WO2021128672A1 - 微波多普勒探测模块及设备 - Google Patents

微波多普勒探测模块及设备 Download PDF

Info

Publication number
WO2021128672A1
WO2021128672A1 PCT/CN2020/086911 CN2020086911W WO2021128672A1 WO 2021128672 A1 WO2021128672 A1 WO 2021128672A1 CN 2020086911 W CN2020086911 W CN 2020086911W WO 2021128672 A1 WO2021128672 A1 WO 2021128672A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation source
feeding end
feeding
microwave doppler
detection module
Prior art date
Application number
PCT/CN2020/086911
Other languages
English (en)
French (fr)
Inventor
邹高迪
邹新
Original Assignee
深圳迈睿智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010219442.0A external-priority patent/CN111290035A/zh
Application filed by 深圳迈睿智能科技有限公司 filed Critical 深圳迈睿智能科技有限公司
Priority to AU2020411326A priority Critical patent/AU2020411326B2/en
Priority to EP20907072.1A priority patent/EP4083664A4/en
Publication of WO2021128672A1 publication Critical patent/WO2021128672A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/247Supports; Mounting means by structural association with other equipment or articles with receiving set with frequency mixer, e.g. for direct satellite reception or Doppler radar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength

Definitions

  • the invention relates to the field of microwave Doppler detection, in particular to a microwave Doppler detection module and equipment.
  • Microwave detection technology based on the principle of the Doppler effect, as an important hub for the connection between people and things, has unique advantages in behavior detection and presence detection technology. It can detect without infringing on people’s privacy. Moving objects out, so it has a wide range of application prospects.
  • the existing microwave detection module is mainly divided into a microwave detection module with a cylindrical radiation source structure and a microwave detection module with a flat radiation source structure.
  • a microwave detection module with a cylindrical radiation source structure mainly divided into a microwave detection module with a microwave detection module with a flat radiation source structure.
  • the microwave detection module 10P of the existing cylindrical radiation source structure includes a cylindrical radiation source 11P and a reference Ground 12P, where the reference ground 12P is provided with a radiation hole 121P, wherein the columnar radiation source 11P penetrates the reference ground 12P vertically through the radiation hole 121P, and a radiation gap is formed between the radiation hole 121P and the reference ground 12P 1211P, so when the columnar radiation source 11P is fed, the columnar radiation source 11P can be coupled with the reference ground 12P to form a radiation space 100P from the radiation slot 1211P with the columnar radiation source 11P as the central axis, wherein the The radiation space 100P is the coverage of electromagnetic waves radiated by the microwave detection module 10P of the cylindrical radiation source structure, wherein the radiation space 100P is recessed toward the two ends of the cylindrical radiation source 11P on its central axis and has detection dead
  • the microwave detection module 10P with the columnar radiation source structure when the microwave detection module 10P with the columnar radiation source structure is installed in a vertical direction such as a suspended ceiling, a ceiling, and a ceiling, it is used for vertical downward detection.
  • the installation position of the microwave detection module 10P of the cylindrical radiation source structure is usually lowered to reduce or avoid the corresponding radiation space 100P forming a detection dead zone in the space between the microwave detection module 10P of the cylindrical radiation source structure and the ground. That is to say, because the microwave detection module 10P of the cylindrical radiation source structure has a detection dead zone, the detection distance of the microwave detection module 10P of the cylindrical radiation source structure in actual use is much smaller than the corresponding radiation space 100P in the direction of the central axis.
  • the detection distance of the existing microwave detection module 10P with the cylindrical radiation source structure in actual use is much smaller than the detection distance matching its gain size, and the existing microwave detection module 10P with the cylindrical radiation source structure
  • the gain is relatively low, generally around 2dB, which further limits the application of the existing microwave detection module 10P with the cylindrical radiation source structure in the field of microwave Doppler detection.
  • the microwave detection module 20P of the flat-plate radiation source structure includes a flat-plate radiation source 21P and a reference ground 22P, wherein the flat-plate radiation source 21P and The reference ground 22P is arranged parallel to each other at intervals, and a radiation gap 23P is formed between the flat panel radiation source 21P and the reference ground 22P.
  • the columnar radiation source 11P of the microwave detection module 10P of the columnar radiation source structure is perpendicular to the reference ground 12P, which is opposite to the microwave detection module 20P of the flat plate radiation source structure which tends to be a flat plate structure.
  • the microwave detection module 10P with the columnar radiation source structure easily occupies a larger installation space in actual installation. Therefore, in the pursuit of the aesthetic trend of small and concise appearance, the microwave detection module with a flat radiation source structure occupies a small space and It is favored for its relatively stable advantage.
  • the microwave detection module 10P with the cylindrical radiation source structure has more advantages than the microwave detection module 20P with the flat radiation source structure.
  • FIG. 2 of the accompanying drawings of the specification of the present invention the application of the microwave detection module 10P with the cylindrical radiation source structure on the LED light board 30P is illustrated, wherein a plurality of evenly arranged on one side of the LED light board 30P
  • the LED lamp bead 31P forms a light-emitting surface on the surface of the LED lamp board 30P. It is understandable that in order to control the lighting of the LED light board 30P based on human activities, the existing microwave detection module is applied to the LED light board 30P, and in practical applications, the effective electromagnetic wave detection signal should be based on the LED.
  • the light plate 30P radiates in the space corresponding to the light-emitting surface. Since the current LED light board 30P is mostly made of conductive aluminum plate, in order to avoid the conductive performance of the LED light board 30P on the electromagnetic wave detection signal shielding effect, from the perspective of the stability of human activity detection, ideally ,
  • the microwave detection module as a human activity detection component should be placed on the light-emitting surface of the LED lamp panel 30P, but no matter whether the microwave detection module 10P with the cylindrical radiation source structure or the microwave detection module 20P with the flat-plate radiation source structure is adopted, due to the corresponding The minimum extreme value of the area size of the reference ground 12P and the reference ground 22P is limited, the microwave detection module 10P of the columnar radiation source structure or the microwave detection module 20P of the flat radiation source structure is on the light-emitting surface of the LED lamp panel 30P The installation inevitably occupies a part of the installation position of the LED lamp bead 31P or shields a part of the LED lamp bead 31P, so
  • the LED light board 30P is provided with a through hole 32P on the basis of not affecting the arrangement of the LED light beads 31P.
  • the cylindrical radiation source 11P of the microwave detection module 10P of the cylindrical radiation source structure extends through the LED light board 30P through the through hole 32P to the LED light board 30P
  • the light-emitting surface is used to hide the reference ground 12P of the microwave detection module 10P of the columnar radiation source structure on the surface of the LED light board 30P opposite to the light-emitting surface, so that the microwave detection module 10P of the columnar radiation source structure is located on the
  • the installation of the LED lamp panel 30P can avoid occupying a part of the installation position of the LED lamp bead 31P or shielding a part of the LED lamp bead 31P, thereby maintaining the uniformity of the light emitted by the LED lamp panel 30P
  • the cylindrical radiation source 11P and the cylindrical radiation source 11P of the microwave detection module 10P of the cylindrical radiation source structure The coupling between the reference ground 12P will be blocked by the LED light panel 30P, that is, the corresponding radiation space 100P located on the light-emitting surface of the LED light panel 30 will be reduced due to the shielding and reflection of the LED light panel 30P, so The stability of the microwave detection module 10P with the cylindrical radiation source structure applied to the detection of the human body activity by the LED light board 30P is not ideal.
  • the corresponding radiation space 100P on the surface of the LED lamp panel 30P opposite to the light-emitting surface will be Enhancement, that is, the radiant energy of the microwave detection module 10P of the columnar radiation source structure on the surface of the LED lamp panel 30P opposite to the light-emitting surface is enhanced, so that the surface of the LED lamp panel 30P opposite to the light-emitting surface corresponds to
  • the microwave detection module 10P of the columnar radiation source structure is easy to be mistaken for the existence of moving objects due to the principle of self-excitation, which will affect human activities.
  • the detection experience of the intelligent control of the LED light board 30P is easy to be mistaken for the existence of moving objects due to the principle of self-excitation, which will affect human activities.
  • the microwave detection module 10P of the cylindrical radiation source structure can be located in a shielded space corresponding to one surface of a metal plate, and the cylindrical radiation source 11P can be installed through a through hole. Extend to the space outside the shielded space corresponding to the other side of the metal sheet, so as to break through the shielded space through the hidden installation method to realize the activity detection of the space outside the shielded space, but the detection stability is not Ideal, and there is a detection dead zone.
  • An object of the present invention is to provide a microwave Doppler detection module and equipment, wherein the microwave Doppler detection module adopts a dual coupling mode to have a relatively high radiation gain and can avoid forming a detection dead zone.
  • Another object of the present invention is to provide a microwave Doppler detection module and equipment, wherein the microwave Doppler detection module includes at least a pair of dual coupling poles based on a dual coupling structure, wherein a pair of the dual coupling poles includes A first radiation source and a second radiation source, wherein the first radiation source has a first feeding end and extends with the first feeding end as an end, wherein the second radiation source It has a second feeding end and extends with the second feeding end as the end, wherein the first feeding end and the second feeding end are close to each other, so as to act as the first radiation source When the first and second radiating sources are fed from the same source, the first radiating source is located along the edge of the first feeding end. The first radiation source is coupled to a corresponding position of the second radiation source along the second radiation source from the second feeding end, thereby forming the first radiation source and the second radiation source.
  • the dual coupling mode between the two radiation sources is provided.
  • Another object of the present invention is to provide a microwave Doppler detection module and equipment, when the first radiation source and the second radiation source are respectively connected to the first feeding end and the second feeding end
  • the second radiation source and the first radiation source form a radiation space based on a dual coupling mode, wherein the radiation space is the electromagnetic wave radiated by the microwave Doppler detection module
  • the radiation space is convex in the radial direction of the connection line between the first feeding end and the second feeding end to avoid the formation of a detection dead zone in this direction, which is beneficial to improve the microwave The detection stability and applicability of the Doppler detection module.
  • Another object of the present invention is to provide a microwave Doppler detection module and equipment, wherein the microwave Doppler detection module further has an electromagnetic reflection surface, wherein the first radiation source and the second radiation source The space corresponding to the electromagnetic reflection surface is arranged at intervals from the electromagnetic reflection surface, so that the directional radiation characteristics of the microwave Doppler detection module are formed by the reflection characteristics of the electromagnetic reflection surface of the electromagnetic wave, then
  • the microwave Doppler detection module adopting the dual coupling mode can form the directional radiation space and is suitable for the detection of object activities in the directional space, and is beneficial to avoid self-excitation of the microwave Doppler detection module and improve The anti-interference performance of the microwave Doppler detection module.
  • Another object of the present invention is to provide a microwave Doppler detection module and device, wherein the first radiation source uses the first feed end as an end, and the second radiation source uses the second feed end as an end.
  • the electric terminal is the terminal, when the first radiation source and the second radiation source are fed from the same source at the first feeding terminal and the second feeding terminal, the first The potential and current of the radiation source and the second radiation source are in a dual distribution state and are simplified, which is beneficial to simplify the data processing of the microwave Doppler detection module and improve the stability of the microwave Doppler detection module Sex.
  • Another object of the present invention is to provide a microwave Doppler detection module and device, wherein based on the dual coupling mode, the second radiation source has a shape and size corresponding to the first radiation source, then the first radiation source.
  • the first radiation source and the second radiation source are separated from the restriction of having a limited area as a reference plane, that is, the shape and size of the first radiation source and the second radiation source have various implementation structures. Limited to a plate-shaped structure with a limited area, it is beneficial to the miniaturization of the microwave Doppler detection module and the improvement of the applicability of the microwave Doppler detection module.
  • Another object of the present invention is to provide a microwave Doppler detection module and device, wherein the first radiation source and the second radiation source have flexible shapes and sizes and are not limited to a plate with a limited area.
  • the microwave Doppler detection module is also suitable for the application of the microwave detection module with the columnar radiation source structure Compared with a microwave detection module with a cylindrical radiation source structure, the microwave Doppler detection module has better stability in corresponding application scenarios.
  • Another object of the present invention is to provide a microwave Doppler detection module and device, wherein based on the adjustment of the shape of the second radiation source and the first radiation source, such as adjusting the The shape of the second radiation source and the first radiation source is maintained while maintaining the line length requirement of the second radiation source from the second feeding end along the second radiation source and the first While the line length of the radiation source from the first feeding end along the first radiation source is required, the size of the microwave Doppler detection module can be further reduced, that is, to ensure the second radiation While the source electrode and the first radiation source electrode are coupled in a dual manner, the applicability of the microwave Doppler detection module is improved.
  • Another object of the present invention is to provide a microwave Doppler detection module and device, wherein based on the adjustment of the shape of the second radiation source and the first radiation source, such as setting the second radiation source And the first radiation source extend in the opposite direction of the connecting direction of the first feeding point and the second feeding point, and extend in the same direction in the direction close to the electromagnetic reflection surface to form the first The state where the end of a radiation source opposite to the first feeding end is close to the electromagnetic reflection surface with respect to the first feeding end, and the second radiation source forming the second radiation source and the second feeding end are close to the electromagnetic reflection surface.
  • the opposite end of the electric terminal is close to the electromagnetic reflection surface relative to the second feeding terminal. Accordingly, the radiation space can be adjusted so that the projection in the directional radiation direction has a shape that tends to be circular, which is beneficial to improve the The applicability of the microwave Doppler detection module to the detection of object activities in directional space in different application places.
  • Another object of the present invention is to provide a microwave Doppler detection module and equipment, wherein the first radiation source and the second radiation source are further grounded to reduce the impedance of the microwave Doppler detection module ,
  • the quality factor (ie, Q value) of the microwave Doppler detection module is improved, which is beneficial to improve the anti-interference ability of the microwave Doppler detection module.
  • microwave Doppler detection module further includes a circuit substrate and a circuit unit carried on the circuit substrate, wherein the circuit unit includes An oscillating circuit unit and a frequency mixing detection unit, wherein the first radiation source and the second radiation source are electrically coupled to the first and second feeding terminals, respectively.
  • the different poles of the oscillating circuit unit wherein the mixing and detecting unit is electrically coupled to the oscillating circuit unit and the pair of coupling poles, so that when the oscillating circuit unit is powered, the first radiation
  • the source and the second radiation source are fed from the same source by the oscillating circuit unit and coupled in a dual manner to transmit a probe beam, and receive an echo of the probe beam, the mixing detection unit outputs
  • An intermediate frequency signal corresponding to the frequency difference between the detection beam and the echo is based on the principle of the Doppler effect, and the intermediate frequency signal corresponds to the motion of the corresponding object that reflects the detection beam to form the echo Therefore, the microwave Doppler detection module is suitable for detecting object motion.
  • Another object of the present invention is to provide a microwave Doppler detection module and equipment, wherein the electromagnetic reflection surface is carried on the side of the circuit substrate opposite to the side that carries the circuit unit, that is, the electromagnetic reflection surface Facing the pair of coupling poles and blocking between the circuit unit and the pair of coupling poles, the electromagnetic reflection surface prevents the first radiation source from interacting with the The electromagnetic radiation generated by the coupling of the second radiation source interferes with the circuit unit, which is beneficial to improve the anti-interference performance of the microwave Doppler detection module.
  • Another object of the present invention is to provide a microwave Doppler detection module and equipment, wherein the microwave Doppler detection module further includes a first feeder line and a second feeder line, wherein the first radiation source is at The first feeding end is electrically coupled to the oscillating circuit unit via the first feeding line, and the second radiation source is electrically connected to the second feeding end via the second feeding line. Is electrically connected to the ground potential of the oscillating circuit unit, so that the first radiation source and the second radiation source are electrically connected to the first feeding end and the second feeding end, respectively.
  • the circuit connection relationship of different poles coupled to the oscillation circuit unit is formed by the support of the first radiation source and the second radiation source by the first feeder line and the second feeder line
  • the space corresponding to the pair of coupling poles in the electromagnetic reflecting surface is arranged in a structural relationship with the electromagnetic reflecting surface spaced apart.
  • Another object of the present invention is to provide a microwave Doppler detection module and device, wherein the second feeder line is arranged to surround the first feeder line to form an electromagnetic shielding cavity, so that the second feeder line
  • the state where the wire is grounded reduces the influence of the coupling between the second feed line and the first feed line on the coupling between the first radiation source and the second radiation source, and shields external electromagnetic
  • the interference of radiation on the first feeder is beneficial to improving the anti-interference performance of the microwave Doppler detection module.
  • Another object of the present invention is to provide a microwave Doppler detection module and device, wherein the microwave Doppler detection device includes the microwave Doppler detection module and has an electromagnetic shielding layer, wherein the electromagnetic shielding layer has A through hole, wherein the circuit substrate is arranged in a shielding space corresponding to one side of the electromagnetic shielding layer, wherein the first radiation source and the second radiation source are arranged on the electromagnetic shielding layer The space corresponding to the other side, wherein the first and second feed lines penetrate the electromagnetic shielding layer through the through hole to form the first radiation source and the second radiation source The circuit connection structure between the circuit unit and the circuit unit, so that the first radiation source and the second radiation source are arranged in the space outside the shielding space to achieve the outside of the shielding space.
  • the first radiation source and the second radiation source are perpendicular to the electromagnetic shield
  • the projection area of the layer direction on the electromagnetic shielding layer can be reduced, which is beneficial to the concealment of the installation of the microwave Doppler detection module on the microwave Doppler detection equipment, and when the electromagnetic shielding layer is formed In the case of an LED light board, it can avoid forming a dark area on the LED light board.
  • Another object of the present invention is to provide a microwave Doppler detection module and equipment, wherein the microwave Doppler detection module based on the dual coupling mode can avoid the formation of detection dead zone, and at the same time reduce the impact on the microwave Doppler detection
  • the size requirement of the module is beneficial to improve the concealment and detection stability of the microwave Doppler detection module installed in the microwave Doppler detection device.
  • the present invention provides a microwave Doppler detection module.
  • the microwave Doppler detection module includes:
  • the pair of dipole coupling poles includes a first radiation source and a second radiation source
  • the first radiation source has a first feeding end and is arranged Is a conductor extending at the first feeding end
  • the second radiation source has a second feeding end and is configured as a conductor extending at the second feeding end
  • the The first radiation source and the second radiation source are respectively adapted to be fed by the same excitation signal feed source at the first feeding end and the second feeding end, wherein the first feeding end and The second feeding ends are close to each other within a distance range of less than or equal to ⁇ /32, where ⁇ is a wavelength parameter corresponding to the feeding signal frequency of the excitation signal feed source, and the first radiation source is set
  • the line length from the first feeding terminal is greater than or equal to ⁇ /16
  • the second radiation source is set to satisfy the line length from the second feeding terminal being greater than or equal to ⁇ /16, so that When the first radiation source and the second radiation source are respectively fed
  • An electromagnetic reflecting surface wherein the pair of coupling poles are arranged in a space corresponding to the electromagnetic reflecting surface at an interval from the electromagnetic reflecting surface, wherein the connection between the first feeding end and the second feeding end
  • the distance between the midpoint of the line and the electromagnetic reflection surface is greater than or equal to ⁇ /32 and less than or equal to ⁇ /2.
  • the present invention also provides a microwave Doppler detection device, the microwave Doppler detection device comprising:
  • a circuit unit wherein the circuit unit includes an oscillating circuit unit and a frequency mixing detection unit, wherein the oscillating circuit unit is configured to allow power to be supplied to output a feed signal at its feeder and to ground its ground. As a source of excitation signal;
  • a circuit substrate wherein the circuit unit is carried on the circuit substrate
  • An electromagnetic shielding layer wherein the electromagnetic shielding layer is provided with a through hole, and the circuit unit is provided in a space corresponding to one side of the electromagnetic shielding layer;
  • a pair of the dipole coupling poles includes a first radiation source and a second Two radiation sources, wherein the first radiation source has a first feeding end and is arranged as a conductor extending from the first feeding end, wherein the second radiation source has a second The feeding end is set as a conductor extending from the second feeding end, wherein the mixing and detecting unit is electrically coupled to the oscillating circuit unit and the pair of coupling poles, wherein the first The radiation source is electrically coupled to the feed electrode of the oscillation circuit unit at the first feeding end by a first feeding line penetrating the electromagnetic shielding layer through the through hole, wherein the second radiation source A second feeder line that penetrates the electromagnetic shielding layer through the through hole at the second feed end is electrically connected to the ground electrode of the oscillating circuit unit, wherein the first feed end and The second feeding ends are
  • the first feed end has a line length greater than or equal to ⁇ /16
  • the second radiation source is set to satisfy the second feed end having a line length greater than or equal to ⁇ /16, so that when the When the oscillating circuit unit is powered, the potential distribution of the first radiation source and the second radiation source can be dually distributed at the midpoint of the connection line between the first feeding end and the second feeding end State, so that the first radiation source is coupled to the second radiation source from the second power feeding terminal along the first radiation source corresponding to the second radiation source from the first power feeding terminal along the first radiation source. The corresponding position of the two radiation source.
  • FIG. 1A is a schematic structural diagram of a microwave detection module with a conventional cylindrical radiation source structure.
  • Fig. 1B is a schematic structural diagram of a microwave detection module with a conventional flat-plate radiation source structure.
  • FIG. 2 is a schematic diagram of the structure of mounting a microwave detection module with a conventional cylindrical radiation source structure on an LED light board.
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a microwave Doppler detection module according to an embodiment of the present invention.
  • Fig. 4 is a radiation pattern of the microwave Doppler detection module according to the above-mentioned embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the three-dimensional structure of the microwave Doppler detection module according to a modified embodiment of the above-mentioned embodiment of the present invention.
  • Fig. 6 is a radiation pattern of the microwave Doppler detection module according to the above-mentioned modified embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the three-dimensional structure of the microwave Doppler detection module according to another modified embodiment of the above-mentioned embodiment of the present invention.
  • FIG. 8 is a schematic side view of the cross-sectional structure of the microwave Doppler detection module according to the above-mentioned modified embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the three-dimensional structure of the microwave Doppler detection module according to another modified embodiment of the above-mentioned embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the three-dimensional structure of the microwave Doppler detection module according to another modified embodiment of the above-mentioned embodiment of the present invention.
  • FIG. 11 is a three-dimensional schematic diagram of another alternative structure of the microwave Doppler detection module according to the above-mentioned modified embodiment of the present invention.
  • FIG. 12 is a three-dimensional schematic diagram of a modified structure of the above-mentioned alternative structure of the microwave Doppler detection module according to the above-mentioned modified embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a three-dimensional structure of a microwave Doppler detection module according to another embodiment of the present invention.
  • FIG. 14 is a schematic diagram of the three-dimensional structure of the microwave Doppler detection module according to a modified embodiment of the above-mentioned embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a three-dimensional structure of a microwave Doppler detection device equipped with a microwave Doppler detection module according to an embodiment of the present invention.
  • 16 is a schematic diagram of a three-dimensional structure of a microwave Doppler detection device equipped with a microwave Doppler detection module according to another embodiment of the present invention.
  • the term “a” should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of an element may be one, and in another embodiment, the number of the element The number can be multiple, and the term “one” cannot be understood as a restriction on the number.
  • the microwave Doppler detection module 10 includes at least a pair of duals The coupling pole 11, wherein the pair of the pair of coupling poles 11 includes a first radiation source 111 and a second radiation source 112, wherein the second radiation source 112 has a second feeding terminal 1121.
  • the first radiation source 111 has a first feeding end 1111, wherein the second feeding end 1121 and the first feeding end 1111 are close to each other, and the second radiation source 112 is A conductor extending from the second feeding end 1121, wherein the first radiation source 111 is a conductor extending from the first feeding end 1111, wherein the first radiation source 111 and The second radiation source 112 is configured to be fed by the same source at the first feeding end 1111 and the second feeding end 1121, respectively, wherein the second feeding end 1121 and the first feeding end 1121 A feeding end 1111 is close to each other and satisfies that the distance between the second feeding end 1121 and the first feeding end 1111 is less than or equal to ⁇ /32, where ⁇ is the wavelength parameter corresponding to the frequency of the feeding signal, so as When the first radiation source 111 and the second radiation source 112 are fed by the same source at the first feeding end 1111 and the second feeding end 1121, the first radiation source The electrode 111 is coupled to the second radiation source 112 from the first
  • the second radiation source 112 and the first radiation source 111 are The size requirement to be able to produce coupling is reduced.
  • the second radiation source 112 and the first radiation source 111 are set to satisfy a line having a line greater than or equal to ⁇ /16 from the second feeding terminal 1121 and the first feeding terminal 1111, respectively. long.
  • the first radiation source 111 is set to satisfy a line length greater than or equal to ⁇ /16 between the first feeding end 1111 and the end opposite to the first feeding end 1111
  • the second The radiation source 112 is set so that the second feeding terminal 1121 and the end opposite to the second feeding terminal 1121 have a line length greater than or equal to ⁇ /16, that is, the first radiation source 111 and the second radiation source 112 allow the first feeding terminal 1111 and the second feeding terminal 1121 to be set to have a minimum line length of ⁇ /16, respectively.
  • the distance between the second feeding end 1121 and the first feeding end 1111 tends to ⁇ /128, so that the first radiation source 111 and the second radiation source 112 are mutually
  • the coupling loss can be reduced to correspondingly increase the gain of the microwave Doppler detection module 10.
  • the first radiation source 111 and the second radiation source 112 are respectively connected to the first feeding terminal 1111 and the second feeding terminal 1121.
  • the microwave Doppler detection module 10 is exemplified.
  • the first radiation source 111 is fed and connected to the feeder of the excitation signal feed at the first feeding terminal 1111, and the second radiation source is 112 is electrically connected to the ground electrode of the excitation signal feed at the second feed end 1121 and is fed from the same source as the first radiation source 111 by the excitation signal feed, wherein the first radiation
  • the source 111 is coupled to the second radiation source 112 from the first feeding terminal 1111 along the first radiation source 111 and is coupled to the second radiation source 112 from the second feeding terminal 1121 along the second radiation source.
  • a radiation space 100 is formed at the corresponding position 112, wherein the radiation space 100 is the coverage area of the electromagnetic waves radiated by the microwave Doppler detection module 10, and the first radiation source 111 is fed from the first
  • the electrical terminal 1111 is coupled to the second radiation source 112 along the first radiation source 111 corresponding to the corresponding position from the second feeding terminal 1121 along the second radiation source 112, that is, the radiation
  • the space 100 is formed based on the dual coupling method and can be convex in the radial direction of the connecting line between the first feeding end 1111 and the second feeding end 1121, which avoids the formation of a detection dead zone in this direction, which is beneficial to The detection stability and applicability of the microwave Doppler detection module 10 are improved.
  • the microwave Doppler detection module 10 has an electromagnetic reflective surface 12, wherein the first radiation source 111 and the second radiation source 112 are located in the space corresponding to the electromagnetic reflective surface 12.
  • the electromagnetic reflection surfaces 12 are arranged at intervals to form the directional radiation characteristics of the microwave Doppler detection module 10 by the reflection characteristics of the electromagnetic reflection surface 12 for electromagnetic waves, then the microwave Doppler detection module 10 It is suitable for the detection of object activities in directional space, and is beneficial to avoid self-excitation of the microwave Doppler detection module 10 and improve the anti-interference performance of the microwave Doppler detection module 10.
  • the electromagnetic reflection surface 12 is set to satisfy the distance between the midpoint of the line connecting the first feeding end 1111 and the second feeding end 1121 to be greater than or equal to ⁇ /32 and less than or equal to ⁇ /2 , And preferably tends to ⁇ /4, so that the electromagnetic reflection surface 12 reflects the radiation from the first radiation source 111 and the second radiation source 112 toward the electromagnetic reflection surface 12
  • the function can be enhanced, which is beneficial to increase the detection distance of the microwave Doppler detection module 10.
  • the first radiation source 111 is separated from the first feeding end 1111 to the first feeding end 1111
  • the second radiating source 112 extends from the second power feeding terminal 1121 to the second power feeding terminal 1121 in a structural relationship.
  • the first radiating source 111 is connected to the second power feeding terminal 1121.
  • the second radiation source 112 can be coupled in a dual coupling manner, and the corresponding second radiation source 112 has a line length corresponding to the first radiation source 111, then the second radiation source 112 deviates from the limitation of having the lowest restricted area as the reference ground, that is, the line length of the second radiation source 112 corresponding to the first radiation source 111 has various implementation structures and is not limited to the board with the lowest restricted area.
  • the structure of the microwave Doppler detection module 10 is diverse, which is beneficial to improve the applicability of the microwave Doppler detection module 10.
  • the line length of the second radiation source 112 corresponding to the first radiation source 111 is set as a columnar conductive line, including but not limited to a circular columnar conductive line And a square columnar conductive wire, wherein the line length parameter L2 of the second radiation source 112 defined between the second feeding end 1121 and the end opposite to the second feeding end 1121 satisfies: ⁇ / 16 ⁇ L2 ⁇ .
  • the line length parameter L1 of the first radiation source 111 defined between the first feeding terminal 1111 and the end opposite to the first feeding terminal 1111 satisfies: ⁇ /16 ⁇ L1 ⁇ ⁇ .
  • the second radiation source 112 with the second feeding terminal 1121 as the end is grounded at the second feeding terminal 1121, and the first radiation source 112 with the first feeding terminal 1111 as the end is grounded.
  • the first radiation source 111 and the second radiation source 112 can be coupled in a dual coupling manner.
  • the second radiation source 112 and the first radiation source 111 are set to satisfy an error range of ⁇ /128 from the second feeding terminal 1121 and the first feeding terminal 1111, respectively.
  • Has a line length tending to ⁇ /4 that is, 31 ⁇ /128 ⁇ L1 ⁇ 33 ⁇ /128, 31 ⁇ /128 ⁇ L2 ⁇ 33 ⁇ /128, so the first radiation source 111 and the second radiation source 112 Having a line length tending to ⁇ /2 is beneficial to improve the radiation efficiency between the first radiation source 111 and the second radiation source 112, and is correspondingly beneficial to improving the microwave Doppler detection module 10 Gain.
  • the first radiation source 111 and the second radiation source 112 are connected by the first feeding terminal 1111 and the second feeding terminal 1121.
  • the midpoint is set point symmetrically, that is, the first radiation source 111 and the second radiation source 112 have the same shape and size, and the first radiation source 111 and the second radiation source 112 have the same shape and size.
  • the positional relationship satisfies that the first radiation source 111 can rotate 180 degrees in at least one direction around the midpoint of the connection between the first feeding end 1111 and the second feeding end 1121, and is connected to the second radiation source 111.
  • the position of the source electrode 112 coincides.
  • the first radiation source 111 and the second radiation source 112 that are arranged as columnar conductive wires are coaxially arranged, that is, the first radiation source 111 In the direction from the second feeding end 1121 to the first feeding end 1111, from the first feeding end 1111 to the first feeding end 1111 along the first feeding end 1111 and The connection line of the second feeding end 1121 extends; the second radiation source 112 is in the direction of the first feeding end 1111 to the second feeding end 1121, from the second feeding end 1121
  • the second power feeding terminal 1121 is used as an end to extend along the connection line between the first power feeding terminal 1111 and the second power feeding terminal 1121.
  • the first radiation source 111 and the second radiation source 112 have a point symmetrical structure relationship with the midpoint of the connection line between the first feeding terminal 1111 and the second feeding terminal 1121.
  • the microwave Doppler detection module 10 further includes a circuit substrate 13 and a circuit unit 14 carried on the circuit substrate 13, wherein the circuit unit 14 includes an oscillation circuit unit 141 and a frequency mixing detection unit 142, wherein the first radiation source 111 and the second radiation source 112 are electrically coupled to the oscillation circuit unit 141 at the first feeding terminal 1111 and the second feeding terminal 1121, respectively Specifically, the first radiation source 111 is fed and connected to the feed of the oscillation circuit unit 141 at the first feeding terminal 1111, and the second radiation source 112 is connected to the The second feeding terminal 1121 is electrically connected to the ground pole of the oscillating circuit unit 141, wherein the frequency mixing detection unit 142 is electrically coupled to the oscillating circuit unit 141 and the pair of coupling poles 11, wherein The oscillating circuit unit 141 is allowed to be powered to output a feed signal to its feeder and grounded to its ground.
  • the oscillating circuit unit 141 is allowed to be powered to serve as an excitation signal feed source.
  • the first radiation source 111 and the second radiation source 112 are respectively received by the oscillating circuit at the first feeding terminal 1111 and the second feeding terminal 1121
  • the unit 141 is fed from the same source to transmit a probe beam, and receives an echo of the probe beam, wherein the echo is received to generate an echo signal correspondingly, and the output of the mixing detection unit 142 corresponds to the An intermediate frequency signal of the frequency difference between the feed signal and the echo signal is based on the principle of the Doppler effect.
  • the intermediate frequency signal corresponds to the motion of the corresponding object that reflects the probe beam to form the echo, and thus
  • the microwave Doppler detection module 10 is suitable for detecting the movement of an object.
  • the first radiation source 111 and the second radiation source 112 take the first feeding terminal 1111 and the second feeding terminal 1121 as ends, respectively, and then the first radiation source 111 and the second radiation source 112 are When a radiation source 111 and the second radiation source 112 are fed by the oscillation circuit unit 141 from the first feeding terminal 1111 and the second feeding terminal 1121, respectively, the first The potential and current of the radiation source 111 and the second radiation source 112 are in a dual distribution state.
  • the second radiation source 112 and the first radiation source 111 are coupled in a dual manner, that is, the first radiation source 111 is coupled in a dual manner.
  • the coupling between the second radiation source 112 and the first radiation source 111 is simplified, and the corresponding data processing of the microwave Doppler detection module 10 can be simplified, as output by the mixing detection unit 142
  • the correlation between the intermediate frequency signal and the motion of the corresponding object is improved, so that the corresponding data processing of the microwave Doppler detection module 10 can be simplified, which is beneficial to reduce the cost of the microwave Doppler detection module 10 and improve The stability and accuracy of the microwave Doppler detection module 10.
  • the electromagnetic reflective surface 12 is blocked between the circuit unit 14 and the first radiation source 111 and the second radiation source 112, so that the Among the electromagnetic radiation generated by the mutual coupling of the first radiation source 111 and the second radiation source 112, the direction from the first radiation source 111 and the second radiation source 112 toward the circuit unit 14
  • the electromagnetic radiation can be reflected by the electromagnetic reflection surface 12 to avoid interfering with the circuit unit 14, thereby helping to improve the anti-interference performance of the microwave Doppler detection module 10.
  • the electromagnetic reflective surface 12 is carried on the side of the circuit substrate 13 opposite to the side that carries the circuit unit 14, that is, the electromagnetic reflective surface 12 is formed on the The corresponding conductive layer (such as a copper layer) on the side of the circuit substrate 13 opposite to the side carrying the circuit unit 14, wherein the first radiation source 111 and the second radiation source 112 are connected to the electromagnetic
  • the space corresponding to the reflective surface 12 is spaced apart from the electromagnetic reflective surface 12, so that the reflection characteristics of the electromagnetic reflective surface 12 on electromagnetic waves, and the first radiation source 111 and the second radiation source
  • the structure relationship between the pole 112 and the electromagnetic reflection surface 12 in the space corresponding to the electromagnetic reflection surface 12 forms the first radiation of the microwave Doppler detection module 10 from the electromagnetic reflection surface 12
  • the directional radiation characteristics in the direction of the source 111 and the second radiation source 112 correspond to the formation of the microwave Doppler detection module 10 from the electromagnetic reflecting surface 12 to the first radiation source 111 and the second radiation source 111.
  • the microwave Doppler detection module 10 is suitable for the detection of object activity in the directional space corresponding to the detection direction, and is beneficial to prevent the microwave Doppler detection module 10 from being generated from To prevent the electromagnetic radiation generated by the coupling between the first radiation source 111 and the second radiation source 112 from interfering with the circuit unit 14 carried on the circuit substrate 13, thereby improving the The anti-jamming performance of the microwave Doppler detection module is described.
  • the microwave Doppler detection module 10 is The radiation direction corresponding to the radial direction of the connecting line of the second feeding end 1121, so that when the electromagnetic reflecting surface 12 is set in the radiation direction, the radiation from the first radiation source 111 and the second radiation source The radiation from the pole 112 toward the electromagnetic reflection surface 12 can be reflected to form the microwave Doppler detection module 10 from the electromagnetic reflection surface 12 to the first radiation source 111 and the second radiation source.
  • the detection direction in the 112 direction and the enhancement of electromagnetic radiation in the detection direction are beneficial to increase the directional detection distance of the microwave Doppler detection module 10.
  • the electromagnetic reflection surface 12 is preferably set to satisfy a dimension greater than or equal to ⁇ /4 in a connection direction parallel to the first feeding end 1111 and the second feeding end 1121, and to be perpendicular
  • the connection direction has a size greater than or equal to ⁇ /4, so that the electromagnetic reflection surface 12 faces from the first radiation source 111 and the second radiation source 112 toward the electromagnetic reflection surface 12
  • the reflection of the radiation can be enhanced.
  • the microwave Doppler detection module 10 further includes a first feeder 15 and a second feeder 16, wherein the first radiation source 111 passes through the first feeder 1111 at the first feeder 1111.
  • a feeder 15 is electrically coupled to the feeder of the oscillating circuit unit 141, wherein the second radiation source 112 is electrically connected to the second feeder 1121 via the second feeder 16
  • the ground of the oscillating circuit unit 141 is such that the first radiation source 111 and the second radiation source 112 are formed by the first feeder line 15 and the second feeder line 16
  • the circuit connection structure between the circuit units 14 is formed by the support of the first radiation source 111 and the second radiation source 112 by the first feeder 15 and the second feeder 16
  • the first radiation source 111 and the second radiation source 112 have a structural relationship that the space corresponding to the same surface of the electromagnetic reflection surface 12 is spaced apart from the electromagnetic reflection surface 12.
  • the first radiation source 111 integrally extends from the first feeding terminal 1111 to the first feeding line 15, and the second radiation source 112 extends from the first feeding terminal 1111.
  • the second feeding end 1121 is integrally extended to the second feeding line 16, so as to simplify the structure of the microwave Doppler detection module 10 and help maintain the consistency of the impedance of the microwave Doppler detection module 10 It is beneficial to the impedance matching of the microwave Doppler detection module 10.
  • first feeding line 15 and the second feeding line 16 are parallel to each other, and the distance between the first feeding line 15 and the second feeding line 16 corresponds to the first feeding end
  • the distance between 1111 and the second feeding end 1121 satisfies less than or equal to ⁇ /32, and preferably tends to the range of ⁇ /128, so that the distance between the first radiation source 111 and the second radiation source
  • the coupling effect between the first feeder 15 and the second feeder 16 can be reduced to facilitate
  • the loss of the first feeder 15 and the second feeder 16 is reduced, that is, the return loss S11 of the first feeder 15 and the second feeder 16 is reduced, which is beneficial to improve the microwave The gain of the Doppler detection module 10.
  • the radiation pattern corresponding to the radiation space 100 of the microwave Doppler detection module 10 according to the above-mentioned embodiment of the present invention is schematically shown, as can be seen from the figure,
  • the microwave Doppler detection module 10 In the directional radiation direction of the microwave Doppler detection module 10, that is, the direction perpendicular to the plane of the X-axis and Y-axis in the figure, the microwave Doppler detection module 10 has a radiation gain greater than 7dB, and the radiation The space 100 is convex in this direction.
  • the projection of the radiation space 100 in this direction tends to be a complete elliptical shape, which is different from the traditional cylindrical radiation source structure of the microwave detection module in its directional radiation direction.
  • the circular shape of the dead zone, the radiation space 100 of the microwave Doppler detection module 10 is convex in the directional radiation direction, which can avoid the formation of a detection dead zone.
  • the radiation space 100 can be adjusted to correspondingly change the microwave Doppler detection module 10
  • the detection angle and direction from the electromagnetic reflection surface 12 to the first radiation source 111 and the second radiation source 112 improve the applicability of the microwave Doppler detection module 10.
  • the first radiation source 111 and the second radiation source 112 are adjusted, and the first radiation
  • the positional relationship between the source electrode 111 and the second radiation source electrode 112 can be adjusted relative to the above-mentioned embodiment of the present invention.
  • the first radiation source 111 and the second radiation source 112 respectively surround the first feeding terminal 1111 and the first feeding terminal 1111 and the second radiation source 112 in a direction close to the electromagnetic reflection surface 12
  • the two feeding terminals 1121 are rotated and adjusted.
  • the first radiation source 111 is set to feed power from the first feeding terminal 1111 to the first feeding terminal 1111 at the same time at the second feeding terminal 1121
  • the connecting direction of the terminal 1111 and the columnar conductive wire extending in the direction close to the electromagnetic reflection surface 12, wherein the second radiation source 112 is arranged to be fed from the second feeding terminal 1121 with the second power feeding
  • the end 1121 is an end, and a columnar conductive wire extends in the connection direction of the first feeding end 1111 to the second feeding end 1121 and the direction close to the electromagnetic reflection surface 12.
  • the second radiation source 112 and the first radiation source 112 are adjusted in a bending manner.
  • the shape of the radiation source 111 maintains that the line length parameter L2 of the second radiation source 112 satisfies ⁇ /16 ⁇ L2 ⁇ , and the line length parameter L1 of the first radiation source 111 satisfies ⁇ /16 ⁇ While L1 ⁇ , the size of the microwave Doppler detection module 10 can be further reduced, that is, to ensure that the second radiation source 112 and the first radiation source 111 are coupled in a dual manner At the same time, it is beneficial to reduce the size of the microwave Doppler detection module 10.
  • the radiation space 100 can be adjusted to correspondingly change the coverage of the electromagnetic wave radiated by the microwave Doppler detection module 10, which improves the applicability of the microwave Doppler detection module 10.
  • the microwave Doppler detection module 10 of the embodiment is illustrated.
  • the first radiation source 111 is fed from the first feeding terminal 1111 to the second feeding terminal 1111.
  • the end 1121 extends in the direction of the first feeding end 1111 and in the direction close to the electromagnetic reflection surface 12, and the second radiation source 112 extends from the second feeding end 1121 to the first feeding end 1111.
  • the end of the radiation source 111 opposite to the first feeding terminal 1111 is close to the electromagnetic reflecting surface 12 with respect to the first feeding terminal 1111, and the contact with the second radiation source 112 is formed.
  • the first radiation source 111 extends from the first feeding end 1111 in the direction of the second feeding end 1121 to the first feeding end 1111 and in the direction close to the electromagnetic reflection surface 12
  • the second radiation source 112 extends from the second feeding end 1121 in the direction of the first feeding end 1111 to the second feeding end 1121 and in the direction close to the electromagnetic reflection surface 12, corresponding to
  • the dimensions of the first radiation source 111 and the second radiation source 112 in the direction perpendicular to the electromagnetic reflecting surface 12 are both in the range of greater than or equal to ⁇ /32 and less than or equal to ⁇ /4.
  • first radiation source 111 and the second radiation source 112 can form a dual coupling manner, based on the fact that the corresponding first radiation source 111 and the second radiation source 112 are perpendicular to the electromagnetic
  • the size of the microwave Doppler detection module 10 can be reduced, and at the same time the radiation space 100 of the microwave Doppler detection module 10 can be adjusted.
  • the first radiation source 111 and the second radiation source 112 are bent once, and the correspondingly bent first radiation source 111 is free
  • the first feeding end 1111 extends in the direction of the second feeding end 1121 to the first feeding end 1111 and in the direction close to the electromagnetic reflecting surface 12 in sequence
  • the second radiation source 112 is The second feeding end 1121 sequentially extends in the direction of the first feeding end 1111 to the second feeding end 1121 and in the direction close to the electromagnetic reflection surface 12.
  • the end of the first radiation source 111 opposite to the first feeding terminal 1111 is formed in a state corresponding to the electromagnetic reflection surface 12 relative to the first feeding terminal 1111, and the first radiation source 111 is formed.
  • An end of the two radiation source 112 opposite to the second feeding end 1121 is close to the electromagnetic reflecting surface 12 relative to the second feeding end 1121.
  • the size of the first radiation source 111 in the direction perpendicular to the electromagnetic reflection surface 12 corresponds to the size of the first radiation source 111 and the first feeding end.
  • the dimension in the direction of the electromagnetic reflection surface 12 corresponds to the distance from the end of the second radiation source 112 opposite to the second feeding end 1121 to the bent position of the second radiation source 112 L21, the L21 satisfies ⁇ /32 ⁇ L21 ⁇ /4, wherein the radiation space 100 of the microwave Doppler detection module 10 can be adjusted based on the corresponding size settings of the L11 and the L21, The gain corresponding to the microwave Doppler detection module 10 can be adjusted.
  • the radiation pattern of the microwave Doppler detection module 10 corresponding to the radiation space 100 according to the above-mentioned modified embodiment of the present invention is illustrated, as can be seen from the figure
  • the microwave Doppler detection module 10 also has a radiation gain greater than 7 dB.
  • the radiation space 100 of the microwave Doppler detection module 10 that is different from the previous embodiment, in this modified embodiment of the present invention, is based on the comparison between the first radiation source 111 and the second radiation source 111
  • the shape of the second radiation source 112 is adjusted at the end of the first radiation source 111 opposite to the first feeding end 1111 relative to the first feeding end 1111 close to the electromagnetic reflection surface 12 State, and the state where the end of the second radiation source 112 opposite to the second feeding end 1121 is close to the electromagnetic reflecting surface 12 with respect to the second feeding end 1121, the radiation space 100 is Adjusted so that the cross-section perpendicular to the directional radiation direction has a tending to be a complete circle, so as to help improve the applicability of the microwave Doppler detection module 10 to the detection of object activities in the directional space in different application places, and distinguish
  • the microwave detection module of the traditional cylindrical radiation source structure and the microwave detection module of the flat radiation source structure have a circular ring shape with a detection dead zone in the middle of the cross section per
  • the first radiation source 111 starts from the first feeding terminal 1111 in the direction from the second feeding terminal 1121 to the first feeding terminal 1111 and at Extending in the direction close to the electromagnetic reflecting surface 12, the second radiation source 112 extends from the second feeding end 1121 in the direction of the first feeding end 1111 to the second feeding end 1121 and in the direction close to the second feeding end 1121.
  • the structural relationship of the electromagnetic reflection surface extending in the 12 direction is described.
  • the first radiation source 111 starts from the first feeding end 1111 with the first feeding end 1111 as an end, and at the same time, the first radiation source 111 is directed toward the second feeding end 1121.
  • the direction of the first feeding end 1111 and the direction close to the electromagnetic reflection surface 12 extend, and the second radiation source 112 extends from the second feeding end 1121 to the second feeding end 1121.
  • the first feeding end 1111 extends in the direction of the second feeding end 1121 and the direction close to the electromagnetic reflection surface 12, so as to form the connection between the second radiation source 112 and the first radiation source 112.
  • the circular shape can improve the applicability of the microwave Doppler detection module 10 to the detection of object activities in the directional space in different application places.
  • the first radiation source 111 and the second radiation source 112 are arranged in a curved manner.
  • the first radiation source 111 is formed from the first radiation source 111 and the second radiation source 112.
  • a feeding end 1111 takes the first feeding end 1111 as an end, and at the same time in the connection direction of the second feeding end 1121 to the first feeding end 1111 and the direction close to the electromagnetic reflection surface 12
  • Extending and forming a cylindrical arc-shaped conductive wire wherein the second radiation source 112 is from the second feeding end 1121 with the second feeding end 1121 as the end, and at the same time at the first feeding end 1111 is a columnar arc-shaped conductive wire extending in the connection direction of the second power feeding terminal 1121 and the direction close to the electromagnetic reflection surface 12.
  • the arc shape of the first radiation source 111 is different between the connection direction of the second feeding end 1121 to the first feeding end 1111 and the direction close to the electromagnetic reflection surface 12.
  • the arc shape of the second radiation source 112 is in the connection direction of the first feeding end 1111 to the second feeding end 1121 and close to the electromagnetic reflection surface.
  • the first radiation source 111 and the second radiation source 112 are cylindrical arc-shaped conductive wires that are bent in the direction deviating from the electromagnetic reflection surface 12;
  • the second radiation source 112 is a columnar arc-shaped conductive wire formed by bending in a direction deviating from the electromagnetic reflection surface 12.
  • the microwave Doppler detection module 10 according to another modified embodiment of the above-mentioned embodiment of the present invention is illustrated, in particular, in the present invention
  • the first feeding line 15 has a first feeding section 151
  • the second feeding line 16 has a second feeding section 165
  • the first feeding section 151 and the The second feeding section 165 is a columnar straight conductive line parallel to each other and extending from the first feeding end 1111 and the second feeding end 1121 respectively, then the first feeding section 151 and the first feeding section 151 and the second feeding end 1121
  • the distance between the two feeding sections 165 corresponds to the distance between the first feeding end 1111 and the second feeding end 1121, which is less than or equal to ⁇ /32, and preferably tends to the range of ⁇ /128, In this way, the coupling effect between the first feeder section 151 and the second feeder section 165 can be reduced, which is beneficial to reduce the loss of the first feeder 15
  • the first feeder line 15 further has a first coupling section 152 extending integrally with the first feeder section 151, wherein the second feeder line 16 further There is a second coupling section 166 integrally extending from the second power feeding section 165, that is, the first power feeding section 151 is electrically coupled to the oscillation circuit unit 141 through the first coupling section 152 and is Fixedly coupled to the circuit substrate 13, the second power feeding section 165 is electrically coupled to the ground potential of the oscillation circuit unit 141 through the second coupling section 166 and is fixedly coupled to the circuit substrate 13,
  • the first coupling section 152 extends integrally with the first feeding section 151 in a direction deviating from the first feeding section 151, and the second coupling section 166 is deviating from the second feeding section 151.
  • the direction of 165 is integrally extended to the second feeding section 165, so that the first feeding line 15 and the first feeding line 15 and the The length of the second feeder line 15 is thus advantageous in setting the corresponding lengths of the first feeder line 15 and the second feeder line 16 to satisfy the impedance matching and corresponding resonant frequency design of the microwave Doppler detection module 10
  • the midpoint of the connection between the first feeding end 1111 and the second feeding end 1121 can be maintained to the electromagnetic
  • the distance of the reflecting surface 12 is in an appropriate range, such as a range greater than or equal to ⁇ /32 and less than or equal to ⁇ /2 or a preferred range tending to ⁇ /4, that is, based on the first coupling section 152 and the second coupling section 166
  • the length and shape of the microwave Doppler detection module 10 can meet the corresponding impedance matching and resonance frequency design.
  • the electromagnetic reflection surface 12 faces the first radiation source 111 and
  • the midpoint of the connection between the first feeding end 1111 and the second feeding end 1121 is to The distance of the electromagnetic reflection surface 12 can be maintained or reduced in the range greater than or equal to ⁇ /32 and less than or equal to ⁇ /2, and the microwave Doppler detection module 10 can meet the corresponding impedance matching and resonance frequency design. Therefore, the microwave Doppler detection module 10 can have a higher gain while satisfying the corresponding impedance matching and resonance frequency design.
  • the first coupling section 152 and the second coupling section 166 extend integrally with the first power feeding section 151 and the second power feeding section 151 and the second coupling section 166 in directions away from each other.
  • Power feeding section 165 the distance between the first coupling section 152 and the second coupling section 166 in a direction perpendicular to the first power feeding section 151 and the second power feeding section 165 is greater than that of the first
  • the distance between the feeding section 151 and the second feeding section 165 is such that the first feeding section 151 and the second feeding section 165 that are parallel to each other are within a distance of less than or equal to ⁇ /32
  • the state of being close to each other is conducive to electrically coupling the first feeder 15 and the first coupling section 152 to the oscillating circuit unit 141 and fixedly coupling to the circuit board 13 by welding, and to The second feeder 16 is electrically coupled to the ground potential of the oscillating circuit unit 141 at the second coupling section 166 by welding and is fixedly coupled
  • the first coupling section 152 and the second coupling section 166 are in a direction perpendicular to the first power feeding section 151 and the second power feeding section 165
  • the distance between the first coupling section 152 and the second coupling section 166 in the direction parallel to the first feeding section 151 and the second feeding section 165 is less than or equal to ⁇ /8 /8, so as to ensure the low loss characteristics between the first feeding section 151 and the second feeding section 165 at the same time, making it based on the first coupling section 152 and the second coupling section 166
  • the length and shape of the design can meet the corresponding impedance matching and resonance frequency design, and strengthen the electromagnetic reflection surface 12 from the first radiation source 111 and the second radiation source 112 to the electromagnetic reflection surface 12 The reflection effect of the radiation in the direction.
  • the first coupling section 152 starts from the end of the first power feeding section 151 opposite to the first power feeding terminal 1111 in order to be perpendicular to the first power feeding terminal 1111.
  • the direction of the first feeding section 151 extends parallel to the direction of the first feeding section 151
  • the second coupling section 166 extends from the second feeding section 165 to the second feeding end 1121
  • the opposite end extends sequentially in a direction perpendicular to the second power feeding section 165 and a direction parallel to the second power feeding section 165.
  • the first coupling section 152 may be set to be perpendicular to the first feeding end 1111 from the end of the first feeding section 151 opposite to the first feeding end 1111.
  • the direction of a feeding section 151 extends parallel to the direction of the first feeding section 151.
  • the first coupling section 152 is from the first feeding section 151 and the first feeding end 1111.
  • the opposite end is a cylindrical arc-shaped conductive wire extending in a direction perpendicular to the first feeding section 151 and parallel to the direction of the first feeding section 151 at the same time; similarly, the second coupling section 166 can be It is set from the end of the second feeding section 165 opposite to the second feeding end 1121 at the same time in a direction perpendicular to the second feeding section 165 and parallel to the second feeding section 165.
  • the second coupling section 166 is from the end of the second feeding section 165 opposite to the second feeding end 1121 at the same time in the direction perpendicular to the second feeding section 165 and parallel
  • the columnar arc-shaped conductive wire extending in the direction of the second feeding section 165 is not limited by the present invention.
  • the high-gain microwave Doppler detection module 10 further includes a fixing seat 17, wherein the fixing seat 17 is attached to the circuit board 13 carrying the One side of the electromagnetic reflecting surface 12, in which the first feeding line 15 and the second feeding line 16 are partially clamped and fixed to the fixing seat 17, so as to facilitate the maintenance of the first feeding section 151
  • the second feeding section 165 are parallel to each other and close to each other within a distance less than or equal to ⁇ /32, thereby helping to maintain the consistency and consistency of the high-gain microwave Doppler detection module 10 in the manufacturing process Stability during use.
  • the second feeder line 16 is arranged to surround the first feeder line 15 to form an electromagnetic shielding cavity 161, so that the second feeder line 16 is The grounded state reduces the influence of the coupling between the second feed line 16 and the first feed line 15 on the coupling between the first radiation source 111 and the second radiation source 112, and shields
  • the interference of external electromagnetic radiation on the first feeder 15 is beneficial to improve the anti-interference performance of the microwave Doppler detection module 10.
  • the second feeder line 16 arranged in a form surrounding the first feeder line 15 is coaxial with the first feeder line 15 so that the first radiation source 111 is located on the first feeder line 15 A feeding terminal 1111 is fed through the first feeding line 15, and the second radiation source 112 is beneficial when the second feeding terminal 1121 is fed through the second feeding line 16
  • the first radiation source 111 and the second radiation source 112 are coupled in a dual manner.
  • the first radiation source 111 is further grounded to reduce the microwave Doppler
  • the quality factor (ie Q value) of the microwave Doppler detection module is improved, which is beneficial to improve the anti-interference ability of the microwave Doppler detection module.
  • the three-dimensional structure of the microwave Doppler detection module 10 according to another modified embodiment of the above-mentioned embodiment of the present invention is illustrated.
  • the first radiation source 111 is further electrically connected to the second feeder 16 to be grounded.
  • the second feeder line 16 which is provided in a form surrounding the first feeder line 15 and is coaxial with the first feeder line 15 further has a pair of openings.
  • Slot position 162 wherein the second feed line 16 is provided with a pair of slots in the slot position 162 from the end connected to the second radiation source 112 along the direction of the first feed line 111, one of which is
  • the slotted position 162 defines a first arm 163 and a second arm 164 on the second feeder line 16, that is, the first arm 163 and the second arm 164 are the second feeder lines respectively 16 is defined between a pair of the slot positions 162, wherein the second radiation source 112 conductively extends from the second feeding terminal 1121 to the second feeding line 16
  • Two arms 164 wherein the first radiation source 111 is conductively extended from the first feeding end 1111 to the first arm 163 of the second feeding line 16 and is connected to the first feeding end 1111
  • the first feed line 15 is electrically connected, so as to form a state where the first radiation source
  • the slot of the second feed line 16 has a value greater than that along the direction of the first feed line 111 from the end of the second feed line 16 that is connected to the second radiation source 112.
  • the slotting depth is equal to ⁇ /128, so that while the first radiation source 111 is grounded through the first arm 163 of the second feed line 16, the first radiation source 111 can be grounded.
  • the first feeding terminal 1111 is excited by the feeding through the first feeding line 15, and the second radiation source 112 is fed at the second feeding terminal 1121 through the second feeding line 16 When it is electrically connected, it is ensured that the first radiation source 111 and the second radiation source 112 are coupled in a dual manner.
  • the corresponding impedance can be formed, which is beneficial to the oscillation circuit unit 141 and the first feeder 15 and the second feeder 16
  • the impedance matching between the pair of coupling poles 11 is described.
  • the first radiation source 111 and the second radiation source 112 are bent once to maintain the line length parameter of the second radiation source 112 L2 satisfies ⁇ /16 ⁇ L2 ⁇ , and the line length parameter L1 of the first radiation source 111 satisfies ⁇ /16 ⁇ L1 ⁇ , so that the second radiation source 112 and the first radiation
  • the size of the source electrode 111 in a direction parallel to the connection line between the first feeding terminal 1111 and the second feeding terminal 1121 is reduced.
  • FIG. 11 illustrates the microwave Doppler detection module corresponding to FIG. 10
  • FIG. 11 illustrates the microwave Doppler detection module corresponding to FIG. 10
  • the second feeder 16 is configured to be detachable A square tubular structure, that is, the second feeder 16 is a square tubular structure assembled by mutual clamping or other detachable methods.
  • FIG. 12 illustrates the microwave Doppler detection module corresponding to FIG. 11 10, wherein in this modified structure of the present invention, the first radiation source 111 is perpendicular to the first power feeding terminal 1111 and the first power feeding terminal 1111 at the end opposite to the first power feeding terminal 1111. The two opposite directions of the connection of the second feeding end 1121 are further extended, and the second radiation source 112 is perpendicular to the first feeding end 1111 at the end opposite to the second feeding end 1121.
  • the two opposite directions of the connection line with the second feeding terminal 1121 are further extended, so that when the first radiation source 111 and the second radiation source 112 are coupled in a dual manner, the second radiation source 112 is suppressed.
  • the energy accumulation of the end of a radiation source 111 opposite to the first feeding terminal 1111, and the energy accumulation of the end of the second radiation source 112 opposite to the second feeding end 1121 are suppressed, thereby It is beneficial to maintain the stability of the microwave Doppler detection module 10.
  • the microwave Doppler The Le detection module 10A includes a second radiation source 112A and a first radiation source 111A, wherein the second radiation source 112A has a second feeding terminal 1121A, and the first radiation source 111A has a first radiation source 111A.
  • a feeding end 1111A wherein the second feeding end 1121A and the first feeding end 1111A are close to each other within a distance of ⁇ /4, and the second radiation source 112A is connected to the second feeding end 1121A extends from the second feeding end 1121A, wherein the first radiation source 111A extends from the first feeding end 1111A with the first feeding end 1111A as the end, wherein The first radiation source 111A is configured to be fed at the first feeding terminal 1111A, and the second radiation source 112A is configured to be fed at the second feeding terminal 1121A, so that When the first radiation source 111A is fed from the first feeding terminal 1111A and the second radiation source 112A is fed from the second feeding terminal 1121A from the same source, the first The radiation source 111A is coupled to the second radiation source 112A from the first feeding terminal 1111A along the first radiation source 111A, and is coupled to the second radiation source 112A from the second feeding terminal 1121A along the second radiation source.
  • the microwave Doppler detection module 10A further includes a dielectric substrate 18A, wherein the first radiation source 111A and the second radiation source 112A It is carried on the same surface of the dielectric substrate 18A in the form of a microstrip line, so that the corresponding shape and size of the first radiation source 111A and the second radiation source 112A can be easily realized based on the microstrip line process.
  • the microwave Doppler detection module 10A further includes a circuit substrate 13A and a circuit unit 14A carried on the circuit substrate 13A, wherein the circuit unit 14A includes an oscillation circuit unit 141A and a frequency mixing detection unit 142A, wherein The first radiation source 111A and the second radiation source 112A are electrically coupled to different poles of the oscillation circuit unit 141A at the first feeding terminal 1111A and the second feeding terminal 1121A, respectively Specifically, the first radiation source 111A is fed and connected to the feed of the oscillation circuit unit 141A at the first feeding terminal 1111A, and the second radiation source 112A is connected to the second feed
  • the electrical terminal 1121A is electrically connected to the ground electrode of the oscillating circuit unit 141A, wherein the mixing and detecting unit 142A is electrically coupled to the oscillating circuit unit 141A and the pair of coupling poles 11A, wherein the oscillation circuit unit 141A is electrically coupled to the pair of coupling poles 11A.
  • the circuit unit 141A is allowed to be powered to output a feed signal at its feed pole and to be grounded at its ground pole, that is, the oscillation circuit unit 141A is allowed to be powered to serve as an excitation signal feed source, so as to act as the oscillating circuit
  • the first radiation source 111A and the second radiation source 112A are respectively connected to the first feeding terminal 1111A and the second feeding terminal 1121A by the oscillation circuit unit 141A.
  • the source is fed to transmit a probe beam and receive an echo of the probe beam, wherein the echo is received to generate an echo signal correspondingly, and the output of the mixing detection unit 142A corresponds to the feeding signal
  • An intermediate frequency signal with a frequency difference between the echo signal and the echo signal is based on the principle of the Doppler effect.
  • the intermediate frequency signal corresponds to the motion of the corresponding object that reflects the probe beam to form the echo, so the microwave
  • the Doppler detection module 10A is suitable for detecting the movement of an object.
  • first radiation source 111A and the second radiation source 112A are arranged point-symmetrically at the midpoint of the connection line between the first feeding terminal 1111A and the second feeding terminal 1121A, that is, The first radiation source 111A and the second radiation source 112A have the same shape and size, and the positional relationship between the first radiation source 111A and the second radiation source 112A satisfies the first radiation
  • the source 111A can be rotated 180 degrees in at least one direction around the midpoint of the connection between the first feeding terminal 1111A and the second feeding terminal 1121A to coincide with the position of the second radiation source 112A. This is beneficial to ensure that the second radiation source 112A and the first radiation source 111A are coupled in a dual manner.
  • the dielectric substrate 18A is spaced apart from the circuit substrate 13A in a manner parallel to the circuit substrate 13A.
  • the microwave Doppler detection module 10A further includes a first feeder 15A and a second feeder 16A, wherein the first radiation source 111A passes through the first feeder 1111A through the first feeder 1111A.
  • a feeder 15A is electrically coupled to the feeder of the oscillating circuit unit 141A, wherein the second radiation source 112A is electrically connected to the second feeder 1121A via the second feeder 16A
  • the ground potential of the oscillating circuit unit 141A forms a circuit connection structure between the first radiation source 111A and the second radiation source 112A and the circuit unit 14A.
  • the support of the feed line 15A and the second feed line 16A to the dielectric substrate 18A carrying the first radiation source 111A and the second radiation source 112A forms the dielectric substrate 18A and the circuit substrate 13A is a structural relationship set at intervals.
  • the second feeder line 16A and the first feeder line 15A are implemented as a shielded wire that surrounds the first feeder line 15A with the second feeder line 16A.
  • the shielding wire is pluggable and grounded to form a pluggable circuit connection structure between the first radiation source 111A and the second radiation source 112A and the circuit unit 14A, which is beneficial to The assembly of the microwave Doppler detection module 10A.
  • the microwave Doppler detection module 10A further has an electromagnetic reflecting surface 12A carried on the circuit substrate 13A, wherein the electromagnetic reflecting surface 12A carried on the circuit substrate 13A and carrying the circuit unit
  • the surface of 14A is opposite to the surface, wherein the first radiation source 111A and the second radiation source 112A are arranged in a space corresponding to the electromagnetic reflection surface 12A at an interval from the electromagnetic reflection surface 12A, so that According to the reflection characteristics of the electromagnetic reflection surface 12A on electromagnetic waves, and the first radiation source 111A and the second radiation source 112A in the space corresponding to the electromagnetic reflection surface 12A are opposite to the electromagnetic reflection surface 12A
  • the structural relationship of the interval forms the directional radiation characteristic of the microwave Doppler detection module 10A from the electromagnetic reflecting surface 12A to the first radiation source 111A and the second radiation source 112A, that is, correspondingly formed
  • the microwave Doppler detection module 10A has a different structural design, which is beneficial to improve the microwave Doppler detection module 10A. Applicability.
  • the adjustment based on the positional relationship between the dielectric substrate 18A and the circuit substrate 13A is based on the results of a modified embodiment of the above-mentioned embodiment of the present invention.
  • the microwave Doppler detection module 10A is illustrated.
  • the dielectric substrate 18A is perpendicular to the circuit substrate 13A, and the connection line between the first power feeding terminal 1111A and the second power feeding terminal 1121A is parallel to all The circuit board 13A.
  • the dielectric substrate 18A is connected to the first power feeding terminal 1111A and the second power feeding terminal 1121A.
  • the dielectric substrate 18A is perpendicular to the circuit substrate 13A, and the connection line of the first power feeding terminal 1111A and the second power feeding terminal 1121A is parallel to the line of the circuit substrate 13A. Positional relationship.
  • the method of extending to the other side of the dielectric substrate 18A maintains that the second radiation source 112A and the first radiation source 111A satisfy the requirements of the second feeding terminal 1121A and the first feeding terminal 1121A, respectively. While the end 1111A has a requirement that the line length is greater than or equal to ⁇ /16, the size of the dielectric substrate 18A can be reduced to reduce the size of the microwave Doppler detection module 10A.
  • the second radiation source 112A corresponding to the midpoint of the connection between the first feeding terminal 1111A and the second feeding terminal 1121A and the first A radiation source 111A has a point symmetrical structure relationship.
  • the first radiation source 111A and the second radiation source can be arranged on the same surface of the dielectric substrate 18A to extend from the first power feeding terminal 1111A and the second power feeding terminal 1121A, and further extend to the other side of the dielectric substrate 18A.
  • the first feeding end 1111A of the first radiation source 111A and the second feeding end 1121A of the second radiation source 112A are carried on the same surface of the dielectric substrate 18A , wherein the first radiation source 111A uses the first feeding end 1111A as an end to extend along the connection direction from the second feeding end 1121A to the first feeding end 1111A, and continues to go around the The side edge of the dielectric substrate 18A extends to the other surface of the dielectric substrate 18A, wherein the second radiation source 112A uses the second power feeding terminal 1121A as an end along the first power feeding terminal 1111A to the first power feeding terminal 1111A.
  • the connection direction of the two power feeding terminals 1121A extends, and continues to extend around the side of the dielectric substrate 18A to the other side of the dielectric substrate 18A.
  • the first radiation source 111A and the second radiation source 112A are on different sides of the dielectric substrate 18A from the first feeding terminal 1111A and the second radiation source respectively.
  • the two feeding ends 1121A extend and further extend to the other side of the dielectric substrate 18A.
  • the first feeding end 1111A of the first radiation source 111A and the second feeding end 1121A of the second radiation source 112A are carried on different surfaces of the dielectric substrate 18A, wherein the first radiation source 111A is on the side of the dielectric substrate 18A carrying the first feeding end 1111A, taking the first feeding end 1111A as an end, and winding from the first feeding end 1111A
  • the side of the dielectric substrate 18A extends to the side of the dielectric substrate 18A that carries the second power feeding terminal 1121A.
  • the second radiation source 112A is on the side of the dielectric substrate 18A carrying the second feeding end 1121A, taking the second feeding end 1121A as an end, and winding from the second feeding end 1121A
  • the side of the dielectric substrate 18A extends to the side of the dielectric substrate 18A that carries the first power feeding terminal 1111A.
  • At least one pair of the pair of coupling poles 11B is allowed to be provided on both sides of the dielectric substrate 18B, which can also ensure that all pairs of the pair of coupling poles 11B are
  • the first radiation source 111B and the second radiation source 112B are coupled in a dual manner, and at the same time strengthen the first pair of coupling poles 11B carried on one side of the dielectric substrate 18B.
  • the dual coupling of the radiation source 111B and the second radiation source 112 arms of the pair of coupling poles 11B carried on the other side of the dielectric substrate 18B is not limited in the present invention.
  • the second radiation source of the pair of dipole coupling poles corresponds to the first radiation source. It has a flexible shape and size and is not limited to a plate-like structure with a restricted area, that is, the grounded second radiation source is free from the restriction of having the lowest restricted area as the reference ground, and then the second radiation
  • the microwave Doppler detection module is also suitable for the application scenarios of the microwave detection module of the columnar radiation source structure, and is relative to the columnar radiation source structure.
  • Microwave detection module, the corresponding metal plate will not affect the coupling between the first radiation source and the second radiation source, and the microwave Doppler detection module has better performance in corresponding application scenarios. The stability.
  • the present invention further provides a microwave Doppler Le detection equipment.
  • the microwave Doppler detection device includes the microwave Doppler detection module 10 and an electromagnetic shielding layer 20, wherein the electromagnetic shielding layer 20 has a through hole 22, and the circuit substrate 13 is disposed on the electromagnetic shielding layer.
  • the circuit connection structure between the first radiation source 111 and the second radiation source 112 are arranged in the space outside the shielding space, so as to realize the space outside the shielding space.
  • the first radiation source 111 and the second radiation source 112 are perpendicular to the electromagnetic
  • the projection area of the shielding layer 20 in the direction of the electromagnetic shielding layer 20 can be reduced, which is conducive to reducing the size of the through holes 22 and is beneficial to maintaining the integrity of the electromagnetic shielding layer 20 and improving the microwave frequency.
  • first radiation source 111 and the second radiation source 112 are coupled in a dual manner, and then the first radiation source 111 and the second radiation source 112 are located When the space corresponding to the same surface of the electromagnetic shielding layer 20, the coupling between the first radiation source 111 and the second radiation source 112 can avoid being obstructed by the electromagnetic shielding layer 20, so It is beneficial to maintain the detection stability of the microwave Doppler detection module 10 installed in the microwave Doppler detection device.
  • the electromagnetic shielding layer 20 is configured as an LED lamp panel, and the side corresponding to the first radiation source 111 and the second radiation source 112 is provided with more than one side.
  • the projected area of the electromagnetic shielding layer 20 in the direction of the electromagnetic shielding layer 20 can be reduced, and the size of the corresponding through hole 22 can be reduced to allow the first radiation source 111 and the second radiation source 111 to be reduced.
  • the microwave Doppler detection module 10 is installed on the microwave Doppler detection device through the two radiation sources 112, which is beneficial to maintain the integrity of the LED light board and avoid the formation of darkness on the LED light board. Area.
  • the puller detection equipment includes the microwave Doppler detection module 10A and an electromagnetic shielding layer 20A, wherein the electromagnetic shielding layer 20A has a through hole 22A, and the circuit substrate 13A is disposed on one side of the electromagnetic shielding layer 20A Corresponding to a shielded space, wherein the first radiation source 111A and the second radiation source 112A are arranged in a space corresponding to the other side of the electromagnetic shielding layer 20A, wherein the first feeder 15A And the second feed line 16A penetrate the electromagnetic shielding layer 20A through the through hole 22A to form the gap between the first radiation source 111A and the second radiation source 112A and the circuit unit 14A
  • the circuit connection structure in this way, through the arrangement of the first radiation source 111A and the second radiation source 11
  • the projected area of the electromagnetic shielding layer 20A can be reduced, which is conducive to reducing the size of the through hole 22A and is beneficial to maintaining the integrity of the electromagnetic shielding layer 20A and improving the microwave Doppler detection.
  • the second feeder line 16A and the first feeder line 15A are configured as a shielded line that surrounds the first feeder line 15A with the second feeder line 16A, and the shield
  • the wires are pluggable and grounded to form a pluggable circuit connection structure between the first radiation source 111A and the second radiation source 112A and the circuit unit 14A, such as setting the shielding wire
  • the first radiation source 111A, the second radiation source 112A and the circuit unit 14A are pluggable to form a structure capable of being pluggable with the dielectric substrate 18A or the circuit substrate 13A
  • the size of the through hole 22A of the electromagnetic shielding layer 20 is allowed to be set to have a wire diameter corresponding to the shielding wire, which is beneficial to reduce the size of the through hole 22A, thereby facilitating
  • the integrity of the electromagnetic shielding layer 20A is further maintained and the concealment of the installation of the microwave Doppler detection module 10A on the microwave Doppler detection equipment is improved.
  • the electromagnetic shielding layer 20A is configured as an LED lamp panel, and how much is provided on the side corresponding to the first radiation source 111A and the second radiation source 112A.
  • LED lamp beads 21A wherein based on the corresponding shape design of the first radiation source 111A and the second radiation source 112A, the first radiation source 111A and the second radiation source 112A are perpendicular to
  • the projection area of the electromagnetic shielding layer 20A in the direction of the electromagnetic shielding layer 20A can be reduced, which is advantageous in avoiding the formation of a dark area on the LED lamp panel.
  • the electromagnetic reflecting surface 12A can be equivalently formed on the electromagnetic shielding layer 20A, that is, the electromagnetic reflecting surface formed on the circuit substrate 13A is equivalent to
  • the surface 12A may not be provided, that is, in this embodiment of the present invention, the electromagnetic reflection surface 12A formed on the circuit substrate 13A does not constitute a limitation to the microwave Doppler detection device of the present invention.
  • the microwave Doppler detection module includes at least one pair of the pair of coupling poles, wherein the pair of the pair of coupling poles
  • the first radiation source and the second radiation source have various shapes and sizes, and can connect the first radiation source and the first radiation source to the shielding space corresponding to one side of the electromagnetic shielding layer through the through hole.
  • the second radiation source extends to the space outside the shielding space corresponding to the other side of the electromagnetic shielding layer to complete the microwave Doppler detection module corresponding to the microwave Doppler detection equipment.
  • the microwave Doppler detection module in the microwave
  • the concealed installation of the Doppler detection equipment can realize stable detection of the space outside the shielded space without dead angles.
  • the electromagnetic shielding layer of the microwave Doppler detection device is not limited to be implemented as an LED lamp panel.
  • the electromagnetic shielding layer should be understood as a functional layer with electromagnetic shielding effect, including but not Limited to metal (mesh) layers, composite layers doped with metals, metal oxide layers, etc. Therefore, the electromagnetic shielding layer can also be implemented as a device housing with electromagnetic shielding effect, such as a lamp housing, an air conditioner housing, an elevator car body, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Astronomy & Astrophysics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供一种微波多普勒探测模块及设备,其中所述微波多普勒探测模块包括一电磁反射面和与所述电磁反射面相间隔地被设置的至少一对对偶耦合极子,其中一对所述对偶耦合极子具有一第一馈电端和一第二馈电端并自两所述馈电端分别延伸有一第一辐射源极和一第二辐射源极,其中所述第一馈电端和所述第二馈电端相互靠近,并当所述第一辐射源极和所述第二辐射源极分别于所述第一馈电端和所述第二馈电端被同一激励信号馈源馈电时,所述第一辐射源极和所述第二辐射源极的电流与电位分布能够以所述第一馈电端和所述第二馈电端的连线的中点呈对偶分布状态而以对偶方式耦合,降低了对所述微波多普勒探测模块的尺寸要求,并能够避免形成探测死区。

Description

微波多普勒探测模块及设备 技术领域
本发明涉及微波多普勒探测领域,尤其涉及一种微波多普勒探测模块及设备。
背景技术
基于多普勒效应原理的微波探测技术作为人与物,物与物之间相联的重要枢纽在行为探测和存在探测技术中具有独特的优势,其能够在不侵犯人隐私的情况下,探测出活动物体,因而具有广泛的应用前景。
现有的微波探测模块依辐射源的结构主要分为柱状辐射源结构的微波探测模块和平板辐射源结构的微波探测模块,具体地,参考本发明的说明书附图之图1A和图1B所示,现有的柱状辐射源结构的微波探测模块10P和平板辐射源结构的微波探测模块20P的结构原理分别被示意,其中该柱状辐射源结构的微波探测模块10P包括一柱状辐射源11P和一参考地面12P,其中该参考地面12P被设置有一辐射孔121P,其中该柱状辐射源11P经该辐射孔121P垂直穿透该参考地面12P而于该辐射孔121P与该参考地面12P之间形成有一辐射缝隙1211P,如此则在该柱状辐射源11P被馈电时,该柱状辐射源11P能够与该参考地面12P耦合而自该辐射缝隙1211P以该柱状辐射源11P为中心轴形成一辐射空间100P,其中该辐射空间100P为该柱状辐射源结构的微波探测模块10P辐射的电磁波的覆盖范围,其中该辐射空间100P于其中心轴分别向该柱状辐射源11P的两端内凹而具有探测死区。可以理解的是,在实际使用中,如在垂直探测应用中,当将该柱状辐射源结构的微波探测模块10P安装于吊顶、天花板以及棚顶等垂直方向应用于垂直向下的探测时,该柱状辐射源结构的微波探测模块10P安装位通常被降低以减小或避免相应的该辐射空间100P在该柱状辐射源结构的微波探测模块10P和地面之间的空间形成探测死区。也就是说,由于该柱状辐射源结构的微波探测模块10P存在探测死区,该柱状辐射源结构的微波探测模块10P在实际使用中的探测距离远小于相应的该辐射空间100P在该中心轴方向的最大尺寸,即现有的该柱状辐射源结构的微波探测模块10P在实际使用中的探测距离远小于 与其增益大小相匹配的探测距离,而现有的该柱状辐射源结构的微波探测模块10P的增益较低,一般在2dB左右,如此则进一步限制了现有的该柱状辐射源结构的微波探测模块10P在微波多普勒探测领域的应用。
参考图1B所示的该平板辐射源结构的微波探测模块20P的结构原理,其中该平板辐射源结构的微波探测模块20P包括一平板辐射源21P和一参考地面22P,其中该平板辐射源21P与该参考地面22P相互平行地被间隔设置而于该平板辐射源21P和该参考地面22P之间形成有一辐射缝隙23P。可以理解的是,在结构上,由于该柱状辐射源结构的微波探测模块10P的该柱状辐射源11P垂直于该参考地面12P,相对于趋于平板结构的该平板辐射源结构的微波探测模块20P,该柱状辐射源结构的微波探测模块10P在实际安装中易占用更大的安装空间,因而在如今追求小型简洁的外观审美趋势下,具有平板辐射源结构的该微波探测模块因占用空间小和相对稳定的优势而备受青睐。
然而,在一些应用场景,该柱状辐射源结构的微波探测模块10P相对于该平板辐射源结构的微波探测模块20P更具优势。示例地,参考本发明的说明书附图之图2所示,该柱状辐射源结构的微波探测模块10P于LED灯板30P上的应用被示意,其中该LED灯板30P的一面均匀设置有多个LED灯珠31P,以于该LED灯板30P的该面形成一发光面。可以理解的是,为实现基于人体活动地控制该LED灯板30P的照明,现有的微波探测模块被应用于该LED灯板30P,并在实际应用中,有效的电磁波探测信号应于该LED灯板30P的发光面所对应的空间内辐射。而由于目前的该LED灯板30P大多采用具有导电性能的铝板制备,为避免具有导电性能的该LED灯板30P对电磁波探测信号的屏蔽作用,从人体活动探测的稳定性的角度出发,理想地,应将作为人体活动探测部件的微波探测模块置于该LED灯板30P的发光面,但无论采用该柱状辐射源结构的微波探测模块10P或该平板辐射源结构的微波探测模块20P,由于相应的该参考地面12P和该参考地面22P的面积大小的最小极值受到限制,该柱状辐射源结构的微波探测模块10P或该平板辐射源结构的微波探测模块20P于该LED灯板30P的发光面的安装势必占用部分该LED灯珠31P的安装位或遮挡部分该LED灯珠31P,从而使得该LED灯板30P所发出的光线产生暗区。
因此为实现基于人体活动的探测控制该LED灯板30P的照明,目前主要通过在不影响该LED灯珠31P的排布的基础上,于该LED灯板30P上设置一通孔 32P,和于该LED灯板30P的与发光面相对的一面,将该柱状辐射源结构的微波探测模块10P的该柱状辐射源11P经该通孔32P穿过该LED灯板30P地延伸至该LED灯板30P的发光面,以将该柱状辐射源结构的微波探测模块10P的该参考地面12P隐藏于该LED灯板30P的与发光面相对的该面,从而使得该柱状辐射源结构的微波探测模块10P于该LED灯板30P的安装能够避免占用部分该LED灯珠31P的安装位或遮挡部分该LED灯珠31P,进而维持该LED灯板30P所发出的光线的均匀性。但在实际使用中,受限于该LED灯板30P的厚度的最薄极值和该通孔32P大小的最大极值,该柱状辐射源结构的微波探测模块10P的该柱状辐射源11P与该参考地面12P之间的耦合会受到该LED灯板30P的阻隔,即位于该LED灯板30的发光面的相应的该辐射空间100P会因该LED灯板30P的屏蔽和反射作用而缩小,因此该柱状辐射源结构的微波探测模块10P应用于LED灯板30P对人体活动的探测的稳定性并不理想。并且由于该柱状辐射源结构的微波探测模块10P双向辐射的方向性和该LED灯板30P的反射作用,位于该LED灯板30P的与发光面相对的该面的相应的该辐射空间100P会被增强,即该柱状辐射源结构的微波探测模块10P于该LED灯板30P的与发光面相对的该面的辐射能量被增强,从而在该LED灯板30P的与发光面相对的该面所对应的空间存在金属物体时,如该LED灯板30P的金属壳体或吊顶空间的金属管道,该柱状辐射源结构的微波探测模块10P易因自激原理误认为存在活动物体,进而影响基于人体活动的探测对该LED灯板30P的智能控制的体验。
也就是说,相对于该平板辐射源结构的微波探测模块20P,该柱状辐射源结构的微波探测模块10P能够于一金属板材的一面所对应的一屏蔽空间,通过一通孔将该柱状辐射源11P延伸至该金属板材的另一面所对应的屏蔽空间之外的空间,从而通过隐藏式的安装方式突破该屏蔽空间地实现对该屏蔽空间之外的空间的活动探测,然而其探测稳定性并不理想,并存在探测死区。
发明内容
本发明的一目的在于提供一微波多普勒探测模块及设备,其中所述微波多普勒探测模块采用对偶的耦合方式而具有相对较高的辐射增益,并能够避免形成探测死区。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述微波多 普勒探测模块基于对偶耦合结构包括至少一对对偶耦合极子,其中一对所述对偶耦合极子包括一第一辐射源极和一第二辐射源极,其中所述第一辐射源极具有一第一馈电端并以所述第一馈电端为端地延伸,其中所述第二辐射源极具有一第二馈电端并以所述第二馈电端为端地延伸,其中所述第一馈电端和所述第二馈电端相互靠近,如此以当所述第一辐射源极和所述第二辐射源极分别于所述第一馈电端和所述第二馈电端被同源馈电时,所述第一辐射源极自所述第一馈电端沿所述第一辐射源极对应耦合于所述第二辐射源极的自所述第二馈电端沿所述第二辐射源极的相应位置,从而形成所述第一辐射源极和所述第二辐射源极之间对偶的耦合方式。
本发明的另一目的在于提供一微波多普勒探测模块及设备,当所述第一辐射源极和所述第二辐射源极分别于所述第一馈电端和所述第二馈电端被同源馈电时,所述第二辐射源极和所述第一辐射源极基于对偶的耦合方式形成有一辐射空间,其中所述辐射空间为所述微波多普勒探测模块辐射的电磁波的覆盖范围,则所述辐射空间在所述第一馈电端和所述第二馈电端的连线的径向方向外凸而避免了于该方向形成探测死区,有利于提高所述微波多普勒探测模块的探测稳定性和适用性。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述微波多普勒探测模块进一步具有一电磁反射面,其中所述第一辐射源极和所述第二辐射源极于所述电磁反射面所对应的空间与所述电磁反射面间隔地被设置,以藉由所述电磁反射面对电磁波的反射特性,形成所述微波多普勒探测模块的定向辐射特性,则采用对偶的耦合方式的所述微波多普勒探测模块能够形成定向的所述辐射空间而适用于定向空间的物体活动的探测,并有利于避免所述微波多普勒探测模块产生自激而提高所述微波多普勒探测模块的抗干扰性能。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述第一辐射源极以所述第一馈电端为端,所述第二辐射源极以所述第二馈电端为端,则在所述第一辐射源极和所述第二辐射源极分别于所述第一馈电端和所述第二馈电端被同源馈电时,所述第一辐射源极和所述第二辐射源极的电位与电流呈对偶分布状态而被简化,从而有利于简化所述微波多普勒探测模块的数据处理和提高所述微波多普勒探测模块的稳定性。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中基于对偶的 耦合方式,所述第二辐射源极具有对应于所述第一辐射源极的形状尺寸,则所述第一辐射源极和第二辐射源极脱离了具有限制面积以作为参考面的限制,即所述所述第一辐射源极和所述第二辐射源极的形状尺寸具有多种实施结构而不限于具有限制面积的板状结构,有利于所述微波多普勒探测模块的小型化和提高所述微波多普勒探测模块的适用性。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述第一辐射源极和所述第二辐射源极具有灵活多变的形状尺寸而不限于具有限制面积的板状结构,则通过将所述第一辐射源极和所述第二辐射源极延伸出相应金属板材的方式,所述微波多普勒探测模块同样适用于前述柱状辐射源结构的微波探测模块的应用场景,并相对于柱状辐射源结构的微波探测模块,所述微波多普勒探测模块于相应应用场景具有更好的稳定性。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中基于对所述第二辐射源极和所述第一辐射源极的形状的调整,如以弯折的方式调整所述第二辐射源极和所述第一辐射源极的形状,在维持所述第二辐射源极自所述第二馈电端沿所述第二辐射源极的线长要求和所述第一辐射源极自所述第一馈电端沿所述第一辐射源极的线长要求的同时,所述微波多普勒探测模块的尺寸能够被进一步减小,即在保障所述第二辐射源极和所述第一辐射源极之间以对偶的方式耦合的同时,提高了所述微波多普勒探测模块的适用性。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中基于对所述第二辐射源极和所述第一辐射源极的形状的调整,如设置所述第二辐射源极和所述第一辐射源极在所述第一馈电点和所述第二馈电点的连线方向反向延伸,和在靠近所述电磁反射面方向同向延伸,以形成所述第一辐射源极的与所述第一馈电端相对的一端相对于所述第一馈电端靠近所述电磁反射面的状态,和形成所述第二辐射源极的与所述第二馈电端相对的一端相对于所述第二馈电端靠近所述电磁反射面的状态,相应所述辐射空间能够被调整至在定向辐射方向的投影具有趋于圆形的形状,有利于提高所述微波多普勒探测模块于不同应用场所对定向空间的物体活动的探测的适用性。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述第一辐射源极和所述第二辐射源极进一步被接地,以降低所述微波多普勒探测模块的阻抗,则所述微波多普勒探测模块的品质因数(即Q值)被提高,有利于提高所 述微波多普勒探测模块的抗干扰能力。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述微波多普勒探测模块进一步包括一电路基板和承载于所述电路基板的一电路单元,其中所述电路单元包括一振荡电路单元和一混频检波单元,其中所述第一辐射源极和所述第二辐射源极分别于所述第一馈电端和所述第二馈电端被电性耦合于所述振荡电路单元的不同极,其中所述混频检波单元被电性耦合于所述振荡电路单元和所述对偶耦合极子,如此以在所述振荡电路单元被供电时,所述第一辐射源极和所述第二辐射源极被所述振荡电路单元同源馈电而以对偶的方式耦合地发射一探测波束,和接收所述探测波束的一回波,所述混频检波单元输出对应于所述探测波束和所述回波之间频率差异的一中频信号,则基于多普勒效应原理,所述中频信号对应于反射所述探测波束而形成所述回波的相应物体的运动,因而所述微波多普勒探测模块适用于探测物体运动。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述电磁反射面承载于所述电路基板的与承载有所述电路单元的一面相对的一面,即所述电磁反射面朝向所述对偶耦合极子和阻隔于所述电路单元与所述对偶耦合极子之间,以藉由所述电磁反射面对电磁辐射的反射特性,阻碍所述第一辐射源极与所述第二辐射源极耦合所产生的电磁辐射对所述电路单元的干扰,有利于提高所述微波多普勒探测模块的抗干扰性能。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述微波多普勒探测模块进一步包括一第一馈电线和一第二馈电线,其中所述第一辐射源极于所述第一馈电端经所述第一馈电线被电性耦合于所述振荡电路单元,其中所述第二辐射源极于所述第二馈电端经所述第二馈电线被电性连接于所述振荡电路单元的地电位,如此以形成所述第一辐射源极和所述第二辐射源极分别于所述第一馈电端和所述第二馈电端被电性耦合于所述振荡电路单元的不同极的电路连接关系,并藉由所述第一馈电线和所述第二馈电线对所述第一辐射源极和所述第二辐射源极的支撑形成所述对偶耦合极子于所述电磁反射面所对应的空间与所述电磁反射面间隔地被设置的结构关系。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述第二馈电线包围所述第一馈电线地被设置而形成有一电磁屏蔽腔,如此以在所述第二馈电线被接地的状态降低所述第二馈电线与所述第一馈电线之间的耦合对所述第 一辐射源极和所述第二辐射源极之间的耦合的影响,和屏蔽外界电磁辐射对所述第一馈电线的干扰,有利于提高所述微波多普勒探测模块的抗干扰性能。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述微波多普勒探测设备包括所述微波多普勒探测模块并具有一电磁屏蔽层,其中所述电磁屏蔽层具有一通孔,其中所述电路基板被设置于所述电磁屏蔽层的一面所对应的一屏蔽空间,其中所述第一辐射源极和所述第二辐射源极被设置于所述电磁屏蔽层的另一面所对应的空间,其中所述第一馈电线和所述第二馈电线经所述通孔穿透所述电磁屏蔽层地形成所述第一辐射源极和所述第二辐射源极与所述电路单元之间的电路连接结构,如此以藉由所述第一辐射源极和所述第二辐射源极于所述屏蔽空间之外的空间的设置,实现对该屏蔽空间之外的空间的活动探测,其中基于所述第一辐射源极和所述第二辐射源极对偶的耦合方式,所述第一辐射源极和所述第二辐射源极在垂直于所述电磁屏蔽层的方向于所述电磁屏蔽层的投影面积能够被减小,有利于所述微波多普勒探测模块于所述微波多普勒探测设备的安装的隐蔽性,并当所述电磁屏蔽层形成于LED灯板时,能够避免于所述LED灯板形成暗区。
本发明的另一目的在于提供一微波多普勒探测模块及设备,其中所述微波多普勒探测模块基于对偶的耦合方式能够避免形成探测死区,同时降低了对所述微波多普勒探测模块的尺寸要求,有利于提高被安装于所述微波多普勒探测设备的所述微波多普勒探测模块的隐蔽性和探测稳定性。
依本发明的一个方面,本发明提供一微波多普勒探测模块,所述微波多普勒探测模块包括:
至少一对对偶耦合极子,其中一对所述对偶耦合极子包括一第一辐射源极和一第二辐射源极,其中所述第一辐射源极具有一第一馈电端并被设置为以所述第一馈电端为端延伸的导体,其中所述第二辐射源极具有一第二馈电端并被设置为所述第二馈电端为端延伸的导体,其中所述第一辐射源极和所述第二辐射源极分别适于在所述第一馈电端和所述第二馈电端被同一激励信号馈源馈电,其中所述第一馈电端和所述第二馈电端在小于等于λ/32的距离范围内相互靠近,其中λ为与该激励信号馈源的馈电信号频率相对应的波长参数,其中所述第一辐射源极被设置满足自所述第一馈电端具有大于等于λ/16的线长,其中所述第二辐射源极被设置满足自所述第二馈电端具有大于等于λ/16的线长,如此以当所述第一辐射源极和所述第二辐射源极分别于所述第一馈电端和所述第二馈电端被同一 激励信号馈源馈电时,所述第一辐射源极和所述第二辐射源极的电流和电位分布能够以所述第一馈电端和所述第二馈电端的连线的中点呈对偶分布状态,从而使得所述第一辐射源极自所述第一馈电端沿所述第一辐射源极对应耦合于所述第二辐射源极的自所述第二馈电端沿所述第二辐射源极的相应位置;和
一电磁反射面,其中所述对偶耦合极子于所述电磁反射面所对应的空间与所述电磁反射面相间隔地被设置,其中所述第一馈电端和所述第二馈电端的连线的中点与所述电磁反射面之间的距离满足大于等于λ/32且小于等于λ/2。
依本发明的另一方面,本发明还提供一微波多普勒探测设备,所述微波多普勒探测设备包括:
一电路单元,其中所述电路单元包括一振荡电路单元和一混频检波单元,其中所述振荡电路单元被设置允许被供电而于其馈极输出一馈电信号和于其地极被接地以作为一激励信号馈源;
一电路基板,其中所述电路单元被承载于所述电路基板;
一电磁屏蔽层,其中所述电磁屏蔽层被设置有一通孔,其中所述电路单元被设置于所述电磁屏蔽层的一面所对应的空间;以及
至少一对对偶耦合极子,其中所述对偶耦合极子被设置于所述电磁屏蔽层的另一面所对应的空间,其中一对所述对偶耦合极子包括一第一辐射源极和一第二辐射源极,其中所述第一辐射源极具有一第一馈电端并被设置为以所述第一馈电端为端延伸的导体,其中所述第二辐射源极具有一第二馈电端并被设置为所述第二馈电端为端延伸的导体,其中所述混频检波单元被电性耦合于所述振荡电路单元和所述对偶耦合极子,其中所述第一辐射源极于所述第一馈电端被经所述通孔穿透所述电磁屏蔽层的一第一馈电线电性耦合于所述振荡电路单元的馈极,其中所述第二辐射源极于所述第二馈电端被经所述通孔穿透所述电磁屏蔽层的一第二馈电线电性连接于所述振荡电路单元的地极,其中所述第一馈电端和所述第二馈电端在小于等于λ/32的距离范围内相互靠近,其中λ为与所述馈电信号的频率相对应的波长参数,其中所述第一辐射源极被设置满足自所述第一馈电端具有大于等于λ/16的线长,其中所述第二辐射源极被设置满足自所述第二馈电端具有大于等于λ/16的线长,如此以当所述振荡电路单元被供电时,所述第一辐射源极和所述第二辐射源极的电位分布能够以所述第一馈电端和所述第二馈电端的连线的中点呈对偶分布状态,从而使得所述第一辐射源极自所述第一馈电端沿所述第一辐射源极对应耦合于所述第二辐射源极的自所述第二馈电端沿所述第 二辐射源极的相应位置。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
附图说明
图1A为现有的柱状辐射源结构的微波探测模块的结构原理图。
图1B为现有的平板辐射源结构的微波探测模块的结构原理图。
图2为现有的柱状辐射源结构的微波探测模块于LED灯板安装结构示意图。
图3为依本发明的一实施例的一微波多普勒探测模块的立体结构示意图。
图4为依本发明的上述实施例的所述微波多普勒探测模块的辐射方向图。
图5为依本发明的上述实施例的一变形实施例的所述微波多普勒探测模块的立体结构示意图。
图6为依本发明的上述变形实施例的所述微波多普勒探测模块的辐射方向图。
图7为依本发明的上述实施例的另一变形实施例的所述微波多普勒探测模块的立体结构示意图。
图8为依本发明的上述变形实施例的所述微波多普勒探测模块的侧视剖视结构示意图。
图9为依本发明的上述实施例的另一变形实施例的所述微波多普勒探测模块的立体结构示意图。
图10为依本发明的上述实施例的另一变形实施例的所述微波多普勒探测模块的立体结构示意图。
图11为依本发明的上述变形实施例的所述微波多普勒探测模块的另一替代结构的立体示意图。
图12为依本发明的上述变形实施例的所述微波多普勒探测模块的上述替代结构的一变形结构的立体示意图。
图13为依本发明的另一实施例的一微波多普勒探测模块的立体结构示意图。
图14为依本发明的上述实施例的一变形实施例的所述微波多普勒探测模块的立体结构示意图。
图15为依本发明的一实施例的安装有一微波多普勒探测模块的一微波多普勒探测设备的立体结构示意图。
图16为依本发明的另一实施例的安装有一微波多普勒探测模块的一微波多普勒探测设备的立体结构示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参考本发明的说明书附图之图3所示,依本发明的一实施例的一微波多普勒探测模块10的立体结构被示意,其中所述微波多普勒探测模块10包括至少一对对偶耦合极子11,其中所述一对所述对偶耦合极子11包括一第一辐射源极111和一第二辐射源极112,其中所述第二辐射源极112具有一第二馈电端1121,所述第一辐射源极111具有一第一馈电端1111,其中所述第二馈电端1121和所述第一馈电端1111相互靠近,其中所述第二辐射源极112为以所述第二馈电端1121为端延伸的导体,其中所述第一辐射源极111为以所述第一馈电端1111为端延伸的导体,其中所述第一辐射源极111和所述第二辐射源极112被设置分别适于在所述第一馈电端1111和所述第二馈电端1121被同源馈电,其中所述第二馈电端1121和所述第一馈电端1111相互靠近并满足所述第二馈电端1121与所述第一馈电端1111之间的距离小于等于λ/32,其中λ为对应馈电信号频率的波长参数,如此以当所述第一辐射源极111和所述第二辐射源极112分别于所述第一馈电端1111和所述第二馈电端1121被同源馈电时,所述第一辐射源极111自所述第一馈电端1111沿所述第一辐射源极111对应耦合于所述第二辐射源极112 的自所述第二馈电端1121沿所述第二辐射源极112的相应位置,从而形成所述第一辐射源极111和所述第二辐射源极112之间对偶的耦合方式。
值得一提的是,基于所述第一辐射源极111和所述第二辐射源极112之间对偶的耦合方式,所述第二辐射源极112和所述第一辐射源极111之间能够产生耦合的尺寸要求被降低。具体地,所述第二辐射源极112和所述第一辐射源极111被设置满足分别自所述第二馈电端1121和所述第一馈电端1111具有大于等于λ/16的线长。即所述第一辐射源极111被设置满足于所述第一馈电端1111和与所述第一馈电端1111相对的一端之间具有大于等于λ/16的线长,所述第二辐射源极112被设置满足于所述第二馈电端1121和与所述第二馈电端1121相对的一端具有大于等于λ/16的线长,也就是说,所述第一辐射源极111和所述第二辐射源极112允许分别自所述第一馈电端1111和所述第二馈电端1121被设置具有λ/16的最小线长。
优选地,第二馈电端1121与所述第一馈电端1111之间的距离趋于λ/128,如此则所述第一辐射源极111和所述第二辐射源极112之间相互耦合的损耗能够被降低而对应提高所述微波多普勒探测模块10的增益。
特别地,在本发明的实施例描述中,以所述第一辐射源极111和所述第二辐射源极112分别于所述第一馈电端1111和所述第二馈电端1121被馈电连接于同一激励信号馈源的不同极而被同源馈电为例,所述微波多普勒探测模块10被示例。
具体地,在本发明的这个实施例中,所述第一辐射源极111在所述第一馈电端1111被馈电连接于该激励信号馈源的馈极,所述第二辐射源极112在所述第二馈电端1121被电性连接于该激励信号馈源的地极而与所述第一辐射源极111被该激励信号馈源同源馈电,其中所述第一辐射源极111自所述第一馈电端1111沿所述第一辐射源极111对应耦合于所述第二辐射源极112的自所述第二馈电端1121沿所述第二辐射源极112的相应位置而形成有一辐射空间100,其中所述辐射空间100为所述微波多普勒探测模块10辐射的电磁波的覆盖范围,其中由于所述第一辐射源极111自所述第一馈电端1111沿所述第一辐射源极111对应耦合于所述第二辐射源极112的自所述第二馈电端1121沿所述第二辐射源极112的相应位置,即所述辐射空间100基于对偶的耦合方式形成而能够在所述第一馈电端1111和所述第二馈电端1121的连线的径向方向外凸,避免了于该方向形成 探测死区,有利于提高所述微波多普勒探测模块10的探测稳定性和适用性。
进一步地,所述微波多普勒探测模块10具有一电磁反射面12,其中所述第一辐射源极111和所述第二辐射源极112于所述电磁反射面12所对应的空间与所述电磁反射面12间隔地被设置,以藉由所述电磁反射面12对电磁波的反射特性,形成所述微波多普勒探测模块10的定向辐射特性,则所述微波多普勒探测模块10适用于定向空间的物体活动的探测,并有利于避免所述微波多普勒探测模块10产生自激而提高所述微波多普勒探测模块10的抗干扰性能。
特别地,所述电磁反射面12被设置满足与所述第一馈电端1111和所述第二馈电端1121连线的中点之间的距离大于等于λ/32且小于等于λ/2,并优选地趋于λ/4,如此以使得所述电磁反射面12对自所述第一辐射源极111和所述第二辐射源极112向所述电磁反射面12方向的辐射的反射作用能够被加强,从而有利于提高所述微波多普勒探测模块10的探测距离。
进一步地,基于所述第一馈电端1111与所述第二馈电端1121相靠近,所述第一辐射源极111自所述第一馈电端1111以所述第一馈电端1111为端地延伸,和所述第二辐射源极112自所述第二馈电端1121以所述第二馈电端1121为端地延伸的结构关系,所述第一辐射源极111和所述第二辐射源极112之间能够以对偶的耦合方式耦合,相应的所述第二辐射源极112具有对应于所述第一辐射源极111的线长,则所述第二辐射源极112脱离了具有最低限制面积以作为参考地面的限制,即所述第二辐射源极112对应于所述第一辐射源极111的线长具有多种实施结构而不限于具有最低限制面积的板状结构,所述微波多普勒探测模块10的结构多样,有利于提高所述微波多普勒探测模块10的适用性。
具体地,在本发明的这个实施例中,所述第二辐射源极112对应于所述第一辐射源极111的线长被设置为柱状导电线,包括但不限制于圆形柱状导电线和方形柱状导电线,其中所述第二辐射源极112的界定于所述第二馈电端1121和与所述第二馈电端1121相对的一端之间的线长参数L2满足:λ/16≤L2≤λ。相应地,所述第一辐射源极111的界定于所述第一馈电端1111和与所述第一馈电端1111相对的一端之间的线长参数L1满足:λ/16≤L1≤λ。如此以在以所述第二馈电端1121为端的所述第二辐射源极112于所述第二馈电端1121被接地,和以所述第一馈电端1111为端的所述第一辐射源极111于所述第一馈电端1111被馈电 时,所述第一辐射源极111和所述第二辐射源极112之间能够以对偶的耦合方式耦合。
优选地,所述第二辐射源极112和所述第一辐射源极111被设置满足分别自所述第二馈电端1121和所述第一馈电端1111在λ/128的误差范围内具有趋于λ/4的线长,即31λ/128≤L1≤33λ/128,31λ/128≤L2≤33λ/128,如此则所述第一辐射源极111和所述第二辐射源极112具有趋于λ/2的线长而有利于提高所述第一辐射源极111和所述第二辐射源极112之间的辐射效率,对应有利于提高所述微波多普勒探测模块10的增益。
进一步地,在本发明的这个实施例中,所述第一辐射源极111和所述第二辐射源极112以所述第一馈电端1111和所述第二馈电端1121连线的中点被点对称设置,即所述第一辐射源极111和所述第二辐射源极112具有相同的形状和尺寸,且所述第一辐射源极111和所述第二辐射源极112的位置关系满足所述第一辐射源极111能够绕所述第一馈电端1111和所述第二馈电端1121连线的中点于至少一个方向旋转180度而与所述第二辐射源极112所在位置重合。如此以有利于保障所述第二辐射源极112和所述第一辐射源极111之间以对偶的方式耦合,和有利于维持所述辐射空间100的对称性,对应维持所述微波多普勒探测模块10的探测范围的稳定性。
具体地,在本发明的这个实施例中,被设置为柱状导电线的所述第一辐射源极111和所述第二辐射源极112被同轴设置,即所述第一辐射源极111在所述第二馈电端1121向所述第一馈电端1111方向,自所述第一馈电端1111以所述第一馈电端1111为端沿所述第一馈电端1111与所述第二馈电端1121的连线延伸;所述第二辐射源极112在所述第一馈电端1111向所述第二馈电端1121方向,自所述第二馈电端1121以所述第二馈电端1121为端沿所述第一馈电端1111与所述第二馈电端1121的连线延伸。如此以形成所述第一辐射源极111和所述第二辐射源极112以所述第一馈电端1111和所述第二馈电端1121连线的中点点对称的结构关系。
进一步地,所述微波多普勒探测模块10还包括一电路基板13和承载于所述电路基板13的一电路单元14,其中所述电路单元14包括一振荡电路单元141和一混频检波单元142,其中所述第一辐射源极111和所述第二辐射源极112分别于所述第一馈电端1111和所述第二馈电端1121被电性耦合于所述振荡电路单 元141的不同极,具体地,所述第一辐射源极111于所述第一馈电端1111被馈电连接于所述振荡电路单元141的馈极,所述第二辐射源极112于所述第二馈电端1121被电性连接于所述振荡电路单元141的地极,其中所述混频检波单元142被电性耦合于所述振荡电路单元141和所述对偶耦合极子11,其中所述振荡电路单元141允许被供电而于其馈极而输出一馈电信号和于其地极被接地,即所述振荡电路单元141允许被供电而作为一激励信号馈源,如此以当所述振荡电路单元141被供电时,所述第一辐射源极111和所述第二辐射源极112分别于所述第一馈电端1111和所述第二馈电端1121被所述振荡电路单元141同源馈电而发射一探测波束,和接收所述探测波束的一回波,其中所述回波被接收而对应产生一回波信号,所述混频检波单元142输出对应于所述馈电信号和所述回波信号之间频率差异的一中频信号,则基于多普勒效应原理,所述中频信号对应于反射所述探测波束而形成所述回波的相应物体的运动,因而所述微波多普勒探测模块10适用于探测物体运动。
值得一提的是,所述第一辐射源极111和所述第二辐射源极112分别以所述第一馈电端1111和所述第二馈电端1121为端,则在所述第一辐射源极111和所述第二辐射源极112分别于所述第一馈电端1111和所述第二馈电端1121被所述振荡电路单元141同源馈电时,所述第一辐射源极111和所述第二辐射源极112的电位与电流呈对偶分布状态,对应所述第二辐射源极112和所述第一辐射源极111以对偶的方式耦合,即所述第二辐射源极112和所述第一辐射源极111之间的耦合被简化,则对所述微波多普勒探测模块10的相应数据处理能够被简化,如所述混频检波单元142输出的所述中频信号与相应物体运动的关联度被提高而使得对所述微波多普勒探测模块10的相应数据处理能够被简化,因而有利于降低所述微波多普勒探测模块10的成本和提高所述微波多普勒探测模块10的稳定性和准确性。
特别地,在本发明的这个实施例中,所述电磁反射面12阻隔于所述电路单元14与所述第一辐射源极111和所述第二辐射源极112之间,以使得所述第一辐射源极111和所述第二辐射源极112相互耦合所产生的电磁辐射中,自所述第一辐射源极111和所述第二辐射源极112向所述电路单元14方向的电磁辐射能够被所述电磁反射面12反射而避免干扰所述电路单元14,从而有利于提高所述微波多普勒探测模块10的抗干扰性能。
具体地,在本发明的这个实施例中,所述电磁反射面12承载于所述电路基板13的与承载有所述电路单元14的一面相对的一面,即所述电磁反射面12形成于所述电路基板13的与承载有所述电路单元14的一面相对的一面的相应导电层(如铜层),其中所述第一辐射源极111和所述第二辐射源极112于所述电磁反射面12所对应的空间与所述电磁反射面12间隔地被设置,以藉由所述电磁反射面12对电磁波的反射特性,和所述第一辐射源极111与所述第二辐射源极112在所述电磁反射面12所对应的空间与所述电磁反射面12相间隔的结构关系,形成所述微波多普勒探测模块10的自所述电磁反射面12向所述第一辐射源极111和所述第二辐射源极112方向的定向辐射特性,即对应形成所述微波多普勒探测模块10自所述电磁反射面12向所述第一辐射源极111和所述第二辐射源极112方向的探测方向,则所述微波多普勒探测模块10适用于对应该探测方向的定向空间的物体活动的探测,并有利于避免所述微波多普勒探测模块10产生自激,和避免所述第一辐射源极111与所述第二辐射源极112之间耦合所产生的电磁辐射对被承载于所述电路基板13的所述电路单元14的干扰,从而提高所述微波多普勒探测模块的抗干扰性能。
也就是说,基于所述第一辐射源极111和所述第二辐射源极112之间对偶的耦合方式,所述微波多普勒探测模块10具有与所述第一馈电端1111和所述第二馈电端1121连线的径向相对应的辐射方向,从而当所述电磁反射面12于该辐射方向被设置时,自所述第一辐射源极111和所述第二辐射源极112向所述电磁反射面12方向的辐射能够被反射而形成所述微波多普勒探测模块10自所述电磁反射面12向所述第一辐射源极111和所述第二辐射源极112方向的探测方向,和加强该探测方向的电磁辐射而有利于提高所述微波多普勒探测模块10的定向探测距离。
特别地,所述电磁反射面12优选地被设置满足在平行于所述第一馈电端1111和所述第二馈电端1121的连线方向具有大于等于λ/4的尺寸,并在垂直于该连线的方向具有大于等于λ/4的尺寸,以使得所述电磁反射面12对自所述第一辐射源极111和所述第二辐射源极112向所述电磁反射面12方向的辐射的反射作用能够被加强。
进一步地,所述微波多普勒探测模块10还包括一第一馈电线15和一第二馈电线16,其中所述第一辐射源极111于所述第一馈电端1111经所述第一馈电线 15被电性耦合于所述振荡电路单元141的馈极,其中所述第二辐射源极112于所述第二馈电端1121经所述第二馈电线16被电性连接于所述振荡电路单元141的地极,如此以藉由所述第一馈电线15和所述第二馈电线16形成所述第一辐射源极111和所述第二辐射源极112与所述电路单元14之间的电路连接结构,并藉由所述第一馈电线15和所述第二馈电线16对所述第一辐射源极111和所述第二辐射源极112的支撑形成所述第一辐射源极111和所述第二辐射源极112于所述电磁反射面12的同一面所对应的空间与所述电磁反射面12间隔地被设置的结构关系。
具体地,在本发明的这个实施例中,所述第一辐射源极111自所述第一馈电端1111一体延伸于所述第一馈电线15,所述第二辐射源极112自所述第二馈电端1121一体延伸于所述第二馈电线16,如此以简化所述微波多普勒探测模块10的结构并有利于维持所述微波多普勒探测模块10的阻抗的一致性而有利于所述微波多普勒探测模块10的阻抗匹配。
进一步地,所述第一馈电线15和所述第二馈电线16相互平行,则所述第一馈电线15和所述第二馈电线16之间的距离对应于所述第一馈电端1111与所述第二馈电端1121之间的距离满足小于等于λ/32,并优选地趋于λ/128的范围,如此以在所述第一辐射源极111和所述第二辐射源极112分别经所述第一馈电线15和所述第二馈电线16被馈电时,所述第一馈电线15和所述第二馈电线16之间的耦合作用能够被降低而有利于降低所述第一馈电线15和所述第二馈电线16的损耗,即所述第一馈电线15和所述第二馈电线16的回波损耗S11被降低,进而有利于提高所述微波多普勒探测模块10的增益。
进一步参考本发明的说明书附图之图4所示,依本发明的上述实施例的所述微波多普勒探测模块10的对应于所述辐射空间100的辐射方向图被示意,由图可知,在所述微波多普勒探测模块10的定向辐射方向,即垂直于图中X轴和Y轴所在平面的方向,所述微波多普勒探测模块10具有大于7dB的辐射增益,且所述辐射空间100在该方向外凸,对应地,所述辐射空间100在该方向的投影趋于完整的椭圆形状,区别于传统柱状辐射源结构的微波探测模块于其定向辐射方向的投影为中部具有探测死区的圆环形状,所述微波多普勒探测模块10的所述辐射空间100在定向辐射方向外凸而能够避免形成探测死区。
特别地,基于对所述第一辐射源极111和所述第二辐射源极112之间的位置关系的调整,所述辐射空间100能够被调整而对应改变所述微波多普勒探测模块10的自所述电磁反射面12向所述第一辐射源极111和所述第二辐射源极112方向的探测角度和方向,提高了所述微波多普勒探测模块10的适用性。
示例地,通过分别绕所述第一馈电端1111和所述第二馈电端1121转动调整所述第一辐射源极111和所述第二辐射源极112的方式,所述第一辐射源极111和所述第二辐射源极112之间的位置关系相对于本发明的上述实施例能够被调整。在本发明的一些实施例中,所述第一辐射源极111和所述第二辐射源极112在靠近所述电磁反射面12的方向分别绕所述第一馈电端1111和所述第二馈电端1121被转动调整。即所述第一辐射源极111被设置为自所述第一馈电端1111以所述第一馈电端1111为端,同时在所述第二馈电端1121向所述第一馈电端1111的连线方向和靠近所述电磁反射面12的方向延伸的柱状导电线,其中所述第二辐射源极112被设置为自所述第二馈电端1121以所述第二馈电端1121为端,同时在所述第一馈电端1111向所述第二馈电端1121的连线方向和靠近所述电磁反射面12的方向延伸的柱状导电线。
值得一提的是,基于对所述第二辐射源极112和所述第一辐射源极111的形状的调整,如以弯折的方式调整所述第二辐射源极112和所述第一辐射源极111的形状,在维持所述第二辐射源极112的线长参数L2满足λ/16≤L2≤λ,和所述第一辐射源极111的线长参数L1满足λ/16≤L1≤λ的同时,所述微波多普勒探测模块10的尺寸能够被进一步减小,即在保障所述第二辐射源极112和所述第一辐射源极111之间以对偶的方式耦合的同时,有利于减小所述微波多普勒探测模块10的尺寸。特别地,基于对所述第一辐射源极111和所述第二辐射源极112的形状的调整,或对所述第一辐射源极111和所述第二辐射源极112之间的位置关系的调整,所述辐射空间100能够被调整而对应改变所述微波多普勒探测模块10辐射的电磁波的覆盖范围,提高了所述微波多普勒探测模块10的适用性。
示例地,参考本发明的说明书附图之图5所示,基于对所述第一辐射源极111和所述第二辐射源极112的形状的调整,依本发明的上述实施例的一变形实施例的所述微波多普勒探测模块10被示意,其中在本发明的这个变形实施例中,所述第一辐射源极111自所述第一馈电端1111在所述第二馈电端1121向所述第一馈电端1111方向和在靠近所述电磁反射面12方向延伸,所述第二辐射源极112 自所述第二馈电端1121在所述第一馈电端1111向所述第二馈电端1121方向和在靠近所述电磁反射面12方向延伸,即对所述第一辐射源极111和所述第二辐射源极112的形状的调整形成所述第一辐射源极111的与所述第一馈电端1111相对的一端相对于所述第一馈电端1111靠近所述电磁反射面12的状态,和形成所述第二辐射源极112的与所述第二馈电端1121相对的一端相对于所述第二馈电端1121靠近所述电磁反射面12的状态。
特别地,所述第一辐射源极111自所述第一馈电端1111在所述第二馈电端1121向所述第一馈电端1111方向和在靠近所述电磁反射面12方向延伸,所述第二辐射源极112自所述第二馈电端1121在所述第一馈电端1111向所述第二馈电端1121方向和在靠近所述电磁反射面12方向延伸,对应所述第一辐射源极111和所述第二辐射源极112在垂直于所述电磁反射面12方向的尺寸均处于大于等于λ/32和小于等于λ/4的范围,如此以在保障所述第一辐射源极111和所述第二辐射源极112能够形成对偶的耦合方式的同时,基于相应所述第一辐射源极111和所述第二辐射源极112在垂直于所述电磁反射面12方向的尺寸设置,所述微波多普勒探测模块10的尺寸能够被减小,同时所述微波多普勒探测模块10的所述辐射空间100能够被调整。
具体地,在本发明的这个变形实施例中,所述第一辐射源极111和所述第二辐射源极112被一次弯折,相应被弯折的所述第一辐射源极111自所述第一馈电端1111顺序在所述第二馈电端1121向所述第一馈电端1111方向延伸和在靠近所述电磁反射面12方向延伸,所述第二辐射源极112自所述第二馈电端1121顺序在所述第一馈电端1111向所述第二馈电端1121方向延伸和在靠近所述电磁反射面12方向延伸。如此以对应形成所述第一辐射源极111的与所述第一馈电端1111相对的一端相对于所述第一馈电端1111靠近所述电磁反射面12的状态,和形成所述第二辐射源极112的与所述第二馈电端1121相对的一端相对于所述第二馈电端1121靠近所述电磁反射面12的状态。
因此,在本发明的这个实施例中,所述第一辐射源极111在垂直于所述电磁反射面12方向的尺寸对应于所述第一辐射源极111的与所述第一馈电端1111相对的一端至所述第一辐射源极111的被弯折处之间的距离L11,则所述L11满足λ/32≤L11≤λ/4,所述第二辐射源极112在垂直于所述电磁反射面12方向的尺寸对应于所述第二辐射源极112的与所述第二馈电端1121相对的一端至所述第二 辐射源极112的被弯折处之间的距离L21,则所述L21满足λ/32≤L21≤λ/4,其中基于相应所述L11和所述L21的大小设置,所述微波多普勒探测模块10的所述辐射空间100能够被调整,对应所述微波多普勒探测模块10的增益能够被调整。
进一步参考本发明的说明书附图之图6所示,依本发明的上述变形实施例的所述微波多普勒探测模块10的对应于所述辐射空间100的辐射方向图被示意,由图可知,在所述微波多普勒探测模块10的定向辐射方向,即垂直于图中X轴和Y轴所在平面的方向,所述微波多普勒探测模块10同样具有大于7dB的辐射增益。特别地,区别于上一实施例的所述微波多普勒探测模块10的所述辐射空间100,在本发明的这个变形实施例中,基于对所述第一辐射源极111和所述第二辐射源极112的形状的调整,在所述第一辐射源极111的与所述第一馈电端1111相对的一端相对于所述第一馈电端1111靠近所述电磁反射面12的状态,和所述第二辐射源极112的与所述第二馈电端1121相对的一端相对于所述第二馈电端1121靠近所述电磁反射面12的状态,所述辐射空间100被调整至在垂直于定向辐射方向的截面具有趋于完整的圆形,如此以有利于提高所述微波多普勒探测模块10于不同应用场所对定向空间的物体活动的探测的适用性,并区别于传统柱状辐射源结构的微波探测模块和平板辐射源结构的微波探测模块在垂直于其定向辐射方向的截面为中部具有探测死区的圆环形状,所述微波多普勒探测模块10的所述辐射空间100在定向辐射方向外凸而能够避免形成探测死区。
值得一提的是,基于上述变形实施例中所述第一辐射源极111自所述第一馈电端1111在所述第二馈电端1121向所述第一馈电端1111方向和在靠近所述电磁反射面12方向延伸,所述第二辐射源极112自所述第二馈电端1121在所述第一馈电端1111向所述第二馈电端1121方向和在靠近所述电磁反射面12方向延伸的结构关系。在本发明的一些变形实施例中,所述第一辐射源极111自所述第一馈电端1111以所述第一馈电端1111为端,同时在所述第二馈电端1121向所述第一馈电端1111的方向和靠近所述电磁反射面12的方向延伸,所述第二辐射源极112自所述第二馈电端1121以所述第二馈电端1121为端,同时在所述第一馈电端1111向所述第二馈电端1121的方向和靠近所述电磁反射面12的方向延伸,如此以形成所述第二辐射源极112的与所述第二馈电端1121相对的一端相对于所述第二馈电端1121靠近所述电磁反射面12的状态,从而有利于将辐射空 间100调整至在垂直于定向辐射方向的截面具有趋于完整的圆形而能够提高所述微波多普勒探测模块10于不同应用场所对定向空间的物体活动的探测的适用性。
示例地,在本发明的一些实施例中,所述第一辐射源极111和所述第二辐射源极112被弯曲地设置,具体地,所述第一辐射源极111为自所述第一馈电端1111以所述第一馈电端1111为端,同时在所述第二馈电端1121向所述第一馈电端1111的连线方向和靠近所述电磁反射面12的方向延伸而形成的柱状弧形导电线,其中所述第二辐射源极112为自所述第二馈电端1121以所述第二馈电端1121为端,同时在所述第一馈电端1111向所述第二馈电端1121的连线方向和靠近所述电磁反射面12的方向延伸而形成的柱状弧形导电线。
也就是说,所述第一辐射源极111的弧形形状是在所述第二馈电端1121向所述第一馈电端1111的连线方向和靠近所述电磁反射面12的方向非线性延伸的结果,同样的,所述第二辐射源极112的弧形形状是在所述第一馈电端1111向所述第二馈电端1121的连线方向和靠近所述电磁反射面12的方向非线性延伸的结果。例如所述第一辐射源极111和所述第二辐射源极112为在偏向所述电磁反射面12方向被弯曲而形成的柱状弧型导电线;又如所述第一辐射源极111和所述第二辐射源极112为在偏离所述电磁反射面12方向被弯曲而形成的柱状弧型导电线。
进一步参考本发明的说明书附图之图7和图8所示,依本发明的上述实施例的另一变形实施例的所述微波多普勒探测模块10被示意,特别地,在本发明的这个变形实施例中,所述第一馈电线15具有一第一馈电段151,其中所述第二馈电线16具有一第二馈电段165,其中所述第一馈电段151和所述第二馈电段165为相互平行的柱状直导电线并分别自所述第一馈电端1111和所述第二馈电端1121延伸,则所述第一馈电段151和所述第二馈电段165之间的距离对应于所述第一馈电端1111与所述第二馈电端1121之间的距离满足小于等于λ/32,并优选地趋于λ/128的范围,如此则所述第一馈电段151和所述第二馈电段165之间的耦合作用能够被降低而有利于降低所述第一馈电线15和所述第二馈电线16的损耗,即降低了所述第一馈电线和所述第二馈电线的回波损耗S11,进而有利于进一步提高所述微波多普勒探测模块10的增益。
特别地,在本发明的这个变形实施例中,所述第一馈电线15进一步具有一体延伸于所述第一馈电段151的一第一耦合段152,其中所述第二馈电线16进一步具有一体延伸于所述第二馈电段165的一第二耦合段166,即所述第一馈电段151经所述第一耦合段152被电性耦合于所述振荡电路单元141和被固定耦合于所述电路基板13,所述第二馈电段165经所述第二耦合段166被电性耦合于所述振荡电路单元141的地电位和被固定耦合于所述电路基板13,其中所述第一耦合段152在偏离于所述第一馈电段151的方向一体延伸于所述第一馈电段151,所述第二耦合段166在偏离于所述第二馈电段165的方向一体延伸于所述第二馈电段165,如此以藉由所述第一耦合段152和所述第二耦合段166的长度和形状设计设置所述第一馈电线15和所述第二馈电线15的长度,从而有利于在基于所述第一馈电线15和所述第二馈电线16的相应长度设置满足所述微波多普勒探测模块10的阻抗匹配和相应谐振频率设计的同时,能够基于所述第一耦合段152和所述第二耦合段166的形状设计维持所述第一馈电端1111与所述第二馈电端1121连线的中点至所述电磁反射面12的距离于适宜范围,如大于等于λ/32且小于等于λ/2的范围或趋于λ/4的优选范围,即基于所述第一耦合段152和所述第二耦合段166的长度和形状设计,所述微波多普勒探测模块10能够满足相应的阻抗匹配和谐振频率设计的同时,所述电磁反射面12对自所述第一辐射源极111和所述第二辐射源极112向所述电磁反射面12方向的辐射的反射作用能够被加强,从而有利于提高所述微波多普勒探测模块10的探测距离。
换而言之,基于所述第一耦合段152和所述第二耦合段166的长度和形状设计,所述第一馈电端1111与所述第二馈电端1121连线的中点至所述电磁反射面12的距离能够在大于等于λ/32且小于等于λ/2的范围被维持或被降低,同时所述微波多普勒探测模块10能够满足相应的阻抗匹配和谐振频率设计,则所述微波多普勒探测模块10能够在满足相应的阻抗匹配和谐振频率设计的同时具有较高的增益。
进一步地,在本发明的这个变形实施例中,所述第一耦合段152和所述第二耦合段166在相互远离的方向分别一体延伸于所述第一馈电段151和所述第二馈电段165,则所述第一耦合段152和所述第二耦合段166在垂直于所述第一馈电段151和所述第二馈电段165的方向的距离大于所述第一馈电段151和所述第二馈电段165之间的距离,如此以在相互平行的所述第一馈电段151和所述第二馈 电段165于小于等于λ/32的距离内相互靠近的状态,有利于将所述第一馈电线15于所述第一耦合段152以焊接的方式电性耦合于所述振荡电路单元141和固定耦合于所述电路基板13,和将所述第二馈电线16于所述第二耦合段166以焊接的方式电性耦合于所述振荡电路单元141的地电位和固定耦合于所述电路基板13。
具体地,在本发明的这个变形实施例中,所述第一耦合段152和所述第二耦合段166在垂直于所述第一馈电段151和所述第二馈电段165的方向的距离小于等于λ/8,所述第一耦合段152和所述第二耦合段166在平行于所述第一馈电段151和所述第二馈电段165的方向的距离小于等于λ/8,如此以在保障所述第一馈电段151和所述第二馈电段165之间的低损耗特性的同时,使得基于所述第一耦合段152和所述第二耦合段166的长度和形状设计能够满足相应的阻抗匹配和谐振频率设计,以及加强所述电磁反射面12对自所述第一辐射源极111和所述第二辐射源极112向所述电磁反射面12方向的辐射的反射作用。
值得一提的是,在本发明的这个变形实施例中,所述第一耦合段152自所述第一馈电段151的与所述第一馈电端1111相对的一端顺序在垂直于所述第一馈电段151的方向和平行于所述第一馈电段151的方向延伸,所述第二耦合段166自所述第二馈电段165的与所述第二馈电端1121相对的一端顺序在垂直于所述第二馈电段165的方向和平行于所述第二馈电段165的方向延伸。而在本发明的一些实施例中,所述第一耦合段152可被设置为自所述第一馈电段151的与所述第一馈电端1111相对的一端同时在垂直于所述第一馈电段151的方向和平行于所述第一馈电段151的方向延伸,如所述第一耦合段152为自所述第一馈电段151的与所述第一馈电端1111相对的一端同时在垂直于所述第一馈电段151的方向和平行于所述第一馈电段151的方向延伸的柱状弧形导电线;同样地,所述第二耦合段166可被设置为自所述第二馈电段165的与所述第二馈电端1121相对的一端同时在垂直于所述第二馈电段165的方向和平行于所述第二馈电段165的方向延伸,如所述第二耦合段166为自所述第二馈电段165的与所述第二馈电端1121相对的一端同时在垂直于所述第二馈电段165的方向和平行于所述第二馈电段165的方向延伸的柱状弧形导电线,本发明对此不作限制。
进一步地,在本发明的这个变形实施例中,所述高增益微波多普勒探测模块10进一步包括一固定座17,其中所述固定座17被贴合设置于所述电路基板13 的承载有所述电磁反射面12的一面,其中所述第一馈电线15和所述第二馈电线16被部分夹持固定于所述固定座17,如此以有利于维持所述第一馈电段151和所述第二馈电段165相互平行和在小于等于λ/32的距离内相互靠近的状态,进而有利于维持所述高增益微波多普勒探测模块10在生产制造过程中的一致性和在使用过程中的稳定性。
进一步参考本发明的说明书附图之图9所示,依本发明的上述实施例的另一变形实施例的所述微波多普勒探测模块10的立体结构被示意。特别地,在本发明的这个变形实施例中,所述第二馈电线16包围所述第一馈电线15地被设置而形成有一电磁屏蔽腔161,如此以在所述第二馈电线16被接地的状态降低所述第二馈电线16与所述第一馈电线15之间的耦合对所述第一辐射源极111和所述第二辐射源极112之间的耦合的影响,和屏蔽外界电磁辐射对所述第一馈电线15的干扰,从而有利于提高所述微波多普勒探测模块10的抗干扰性能。
优选地,以包围所述第一馈电线15的形式被设置的所述第二馈电线16与所述第一馈电线15同轴,如此以在所述第一辐射源极111于所述第一馈电端1111经所述第一馈电线15被馈电,和所述第二辐射源极112于所述第二馈电端1121经所述第二馈电线16被馈电时,有利于所述第一辐射源极111和所述第二辐射源极112之间以对偶的方式耦合。
特别地,基于上述实施例的所述第二辐射源极112被接地的状态,在本发明的一些实施例中,所述第一辐射源极111进一步被接地,以降低所述微波多普勒探测模块的阻抗,则所述微波多普勒探测模块的品质因数(即Q值)被提高,有利于提高所述微波多普勒探测模块的抗干扰能力。
参考本发明的说明书附图之图10所示,依本发明的上述实施例的另一变形实施例的所述微波多普勒探测模块10的立体结构被示意,特别地,相对于本发明的上述实施例,在本发明的这个变形实施例中,所述第一辐射源极111进一步与所述第二馈电线16电性相连而被接地。
具体地,在本发明的这个变形实施例中,以包围所述第一馈电线15的形式被设置并与所述第一馈电线15同轴的所述第二馈电线16进一步具有一对开槽位置162,其中所述第二馈电线16于所述开槽位置162自与所述第二辐射源极112相连的一端沿所述第一馈电线111方向被开设有一对开槽,其中一对所述开槽位置162于所述第二馈电线16界定有一第一臂163和一第二臂164,即所述第一 臂163和所述第二臂164分别为所述第二馈电线16的界定于一对所述开槽位置162之间的两部分,其中所述第二辐射源极112自所述第二馈电端1121导电延伸于所述第二馈电线16的所述第二臂164,其中所述第一辐射源极111自所述第一馈电端1111导电延伸于所述第二馈电线16的所述第一臂163并于所述第一馈电端1111与所述第一馈电线15导电相连,如此以形成所述第一辐射源极111被接地的状态。
值得一提的是,所述第二馈电线16的所述开槽自所述第二馈电线16的与所述第二辐射源极112相连的一端沿所述第一馈电线111方向具有大于等于λ/128的开槽深度,如此以在所述第一辐射源极111经所述第二馈电线16的所述第一臂163被接地的同时,能够在所述第一辐射源极111于所述第一馈电端1111经所述第一馈电线15被馈电激励,和所述第二辐射源极112于所述第二馈电端1121经所述第二馈电线16被馈电时,保障所述第一辐射源极111和所述第二辐射源极112之间以对偶的方式耦合。
可以理解的是,基于所述开槽162的深度设置,相应的阻抗能够被形成,如此以有利于所述振荡电路单元141和所述第一馈电线15及所述第二馈电线16与所述对偶耦合极子11之间的阻抗匹配。
特别地,在本发明的这个变形实施例中,所述第一辐射源极111和所述第二辐射源极112被一次弯折以而在维持所述第二辐射源极112的线长参数L2满足λ/16≤L2≤λ,和所述第一辐射源极111的线长参数L1满足λ/16≤L1≤λ的同时,使得所述第二辐射源极112和所述第一辐射源极111于平行于所述第一馈电端1111和所述第二馈电端1121连线的方向的尺寸得以减小。
进一步参考本发明的说明书附图之图11所示,基于将所述第二馈电线16设置为可拆卸的管状结构的思想,图11示意了对应于图10的所述微波多普勒探测模块10的另一种替代结构,区别于图10所示意的所述微波多普勒探测模块10的结构,在本发明的这一替代结构中,所述第二馈电线16被设置为可拆卸的方形管状结构,即所述第二馈电线16为由相互卡接或其它可拆卸方式组装成的方形管状结构。
进一步参考本发明的说明书附图之图12所示,基于将所述第二馈电线16设置为可拆卸的管状结构的思想,图12示意了对应于图11的所述微波多普勒探测模块10的进一步变形结构,其中在本发明的这个变形结构中,所述第一辐射源 极111于与所述第一馈电端1111相对的一端在垂直于所述第一馈电端1111和所述第二馈电端1121的连线的两相对方向被进一步延伸,所述第二辐射源极112于与所述第二馈电端1121相对的一端在垂直于所述第一馈电端1111和所述第二馈电端1121的连线的两相对方向被进一步延伸,如此以在所述第一辐射源极111和所述第二辐射源极112以对偶方式耦合时,抑制所述第一辐射源极111的与所述第一馈电端1111相对的该端的能量聚集,和抑制所述第二辐射源极112的与所述第二馈电端1121相对的该端的能量聚集,从而有利于维持所述微波多普勒探测模块10的稳定性。
为进一步揭露本发明,参考本发明的说明书附图之图13所示,依本发明的另一实施例的一微波多普勒探测模块10A的立体结构被示意,同样地,所述微波多普勒探测模块10A包括一第二辐射源极112A和一第一辐射源极111A,其中所述第二辐射源极112A具有一第二馈电端1121A,所述第一辐射源极111A具有一第一馈电端1111A,其中所述第二馈电端1121A和所述第一馈电端1111A于λ/4距离内相互靠近,其中所述第二辐射源极112A以所述第二馈电端1121A为端地自所述第二馈电端1121A延伸,其中所述第一辐射源极111A以所述第一馈电端1111A为端地自所述第一馈电端1111A延伸,其中所述第一辐射源极111A被设置适于在所述第一馈电端1111A被馈电,所述第二辐射源极112A被设置适于在所述第二馈电端1121A被馈电,如此以当所述第一辐射源极111A于所述第一馈电端1111A被馈电和所述第二辐射源极112A于所述第二馈电端1121A被同源馈电时,所述第一辐射源极111A自所述第一馈电端1111A沿所述第一辐射源极111A对应耦合于所述第二辐射源极112A的自所述第二馈电端1121A沿所述第二辐射源极112A的相应位置,从而形成所述第一辐射源极111A和所述第二辐射源极112A之间对偶的耦合方式。
区别于上一实施例,在本发明的这个实施例中,所述微波多普勒探测模块10A进一步包括一介质基板18A,其中所述第一辐射源极111A和所述第二辐射源极112A以微带线形式被承载于所述介质基板18A的同一面,如此则相应所述第一辐射源极111A和所述第二辐射源极112A的形状尺寸基于微带线工艺易于被实现。
所述微波多普勒探测模块10A还包括一电路基板13A和承载于所述电路基板13A的一电路单元14A,其中所述电路单元14A包括一振荡电路单元141A 和一混频检波单元142A,其中所述第一辐射源极111A和所述第二辐射源极112A分别于所述第一馈电端1111A和所述第二馈电端1121A被电性耦合于所述振荡电路单元141A的不同极,具体地,所述第一辐射源极111A于所述第一馈电端1111A被馈电连接于所述振荡电路单元141A的馈极,所述第二辐射源极112A于所述第二馈电端1121A被电性连接于所述振荡电路单元141A的地极,其中所述混频检波单元142A被电性耦合于所述振荡电路单元141A和所述对偶耦合极子11A,其中所述振荡电路单元141A允许被供电而于其馈极而输出一馈电信号和于其地极被接地,即所述振荡电路单元141A允许被供电而作为一激励信号馈源,如此以当所述振荡电路单元141A被供电时,所述第一辐射源极111A和所述第二辐射源极112A分别于所述第一馈电端1111A和所述第二馈电端1121A被所述振荡电路单元141A同源馈电而发射一探测波束,和接收所述探测波束的一回波,其中所述回波被接收而对应产生一回波信号,所述混频检波单元142A输出对应于所述馈电信号和所述回波信号之间频率差异的一中频信号,则基于多普勒效应原理,所述中频信号对应于反射所述探测波束而形成所述回波的相应物体的运动,因而所述微波多普勒探测模块10A适用于探测物体运动。
进一步地,所述第一辐射源极111A和所述第二辐射源极112A以所述第一馈电端1111A和所述第二馈电端1121A连线的中点被点对称设置,即所述第一辐射源极111A和所述第二辐射源极112A具有相同的形状和尺寸,且所述第一辐射源极111A和所述第二辐射源极112A的位置关系满足所述第一辐射源极111A能够绕所述第一馈电端1111A和所述第二馈电端1121A连线的中点于至少一个方向旋转180度而与所述第二辐射源极112A所在位置重合。如此以有利于保障所述第二辐射源极112A和所述第一辐射源极111A之间以对偶的方式耦合。
具体地,在本发明的这个实施例中,所述介质基板18A以平行于所述电路基板13A的方式与所述电路基板13A相间隔地被设置。
具体地,所述微波多普勒探测模块10A还包括一第一馈电线15A和一第二馈电线16A,其中所述第一辐射源极111A于所述第一馈电端1111A经所述第一馈电线15A被电性耦合于所述振荡电路单元141A的馈极,其中所述第二辐射源极112A于所述第二馈电端1121A经所述第二馈电线16A被电性连接于所述振荡电路单元141A的地电位,如此以形成所述第一辐射源极111A和所述第二辐射源极112A与所述电路单元14A之间的电路连接结构,并藉由所述第一馈电线 15A和所述第二馈电线16A对承载有所述第一辐射源极111A和所述第二辐射源极112A的所述介质基板18A的支撑形成所述介质基板18A与所述电路基板13A间隔地被设置的结构关系。
特别地,在本发明的这个实施例中,所述第二馈电线16A和所述第一馈电线15A被实施为以所述第二馈电线16A包围所述第一馈电线15A的一屏蔽线,其中所述屏蔽线被可插接地设置,以形成所述第一辐射源极111A和所述第二辐射源极112A与所述电路单元14A之间的可插接的电路连接结构而有利于所述微波多普勒探测模块10A的组装。
同样地,所述微波多普勒探测模块10A进一步具有承载于所述电路基板13A的一电磁反射面12A,其中所述电磁反射面12A承载于所述电路基板13A的与承载有所述电路单元14A的一面相对的一面,其中所述第一辐射源极111A和所述第二辐射源极112A于所述电磁反射面12A所对应的空间与所述电磁反射面12A间隔地被设置,以藉由所述电磁反射面12A对电磁波的反射特性,和所述第一辐射源极111A与所述第二辐射源极112A在所述电磁反射面12A所对应的空间与所述电磁反射面12A相间隔的结构关系,形成所述微波多普勒探测模块10A的自所述电磁反射面12A向所述第一辐射源极111A和所述第二辐射源极112A方向的定向辐射特性,即对应形成所述微波多普勒探测模块10A自所述电磁反射面12A向所述第一辐射源极111A和所述第二辐射源极112A方向的探测方向,则所述微波多普勒探测模块10A适用于对应该探测方向的定向空间的物体活动的探测,并有利于避免所述微波多普勒探测模块10A产生自激,和避免所述第一辐射源极111A与所述第二辐射源极112A之间耦合所产生的电磁辐射对被承载于所述电路基板13A的所述电路单元14A的干扰,从而提高所述微波多普勒探测模块的抗干扰性能。
特别地,基于所述介质基板18A和所述电路基板13A之间的位置关系的调整,所述微波多普勒探测模块10A具有不同的结构设计,有利于提高所述微波多普勒探测模块10A的适用性。
具体地,参考本发明的说明书附图之图14所示,基于所述介质基板18A和所述电路基板13A之间的位置关系的调整,依本发明的上述实施例的一变形实施例的所述微波多普勒探测模块10A被示意。
具体地,在本发明的这个变形实施例中,所述介质基板18A垂直于所述电路基板13A,其中所述第一馈电端1111A和所述第二馈电端1121A的连线平行于所述电路基板13A。也就是说,基于上述实施例的所述介质基板18A与所述电路基板13A平行的位置关系,所述介质基板18A以所述第一馈电端1111A和所述第二馈电端1121A连线为轴旋转90度而对应形成所述介质基板18A垂直于所述电路基板13A,且所述第一馈电端1111A和所述第二馈电端1121A的连线平行于所述电路基板13A的位置关系。
值得一提的是,基于对所述第二辐射源极112A和所述第一辐射源极111A的形状的调整,如通过将所述第二辐射源极112A和所述第一辐射源极111A延伸至所述介质基板18A的另一面的方式,在维持所述第二辐射源极112A和所述第一辐射源极111A满足分别自所述第二馈电端1121A和所述第一馈电端1111A具有大于等于λ/16线长的要求的同时,所述介质基板18A的尺寸能够被减小以减小所述微波多普勒探测模块10A的尺寸。
例如,在本发明的一些实施例中,基于所述第二辐射源极112A对应以所述第一馈电端1111A和所述第二馈电端1121A之间连线的中点与所述第一辐射源极111A点对称的结构关系,通过对所述第二辐射源极112A和所述第一辐射源极111A的形状的调整,所述第一辐射源极111A和所述第二辐射源极112A能够被设置为于所述介质基板18A的同一面分别自所述第一馈电端1111A和所述第二馈电端1121A延伸并进一步延伸至所述介质基板18A的另一面。也就是说,所述第一辐射源极111A的所述第一馈电端1111A和所述第二辐射源极112A的所述第二馈电端1121A被承载于所述介质基板18A的同一面,其中所述第一辐射源极111A以所述第一馈电端1111A为端沿所述第二馈电端1121A向所述第一馈电端1111A的连线方向延伸,并继续绕所述介质基板18A的侧边延伸至所述介质基板18A的另一面,其中所述第二辐射源极112A以所述第二馈电端1121A为端沿所述第一馈电端1111A向所述第二馈电端1121A的连线方向延伸,并继续绕所述介质基板18A的侧边延伸至所述介质基板18A的另一面。
在本发明的另一些实施例中,所述第一辐射源极111A和所述第二辐射源极112A于所述介质基板18A的不同面分别自所述第一馈电端1111A和所述第二馈电端1121A延伸并进一步延伸至所述介质基板18A的另一面。具体地,所述第一辐射源极111A的所述第一馈电端1111A和所述第二辐射源极112A的所述第 二馈电端1121A被承载于所述介质基板18A的不同面,其中所述第一辐射源极111A于所述介质基板18A的承载有所述第一馈电端1111A的一面以所述第一馈电端1111A为端,自所述第一馈电端1111A绕所述介质基板18A的侧边延伸至所述介质基板18A的承载有所述第二馈电端1121A的一面。其中所述第二辐射源极112A于所述介质基板18A的承载有所述第二馈电端1121A的一面以所述第二馈电端1121A为端,自所述第二馈电端1121A绕所述介质基板18A的侧边延伸至所述介质基板18A的承载有所述第一馈电端1111A的一面。
可以理解的是,在本发明的一些实施例中,所述介质基板18B的两面允许分别被设置至少一对所述对偶耦合极子11B,同样能够保障各对所述对偶耦合极子11B的所述第一辐射源极111B和所述第二辐射源极112B之间以对偶的方式耦合的同时,和加强承载于所述介质基板18B的一面的所述对偶耦合极子11B的所述第一辐射源极111B与承载于所述介质基板18B的另一面的所述对偶耦合极子11B的所述第二辐射源极112臂的对偶耦合,本发明对此不做限制。
值得一提的是,基于对以上实施例的所述微波多普勒探测模块的揭露可以理解:一对所述对偶耦合极子的所述第二辐射源极对应于所述第一辐射源极具有灵活多变的形状尺寸而不限于具有限制面积的板状结构,即被接地的所述第二辐射源极脱离了具有最低限制面积以作为参考地面的限制,则通过将所述第二辐射源极和所述第一辐射源极延伸出相应金属板材的方式,所述微波多普勒探测模块同样适用于前述柱状辐射源结构的微波探测模块的应用场景,并相对于柱状辐射源结构的微波探测模块,相应的所述金属板材不会对所述第一辐射源极和所述第二辐射源极之间的耦合造成影响,所述微波多普勒探测模块于相应应用场景具有更好的稳定性。
示例地,参考本发明的说明书附图之图15和图16,基于所述微波多普勒探测模块于前述柱状辐射源结构的微波探测模块的应用场景的应用,本发明进一步提供一微波多普勒探测设备。
具体地,对应于图15,依本发明的说明书附图之图9所对应的所述微波多普勒探测模块10于前述柱状辐射源结构的微波探测模块的应用场景的应用被示例,其中所述微波多普勒探测设备包括所述微波多普勒探测模块10和一电磁屏蔽层20,其中所述电磁屏蔽层20具有一通孔22,其中所述电路基板13被设置于所述电磁屏蔽层20的一面所对应的一屏蔽空间,其中所述第一辐射源极111和所 述第二辐射源极112被设置于所述电磁屏蔽层20的另一面所对应的空间,其中所述第一馈电线15和所述第二馈电线16经所述通孔22穿透所述电磁屏蔽层20地形成所述第一辐射源极111和所述第二辐射源极112与所述电路单元14之间的电路连接结构,如此以藉由所述第一辐射源极111和所述第二辐射源极112于所述屏蔽空间之外的空间的设置,实现对该屏蔽空间之外的空间的活动探测,其中基于相应所述第一辐射源极111和所述第二辐射源极112的形状设计,所述第一辐射源极111和所述第二辐射源极112在垂直于所述电磁屏蔽层20的方向于所述电磁屏蔽层20的投影面积能够被减小,有利于减小所述通孔22的尺寸而有利于维持所述电磁屏蔽层20的完整性和提高所述微波多普勒探测模块10于所述微波多普勒探测设备的安装的隐蔽性。
可以理解的是,所述第一辐射源极111和所述第二辐射源极112之间以对偶的方式耦合,则在所述第一辐射源极111和所述第二辐射源极112位于所述电磁屏蔽层20的同一面所对应的空间时,所述第一辐射源极111和所述第二辐射源极112之间的耦合能够避免受到所述电磁屏蔽层20的阻碍,因而有利于维持被安装于所述微波多普勒探测设备的所述微波多普勒探测模块10探测稳定性。
特别地,在本发明的这个实施例中,所述电磁屏蔽层20被设置为LED灯板而于对应所述第一辐射源极111和所述第二辐射源极112的一面被设置有多个LED灯珠21,其中基于相应所述第一辐射源极111和所述第二辐射源极112的形状设计,所述第一辐射源极111和所述第二辐射源极112在垂直于所述电磁屏蔽层20的方向于所述电磁屏蔽层20的投影面积能够被减小,则相应所述通孔22的尺寸能够被减小并允许所述第一辐射源极111和所述第二辐射源极112穿过地将所述微波多普勒探测模块10安装于所述微波多普勒探测装置,有利于维持所述LED灯板的完整性和避免于所述LED灯板形成暗区。
对应于图16,依本发明的说明书附图之图13所对应的所述微波多普勒探测模块10A于前述柱状辐射源结构的微波探测模块的应用场景的应用被示例,其中所述微波多普勒探测设备包括所述微波多普勒探测模块10A和一电磁屏蔽层20A,其中所述电磁屏蔽层20A具有一通孔22A,其中所述电路基板13A被设置于所述电磁屏蔽层20A的一面所对应的一屏蔽空间,其中所述第一辐射源极111A和所述第二辐射源极112A被设置于所述电磁屏蔽层20A的另一面所对应的空间,其中所述第一馈电线15A和所述第二馈电线16A经所述通孔22A穿透 所述电磁屏蔽层20A地形成所述第一辐射源极111A和所述第二辐射源极112A与所述电路单元14A之间的电路连接结构,如此以藉由所述第一辐射源极111A和所述第二辐射源极112A于所述屏蔽空间之外的空间的设置,实现对该屏蔽空间之外的空间的活动探测,其中基于相应所述第一辐射源极111A和所述第二辐射源极112A的形状设计,所述第一辐射源极111A和所述第二辐射源极112A在垂直于所述电磁屏蔽层20A的方向于所述电磁屏蔽层20A的投影面积能够被减小,有利于减小所述通孔22A的尺寸而有利于维持所述电磁屏蔽层20A的完整性和提高所述微波多普勒探测模块10A于所述微波多普勒探测设备的安装的隐蔽性。
值得一提的是,当所述第二馈电线16A和所述第一馈电线15A被设置为以所述第二馈电线16A包围所述第一馈电线15A的一屏蔽线,和所述屏蔽线被可插接地设置以形成所述第一辐射源极111A和所述第二辐射源极112A与所述电路单元14A之间的可插接的电路连接结构时,如将所述屏蔽线设置为能够与所述介质基板18A或所述电路基板13A可插接的结构而形成所述第一辐射源极111A和所述第二辐射源极112A与所述电路单元14A之间的可插接的电路连接结构时,所述电磁屏蔽层20的所述通孔22A的尺寸允许被设置为具有对应于所述屏蔽线的线径而有利于减小所述通孔22A的尺寸,从而有利于进一步维持所述电磁屏蔽层20A的完整性和提高所述微波多普勒探测模块10A于所述微波多普勒探测设备的安装的隐蔽性。
特别地,在本发明的这个实施例中,所述电磁屏蔽层20A被设置为LED灯板而于对应所述第一辐射源极111A和所述第二辐射源极112A的一面被设置有多个LED灯珠21A,其中基于相应所述第一辐射源极111A和所述第二辐射源极112A的形状设计,所述第一辐射源极111A和所述第二辐射源极112A在垂直于所述电磁屏蔽层20A的方向于所述电磁屏蔽层20A的投影面积能够被减小,因而有利于避免于所述LED灯板形成暗区。
可以理解的是,基于所述电磁屏蔽层20A对电磁波的反射特性,所述电磁反射面12A能够等效形成于所述电磁屏蔽层20A,即相应形成于所述电路基板13A的所述电磁反射面12A可不被设置,也就是说,本发明的这个实施例中,形成于所述电路基板13A的所述电磁反射面12A并不构成对本发明的所述微波多普勒探测装置的限制。
值得一提的是,以上实施例仅为举例,基于对偶的耦合方式,所述微波多普勒探测模块包括至少一对所述对偶耦合极子,其中各对所述对偶耦合极子的所述第一辐射源极和所述第二辐射源极的形状尺寸多样,并能够于所述电磁屏蔽层的一面所对应的所述屏蔽空间,通过所述通孔将所述第一辐射源极和所述第二辐射源极延伸至所述电磁屏蔽层的另一面所对应的所述屏蔽空间之外的空间的方式,完成所述微波多普勒探测模块于相应所述微波多普勒探测设备的安装,和突破所述屏蔽空间地实现了对该屏蔽空间之外的活动探测,并能够维持所述电磁屏蔽层的完整性,一方面有利于所述微波多普勒探测模块于所述微波多普勒探测设备的隐蔽性安装,另一方面能够实现对所述屏蔽空间之外的空间的稳定且无死角地探测。可以理解的是,所述微波多普勒探测设备的所述电磁屏蔽层并不限制被实施为LED灯板,对所述电磁屏蔽层的理解应当为具有电磁屏蔽作用的功能层,包括但不限于金属(网)层,参杂有金属的复合层,金属氧化物层等。因此,所述电磁屏蔽层还能够被实施为具有电磁屏蔽作用的设备壳体,如灯具壳体,空调壳体,电梯厢体等。
本领域的技术人员可以理解的是,以上实施例仅为举例而并不限制本发明,其中不同实施例的特征可以相互组合,以得到根据本发明揭露的内容很容易想到但是在附图中没有明确指出的实施方式。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (50)

  1. 一微波多普勒探测模块,其特征在于,包括:
    至少一对对偶耦合极子,其中一对所述对偶耦合极子包括一第一辐射源极和一第二辐射源极,其中所述第一辐射源极具有一第一馈电端并被设置为以所述第一馈电端为端延伸的导体,其中所述第二辐射源极具有一第二馈电端并被设置为所述第二馈电端为端延伸的导体,其中所述第一辐射源极和所述第二辐射源极分别适于在所述第一馈电端和所述第二馈电端被同一激励信号馈源馈电,其中所述第一馈电端和所述第二馈电端在小于等于λ/32的距离范围内相互靠近,其中λ为与该激励信号馈源的馈电信号频率相对应的波长参数,其中所述第一辐射源极被设置满足自所述第一馈电端具有大于等于λ/16的线长,其中所述第二辐射源极被设置满足自所述第二馈电端具有大于等于λ/16的线长,如此以当所述第一辐射源极和所述第二辐射源极分别于所述第一馈电端和所述第二馈电端被同一激励信号馈源馈电时,所述第一辐射源极和所述第二辐射源极的电流和电位分布能够以所述第一馈电端和所述第二馈电端的连线的中点呈对偶分布状态,从而使得所述第一辐射源极自所述第一馈电端沿所述第一辐射源极对应耦合于所述第二辐射源极的自所述第二馈电端沿所述第二辐射源极的相应位置;和
    一电磁反射面,其中所述对偶耦合极子于所述电磁反射面所对应的空间与所述电磁反射面相间隔地被设置,其中所述第一馈电端和所述第二馈电端的连线的中点与所述电磁反射面之间的距离满足大于等于λ/32且小于等于λ/2。
  2. 根据权利要求1所述的微波多普勒探测模块,其中所述微波多普勒探测模块进一步包括一电路单元,其中所述电路单元包括一振荡电路单元和一混频检波单元,其中所述混频检波单元被电性耦合于所述振荡电路单元和所述对偶耦合极子,其中所述振荡电路单元被设置允许被供电而于其馈极而输出一馈电信号和于其地极被接地以作为一激励信号馈源,其中所述第一辐射源极于所述第一馈电端被电性耦合于所述振荡电路单元的馈极,其中所述第二辐射源极于所述第二馈电端被电性连接于所述振荡电路单元的地极,如此以当所述振荡电路单元被供电时,所述第一辐射源极和所述第二辐射源极分别于所述第一馈电端和所述第二馈电端被所述振荡电路单元同源馈电。
  3. 根据权利要求2所述的微波多普勒探测模块,其中所述微波多普勒探测模块进一步包括一电路基板,其中所述电磁反射面和所述电路单元于所述电路基板的两相对面被承载于所述电路基板,并对应形成所述电磁反射面阻隔于所述对偶耦 合极子和所述电路单元之间的状态。
  4. 根据权利要求3所述的微波多普勒探测模块,其中所述微波多普勒探测模块进一步包括一第一馈电线和一第二馈电线,其中所述第一辐射源极于所述第一馈电端经所述第一馈电线被电性耦合于所述振荡电路单元的馈极,其中所述第二辐射源极于所述第二馈电端经所述第二馈电线被电性连接于所述振荡电路单元的地极。
  5. 根据权利要求4所述的微波多普勒探测模块,其中所述第一馈电线和所述第二馈电线为相互平行的柱状直导电线。
  6. 根据权利要求4所述的微波多普勒探测模块,其中所述第一馈电线具有一第一馈电段和在偏离于所述第一馈电段的方向一体延伸于所述第一馈电段一第一耦合段,其中所述第二馈电线具有一第二馈电段和在偏离于所述第二馈电段的方向一体延伸于所述第二馈电段的一第二耦合段,其中所述第一馈电段和所述第二馈电段为相互平行的柱状直导电线并分别自所述第一馈电端和所述第二馈电端延伸。
  7. 根据权利要求6所述的微波多普勒探测模块,其中所述第一馈电段经所述第一耦合段被电性耦合于所述振荡电路单元和被固定耦合于所述电路基板,所述第二馈电段经所述第二耦合段被电性耦合于所述振荡电路单元的地电位和被固定耦合于所述电路基板。
  8. 根据权利要求7所述的微波多普勒探测模块,其中所述第一耦合段和所述第二耦合段在相互远离的方向分别一体延伸于所述第一馈电段和所述第二馈电段,以使得所述第一耦合段和所述第二耦合段之间在垂直于所述第一馈电段和所述第二馈电段的方向的距离大于所述第一馈电段和所述第二馈电段之间的距离。
  9. 根据权利要求8所述的微波多普勒探测模块,其中所述第一耦合段和所述第二耦合段之间在垂直于所述第一馈电段和所述第二馈电段的方向的距离小于等于λ/8。
  10. 根据权利要求9所述的微波多普勒探测模块,其中所述微波多普勒探测模块进一步包括一固定座,其中所述固定座被贴合设置于所述电路基板的承载有所述电磁反射面的一面,其中所述第一馈电线和所述第二馈电线被部分夹持固定于所述固定座。
  11. 根据权利要求4所述的微波多普勒探测模块,其中所述第二馈电线包围所述第一馈电线而形成有一电磁屏蔽腔。
  12. 根据权利要求11所述的微波多普勒探测模块,其中所述第二馈电线自与所述第二辐射源极相连的一端沿所述第一馈电线方向具有一对开槽位置,其中一对所述开槽位置于所述第二馈电线界定有一第一臂和一第二臂,其中所述第二辐射源极自所述第二馈电线的所述第二臂导电延伸,其中所述第一辐射源极自所述第一馈电线和所述第二馈电线的所述第一臂导电延伸而被电性连接于所述振荡电路单元的地极,其中所述第二馈电线于一对所述开槽位置分别沿所述第一馈电线方向被设置有至少一开槽。
  13. 根据权利要求12所述的微波多普勒探测模块,其中所述第二馈电线于一对所述开槽位置分别被设置有一个所述开槽,其中所述开槽自所述第二馈电线的与所述第二辐射源极相连的一端沿所述第一馈电线方向具有大于等于λ/128的开槽深度。
  14. 根据权利要求1至13中任一所述的微波多普勒探测模块,其中所述第一辐射源极的与所述第一馈电端相对的一端相对于所述第一馈电端靠近所述电磁反射面,所述第二辐射源极的与所述第二馈电端相对的一端相对于所述第二馈电端靠近所述电磁反射面,其中所述第一辐射源极和所述第二辐射源极在垂直于所述电磁反射面方向均具有大于等于λ/32且小于等于λ/4的尺寸。
  15. 根据权利要求14所述的微波多普勒探测模块,其中所述第一辐射源极和所述第二辐射源极被设置以所述第一馈电端和所述第二馈电端连线的中点对称。
  16. 根据权利要求15所述的微波多普勒探测模块,其中所述第一辐射源极于与所述第一馈电端相对的一端在垂直于所述第一馈电端和所述第二馈电端的连线的两相对方向被进一步延伸,所述第二辐射源极于与所述第二馈电端相对的一端 在垂直于所述第一馈电端和所述第二馈电端的连线的两相对方向被进一步延伸。
  17. 根据权利要求15所述的微波多普勒探测模块,其中所述第一辐射源极被设置为自所述第一馈电端在所述第二馈电端向所述第一馈电端方向和在靠近所述电磁反射面方向延伸的柱状导电线,其中所述第二辐射源极被设置为自所述第二馈电端在所述第一馈电端向所述第二馈电端方向和在靠近所述电磁反射面方向延伸的柱状导电线。
  18. 根据权利要求17所述的微波多普勒探测模块,其中所述第一辐射源极和所述第二辐射源极被一次弯折,相应被弯折的所述第一辐射源极为自所述第一馈电端顺序在所述第二馈电端向所述第一馈电端方向和在靠近所述电磁反射面方向延伸的柱状导电线,相应被弯折的所述第二辐射源极为自所述第二馈电端顺序在所述第一馈电端向所述第二馈电端方向和在靠近所述电磁反射面方向延伸的柱状导电线。
  19. 根据权利要求17所述的微波多普勒探测模块,其中所述第一辐射源极自所述第一馈电端同时在所述第二馈电端向所述第一馈电端的方向和靠近所述电磁反射面的方向延伸,所述第二辐射源极自所述第二馈电端同时在所述第一馈电端向所述第二馈电端的方向和靠近所述电磁反射面的方向延伸。
  20. 根据权利要求19所述的微波多普勒探测模块,其中所述第一辐射源极被设置为自所述第一馈电端同时在所述第二馈电端向所述第一馈电端的连线方向和靠近所述电磁反射面的方向延伸的柱状直导电线,其中所述第二辐射源极被设置为自所述第二馈电端同时在所述第一馈电端向所述第二馈电端的连线方向和靠近所述电磁反射面的方向延伸的柱状直导电线。
  21. 根据权利要求19所述的微波多普勒探测模块,其中所述第一辐射源极被设置为自所述第一馈电端同时在所述第二馈电端向所述第一馈电端的连线方向和靠近所述电磁反射面的方向延伸的柱状弧形导电线,其中所述第二辐射源极被设置为自所述第二馈电端同时在所述第一馈电端向所述第二馈电端的连线方向和靠近所述电磁反射面的方向延伸的柱状弧形导电线。
  22. 根据权利要求1至13中任一所述的微波多普勒探测模块,其中所述第一辐射源极和所述第二辐射源极被设置以所述第一馈电端和所述第二馈电端连线的 中点对称。
  23. 根据权利要求22所述的微波多普勒探测模块,其中所述第一辐射源极被设置为自所述第一馈电端以所述第一馈电端为端沿所述第二馈电端向所述第一馈电端的连线延伸的柱状直导电线,其中所述第二辐射源极被设置为自所述第二馈电端以所述第二馈电端为端沿所述第一馈电端向所述第二馈电端的连线延伸的柱状直导电线。
  24. 根据权利要求1至13中任一所述的微波多普勒探测模块,其中所述微波多普勒探测模块进一步包括一介质基板,其中所述第一辐射源极和所述第二辐射源极以微带线形式被承载于所述介质基板。
  25. 根据权利要求24所述的微波多普勒探测模块,其中所述第一辐射源极和所述第二辐射源极被承载于所述介质基板的同一面,其中所述第一辐射源极被设置为自所述第一馈电端以所述第一馈电端为端沿所述第二馈电端向所述第一馈电端的连线延伸的微带线,其中所述第二辐射源极被设置为自所述第二馈电端以所述第二馈电端为端沿所述第一馈电端向所述第二馈电端的连线延伸的微带线。
  26. 根据权利要求25所述的微波多普勒探测模块,其中所述介质基板的承载有所述第一辐射源极和所述第二辐射源极的一面平行于所述电磁反射面。
  27. 根据权利要求25所述的微波多普勒探测模块,其中所述介质基板的承载有所述第一辐射源极和所述第二辐射源极的一面垂直于所述电磁反射面,且所述第一馈电端和所述第二馈电端的连线平行于所述电磁反射面。
  28. 根据权利要求24所述的微波多普勒探测模块,其中所述第一辐射源极的所述第一馈电端和所述第二辐射源极的所述第二馈电端被承载于所述介质基板的同一面,其中所述第一辐射源极以所述第一馈电端为端沿所述第二馈电端向所述第一馈电端的连线方向延伸,并继续绕所述介质基板的侧边延伸至所述介质基板的另一面,其中所述第二辐射源极以所述第二馈电端为端沿所述第一馈电端向所述第二馈电端的连线方向延伸,并继续绕所述介质基板的侧边延伸至所述介质基板的另一面。
  29. 根据权利要求24所述的微波多普勒探测模块,其中所述第一辐射源极的所 述第一馈电端和所述第二辐射源极的所述第二馈电端分别被承载于所述介质基板的两相对面,其中所述第一辐射源极以所述第一馈电端为端向所述介质基板的一侧边延伸并继续绕所述介质基板的该侧边延伸至所述介质基板的另一面,其中所述第二辐射源极以所述第二馈电端为端向所述介质基板的另一相对侧边延伸并继续绕所述介质基板的该相对侧边延伸至所述介质基板的另一面。
  30. 一微波多普勒探测设备,其特征在于,包括:
    一电路单元,其中所述电路单元包括一振荡电路单元和一混频检波单元,其中所述振荡电路单元被设置允许被供电而于其馈极输出一馈电信号和于其地极被接地以作为一激励信号馈源;
    一电路基板,其中所述电路单元被承载于所述电路基板;
    一电磁屏蔽层,其中所述电磁屏蔽层被设置有一通孔,其中所述电路单元被设置于所述电磁屏蔽层的一面所对应的空间;以及
    至少一对对偶耦合极子,其中所述对偶耦合极子被设置于所述电磁屏蔽层的另一面所对应的空间,其中一对所述对偶耦合极子包括一第一辐射源极和一第二辐射源极,其中所述第一辐射源极具有一第一馈电端并被设置为以所述第一馈电端为端延伸的导体,其中所述第二辐射源极具有一第二馈电端并被设置为所述第二馈电端为端延伸的导体,其中所述混频检波单元被电性耦合于所述振荡电路单元和所述对偶耦合极子,其中所述第一辐射源极于所述第一馈电端被经所述通孔穿透所述电磁屏蔽层的一第一馈电线电性耦合于所述振荡电路单元的馈极,其中所述第二辐射源极于所述第二馈电端被经所述通孔穿透所述电磁屏蔽层的一第二馈电线电性连接于所述振荡电路单元的地极,其中所述第一馈电端和所述第二馈电端在小于等于λ/32的距离范围内相互靠近,其中λ为与所述馈电信号的频率相对应的波长参数,其中所述第一辐射源极被设置满足自所述第一馈电端具有大于等于λ/16的线长,其中所述第二辐射源极被设置满足自所述第二馈电端具有大于等于λ/16的线长,如此以当所述振荡电路单元被供电时,所述第一辐射源极和所述第二辐射源极的电位分布能够以所述第一馈电端和所述第二馈电端的连线的中点呈对偶分布状态,从而使得所述第一辐射源极自所述第一馈电端沿所述第一辐射源极对应耦合于所述第二辐射源极的自所述第二馈电端沿所述第二辐射源极的相应位置。
  31. 根据权利要求30所述的微波多普勒探测设备,其中所述的微波多普勒探测设备进一步包括一电磁反射面,其中所述电磁反射面被承载于所述电路基板的与承载有所述电路单元的一面相对的一面,并阻隔于所述对偶耦合极子和所述电路 单元之间。
  32. 根据权利要求31所述的微波多普勒探测设备,其中所述第一馈电线和所述第二馈电线为相互平行的柱状直导电线。
  33. 根据权利要求31所述的微波多普勒探测设备,其中所述第一馈电线具有一第一馈电段和在偏离于所述第一馈电段的方向一体延伸于所述第一馈电段一第一耦合段,其中所述第二馈电线具有一第二馈电段和在偏离于所述第二馈电段的方向一体延伸于所述第二馈电段的一第二耦合段,其中所述第一馈电段和所述第二馈电段为相互平行的柱状直导电线并分别自所述第一馈电端和所述第二馈电端延伸。
  34. 根据权利要求33所述的微波多普勒探测设备,其中所述第一馈电段经所述第一耦合段被电性耦合于所述振荡电路单元和被固定耦合于所述电路基板,所述第二馈电段经所述第二耦合段被电性耦合于所述振荡电路单元的地电位和被固定耦合于所述电路基板。
  35. 根据权利要求34所述的微波多普勒探测设备,其中所述第一耦合段和所述第二耦合段在相互远离的方向分别一体延伸于所述第一馈电段和所述第二馈电段,以使得所述第一耦合段和所述第二耦合段之间在垂直于所述第一馈电段和所述第二馈电段的方向的距离大于所述第一馈电段和所述第二馈电段之间的距离。
  36. 根据权利要求31所述的微波多普勒探测设备,其中所述第二馈电线包围所述第一馈电线而形成有一电磁屏蔽腔。
  37. 根据权利要求36所述的微波多普勒探测设备,其中所述第二馈电线自与所述第二辐射源极相连的一端沿所述第一馈电线方向具有一对开槽位置,其中一对所述开槽位置于所述第二馈电线界定有一第一臂和一第二臂,其中所述第二辐射源极自所述第二馈电线的所述第二臂导电延伸,其中所述第一辐射源极自所述第一馈电线和所述第二馈电线的所述第一臂导电延伸而被电性连接于所述振荡电路单元的地极,其中所述第二馈电线于一对所述开槽位置分别沿所述第一馈电线方向被设置有至少一开槽。
  38. 根据权利要求37所述的微波多普勒探测设备,其中所述第二馈电线于一对 所述开槽位置分别被设置有一个所述开槽,其中所述开槽自所述第二馈电线的与所述第二辐射源极相连的一端沿所述第一馈电线方向具有大于等于λ/128的开槽深度。
  39. 根据权利要求30至38中任一所述的微波多普勒探测设备,其中所述第一辐射源极的与所述第一馈电端相对的一端相对于所述第一馈电端靠近所述电路基板,所述第二辐射源极的与所述第二馈电端相对的一端相对于所述第二馈电端靠近所述电路基板,其中所述第一辐射源极和所述第二辐射源极在垂直于所述电路基板方向均具有大于等于λ/32且小于等于λ/4的尺寸。
  40. 根据权利要求39所述的微波多普勒探测设备,其中所述第一辐射源极和所述第二辐射源极被设置以所述第一馈电端和所述第二馈电端连线的中点对称。
  41. 根据权利要求40所述的微波多普勒探测设备,其中所述第一辐射源极被设置为自所述第一馈电端在所述第二馈电端向所述第一馈电端方向和在靠近所述电路基板方向延伸的柱状导电线,其中所述第二辐射源极被设置为自所述第二馈电端在所述第一馈电端向所述第二馈电端方向和在靠近所述电路基板方向延伸的柱状导电线。
  42. 根据权利要求41所述的微波多普勒探测设备,其中所述第一辐射源极和所述第二辐射源极被一次弯折,相应被弯折的所述第一辐射源极为自所述第一馈电端顺序在所述第二馈电端向所述第一馈电端方向和在靠近所述电路基板方向延伸的柱状导电线,相应被弯折的所述第二辐射源极为自所述第二馈电端顺序在所述第一馈电端向所述第二馈电端方向和在靠近所述电路基板方向延伸的柱状导电线。
  43. 根据权利要求41所述的微波多普勒探测设备,中所述第一辐射源极自所述第一馈电端同时在所述第二馈电端向所述第一馈电端的方向和靠近所述电路基板的方向延伸,所述第二辐射源极自所述第二馈电端同时在所述第一馈电端向所述第二馈电端的方向和靠近所述电路基板的方向延伸。
  44. 根据权利要求43所述的微波多普勒探测设备,其中所述第一辐射源极被设置为自所述第一馈电端同时在所述第二馈电端向所述第一馈电端的连线方向和靠近所述电路基板的方向延伸的柱状直导电线,其中所述第二辐射源极被设置为 自所述第二馈电端同时在所述第一馈电端向所述第二馈电端的连线方向和靠近所述电路基板的方向延伸的柱状直导电线。
  45. 根据权利要求43所述的微波多普勒探测设备,其中所述第一辐射源极被设置为自所述第一馈电端同时在所述第二馈电端向所述第一馈电端的连线方向和靠近所述电路基板的方向延伸的柱状弧形导电线,其中所述第二辐射源极被设置为自所述第二馈电端同时在所述第一馈电端向所述第二馈电端的连线方向和靠近所述电路基板的方向延伸的柱状弧形导电线。
  46. 根据权利要求30至38中任一所述的微波多普勒探测设备,其中所述第一辐射源极和所述第二辐射源极被设置以所述第一馈电端和所述第二馈电端连线的中点对称,其中所述第一辐射源极被设置为自所述第一馈电端以所述第一馈电端为端沿所述第二馈电端向所述第一馈电端的连线延伸的柱状直导电线,其中所述第二辐射源极被设置为自所述第二馈电端以所述第二馈电端为端沿所述第一馈电端向所述第二馈电端的连线延伸的柱状直导电线。
  47. 根据权利要求30至38中任一所述的微波多普勒探测设备,其中所述微波多普勒探测模块进一步包括一介质基板,其中所述第一辐射源极和所述第二辐射源极以微带线形式被承载于所述介质基板。
  48. 根据权利要求47所述的微波多普勒探测设备,其中所述第一辐射源极和所述第二辐射源极被承载于所述介质基板的同一面,其中所述第一辐射源极被设置为自所述第一馈电端以所述第一馈电端为端沿所述第二馈电端向所述第一馈电端的连线延伸的微带线,其中所述第二辐射源极被设置为自所述第二馈电端以所述第二馈电端为端沿所述第一馈电端向所述第二馈电端的连线延伸的微带线。
  49. 根据权利要求47所述的微波多普勒探测设备,其中所述第一辐射源极的所述第一馈电端和所述第二辐射源极的所述第二馈电端被承载于所述介质基板的同一面,其中所述第一辐射源极以所述第一馈电端为端沿所述第二馈电端向所述第一馈电端的连线方向延伸,并继续绕所述介质基板的侧边延伸至所述介质基板的另一面,其中所述第二辐射源极以所述第二馈电端为端沿所述第一馈电端向所述第二馈电端的连线方向延伸,并继续绕所述介质基板的侧边延伸至所述介质基板的另一面。
  50. 根据权利要求47所述的微波多普勒探测设备,其中所述第一辐射源极的所述第一馈电端和所述第二辐射源极的所述第二馈电端分别被承载于所述介质基板的两相对面,其中所述第一辐射源极以所述第一馈电端为端向所述介质基板的一侧边延伸并继续绕所述介质基板的该侧边延伸至所述介质基板的另一面,其中所述第二辐射源极以所述第二馈电端为端向所述介质基板的另一相对侧边延伸并继续绕所述介质基板的该相对侧边延伸至所述介质基板的另一面。
PCT/CN2020/086911 2019-12-24 2020-04-26 微波多普勒探测模块及设备 WO2021128672A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2020411326A AU2020411326B2 (en) 2019-12-24 2020-04-26 Microwave doppler detection module and device
EP20907072.1A EP4083664A4 (en) 2019-12-24 2020-04-26 MICROWAVE DOPPLER DETECTION MODULE AND DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911347333 2019-12-24
CN201911347333.0 2019-12-24
CN202010219442.0A CN111290035A (zh) 2020-03-25 2020-03-25 微波多普勒探测模块及设备
CN202010219442.0 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021128672A1 true WO2021128672A1 (zh) 2021-07-01

Family

ID=76441764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086911 WO2021128672A1 (zh) 2019-12-24 2020-04-26 微波多普勒探测模块及设备

Country Status (4)

Country Link
US (2) US11764461B2 (zh)
EP (1) EP4083664A4 (zh)
AU (1) AU2020411326B2 (zh)
WO (1) WO2021128672A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217332843U (zh) * 2022-01-25 2022-08-30 深圳迈睿智能科技有限公司 微发射功率的微波探测装置
CN115407410B (zh) * 2022-10-27 2023-01-31 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) 一种基于无线电波反射的插入式矿产勘查装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812855A (en) * 1985-09-30 1989-03-14 The Boeing Company Dipole antenna with parasitic elements
US6018324A (en) * 1996-12-20 2000-01-25 Northern Telecom Limited Omni-directional dipole antenna with a self balancing feed arrangement
CN101057158A (zh) * 2004-11-11 2007-10-17 罗伯特·博世有限公司 尤其是用于距离和/或速度测量的雷达系统
CN103682588A (zh) * 2012-09-12 2014-03-26 香港城市大学 高增益和宽频带互补天线
CN108292809A (zh) * 2015-09-11 2018-07-17 株式会社Kmw 多极化的极化辐射元件和具有其的天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131896A (en) * 1976-02-10 1978-12-26 Westinghouse Electric Corp. Dipole phased array with capacitance plate elements to compensate for impedance variations over the scan angle
EP2805377B1 (en) * 2012-01-17 2018-11-21 Saab Ab Combined antenna, antenna array and method for using the array antenna
TWI678025B (zh) * 2016-03-16 2019-11-21 啟碁科技股份有限公司 智慧型天線及具有智慧型天線的無線通訊裝置
US10886627B2 (en) * 2019-06-05 2021-01-05 Joymax Electronics Co., Ltd. Wideband antenna device
US11239544B2 (en) * 2019-10-31 2022-02-01 Commscope Technologies Llc Base station antenna and multiband base station antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812855A (en) * 1985-09-30 1989-03-14 The Boeing Company Dipole antenna with parasitic elements
US6018324A (en) * 1996-12-20 2000-01-25 Northern Telecom Limited Omni-directional dipole antenna with a self balancing feed arrangement
CN101057158A (zh) * 2004-11-11 2007-10-17 罗伯特·博世有限公司 尤其是用于距离和/或速度测量的雷达系统
CN103682588A (zh) * 2012-09-12 2014-03-26 香港城市大学 高增益和宽频带互补天线
CN108292809A (zh) * 2015-09-11 2018-07-17 株式会社Kmw 多极化的极化辐射元件和具有其的天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083664A4 *

Also Published As

Publication number Publication date
AU2020411326A1 (en) 2022-07-14
US11764461B2 (en) 2023-09-19
EP4083664A4 (en) 2024-01-24
AU2020411326B2 (en) 2024-03-14
US20240039147A1 (en) 2024-02-01
US20210190933A1 (en) 2021-06-24
EP4083664A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
WO2021128672A1 (zh) 微波多普勒探测模块及设备
CN215771548U (zh) 半波回折式定向微波探测天线
WO2023143104A1 (zh) 双端馈电式差分天线
CN211698235U (zh) 5.8g高增益微波多普勒探测模块
CN106129593A (zh) 一种二维宽角度扫描的全金属相控阵雷达天线单元
CN211453981U (zh) 高增益微波多普勒探测模块
CN111290036A (zh) 高增益微波多普勒探测模块
CN205790393U (zh) 双圆极化腔式天线
CN211453983U (zh) 微波多普勒探测模块
CN211453984U (zh) 高增益微波多普勒探测模块
CN216563519U (zh) 空间交错式一体收发分离微波探测天线
CN211453982U (zh) 微波多普勒探测设备
CN217239743U (zh) 抗干扰的微波探测天线
US20240088545A1 (en) Microwave-Doppler Detecting Module and Device Thereof
CN217427079U (zh) 错位微波探测天线
CN111290035A (zh) 微波多普勒探测模块及设备
CN111290034A (zh) 高增益微波多普勒探测模块
CN211455939U (zh) 微波感应器
JP5692464B2 (ja) デルタ平面パッチアンテナ装置
CN111129755A (zh) 波束修整方法
WO2021139064A1 (zh) 低副瓣天线
CN218215671U (zh) 板载式微波探测天线
CN218602736U (zh) 5.8g微型微波探测天线
WO2022052690A1 (zh) 用于可折叠电子设备的天线及可折叠电子设备
CN217387527U (zh) 半波回折式定向微波探测天线和半波振子编带

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020411326

Country of ref document: AU

Date of ref document: 20200426

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907072

Country of ref document: EP

Effective date: 20220725