub-calibration frame installed on the second rotating part,
  • the upper ends of the plurality of first calibration samples of the first calibration assembly are slidably connected to the upper slide rail of the first sub-calibration frame on the upper part of the first sub-calibration frame, and the lower ends of the plurality of first calibration samples are installed on the first sub-calibration frame.
  • the upper ends of the plurality of second calibration samples of the second calibration assembly are slidably connected to the upper slide rail of the second sub-calibration frame on the upper part of the second sub-calibration frame, and the lower ends of the plurality of second calibration samples are installed on the second rotating part on.
  • the embodiment of the present disclosure also provides a ray calibration method using the above ray calibration device, and the ray calibration method includes:
  • the radiation source to be calibrated is located on one side of the slide rail base of the ray calibration equipment;
  • the ray calibration method further includes: translating and rotating the first and second calibration components so as to use the obtained one of the multiple first calibration samples of the first calibration component and the multiple first calibration samples of the second calibration component.
  • a combination of the two calibration samples calibrate the radiation in other directions in the radiation beam emitted by the radiation source.
  • the ray calibration method further includes: placing a plurality of radiation sources on one side of the slide rail base of the ray calibration device, and arranging in a vertical direction the sub-calibration corresponding to the first and second calibration components. Sample section in order to perform calibration for each radiation source.
  • Fig. 1 is a perspective schematic diagram of a radiation calibration device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic top view of a rotating seat of a moving platform of a ray calibration device according to an embodiment of the present disclosure
  • Fig. 3 is a partial perspective schematic view of the upper part of the ray calibration device according to an embodiment of the present disclosure
  • Fig. 4 is a perspective schematic diagram of a rotating seat of a radiation calibration device according to an embodiment of the present disclosure
  • Fig. 5 is a perspective schematic diagram of a slide rail base of a radiographic calibration device according to an embodiment of the present disclosure
  • Fig. 6 is a perspective schematic diagram of a radiographic calibration device according to another embodiment of the present disclosure, in which the first sub-calibration frame and the second sub-calibration frame are removed.
  • the embodiment of the present disclosure provides a ray calibration device.
  • the ray calibration device includes a moving platform and a calibration component that realizes translation and rotation through the moving platform.
  • the radiation calibration equipment includes a first calibration component 21 and a second calibration component 22.
  • the first calibration component 21 includes a plurality of first calibration samples, for example, the figure shows three first calibration samples 21-1, 21-2, 21-3;
  • the second calibration component 22 includes a plurality of second calibration samples.
  • Calibration samples for example, the figure shows three second calibration samples 22-1, 22-2, 22-3.
  • the first calibration component 21 and the second calibration component 22 can realize translation and rotation through the movement platform, so that through the translation and/or rotation of the first calibration component 21 and the second calibration component 22, a plurality of first calibration components 21 and 22 can be translated and/or rotated.
  • One of the calibration samples 21-1, 21-2, 21-3 and one of the plurality of second calibration samples 22-1, 22-2, 22-3 can form a required calibration combination.
  • the first calibration sample of the first calibration component 21 and the first calibration sample of the second calibration component 22 form a combination to calibrate a specific radiation.
  • the first calibration component 21 includes three first calibration samples 21-1, 21-2, 21-3
  • the second calibration component 22 includes three second calibration samples 22-1, 22 -2, 22-3
  • these calibration samples can theoretically be combined to form at least 16 first calibration sample-second calibration sample combinations.
  • a limited number of specific calibration samples can be set according to actual needs and the energy of the ray source, and a combination of more than 10 calibration samples is sufficient to meet the needs in actual work.
  • the first and second calibration components 22 may respectively include other numbers of calibration samples, such as four, five, or six calibration samples or even more calibration samples; in other embodiments of the present disclosure, the first calibration component The number of first calibration samples of 21 and the number of second calibration samples of the second calibration component 22 may be different.
  • the first calibration component 21 includes three first calibration samples
  • the second calibration component 22 includes five second calibration samples. Samples; the number of respective calibration samples of the first calibration component 21 and the second calibration component 22, the material, thickness and other parameters of the calibration samples can be set according to actual needs. Therefore, this embodiment can realize the movement of the calibration component through the motion platform in practical applications, and get rid of the process of manually adjusting the calibration sample to achieve the calibration, so the safety is improved and the operation is convenient.
  • each calibration sample of each calibration component is set to have a set length (height as shown in the figure), and one side of the transverse section in the length direction has a stepped shape, and the other The sides can be flat.
  • the shape of each calibration sample can basically be regarded as a plate with a certain length.
  • the transverse cross-section in the length direction of these plates is not a rectangle (because the rectangle has only one thickness and the application is limited), but has multiple thicknesses. Ladder shape.
  • the calibration sample actually has multiple parts, each part has a lateral thickness, and each lateral thickness can be used to calibrate radiation of one energy, so that one calibration sample can calibrate multiple radiant energies.
  • the first and second calibration components 22 can form a variety of first calibration sample-second calibration sample combinations, and at the same time, a first calibration sample-second calibration sample combination can provide a variety of calibration thicknesses. Therefore, the ray calibration equipment can provide dozens of calibration thickness combinations, which greatly improves the calibration adaptability.
  • the radiation beam is generally along the side of the plane facing the plate-shaped calibration sample, and the radiation beam crosses a stepped part of a calibration sample transversely.
  • the first calibration component 21 and/or the second calibration component 22 are translated and/or rotated, for example, the first calibration component 21 is moved to the radiation beam After the rotation, one side of the plane of the first calibration sample of the second calibration component 22 faces the radiation beam along the horizontal direction, and the radiation beam passes through the first stepped portion of the first calibration sample.
  • the first calibration component 21 can be translated, so that the second step part of the first calibration sample is moved to the original position of the first step part, The radiation beam can directly face the second step part; if it is desired to use the third step part to calibrate the radiation beam, the first calibration component 21 can continue to translate so that one side of the plane of the third step part faces the radiation beam.
  • the first calibration component 21 can be rotated by the moving platform, so that the first calibration component 21
  • the predetermined step portion of the first calibration sample of a calibration component 21 is directly facing the propagation direction of the radiation beam.
  • parameters such as the calibration material, thickness, and corresponding calibration distance can be determined according to technical knowledge in the field, and will not be discussed.
  • the ray calibration equipment is equipped with a moving platform to realize the translation and/or rotation of the first and second calibration components 22 as required, so that the calibration thickness can be adjusted conveniently and non-manually.
  • each calibration component is configured such that each of the plurality of calibration samples can be divided into a plurality of sub-calibration sample segments in the length direction.
  • the first calibration sample of the first calibration component 21 has a certain length and is configured to be formed by combining a plurality of first sub-calibration samples.
  • the first calibration sample includes three first sub-calibration samples, so that the length of each first sub-calibration sample is small, which is convenient for transportation.
  • the connection between a plurality of first sub-calibration samples can use plug-in and other methods. All the calibration samples of the first calibration component 21 and the second calibration component 22 may have sub-calibration samples that can be separated.
  • each calibration sample can be set to have multiple sub-calibration samples, it is possible to allow the first calibration component 21 and the second calibration component 22 to have a longer length, which is advantageous because the first calibration component 21 and the second calibration component 21
  • the length direction of the calibration component 22 can simultaneously calibrate the radiation energy of multiple radiation sources, which improves the adaptability of the radiation calibration equipment.
  • Figures 1-4 show an embodiment.
  • the ray calibration equipment of the present disclosure is roughly divided into an upper calibration component and a lower motion platform. This is only for illustration, and those skilled in the art can understand the ray of the present disclosure in other combinations.
  • the motion platform includes a first translation part and a second translation part that can be individually translated in a first direction.
  • the first calibration component 21 is installed on the first translation part, and the second calibration component 22 is installed on the second translation part. Since the first translation portion has multiple embodiments and includes multiple components, no reference numerals are given.
  • the motion platform includes a first translation portion that can be independently translated in a first direction, and the first calibration assembly 21 is installed on the first translation portion; in this embodiment, the second translation portion is not included. .
  • the motion platform includes a second translation part capable of being independently translated in the first direction, and the second calibration assembly 22 is installed on the second translation part.
  • the first translation part is not included.
  • the motion platform further includes a rotating seat 30.
  • the first translation part and the second translation part are mounted on the rotating seat 30.
  • the rotating seat 30 is configured with a first translation capable of being rotatably mounted on the rotating seat 30. ⁇ and second translation section.
  • the rotating seat 30 can simultaneously rotate the first translation part and the second translation part mounted on the rotating seat 30.
  • the first translation part and the second translation part cannot rotate relative to each other, but can rotate relative to each other.
  • Ground translation so that each first calibration sample of the first calibration component 21 on the first translation part can be respectively and each second calibration sample of the second calibration component 22 on the second translation part through the translation of the first translation part Form a combination.
  • the rotating seat 30 rotates the first translation part and the second translation part so that one side of the plane of the first calibration sample of the first calibration component 21 on the first translation part faces the radiation beam, and then the first translation part And the second translation part respectively translate a combination of one of the first calibration sample and one of the second calibration sample to perform calibration of the radiation beam.
  • the first translation part or the second translation part is arranged on the rotating seat 30, the corresponding calibration component is installed on the corresponding translation part, and the other calibration component is installed on the rotating seat .
  • the motion platform also includes a slide rail base 40, the rotating seat 30 can reciprocate and translate on the slide rail base 40, and the slide rail base 40 is arranged along the first direction.
  • the rotating seat 30 and the first translation portion and the second translation portion installed on it can translate along the slide rail base 40 as a whole.
  • Such a configuration is advantageous.
  • the rotation of the rotating base 30 allows the first calibration sample of the first calibration component 21 and the second calibration component 22 of the second calibration component 22 to face the radiation beam at the same time.
  • the calibration process is convenient and fast, and the safety can also be achieved. Can be improved.
  • the first translation part includes a first translation rail 341-1 installed on the rotating base 30 and extending along the first direction, and a second translation rail 341-1 installed on the first translation rail 341-1 that can translate along the first translation rail.
  • the first translation stage 343-1 is installed on the first timing belt 342-1 forming the loop or connected in the loop as a part of the loop, and is driven by the first synchronous motor 344-1.
  • the second translation part includes a second translation rail 341-2 installed on the rotating base 30 and extending along the first direction, and a second translation platform installed on the second translation rail 241-2 and capable of translation along the second translation rail 241-2. 343-2.
  • the second synchronous belt 342-2 and the second synchronous motor 344-2 installed on the rotating seat 30 and located on the second translation stage 343-2, wherein the second synchronous belt 342-2 forms a loop and passes through the second synchronous belt 342-2.
  • the synchronous motor 344-2 is driven to reciprocately move the second translation stage in the first direction. Similar to the configuration of the first translation stage, in this embodiment, the second translation stage 343-2 is installed on the second timing belt 342-2 constituting the loop or connected in the loop as a part of the loop. Driven by two synchronous motors 344-2.
  • the first translation stage 343-1 and the second translation stage 343-2 may be driven in other driving manners.
  • the first translation part includes a first translation rail 341-1 installed on the rotating base 30 and extending along the first direction, and a first translation platform 343 installed on the first translation rail 341-1 and capable of translation along the first translation rail.
  • a first translation rail 341-1 installed on the rotating base 30 and extending along the first direction
  • a first translation platform 343 installed on the first translation rail 341-1 and capable of translation along the first translation rail.
  • the difference is that in the first translation part, a synchronous belt and a synchronous motor 3 are provided on both ends of the first translation stage 343-1 on the rotating seat 30, so that two sets of synchronization are passed in the first translation part.
  • the belt and the synchronous motor cooperate to drive the first translation stage.
  • the second translation part is similar and will not be repeated here.
  • the first translation rail 341-1 may be in the form of a double track or a single track.
  • Fig. 2 shows the form of a double track.
  • the form of pulling the first translation table 343-1 and the second translation table 343-2 through the timing belt shown in FIG. 2 can be replaced by other hard connection forms such as a screw-gear combination.
  • the first translation stage 343-1 and the second translation stage 343-2 are driven by a hard connection, it is only necessary to configure a connecting member on one side to connect the first translation stage 343-1 and the second translation stage 343-2.
  • only one translation part may be provided, for example, only the first translation part is included, the first calibration component 21 is installed on the first translation part, and the second calibration component 22 is installed on the rotating seat 30 , That is, it is installed on the rotating table 32 of the rotating seat, so when the rotating seat 30 does not translate, only the first translation part moves.
  • This embodiment is also advantageous because only one translation part is provided, so that the structure of the ray calibration device can be simplified, and at the same time, it can meet the needs of calibration, because the rotating base 30 can translate on the slide rail base 40 (described later), namely One of the first calibration component 21 and the second calibration component 22 (mounted on the rotating seat 30) can be close to the radiation beam, and then the first calibration component 21 and the second calibration component 22 can be rotated to face the radiation beam, and finally the first calibration component is translated.
  • the calibration components form the desired combination of calibration samples to achieve calibration.
  • the structure of the rotating seat 30 is the same as the embodiment shown in FIGS. 1-4.
  • the rotating base 30 includes: a translation base 31 installed on the slide rail base 40 for reciprocating sliding on the slide rail base 40; a rotating platform installed on the translation base 31 32 and a transmission mechanism and a rotation drive motor 332 installed on the translation base 31 for driving the rotation table 32 to rotate, wherein the rotation table 32 includes an upper bearing plate 321 and a lower transmission seat 322, and the transmission mechanism includes a transmission mechanism installed on the translation base 31
  • the upper transmission worm 331 and the transmission turbine installed on the lower transmission seat 322 of the rotating table 32; the transmission worm 331 is engaged with the corresponding transmission turbine on the lower transmission seat 322 of the rotating table 32 so that the transmission worm 331 is driven by the rotary drive motor 332 Rotate downward, thereby driving the rotating table 32 to rotate.
  • the rotating base 30 itself can move, and the first translation part and/or the second translation part and other components mounted on the rotating base 30 can also be rotated, which greatly improves the adaptability of the radiographic calibration equipment, making the operation convenient and improving The efficiency of calibration is improved; and the use of a motor allows the ray calibration equipment to be automatically calibrated, avoiding human injury caused by manual operation.
  • the motor-worm-worm mechanism in this embodiment can be replaced by a motor-reduction gear set mechanism to realize the rotation of the rotating base 30.
  • the radiation calibration equipment further includes a calibration frame installed on the rotating base 30.
  • the lower end of the calibration frame is mounted on the rotating seat 30, and the lower ends of the plurality of first calibration samples of the first calibration assembly 21 and the plurality of second calibration samples of the second calibration assembly 22 Are respectively installed on the first translation part and the second translation part; the upper ends of the plurality of first calibration samples of the first calibration assembly 21 and the plurality of second calibration samples of the second calibration assembly 22 are slidably connected to the calibration frame
  • the upper slide rail 101 is not required.
  • the calibration frame can allow multiple first calibration samples and second calibration samples to be stabilized from the upper and lower ends, so that the first calibration sample and the second calibration sample can move smoothly during the movement of the first translation part and the second translation part This is especially advantageous for the first calibration sample and the second calibration sample with larger lengths.
  • the calibration frame can prevent the shell of the radiation source or other foreign objects from touching the first calibration sample and the second calibration sample.
  • the calibration frame shown in FIG. 1 is a frame structure formed on all sides. However, the calibration frame in FIG. 1 is not provided on both sides so as not to prevent the first translation part and the second translation part from extending beyond the size range of the rotating seat 30 .
  • the connection between the upper ends of the first calibration sample and the second calibration sample and the upper sliding rail 101 on the upper part of the calibration frame may have various implementation forms.
  • Fig. 3 shows an embodiment.
  • the upper part of the calibration frame includes two upper slide rails 101.
  • the upper end of the first calibration sample is provided with an L-shaped connector, and a part of the L-shaped connector is fixed to the upper end of the first calibration sample.
  • the other part of the shaped connecting piece has a sliding piece, and the sliding piece slides on a corresponding upper sliding rail 101 of the calibration frame.
  • the sliding member can be sleeved with an upper sliding rail 101, so that the sliding member can be restricted to thereby limit the movement of the end of the first calibration sample in the lateral direction of the upper sliding rail 101, thereby improving the stability of the first calibration sample.
  • the calibration frame can include three frame parts along the vertical direction as shown in FIG. 1, so that the first calibration sample and the second calibration sample can be clearly divided into three regions, and each region can be used for a radiation source. Calibration.
  • FIG. 5 shows the slide rail base 40 of the present disclosure.
  • the slide rail base 40 includes an adjustable base with a larger length and two rails on the adjustable base. Due to the arrangement of the slide rail base 40, the radiation calibration equipment can be moved over a larger length, or in other words, multiple radiation sources can be arranged in the length direction of the slide rail base 40 to be calibrated one by one;
  • the setting of 40 can allow the radiographic calibration equipment to move over a larger length of the slide rail base 40, while also allowing the first translation part and the second translation part of the radiographic calibration equipment to be on the first translation guide 341-1 and the second translation guide 341-1, respectively.
  • the translational guide 341-2 is finely adjusted in a shorter length.
  • the slide rail base 40 may be provided with adjustable feet, so that the two tracks of the slide rail base 40 are maintained to extend in a horizontal direction through the adjustment of the adjustable feet, so that the rotating base 30 translates in a horizontal plane.
  • the slide rail base 40 may include a driving device to drive the rotating base 30 to translate on the two rails.
  • Figure 6 shows another embodiment of the present disclosure.
  • the motion platform includes a first translation part 5-10 and a second translation part 5-11 that can be individually translated in the first direction, and the first calibration component 21 is mounted on the first translation part.
  • the second calibration component 22 is installed on the second translation part; the difference from the embodiment of FIGS. 1-4 is that the first translation part and the second translation part are installed on the slide rail base 40.
  • the slide rail base 40 may include a driving device to drive the first translation part 5-10 and the second translation part 5-11 to translate on the two rails.
  • the first translation portion 5-10 and the second translation portion 5-11 respectively include respective driving devices, such as a motor and a wheel combination, and the motor drives the wheels to roll on the track.
  • the first translation part 5-10 and the second translation part 5-11 respectively allow the first calibration component 21 and the second calibration component 22 to independently translate over a longer length.
  • the motion platform also includes a first rotating part 5-12 installed on the first translation part 5-10, and a second rotating part 5-13 installed on the second translation part 5-11.
  • the first calibration component 21 is installed on the On the first rotating part 5-12 of the first translation part 5-10
  • the second calibration assembly 22 is installed on the second rotating part 5-13 of the second translation part 5-11.
  • the motion platform can allow the first calibration component 21 and the second calibration component 22 to translate and rotate independently, with simple operation and high flexibility.
  • the radiographic calibration device further includes a first sub-calibration frame installed on the first rotating part 5-12 and a second sub-calibration frame installed on the second rotating part 5-13, wherein, The upper ends of the plurality of first calibration samples of the first calibration assembly 21 are slidably connected to the upper slide rail 101 of the first sub-calibration frame on the upper part of the first sub-calibration frame, and the lower ends of the plurality of first calibration samples are installed in the first sub-calibration frame.
  • a ray calibration device including: a moving platform; and at least one calibration component installed on the moving platform, each calibration component having a plurality of calibration samples.
  • the moving platform can translate and/or rotate the at least one calibration component so as to allow a combination of multiple calibration samples Able to face radiation in every direction.
  • the number of calibration components of the ray calibration device is not limited, and it can be one calibration component, three calibration components, four calibration components, etc., and its composition can be obtained with reference to the foregoing embodiments of the present disclosure. Out.
  • a radiation calibration method of the above-mentioned radiation calibration device is provided.
  • the method includes: positioning the radiation source to be calibrated on one side of the slide base 40 of the ray calibration device; The component 21 and the second calibration component 22 make the radiation source emit rays toward the first calibration component 21 and the second calibration component 22.
  • calibration requirements such as the thickness of the calibration sample calculated or determined, a combination of one of the multiple first calibration samples of the first calibration component 21 and the multiple second calibration samples of the second calibration component 22 is obtained.
  • the ray calibration method further includes: translating and rotating the first and second calibration components 21, 22 so as to use one of the multiple first calibration samples obtained from the first calibration component 21 and the second calibration component 22 A combination of the plurality of second calibration samples calibrate the radiation in other directions in the radiation beam emitted by the radiation source.
  • the ray calibration method further includes: placing a plurality of radiation sources on one side of the slide rail base 40 of the ray calibration device, and arranging them in a vertical direction corresponding to the first calibration component 21 and the second calibration component 21, respectively.
  • the sub-calibration sample section of the component 22 is to perform calibration for each radiation source.

Landscapes

  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种射线标定设备和方法,射线标定设备包括:运动平台和安装在运动平台上的两个标定组件(21,22)。每一个标定组件(21,22)具有多个标定样本。射线标定设备在标定辐射源的多个方向上的辐射的辐射能量时,运动平台能够平移和/或旋转至少一个标定组件(21,22)以便允许多个标定样本构成的组合能够正对每个方向上的辐射。

Description

射线标定设备和方法 技术领域
本发明涉及射线标定领域,具体地,涉及射线标定设备和射线标定方法。
背景技术
目前常用的安检系统使用例如X射线源的多种射线源,它们能够提供射线,通过射线照射货物可以获得货物的二维甚至三维图像。
安检使用的射线源在出厂前和后期维护期间需要进行标定,即通过扫描特定材料的工件,重建图像值和工件真实值进行比对,确定最后标定参数,以便获得可靠的图像数值。
实际应用中需要一种可靠的操作方便的标定设备。
公开内容
本公开的实施例提供一种射线标定设备,包括:
运动平台;
至少一个标定组件,安装在运动平台上,每一个标定组件具有多个标定样本;
其中,射线标定设备在标定辐射源的多个方向上的辐射的辐射能量时,所述运动平台能够平移和/或旋转所述至少一个标定组件以便允许多个标定样本构成的组合能够正对每个方向上的辐射。
在一个实施例中,每一个标定组件的多个标定样本的每一个设置为具有设定的长度并且长度方向上的横向剖面具有阶梯形状,以便辐射束横向穿透多个标定样本的一个或多个的阶梯的不同部分时,辐射束穿过的标定样本的厚度不同,从而实现对不同能量射线的标定。
在一个实施例中,每一个标定组件设置为多个标定样本的每一个在长度方向能够分拆为多个子标定样本段。
在一个实施例中,至少一个标定组件包括第一标定组件和第二标定组件,第一标定组件包括多个第一标定样本,第二标定组件包括多个第二标定样本,通过第一标定组件和第二标定组件的平移和/或旋转,多个第一标定样本中的一个和/或多个第二标定样本中的一个能够构成需要的标定组合。
在一个实施例中,运动平台包括分别能够单独沿第一方向平移的第一平移部和/或第二平移部,第一标定组件安装在第一平移部上,第二标定组件安装在第二平移部上。
在一个实施例中,运动平台还包括旋转座,配置能够旋转安装在旋转座上的第一平移部和第二平移部。
在一个实施例中,运动平台还包括滑轨基座,其中旋转座能够在滑轨基座上往复平移,滑轨基座沿第一方向布置。
在一个实施例中,第一平移部包括安装在旋转座上沿第一方向延伸的第一平移导轨、安装在第一平移导轨上能够沿第一平移导轨平移的第一平移台、安装在旋转座上位于第一平移台的第一同步带和第一同步电机,其中第一同步带构成环路并通过第一同步电机驱动以便沿第一方向往复地移动第一平移台,
第二平移部包括安装在旋转座上沿第一方向延伸的第二平移导轨、安装在第二平移导轨上能够沿第二平移导轨平移的第二平移台、安装在旋转座上位于第二平移台的第二同步带和第二同步电机,其中第二同步带构成环路并通过第二同步电机驱动以便沿第一方向往复地移动第二平移台。
在一个实施例中,旋转座包括:平移基座,安装在所述滑轨基座上用于在所述滑轨基座上往复滑动;安装在平移基座上的旋转台和安装在平移基座上的用于驱动旋转台旋转的传动机构和旋转驱动电机,其中旋转台包括上承载板和下传动座,传动机构包括安装在平移基座上的传动蜗杆和安装在旋转台的下传动座上的传动涡轮,传动蜗杆与对应的所述传动涡轮接合以便传动蜗杆在旋转驱动电机的驱动下转动,从而带动旋转台旋转。
在一个实施例中,射线标定设备还包括安装在旋转座上的标定框架,第一标定组件的多个第一标定样本和第二标定组件的多个第二标定样本的上端可滑移地连接至标定框架的上部的上滑轨,第一标定组件的多个第一标定样本和第二标定组件的多个第二标定样本的下端分别安装在第一平移部和第二平移部上。
在一个实施例中,运动平台包括:
旋转座;
安装在旋转座上的第一平移部,第一平移部能够沿第一方向平移的;
其中,第一标定组件安装在第一平移部上,第二标定组件安装在旋转座上。
在一个实施例中,旋转座包括:平移基座,安装在所述滑轨基座上用于在所 述滑轨基座上往复滑动;安装在平移基座上的旋转台和安装在平移基座上的用于驱动旋转台旋转的传动机构和旋转驱动电机,其中旋转台包括上承载板和下传动座,传动机构包括安装在平移基座上的传动蜗杆和安装在旋转台的下传动座上的传动涡轮,传动蜗杆与对应的所述传动蜗杆与旋转台的下传动座上对应的传动涡轮接合以便传动蜗杆在旋转驱动电机的驱动下转动,从而带动旋转台旋转。
在一个实施例中,射线标定设备还包括安装在旋转座上的标定框架,第一标定组件的多个第一标定样本和第二标定组件的多个第二标定样本的上端可滑移地连接至标定框架的上部的上滑轨,第一标定组件的多个第一标定样本的下端安装在第一平移部上,第二标定组件的多个第二标定样本的下端安装在旋转座的旋转台上。
在一个实施例中,运动平台还包括:
滑轨基座,第一平移部和第二平移部安装在滑轨基座上;和
安装在第一平移部上的第一旋转部,和安装在第二平移部上的第二旋转部,第一标定组件安装在第一平移部的第一旋转部上,第二标定组件安装在第二平移部的第二旋转部上。
在一个实施例中,射线标定设备还包括安装在第一旋转部上的第一子标定框架和安装在第二旋转部上的第二子标定框架,
其中,第一标定组件的多个第一标定样本的上端可滑移地连接至第一子标定框架的上部的第一子标定框架上滑轨,多个第一标定样本的下端安装在第一旋转部上;
第二标定组件的多个第二标定样本的上端可滑移地连接至第二子标定框架的上部的第二子标定框架上滑轨,多个第二标定样本的下端安装在第二旋转部上。
本公开的实施例还提供一种使用上述射线标定设备的射线标定方法,所述射线标定方法包括:
使得待标定的辐射源位于射线标定设备的滑轨基座的一侧;
通过运动平台平移第一、第二标定组件,使得辐射源朝向第一、第二标定组件发射射线;
其中,根据标定需要,获得第一标定组件的多个第一标定样本的一个与第二标定组件的多个第二标定样本的一个组合。
在一个实施例中,所述射线标定方法还包括:平移和旋转第一、第二标定组 件以便使用获得的第一标定组件的多个第一标定样本的一个与第二标定组件的多个第二标定样本的一个组合标定辐射源发射的辐射束中其他方向上的辐射。
在一个实施例中,所述射线标定方法还包括:将多个辐射源放置在射线标定设备的滑轨基座的一侧,沿竖直方向布置分别对应第一、第二标定组件的子标定样本段以便对每个辐射源实施标定。
附图说明
图1为根据本公开一个实施例的射线标定设备的透视示意图;
图2为根据本公开一个实施例的射线标定设备的运动平台的旋转座的俯视示意图;
图3为根据本公开一个实施例的射线标定设备的上部的局部透视示意图;
图4为根据本公开一个实施例的射线标定设备的旋转座的透视示意图;
图5为根据本公开一个实施例的射线标定设备的滑轨基座的透视示意图;
图6为根据本公开另一个实施例的射线标定设备的透视示意图,其中第一子标定框架和第二子标定框架被移除。
具体实施方式
本公开的实施例提供一种射线标定设备,如图1所示,射线标定设备包括运动平台和通过运动平台实现平移和转动的标定组件。如图1所示,射线标定设备包括第一标定组件21和第二标定组件22。继续参考图2,第一标定组件21包括多个第一标定样本,例如图示出三个第一标定样本21-1、21-2、21-3;第二标定组件22包括多个第二标定样本,例如图示出三个第二标定样本22-1、22-2、22-3。在本实施例中,第一标定组件21和第二标定组件22能够通过运动平台实现平移和旋转,从而通过第一标定组件21和第二标定组件22的平移和/或旋转,多个第一标定样本21-1、21-2、21-3中的一个和多个第二标定样本22-1、22-2、22-3中的一个能够构成需要的标定组合。例如,第一标定组件21的第一个标定样本与第二标定组件22的第一个标定样本构成组合,对特定的辐射进行标定。例如,附图的实施例中,第一标定组件21包括三个第一标定样本21-1、21-2、21-3,第二标定组件22包括三个第二标定样本22-1、22-2、22-3,这些标定样本理论上可以至少组合构成16个第一标定样本-第二标定样本组合。实际上,在设置标定样本的时候,可以根据实际需要和射线源的能量设定有限个特定的标定样本, 超过10个的标定样本组合足以满足实际工作中的需要。当然,第一和第二标定组件22可以分别包括其他数量的标定样本,例如四个、五个或者六个标定样本甚至更多个标定样本;在本公开的其他实施例中,第一标定组件21的第一标定样本数量和第二标定组件22的第二标定样本的数量可以不同,例如第一标定组件21中包括三个第一标定样本,第二标定组件22中包括五个第二标定样本;可以根据实际需要设置第一标定组件21和第二标定组件22的各自的标定样本的数量和标定样本的材料、厚度等参数。因而,本实施例在实际应用中能够通过运动平台实现标定组件的移动,摆脱了人工调节标定样本实现标定的过程,因而安全性得到提高,操作方便。
在图1和图2示出的实施例中,每一个标定组件的每个标定样本设置为具有设定的长度(如图是高度)并且长度方向上的横向剖面一侧具有阶梯形状,另一侧可以是平面。或者说,每个标定样本的形状基本上可以看作具有一定长度的板,这些板的长度方向上的横向剖面不是矩形(因为矩形仅一种厚度,应用受限),而是具有多种厚度的阶梯形状。这样的结构,使得标定样本实际上具有多个部分,每个部分具有一个横向厚度,每一个横向厚度能够用于标定一种能量的辐射,从而一个标定样本能够标定多个辐射能量。因而,根据本实施例,第一和第二标定组件22能够构成多种第一标定样本-第二标定样本组合,同时,一种第一标定样本-第二标定样本组合能够提供多种标定厚度组合,因而射线标定设备能够提供数十种标定厚度组合,大大提高了标定适应能力。
在实际标定过程中,辐射束一般沿正对板形的标定样本的平面的一侧,辐射束横向穿过一个标定样本的一个阶梯部分。根据本实施例,为了辐射束能够正对标定样本的平面的一侧,第一标定组件21和/或第二标定组件22被平移和/或旋转,例如第一标定组件21被移动至辐射束,通过旋转后,第二标定组件22的第一标定样本的平面的一侧正对沿水平方向的辐射束,辐射束穿过第一标定样本的第一个阶梯部分。如果希望辐射束穿过第一标定样本的第二个阶梯部分,则可以使得第一标定组件21平移,从而第一标定样本的第二个阶梯部分被移动至原来第一个阶梯部分的位置,辐射束可以正对第二个阶梯部分;如果希望使用第三阶梯部分标定辐射束,则第一标定组件21可以继续平移,使得第三个阶梯部分的平面的一侧正对辐射束。如果第一标定组件21平移至辐射束附件,然而,第一标定组件21的第一标定样本的平面的一侧并未正对辐射束,则可以通过运动平 台旋转第一标定组件21,使得第一标定组件21的第一标定样本的预定的阶梯部分正对辐射束的传播方向。此处,标定材料、厚度以及对应的标定距离等参数可以根据本领域技术知识确定,不作讨论。由于本实施例中,射线标定设备配置了运动平台实现第一和第二标定组件22的根据需要的平移和/旋转,从而可以方便地非人工地调节标定厚度。
在本公开的一个实施例中,每一个标定组件设置为多个标定样本的每一个在长度方向能够分拆为多个子标定样本段。具体地,第一标定组件21的第一标定样本具有一定长度,并且被设置为可以通过多个第一子标定样本组合形成。例如,第一标定样本包括三个第一子标定样本,这样,每个第一子标定样本的长度小,方便运输。多个第一子标定样本之间的连接可以使用插接等方式。第一标定组件21和第二标定组件22的所有标定样本都可以具有可以分拆的子标定样本。由于每个标定样本可以设置为具有多个子标定样本,因而可以允许第一标定组件21和第二标定组件22具有较长的长度,这样是有利的,因为在沿第一标定组件21和第二标定组件22的长度方向上可以同时标定多个辐射源的辐射能量,这提高了射线标定设备的适应性。
下面提供本公开的多个实施例以便具体说明本公开。
图1-4示出一种实施例。例如,如图1所示,本公开的射线标定设备大体分为上部的标定用的标定组件和下部的运动平台,这仅是为了说明,本领域技术人员可以以其他组合部分理解本公开的射线标定设备。运动平台包括分别能够单独沿第一方向平移的第一平移部和第二平移部,第一标定组件21安装在第一平移部上,第二标定组件22安装在第二平移部上。由于第一平移部具有多种实施例并且包括多个部件,因而未给出附图标记。
在本公开的一个实施例中,运动平台包括能够单独沿第一方向平移的第一平移部,第一标定组件21安装在第一平移部上;在本实施例中,不包括第二平移部。
在本公开的另一个实施例中,运动平台包括能够单独沿第一方向平移的第二平移部,第二标定组件22安装在第二平移部上。在本实施例中,不包括第一平移部。
在图1-4的实施例中,运动平台还包括旋转座30,第一平移部和第二平移部安装在旋转座30上,旋转座30配置能够旋转安装在旋转座30上的第一平移部 和第二平移部。在本实施例中,旋转座30能够同时旋转安装在旋转座30上的第一平移部和第二平移部,换句话说,第一平移部和第二平移部不能够相对旋转,但是能够相对地平移,这样第一平移部上的第一标定组件21的每一个第一标定样本能够通过第一平移部的平移分别与第二平移部上的第二标定组件22的每一个第二标定样本构成组合。在实际操作中,旋转座30旋转第一平移部和第二平移部使得第一平移部上的第一标定组件21的第一标定样本的平面的一侧正对辐射束,随后第一平移部和第二平移部分别平移构成第一标定样本的一个和第二标定样本的一个的组合,实施对辐射束的标定。在以上仅设置一个平移部的实施例中,第一平移部或第二平移部设置在旋转座30上,对应的标定组件安装在对应的平移部上,而另一标定组件安装在旋转座上。
运动平台还包括滑轨基座40,旋转座30能够在滑轨基座40上往复平移,滑轨基座40沿第一方向布置。通过滑轨基座40,旋转座30及安装在第一平移部和第二平移部能够整体沿滑轨基座40平移。这样的配置是有利的,在标定辐射源时,仅需要将辐射源靠近射线标定设备的滑轨基座40,就可以通过旋转座30的平移,允许第一标定组件21和第二标定组件22移动至辐射源,通过旋转座30的旋转允许第一标定组件21的第一标定样本和第二标定组件22的第二标定组件22同时正对辐射束,标定过程方便快捷,并且安全性也能够得以提高。
下面具体说明第一平移部和第二平移部的结构,然而,本公开不限于此处描述的第一平移部和第二平移部的结构,其他允许实现平移的结构也可以应用。如图2所示,第一平移部包括安装在旋转座30上沿第一方向延伸的第一平移导轨341-1、安装在第一平移导轨341-1上能够沿第一平移导轨平移的第一平移台343-1、安装在旋转座30上位于第一平移台343-1的第一同步带342-1和第一同步电机344-1,第一同步带342-1构成环路(环路的下侧在附图2中被遮挡)并通过第一同步电机344-1驱动以便沿第一方向往复地移动第二平移台。在本实施例中,第一平移台343-1安装在构成环路的第一同步带342-1上或者作为环路一部分连接在环路中,通过第一同步电机344-1驱动。第二平移部包括安装在旋转座30上沿第一方向延伸的第二平移导轨341-2、安装在第二平移导轨241-2上能够沿第二平移导轨241-2平移的第二平移台343-2、安装在旋转座30上位于第二平移台343-2的第二同步带342-2和第二同步电机344-2,其中第二同步带342-2构成环路并通过第二同步电机344-2驱动以便沿第一方向往复地移动第二平移台。 与第一平移台的配置方式类似,在本实施例中,第二平移台343-2安装在构成环路的第二同步带342-2上或者作为环路一部分连接在环路中,通过第二同步电机344-2驱动。
本公开的其他实施例中,第一平移台343-1和第二平移台343-2可以以其他驱动方式驱动。例如,第一平移部包括安装在旋转座30上沿第一方向延伸的第一平移导轨341-1、安装在第一平移导轨341-1上能够沿第一平移导轨平移的第一平移台343-1,不同的是,在第一平移部中,在旋转座30上位于第一平移台343-1的两端都设置同步带和同步电机3,从而在第一平移部中通过两组同步带和同步电机协作驱动第一平移台。第二平移部类似,不在赘述。
在上面的实施例中,第一平移导轨341-1可以是双轨的形式,也可以是单轨的形式,图2示出了双轨的形式。图2示出的通过同步带牵引第一平移台343-1和第二平移台343-2的形式可以被其他例如丝杠-齿轮组合的硬连接形式替换。当采用硬连接形式驱动第一平移台343-1和第二平移台343-2时,仅需在一侧配置连接构件连接第一平移台343-1和第二平移台343-2即可。
在本公开的另一个实施例中,可以仅设置一个平移部,例如,仅包括第一平移部,第一标定组件21安装在第一平移部,而第二标定组件22安装在旋转座30上,即安装在旋转座的旋转台32上,因而当旋转座30不平移时,仅第一平移部移动。本实施例也是有利的,因为仅设置一个平移部,使得射线标定设备的结构得以简化,同时可以满足标定的需要,因为旋转座30能够在滑轨基座40上平移(后面将说明),即可以将第一标定组件21和第二标定组件22中的(安装在旋转座30上)一个靠近辐射束,随后旋转第一标定组件21和第二标定组件22正对辐射束,最后平移第一标定组件构成想要的标定样本组合,实现标定。本实施例中,旋转座30的结构与图1-4示出的实施例相同。
在一个实施例中,旋转座30包括:平移基座31,安装在所述滑轨基座40上用于在所述滑轨基座40上往复滑动;安装在平移基座31上的旋转台32和安装在平移基座31上的用于驱动旋转台32旋转的传动机构和旋转驱动电机332,其中旋转台32包括上承载板321和下传动座322,传动机构包括安装在平移基座31上的传动蜗杆331和安装在旋转台32的下传动座322上的传动涡轮;传动蜗杆331与旋转台32的下传动座322上对应的传动涡轮接合以便传动蜗杆331在旋转驱动电机332的驱动下转动,从而带动旋转台32旋转。这样,旋转座30自 身能够移动,并且,还可以旋转安装在旋转座30上的第一平移部和/或第二平移部等部件,大大提高了射线标定设备的适应性,使得操作方便,提高了标定的效率;而使用电机允许射线标定设备自动标定,避免了人工操作带来的人体伤害。本实施例中马达-涡轮-蜗杆的机构可以通过马达-减速齿轮组的机构替换,实现旋转座30的旋转。
此外,如图1所示,为了第一标定组件21和第二标定组件22的稳定性和安全性,射线标定设备还包括安装在旋转座30上的标定框架。在图1-4示出的实施例中,标定框架的下端安装在旋转座30上,第一标定组件21的多个第一标定样本和第二标定组件22的多个第二标定样本的下端分别安装在第一平移部和第二平移部上;第一标定组件21的多个第一标定样本和第二标定组件22的多个第二标定样本的上端可滑移地连接至标定框架的上部的上滑轨101,然而,这并不是必须的。设置标定框架可以允许从上下两端稳定多个第一标定样本和第二标定样本,使得第一平移部和第二平移部的移动过程中,第一标定样本和第二标定样本能够平稳地移动,这对于具有较大长度的第一标定样本和第二标定样本尤其有利。此外,标定框架可以防止辐射源的外壳或其他外物触碰第一标定样本和第二标定样本。图1中示出的标定框架是四周围成的框架结构,然而,图1中的标定框架的两侧不设置以便可以不妨碍第一平移部和第二平移部延伸出旋转座30的尺寸范围。第一标定样本和第二标定样本的上端与标定框架的上部的上滑轨101的连接可以具有多种实施形式。图3示出一种实施例,标定框架的上部包括两个上滑轨101,第一标定样本的上端设置L形的连接件,L形连接件一部分固接至第一标定本的上端,L形连接件的另一部分具有滑动件,滑动件在标定框架的对应的一个上滑轨101上滑动。滑动件可以套接一个上滑轨101,这样可以限制滑动件进而限定第一标定样本的端部在上滑轨101的横向方向上的移动,提高第一标定样本的稳定性。标定框架可以包括如图1所示的沿竖直方向的三个框部分,这样可以将第一标定样本和第二标定样本明确地划分为三个区域,每一个区域可以用于一个辐射源的标定。
图5示出本公开的滑轨基座40。滑轨基座40包括具有较大长度的可调基座和可调基座上的两条轨道。由于滑轨基座40的设置,使得射线标定设备可以在较大长度上移动,或者说,可以允许多个辐射源排列在滑轨基座40的长度方向上,逐一标定;由于滑轨基座40的设置,可以允许射线标定设备在滑轨基座40 的较大长度上移动,同时还允许射线标定设备的第一平移部和第二平移部分别在第一平移导轨341-1和第二平移导轨341-2上在较短的长度上微调。
滑轨基座40可以设置可调的足部,以便通过可调足部的调节保持滑轨基座40的两条轨道沿水平方向延伸,从而旋转座30在水平面内平移。
滑轨基座40可以包括驱动装置,以便驱动旋转座30在两个轨道上平移。
图6示出本公开的另一实施例。在图6示出的实施例中,运动平台包括分别能够单独沿第一方向平移的第一平移部5-10和第二平移部5-11,第一标定组件21安装在第一平移部上,第二标定组件22安装在第二平移部上;与图1-4的实施例不同的是,第一平移部和第二平移部安装在滑轨基座40上。滑轨基座40可以包括驱动装置,以便驱动第一平移部5-10和第二平移5-11部在两个轨道上平移。然而,也可以是,第一平移部5-10和第二平移部5-11分别包括各自的驱动装置,例如马达和轮组合,马达驱动轮在轨道上滚动。本实施例中,第一平移部5-10和第二平移部5-11分别允许第一标定组件21和第二标定组件22在较长的长度上单独地平移。
运动平台还包括安装在第一平移部5-10上的第一旋转部5-12,和安装在第二平移部5-11上的第二旋转部5-13,第一标定组件21安装在第一平移部5-10的第一旋转部5-12上,第二标定组件22安装在第二平移部5-11的第二旋转部5-13上。
本实施例中,运动平台能够允许第一标定组件21和第二标定组件22单独地平移和旋转,操作简单,灵活性高。
在图6示出的示例中,射线标定设备还包括安装在第一旋转部5-12上的第一子标定框架和安装在第二旋转部5-13上的第二子标定框架,其中,第一标定组件21的多个第一标定样本的上端可滑移地连接至第一子标定框架的上部的第一子标定框架上滑轨101,多个第一标定样本的下端安装在第一旋转部5-12上;第二标定组件22的多个第二标定样本的上端可滑移地连接至第二子标定框架的上部的第二子标定框架上滑轨101,多个第二标定样本的下端安装在第二旋转部5-13上。图6中没有示出第一子标定框架和第二子标定框架,然而,它们的结构可以根据前面实施例中的标定框架想到,即前述的标定框架被分为两个部分,一部分为第一子标定框架,另一部分为第二子标定框架。
在本公开的一个实施例中,提供一种射线标定设备,包括:运动平台;和安 装在运动平台上的至少一个标定组件,每一个标定组件具有多个标定样本。在本实施例中,射线标定设备在标定辐射源的多个方向上的辐射的辐射能量时,所述运动平台能够平移和/或旋转所述至少一个标定组件以便允许多个标定样本构成的组合能够正对每个方向上的辐射。根据本实施例,实际上,射线标定设备的标定组件的数量并不限制,可以是一个标定组件、三个标定组件、四个标定组件等,其构成方式可以参照本公开的前述的实施例得出。
在本公开的一个实施例中,提供一种上述的射线标定设备的射线标定方法。例如,使用图1-4示出的射线标定设备的射线标定方法,方法包括:使得待标定的辐射源位于射线标定设备的滑轨基座40的一侧;随后,通过运动平台平移第一标定组件21、第二标定组件22,使得辐射源朝向第一标定组件21、第二标定组件22发射射线。根据标定需要,例如计算或确定的标定样本的厚度,获得第一标定组件21的多个第一标定样本的一个与第二标定组件22的多个第二标定样本的一个组合。
在一个实施例中,所述射线标定方法还包括:平移和旋转第一第二标定组件21、22以便使用获得的第一标定组件21的多个第一标定样本的一个与第二标定组件22的多个第二标定样本的一个组合标定辐射源发射的辐射束中其他方向上的辐射。
在一个实施例中,所述射线标定方法还包括:将多个辐射源放置在射线标定设备的滑轨基座40的一侧,沿竖直方向布置分别对应第一标定组件21、第二标定组件22的子标定样本段以便对每个辐射源实施标定。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个;“上”、“下”仅为了表示图示的结构中的部件的方位,而不是限定其绝 对方位;“第一”、“第二”用于区分不同部件的名称而不是为了排序或表示重要性或主次分别。另外,权利要求的任何元件标号不应理解为限制本公开的范围。

Claims (16)

  1. 一种射线标定设备,包括:
    运动平台;
    至少一个标定组件(20),安装在运动平台上,每一个标定组件具有多个标定样本;
    其中,射线标定设备在标定辐射源的多个方向上的辐射的辐射能量时,所述运动平台能够平移和/或旋转所述至少一个标定组件以便允许多个标定样本构成的组合能够正对每个方向上的辐射。
  2. 根据权利要求1所述的射线标定设备,其中每一个标定组件的多个标定样本的每一个设置为具有设定的长度并且长度方向上的横向剖面具有阶梯形状,以便辐射束横向穿透多个标定样本的一个或多个的阶梯的不同部分时,辐射束穿过的标定样本的厚度不同,从而实现对不同能量射线的标定。
  3. 根据权利要求2所述的射线标定设备,其中每一个标定组件设置为多个标定样本的每一个在长度方向能够分拆为多个子标定样本段。
  4. 根据权利要求1所述的射线标定设备,其中至少一个标定组件包括第一标定组件(21)和第二标定组件(22),第一标定组件包括多个第一标定样本(21-1、21-2、21-3),第二标定组件包括多个第二标定样本(22-1、22-2、22-3),通过第一标定组件和/或第二标定组件的平移和/或旋转,多个第一标定样本中的一个和多个第二标定样本中的一个能够构成需要的标定组合。
  5. 根据权利要求4所述的射线标定设备,其中运动平台包括分别能够单独沿第一方向平移的第一平移部和/或第二平移部,第一标定组件安装在第一平移部上,第二标定组件安装在第二平移部上。
  6. 根据权利要求5所述的射线标定设备,其中运动平台还包括旋转座(30),其中
    运动平台包括分别能够单独沿第一方向平移的第一平移部和第二平移部,第一平移部和第二平移部安装在旋转座上,旋转座配置能够旋转第一平移部和第二平移部;或
    运动平台包括能够单独沿第一方向平移的第一平移部,第一平移部安装在旋 转座上,旋转座配置能够旋转第一平移部,第二组件安装在旋转座上;或
    运动平台包括能够单独沿第一方向平移的第二平移部,第二平移部安装在旋转座上,旋转座配置能够旋转第二平移部,第一组件安装在旋转座上。
  7. 根据权利要求6所述的射线标定设备,其中运动平台还包括滑轨基座(40),其中旋转座能够在滑轨基座上往复平移,滑轨基座沿第一方向布置。
  8. 根据权利要求6所述的射线标定设备,其中第一平移部包括安装在旋转座上沿第一方向延伸的第一平移导轨(341-1)、安装在第一平移导轨上能够沿第一平移导轨平移的第一平移台(343-1)、安装在旋转座上位于第一平移台的第一同步带(342-1)和第一同步电机(344-1),其中第一同步带(342-1)构成环路并通过第一同步电机(344-1)驱动以便沿第一方向往复地移动第一平移台;和/或
    第二平移部包括安装在旋转座上沿第一方向延伸的第二平移导轨(341-2)、安装在第二平移导轨上能够沿第二平移导轨平移的第二平移台(343-2)、安装在旋转座上位于第二平移台的第二同步带(342-2)和第二同步电机(344-2),其中第二同步带(342-2)构成环路并通过第二同步电机(344-2)驱动以便沿第一方向往复地移动第二平移台。
  9. 根据权利要求7所述的射线标定设备,其中旋转座(30)包括:平移基座(31),安装在所述滑轨基座上用于在所述滑轨基座上往复滑动;安装在平移基座上的旋转台(32)和安装在平移基座上的用于驱动旋转台旋转的传动机构和旋转驱动电机(332)。
  10. 根据权利要求9所述的射线标定设备,其中旋转台包括上承载板(322)和下传动座(321),传动机构包括安装在平移基座上的传动蜗杆(331)和安装在旋转台的下传动座上的传动涡轮,传动蜗杆(331)与对应的所述传动涡轮接合以便传动蜗杆在旋转驱动电机的驱动下转动,从而带动旋转台旋转。
  11. 根据权利要求6所述的射线标定设备,还包括安装在旋转座上的标定框架(10),第一标定组件的多个第一标定样本和第二标定组件的多个第二标定样本的上端可滑移地连接至标定框架的上部的上滑轨(101),第一标定组件的多个第一标定样本和第二标定组件的多个第二标定样本的下端分别安装在第一平移部和第二平移部上。
  12. 根据权利要求5所述的射线标定设备,其中运动平台还包括:
    滑轨基座(40),第一平移部和第二平移部安装在滑轨基座上;和
    安装在第一平移部上的第一旋转部(5-12),和安装在第二平移部上的第二旋转部(5-13),第一标定组件安装在第一平移部的第一旋转部上,第二标定组件安装在第二平移部的第二旋转部上。
  13. 根据权利要求12所述的射线标定设备,还包括安装在第一旋转部上的第一子标定框架和安装在第二旋转部上的第二子标定框架,
    其中,第一标定组件的多个第一标定样本(21)的上端可滑移地连接至第一子标定框架的上部的第一子标定框架上滑轨,多个第一标定样本的下端安装在第一旋转部上;
    第二标定组件的多个第二标定样本(22)的上端可滑移地连接至第二子标定框架的上部的第二子标定框架上滑轨,多个第二标定样本的下端安装在第二旋转部上。
  14. 一种射线标定设备的射线标定方法,所述射线标定方法包括:
    使得待标定的辐射源位于射线标定设备的滑轨基座的一侧;
    通过运动平台移动第一、第二标定组件,使得辐射源朝向第一、第二标定组件发射射线;
    其中,根据标定需要,获得第一标定组件的多个第一标定样本的一个与第二标定组件的多个第二标定样本的一个组合。
  15. 根据权利要求14所述的射线标定方法,所述射线标定方法还包括:平移和/或旋转第一、第二标定组件以便使用获得的第一标定组件的多个第一标定样本的一个与第二标定组件的多个第二标定样本的一个组合标定辐射源发射的辐射束中其他方向上的辐射。
  16. 根据权利要求14所述的射线标定方法,所述射线标定方法还包括:将多个辐射源放置在射线标定设备的滑轨基座的一侧,沿竖直方向布置分别对应第一、第二标定组件的子标定样本段以便对每个辐射源实施标定。
PCT/CN2020/116867 2019-12-24 2020-09-22 射线标定设备和方法 WO2021128999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911361554.3 2019-12-24
CN201911361554.3A CN113031042B (zh) 2019-12-24 2019-12-24 射线标定设备和方法

Publications (1)

Publication Number Publication Date
WO2021128999A1 true WO2021128999A1 (zh) 2021-07-01

Family

ID=76458506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116867 WO2021128999A1 (zh) 2019-12-24 2020-09-22 射线标定设备和方法

Country Status (2)

Country Link
CN (1) CN113031042B (zh)
WO (1) WO2021128999A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116538919A (zh) * 2023-04-20 2023-08-04 成都飞机工业(集团)有限责任公司 一种多台激光位移检测装置自动标定装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052398A1 (en) * 2001-12-19 2003-06-26 Agresearch Limited Calibration method and apparatus
CN101382504A (zh) * 2007-09-05 2009-03-11 同方威视技术股份有限公司 一种用于集装箱检查系统的标定组合装置
CN102590890A (zh) * 2011-12-31 2012-07-18 同方威视技术股份有限公司 用于标定装置的运动平台及其定位控制方法
CN104483333A (zh) * 2014-12-31 2015-04-01 同方威视技术股份有限公司 组合射线能量标定驱动装置和射线能量标定装置
CN105223214A (zh) * 2015-10-22 2016-01-06 同方威视技术股份有限公司 用于物质分辨的标定装置、标定方法和标定系统
CN105675042A (zh) * 2015-12-28 2016-06-15 同方威视技术股份有限公司 射线标定装置及其操作方法、辐射成像系统及其操作方法
CN107576675A (zh) * 2017-09-19 2018-01-12 同方威视技术股份有限公司 射线能量标定装置、射线能量标定方法以及射线成像系统
CN207541287U (zh) * 2017-06-14 2018-06-26 北京君和信达科技有限公司 射线安全检查设备的标定件及其标定装置
CN109668533A (zh) * 2019-01-30 2019-04-23 佛山市宗生科技有限公司 一种采用射线的自动标定装置及其标定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3442494B2 (ja) * 1994-09-02 2003-09-02 ジーイー横河メディカルシステム株式会社 X線ct装置
DE10209605A1 (de) * 2001-04-07 2002-10-10 Lissotschenko Vitalij Anordnung für die Korrektur von von einer Laserlichtquelle ausgehender Laserstrahlung sowie Verfahren zur Herstellung der Anordnung
CN101221374B (zh) * 2008-01-25 2010-06-09 上海微电子装备有限公司 一种照明均匀性校正装置
CN202046715U (zh) * 2011-02-24 2011-11-23 广州敏惠汽车零部件有限公司 移载机及应用有该移载机的除绒烘干系统
EP3468471B1 (en) * 2016-06-08 2021-12-22 Koninklijke Philips N.V. Test object for calibration of an x-ray imaging device
CN106483552B (zh) * 2016-10-28 2019-11-05 中国计量科学研究院 基于平台系统的检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052398A1 (en) * 2001-12-19 2003-06-26 Agresearch Limited Calibration method and apparatus
CN101382504A (zh) * 2007-09-05 2009-03-11 同方威视技术股份有限公司 一种用于集装箱检查系统的标定组合装置
CN102590890A (zh) * 2011-12-31 2012-07-18 同方威视技术股份有限公司 用于标定装置的运动平台及其定位控制方法
CN104483333A (zh) * 2014-12-31 2015-04-01 同方威视技术股份有限公司 组合射线能量标定驱动装置和射线能量标定装置
CN105223214A (zh) * 2015-10-22 2016-01-06 同方威视技术股份有限公司 用于物质分辨的标定装置、标定方法和标定系统
CN105675042A (zh) * 2015-12-28 2016-06-15 同方威视技术股份有限公司 射线标定装置及其操作方法、辐射成像系统及其操作方法
CN207541287U (zh) * 2017-06-14 2018-06-26 北京君和信达科技有限公司 射线安全检查设备的标定件及其标定装置
CN107576675A (zh) * 2017-09-19 2018-01-12 同方威视技术股份有限公司 射线能量标定装置、射线能量标定方法以及射线成像系统
CN109668533A (zh) * 2019-01-30 2019-04-23 佛山市宗生科技有限公司 一种采用射线的自动标定装置及其标定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116538919A (zh) * 2023-04-20 2023-08-04 成都飞机工业(集团)有限责任公司 一种多台激光位移检测装置自动标定装置

Also Published As

Publication number Publication date
CN113031042B (zh) 2024-01-26
CN113031042A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2021128999A1 (zh) 射线标定设备和方法
US20190307406A1 (en) Radiation therapy systems that include primary radiation shielding, and modular secondary radiation shields
US20080292053A1 (en) Irradiation treatment apparatus and method
CN102973286B (zh) X射线成像设备
US11045154B2 (en) Robotic operating table and hybrid operating system
JP2016514521A (ja) 粒子線装置用アクセサリーホルダー
JP2005527800A (ja) 大視野の対象物を画像化するシステムおよび方法
DE4312640C2 (de) Rotationstomographie-Röntgenvorrichtung mit Planigraphiefunktion
CN103096607A (zh) 计算机断层成像设备机架的直线调节装置和有关成像设备
CN102551774B (zh) 皮带式床和ct设备及用于ct设备校准数据的获取方法
KR20220094038A (ko) 3차원 스캐너 플랫폼 및 이를 구비한 3차원 스캔장치
US20080279339A1 (en) Stand For Holding a Radiation Detector For a Radiation Therapy Device
JPH095442A (ja) 2検出器型シンチレーションカメラ
WO2014101591A1 (zh) 检查系统和检查方法
US7489759B2 (en) Method and apparatus for X-ray or infrared imaging
JP2016129639A (ja) 粒子線照射装置、粒子線治療装置及びこれを用いた撮像方法
US20170095219A1 (en) Bed apparatus and x-ray computed tomography apparatus
CN209932778U (zh) 射源旋转机构以及包括射源旋转机构的x射线成像设备
CN113924043A (zh) Ct成像设备
US11752364B2 (en) Cabin type beam irradiation apparatus and beam irradiation method
KR101602248B1 (ko) X선 촬영장치의 콜리메이터
DE102010019017A1 (de) Bestrahlungsvorrichtung
KR102168220B1 (ko) 선형가속기용 방사선 회전 중심 일치성 측정장치
CN210433855U (zh) 用于放射治疗的成像装置
CN209751075U (zh) 一种cbct设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905222

Country of ref document: EP

Kind code of ref document: A1