WO2022052690A1 - 用于可折叠电子设备的天线及可折叠电子设备 - Google Patents

用于可折叠电子设备的天线及可折叠电子设备 Download PDF

Info

Publication number
WO2022052690A1
WO2022052690A1 PCT/CN2021/110863 CN2021110863W WO2022052690A1 WO 2022052690 A1 WO2022052690 A1 WO 2022052690A1 CN 2021110863 W CN2021110863 W CN 2021110863W WO 2022052690 A1 WO2022052690 A1 WO 2022052690A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
segment
antenna segment
casing
electronic device
Prior art date
Application number
PCT/CN2021/110863
Other languages
English (en)
French (fr)
Inventor
周圆
刘孝鹏
侯猛
余冬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/044,303 priority Critical patent/US20240030607A1/en
Priority to EP21865746.8A priority patent/EP4210165A4/en
Publication of WO2022052690A1 publication Critical patent/WO2022052690A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1698Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a sending/receiving arrangement to establish a cordless communication link, e.g. radio or infrared link, integrated cellular phone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the present application relates to the field of wireless communication antennas, and in particular, to an antenna for a foldable electronic device and a foldable electronic device.
  • the notebook computer mainly includes four parts: A shell, B shell, C shell and D shell.
  • the A shell is the shell opposite to the screen
  • the B shell is the shell on the side of the screen
  • the C shell is the shell on the keyboard
  • the D shell is the shell. It is the shell corresponding to the keyboard.
  • the assembly of the A shell and the B shell is defined as the first shell
  • the assembly of the C shell and the D shell is defined as the second shell.
  • the first casing and the second casing are connected by a rotating shaft, and a space is formed between the first casing, the second casing and the rotating shafts on both sides.
  • the notebook computer is generally equipped with a WIFI antenna for wireless Internet access, and the WIFI antenna is arranged in the above-mentioned space. In order to ensure the use performance of the WIFI antenna, the directivity of the WIFI antenna is required.
  • the embodiments of the present application provide an antenna for a foldable electronic device and the foldable electronic device, which can effectively improve the directivity of the antenna.
  • An embodiment of the present application provides an antenna for a foldable electronic device.
  • the foldable electronic device includes a first casing and a second casing, and the first casing and the second casing are rotatably connected by a rotating shaft therebetween, so as to The foldable electronic device is switched between the unfolded state and the folded state, the first casing is the casing on the side where the display screen of the foldable electronic device is located, and the second casing is the casing on the side where the keyboard of the foldable electronic device is located
  • the antenna is arranged in the space surrounded by the first casing, the second casing and the rotating shaft, and when the foldable electronic device is in the unfolded state, an opening and closing area is formed between the first casing and the second casing;
  • the antenna includes a first antenna segment and a second antenna segment arranged in sequence along the length direction of the antenna, wherein,
  • the first antenna segment has a first end and a second end, the first end of the first antenna segment is connected to the ground plate of the first housing, and the first antenna segment extends from the first end of the first antenna segment toward the opening and closing area to the second end of the first antenna segment;
  • the second antenna segment has a first end and a second end, the first end of the second antenna segment is connected to the second end of the first antenna segment such that the second antenna segment is at the first end of the second antenna segment and An antenna segment is angled at the second end of the first antenna segment, the second end of the second antenna segment is spaced from the ground plate of the first housing, and the entirety of the first antenna segment is relative to the second antenna segment. The whole is disposed away from the lower edge of the first housing, wherein the second antenna segment further includes a feeder, and the radio frequency module of the foldable electronic device is directly fed or coupled to the feeder of the second antenna segment through the feeder .
  • the antenna is arranged in the space surrounded by the first housing, the second housing and the rotating shaft, and the entirety of the first antenna segment is arranged away from the lower edge of the first housing relative to the entirety of the second antenna segment, And the second end of the second antenna segment is spaced from the ground plate of the first casing, so that the radiation of the antenna itself is directed to another area between the first casing and the second casing opposite to the opening and closing area (ie In the unfolded state, the back area formed by the backside of the ground plate of the first casing and the backside of the second casing, that is, the large-angle area formed between the first casing and the second casing), is then superimposed.
  • the part of the electric field excited in the space (radiating toward the opening and closing area between the first shell and the second shell, that is, radiating toward the small-angle area formed between the first shell and the second shell),
  • the superimposed total radiation pattern is relatively evenly distributed in the omnidirectional direction, thereby reducing the directivity of the antenna.
  • An embodiment of the present application provides an antenna for a foldable electronic device.
  • the foldable electronic device includes a first casing and a second casing, and the first casing and the second casing are rotated by rotating shafts located on both sides. connected so that the first shell can be switched between the unfolded state and the folded state with respect to the second shell, a closed slot is formed around the first shell, the second shell and the rotating shaft located on both sides, and the antenna It is arranged in the slot of the foldable electronic device, and when the foldable electronic device is used in the unfolded state, the first casing is located above the second casing;
  • the antenna adopts a three-dimensional structure antenna
  • the antenna includes a first antenna segment and a second antenna segment arranged in sequence along the length direction of the antenna.
  • the second antenna segment In the unfolded state, the second antenna segment is located below the first antenna segment; one end of the first antenna segment is connected to the first shell the ground plate of the body, and the first antenna segment extends from one end toward the direction of the opening and closing area of the first casing and the second casing in the unfolded state away from the first casing;
  • One end of the second antenna segment is a free end, and there is a gap between the free end and the ground plate of the first housing, and the radio frequency signal output by the radio frequency module is received through the second antenna segment, so that the antenna is radiated outward.
  • the antenna is arranged in the slot of the foldable electronic device.
  • the second antenna segment In the unfolded state, the second antenna segment is located below the first antenna segment, and the free end of the second antenna segment is connected to the ground plate of the first housing. There is a gap between them, that is, the gap is located below the first antenna segment, so that the radiation of the antenna itself is directed to another area between the first housing and the second housing opposite to the opening and closing area (that is, in the unfolded state).
  • the part of the excited electric field (radiated towards the opening and closing area between the first casing and the second casing, that is, radiating towards the small-angle area formed between the first casing and the second casing), after superposition
  • the overall radiation pattern is relatively uniform in the omnidirectional distribution, thereby reducing the directivity of the antenna.
  • the second antenna segment is an L-shaped antenna segment, comprising a first segment (ie a vertical segment) and a second segment (ie a horizontal segment) that are arranged to intersect, and the first segment of the L-shaped antenna segment is connected to The first antenna segment, and one end of the second segment of the L-shaped antenna segment is the second end of the second antenna segment.
  • the first segment of the L-shaped antenna segment is arranged perpendicular to the first antenna segment, and the second segment of the L-shaped antenna segment is arranged parallel to the first antenna segment.
  • the second segment of the L-shaped antenna segment is the feed.
  • the radio frequency signal output by the radio frequency module is received through the second segment (ie, the horizontal segment) of the L-shaped antenna segment, so that the antenna is radiated outward.
  • one end of the second segment of the L-shaped antenna segment is connected to one end of a capacitor, and the other end of the capacitor is connected to the radio frequency module through a feed line.
  • the horizontal section of the L-shaped antenna section receives the RF signal output by the RF module. One end of the horizontal section is connected to the capacitor, and then the RF module is connected to the RF signal through the capacitor.
  • a gap is formed at one end of the second segment of the L-shaped antenna segment, the antenna further includes a feeding branch, the main body of the feeding branch is located in the gap, and a main body of the feeding branch and the second segment are formed with a gap.
  • the isolation gap, the part of the feeding branch except the main body is located outside the gap, the part of the feeding branch located outside the gap is connected to the RF module through the feed line, and is coupled and fed to the second segment of the L-shaped antenna segment through the isolation gap.
  • a gap is provided at one end of the second segment of the L-shaped antenna segment, the antenna further includes a feeding branch, the feeding branch is located in the gap, and an isolation gap is formed between the feeding branch and the second segment , the feeding branch is connected to the radio frequency module through the feeding line, and is coupled and fed to the second section of the L-shaped antenna section through the isolation gap.
  • a gap is provided at one end of the second section (ie, the horizontal section) of the L-shaped antenna section, and the main body of a feeding branch is located in the gap, so that a main body of the feeding branch and the horizontal section are formed with a gap. Isolating the gap, the part of the feeding branch except the main body is located outside the gap, and the part of the feeding branch located outside the gap is connected to the radio frequency module;
  • the horizontal section of the L-shaped antenna section receives the radio frequency signal output by the radio frequency module. After receiving the radio frequency signal through the feeding branch, it is coupled to the horizontal section through the isolation gap to receive the radio frequency signal.
  • a metal column is connected to a surface of the second segment of the L-shaped antenna segment opposite to the first antenna segment, and the free end of the metal column is connected to the radio frequency module through a feeder.
  • the second section of the L-shaped antenna section receives the radio frequency signal output by the radio frequency module.
  • the second section is connected to the metal column, and then the metal column is connected to the radio frequency module to receive the radio frequency signal.
  • the first antenna segment and the second antenna segment of the antenna are formed by bending a metal sheet.
  • the first antenna segment is a patch antenna segment and the second antenna segment is an L-shaped patch antenna segment.
  • the width of the second antenna segment is less than or equal to the width of the first antenna segment. In this way, the radiation of the antenna itself can be more concentrated toward another area between the first casing and the second casing that is opposite to the opening and closing area, so that the directivity of the antenna can be further reduced.
  • the second antenna segment when the width of the second antenna segment is smaller than the width of the first antenna segment, the second antenna segment is located in the middle of the first antenna segment in the width direction of the antenna;
  • the second antenna segment When the width of the second antenna segment is equal to the width of the first antenna segment, the second antenna segment is flush with the first antenna segment in the width direction of the antenna.
  • the antenna adopts a three-dimensional structure antenna, and the first antenna segment, the second antenna segment and the first housing are A cavity is formed around the gap, and the cavity is communicated with the gap.
  • An embodiment of the present application provides an antenna for a foldable electronic device.
  • the foldable electronic device includes a first casing and a second casing, and the first casing and the second casing are rotatably connected by a rotating shaft therebetween, so as to The foldable electronic device is switched between the unfolded state and the folded state, the antenna is arranged in the space surrounded by the first housing, the second housing and the rotating shaft, and when the foldable electronic device is in the unfolded state, the first housing is located in the space.
  • an opening and closing area is formed between the first shell and the second shell;
  • the antenna adopts a three-dimensional structure antenna, and the antenna includes a first antenna segment and a second antenna segment arranged in sequence along the length direction of the antenna.
  • the second antenna segment is located below the first antenna segment; in,
  • the first antenna segment has a first end and a second end, the first end of the first antenna segment is connected to the ground plate of the first housing, and the first antenna segment extends from the first end of the first antenna segment toward the opening and closing area to the second end of the first antenna segment;
  • the second antenna segment has a first end and a second end, the first end of the second antenna segment is connected to the second end of the first antenna segment such that the second antenna segment is at the first end of the second antenna segment and An antenna segment is arranged at an angle at the second end of the first antenna segment, and the second end of the second antenna segment is spaced apart from the ground plate of the first housing, wherein the second antenna segment further includes a feeder, which can be folded The radio frequency module of the electronic device is directly fed or coupled to the feeder of the second antenna segment through the feeder.
  • the embodiment of the present application also provides a foldable electronic device, which includes the antenna for the foldable electronic device provided by any of the above embodiments.
  • the foldable electronic device is a foldable notebook computer.
  • Figure 1a is a schematic diagram (1) of the three-dimensional structure of the notebook computer in an unfolded state, and the perspective is a side view direction, wherein the antenna is not shown in the figure
  • Figure 1b is a schematic diagram of the three-dimensional structure of the notebook computer in the unfolded state (2), The viewing angle is the frontal direction, that is, the direction of the screen of the notebook computer facing the user, wherein the antenna is not shown in the figure
  • Fig. 1c is a schematic diagram of the structure of the closed slot feeding in the notebook computer
  • Fig. 1d is the radiation that excites the closed slot alone direction map;
  • Fig. 2a is a schematic three-dimensional structure diagram (1) of a plane inverted-F antenna placed in the closed slot of the notebook computer in the unfolded state, and the perspective is a side view direction;
  • Fig. 2b is a notebook computer in the unfolded state.
  • Figure 2c is a schematic top view of the notebook computer in the unfolded state;
  • Figure 2d is A in Figure 2c Part of the enlarged schematic view of the structure;
  • Fig. 2e is a schematic structural diagram of a plane inverted-F antenna feeding in Fig. 2d;
  • Fig. 2f is a schematic three-dimensional structure of a plane inverted-F antenna;
  • Fig. 2g is a radiation pattern of the plane inverted-F antenna;
  • FIG. 3 is a schematic three-dimensional structure diagram (1) of the foldable electronic device in the unfolded state according to Embodiment 1 of the application, and the perspective is a side view direction;
  • FIG. 4 is a schematic diagram (2) of the three-dimensional structure of the foldable electronic device in the unfolded state according to Embodiment 1 of the application, and the viewing angle is the frontal direction, that is, the direction in which the screen of the foldable electronic device faces the user;
  • Fig. 5 is the enlarged structural representation of part B in Fig. 3;
  • FIG. 6 is a schematic three-dimensional structure diagram (1) of the antenna according to Embodiment 1 of the present application, and the perspective mainly reflects the structure in the length direction of the antenna;
  • FIG. 7 is a schematic diagram (2) of a three-dimensional structure of the antenna according to Embodiment 1 of the present application, and the perspective mainly reflects the structure in the width direction of the antenna;
  • FIG. 8 is a schematic structural diagram of an embodiment of the antenna feeding according to Embodiment 1 of the present application.
  • FIG. 9 is a schematic diagram of the circuit structure of an embodiment of the antenna feeding in the unfolded state according to Embodiment 1 of the present application.
  • FIG. 10 is a schematic diagram of a circuit structure of another embodiment of the antenna according to Embodiment 1 of the present application, which is fed in an unfolded state;
  • FIG. 11 is a schematic structural diagram of another implementation manner of antenna feeding according to Embodiment 1 of the present application.
  • Fig. 12 is the enlarged structural schematic diagram of C part in Fig. 11;
  • FIG. 13 is a schematic structural diagram of still another implementation manner of antenna feeding according to Embodiment 1 of the present application.
  • FIG. 14 is a simulation curve diagram of the S-parameter performance of the antenna of Embodiment 1 of the application.
  • FIG. 15 is an efficiency simulation curve diagram of the antenna according to Embodiment 1 of the application.
  • FIG. 16 is a radiation pattern of the antenna according to Embodiment 1 of the application.
  • FIG. 17 is a schematic diagram of a current distribution structure at a position close to the antenna of the foldable electronic device according to Embodiment 1 of the application;
  • FIG. 18 is a schematic diagram of the electric field distribution structure at a position close to the antenna of the foldable electronic device according to Embodiment 1 of the application;
  • FIG. 19 is a schematic diagram of the local electric field distribution structure of the antenna according to Embodiment 1 of the application.
  • FIG. 20a is a schematic diagram of the local current distribution structure of the antenna according to Embodiment 1 of the application (1), and the perspective mainly reflects the structure in the length direction of the antenna;
  • FIG. 20b is a schematic diagram of the local current distribution structure of the antenna according to Embodiment 1 of the application (1). 2), the angle of view mainly reflects the structure in the width direction of the antenna;
  • 21 is a schematic partial structural diagram of the antenna and the first casing in the foldable electronic device according to Embodiment 2 of the application;
  • FIG. 22 is a schematic structural diagram of an implementation manner of antenna feeding according to Embodiment 2 of the present application.
  • FIG. 23 is a schematic diagram of the circuit structure of the antenna feeding in the unfolded state according to Embodiment 2 of the application;
  • FIG. 24 is a schematic three-dimensional structure diagram (1) of the antenna according to Embodiment 2 of the application, and the perspective mainly reflects the structure in the length direction of the antenna;
  • FIG. 25 is a schematic three-dimensional structure diagram (2) of the antenna according to Embodiment 2 of the present application, and the perspective mainly reflects the structure in the width direction of the antenna.
  • L' the length of the radiator
  • W' the width of the radiator
  • L1' the length of the ground part
  • W1' the width of the ground part
  • L2' the length of the closed slot
  • W2' the width of the closed slot
  • d1' the distance between the feeding point and the open end of the radiator
  • d2' the distance between the feeding point and the ground
  • d3' the distance between the left end of the flat inverted-F antenna and the left end of the closed slot distance
  • d4' the distance between the right end of the flat inverted-F antenna and the right end of the closed slot
  • s1' the gap between the radiator and the A shell
  • s2' the gap between the radiator and the second shell .
  • 200A first shell; 210A: A shell; 700A: antenna; 710A: first antenna segment; 720A: second antenna segment; 721A: one end; 722A: vertical segment; 730A: slot; 800A: radio frequency module;
  • ⁇ 1 The first included angle; ⁇ 2: The second included angle; L: The length direction of the antenna; W: The width direction of the antenna; L1: The length of the first antenna segment; W1: The width of the first antenna segment; L2: The second The length of the vertical segment of the antenna segment; W2: the width of the vertical segment of the second antenna segment; L3: the length of the horizontal segment of the second antenna segment; W3: the width of the horizontal segment of the second antenna segment; L4: the width of the slot length; W4: the width of the slot; d1: the distance between the first antenna segment and the horizontal segment of the second antenna segment; d2: the distance between one end of the second antenna segment and the ground plate of the first housing; d3: The distance between the vertical section of the second antenna segment and the second housing; d4: the distance between the left end of the antenna and the left end of the slot; d5: the distance between the right end of the antenna and the right end of the slot.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the notebook computer 100' mainly includes four parts: A shell 210', B shell (not shown in the figure), C shell 310' and D shell 320', A shell 210' is arranged opposite to the screen Shell (that is, the top shell at the top when the notebook computer 100' is in a folded state), shell B is the shell on the side where the screen is located, shell C 310' is the shell on the side where the keyboard is located, and shell D 320' corresponds to the keyboard shell.
  • the assembly of the A shell 210' and the B shell is defined as the first shell 200'
  • the assembly of the C shell 310' and the D shell 320' is defined as the second shell 300'.
  • the first casing 200' and the second casing 300' are connected by a rotating shaft 400' (or called a hinge). Therefore, the first casing 200', the second casing 300' and the rotating shafts 400' on both sides are connected An empty area will be formed between them, this area is a space, and this space is the area for placing the antenna.
  • the space is a closed groove 500 ′, that is, the circumferential direction of the groove 500 ′ is closed.
  • the notebook computer 100' is generally equipped with a WIFI antenna for wireless Internet access.
  • the WIFI antenna is arranged in the above-mentioned area (ie, in the slot 500'), and the directional pattern of the WIFI antenna needs to have a relatively uniform coverage in space.
  • the antenna has different radiation or reception capabilities for different directions in space, which is the directivity of the antenna, which is a characteristic of the radiation field of the antenna in the far-field region. Generally, the lower the directivity, the more uniform the coverage of the direction map in space.
  • the directivity of the WIFI antenna on the notebook computer 100' needs to be as low as possible, so some methods are needed to reduce the directivity of the antenna.
  • the directivity coefficient refers to the ratio of the radiated power flux density of the antenna in the maximum radiation direction at a certain distance from the antenna to the radiated power flux density of an ideal non-directional antenna with the same radiated power at the same distance.
  • the first casing 200' and the second casing 300' are in an unfolded state during normal operation, for example, they are unfolded at an angle of 110°, and the directional map and the directionality of the directional map at this angle are mainly considered.
  • the radiation pattern of the antenna placed in the above area is composed of two parts: 1. The current of the antenna itself, or the equivalent magnetic current radiation; 2. Because the A shell of the first shell 200' 210', the second housing 300' and the two-side rotating shafts 400' form a closed slot 500', and the closed slot 500' will also generate radiation when excited.
  • the full-wave electromagnetic simulation software HFSS is used for simulation analysis, and the radiation pattern of the closed slot 500' shown in FIG. 1d is obtained.
  • the closed slot 500' is energized separately in that the feed is directly connected from one side 510' to the other side 520' of the closed slot 500'.
  • the operating frequency of the closed slot 500' excitation is 2.45 GHz.
  • the radiation efficiency of an antenna is a value that measures the radiation capability of the antenna. The loss caused by metal loss and dielectric loss affects the radiation efficiency.
  • the system efficiency of the antenna is the actual efficiency after considering the matching of the antenna ports, that is, the system efficiency of the antenna is the actual efficiency of the antenna.
  • the closed slot 500 ′ on the notebook computer 100 ′ is independently activated, the closed slot 500 ′ is concentrated toward the opening and closing of the first casing 200 ′ and the second casing 300 ′ Radiation in the direction of zone 600'. That is to say, the electric field radiation in the closed slot 500' is radiated by the first shell 200' (ie the assembly of the A shell 210' and the B shell) and the second shell 300' (ie the C shell 310' and the D shell 320). ' assembly) is obvious, and the direction diagram is directed towards the opening and closing area 600' of the first casing 200' and the second casing 300' (ie, the area formed with an included angle of 110°).
  • the first casing 200' ie the assembly of the A casing 210' and the B casing
  • the second casing 300' ie the C casing 310' and the D casing
  • a WIFI antenna is placed in the closed slot 500' formed between the shell 320' and the rotating shaft 400' on both sides.
  • the specific positions of the computer 100' are shown in Figs. 2a to 2c, and the specific structures of the planar inverted-F antenna 700' are shown in Figs. 2d to 2f.
  • the ground terminal (ie, the ground point) of the ground portion 710' of the planar inverted-F antenna 700' is connected to the A shell 210' (ie, the ground plate) of the first housing 200', and the planar inverted-F antenna
  • the feeding point 722' of the radiator 720' of 700' is connected in series with a capacitor C and then connected to the radio frequency module 800'.
  • the full-wave electromagnetic simulation software HFSS is used for simulation analysis, and the radiation pattern of the planar inverted-F antenna 700' shown in Figure 2g is obtained.
  • the radiation pattern shown in FIG. 2g includes the radiation of the planar inverted-F antenna 700' itself disposed in the closed slot 500', and the radiation patterns of the two parts of the radiation of the closed slot 500'.
  • the electric field generated by the flat inverted-F antenna (the flat inverted-F antenna is placed in the closed slot) is mostly radiated toward the direction of the opening and closing areas of the first casing and the second casing.
  • the directivity coefficient of the inverted-F antenna of the plane is 8.437dBi
  • the radiation efficiency of the antenna is -0.5818dB
  • the system efficiency of the antenna is -1.957dB.
  • the radiation of the planar inverted-F antenna 700' itself is substantially omnidirectional, but is affected by the angle reflection structure formed by the first casing 200' and the second casing 300' (that is, the radiation corresponding to the opening and closing area 600'.
  • the energy of the radiation pattern of the planar inverted-F antenna 700' is directed towards the direction of the opening and closing areas 600' of the first casing and the second casing 300', and the directivity The coefficient is around 8.437dBi.
  • Embodiment 1 and Embodiment 2 of the present application further improve the directivity of the antenna.
  • FIG. 3 and FIG. 4 are schematic three-dimensional structural diagrams of the foldable electronic device 100 in the unfolded state of Embodiment 1 of the present application from different viewing angles.
  • the viewing angle in FIG. 3 is the side view direction
  • the viewing angle in FIG. 4 is the front view direction, that is, the direction in which the screen of the foldable electronic device 100 faces the user.
  • FIG. 5 is an enlarged schematic structural diagram of part B in FIG. 3 .
  • Embodiment 1 of the present application provides a foldable electronic device 100 .
  • the foldable electronic device 100 includes a first casing 200 , a second casing 300 and an antenna 700 .
  • the foldable electronic device 100 is exemplified by a foldable notebook computer.
  • the foldable electronic device 100 can also be other foldable electronic devices such as a foldable tablet computer or a foldable smartphone, which is not described here.
  • the scope of protection of the application has a limiting effect.
  • the first casing 200 and the second casing 300 are rotatably connected by rotating shafts 400 located on both sides, so that the foldable electronic device 100 can be switched between the unfolded state and the folded state.
  • An opening and closing area 600 is formed between the first casing 200 and the second casing 300 (that is, the area corresponding to the first angle ⁇ 1 formed between the first casing 200 and the second casing 300 in FIG. 3 ), The opening and closing area 600 is the movement track area of the first casing 200 relative to the second casing 300 during the unfolding or folding process.
  • Another area 610 opposite to the opening and closing area 600 is also formed between the first casing 200 and the second casing 300 (that is, corresponding to the first casing 200 and the second casing 300 in FIG. 3 .
  • the area where the included angle ⁇ 2 is located When the foldable electronic device 100 is in the unfolded state, the first housing 200 and the second housing 300 are unfolded from each other, the first housing 200 is located above the second housing 300 , and the first included angle ⁇ 1 is smaller than the second housing 300
  • the angle ⁇ 2, that is, the region where the first included angle ⁇ 1 is located is a small-angle region, and the region where the second included angle ⁇ 2 is located is a large-angle region.
  • the first included angle ⁇ 1 is generally 110 degrees
  • the second included angle ⁇ 2 is generally 250 degrees.
  • the first included angle ⁇ 1 is 0 degrees
  • the second included angle ⁇ 2 is 360 degrees.
  • the user can also adjust the first angle ⁇ 1 and the second angle ⁇ 2 of the foldable electronic device 100 in the unfolded state to a suitable angle according to actual needs. It does not limit the scope of protection of this application.
  • the second casing 300 is placed in a horizontal state and placed on a workbench (such as a desk), that is, to ensure that the foldable electronic device is
  • a workbench such as a desk
  • the first casing 200 includes an A casing 210 and a B casing (not shown in the figure) that are fixed to each other
  • the second casing 300 includes a C casing 310 and a D casing 320 that are fixed to each other
  • the A casing 210 It is the ground plate of the first casing 200 , that is, the ground (GND) of the foldable electronic device 100
  • Shell A 210 is the shell disposed opposite to the screen (that is, the top shell at the top when the foldable notebook computer is in the folded state)
  • shell B is the shell on the side where the screen is located
  • shell C 310 is the shell on the side where the keyboard is located
  • the case 320 is a case corresponding to the keyboard. That is to say, the first casing 200 is the casing on the side where the display screen of the foldable electronic device 100 is located, and the second casing 300 is the casing on the side where the keyboard of the foldable electronic device 100 is located.
  • a space is formed around the first casing 200 , the second casing 300 and the rotating shafts 400 on both sides, and the antenna 700 is arranged in the space of the foldable electronic device 100 .
  • the space is a closed slot 500 , that is, the circumferential direction of the slot 500 is closed, and the antenna 700 is disposed in the slot 500 of the foldable electronic device 100 .
  • the antenna 700 is mainly applied to a WIFI antenna.
  • the antenna can also be applied to other antennas that require low directivity.
  • FIG. 6 and FIG. 7 are respectively schematic three-dimensional structural diagrams of the antenna 700 according to Embodiment 1 of the present application from different viewing angles.
  • the perspective in FIG. 6 mainly reflects the structure in the length direction L of the antenna.
  • the viewing angle in FIG. 7 mainly reflects the structure in the width direction W of the antenna.
  • the antenna 700 adopts a three-dimensional structure antenna. It can be understood with reference to FIG. 5 , the antenna 700 includes a first antenna segment 710 and a second antenna segment 720 which are arranged in sequence along the length direction L of the antenna. In the deployed state, the second antenna segment 720 is located below the first antenna segment 710 . 4 and 5, the entirety of the first antenna segment 710 is disposed away from the lower edge 220 of the first housing 200 relative to the entirety of the second antenna segment 720, that is, the first antenna segment 710 and the first housing The lower edge 220 of the body 200 is located on opposite sides of the second antenna segment 720 .
  • the lower edge of the first casing 200 is an edge on the first casing 200 that is close to the second casing 300 .
  • the lower edge of the A shell 210 of the first shell 200 is the lower edge 220 of the first shell 200 .
  • the lowermost edge of the A shell 210 in the unfolded state of the foldable electronic device 100 The lower edge of the A shell 210 is the lowermost edge of the A shell 210 when the foldable electronic device 100 is in the unfolded state.
  • the connection refers to that one end of the first antenna segment 710 and one end of the second antenna segment 720 are connected end-to-end.
  • the length direction L of the antenna refers to the extension path direction of the antenna, that is, the bending direction of the antenna as shown in FIG. 6 . It can be understood by those skilled in the art that, in this embodiment, the antenna is divided into the first antenna segment and the second antenna segment for description, which is only for the convenience of description, and does not describe the structure, function, and Differentiate in performance.
  • one end 711 of the first antenna segment 710 (ie, the first end of the first antenna segment) is connected to the ground plate of the first housing 200 (ie, the A housing 210 ), and the first antenna segment 710 extends from one end 711 toward the opening and closing area 600 in a direction away from the first casing 200.
  • the opening and closing area 600 is the first casing 200 and the second casing when the foldable electronic device 100 is in the unfolded state The opening and closing area 600 of the body 300 .
  • the grounding of one end 711 of the first antenna segment 710 and the grounding plate (ie the A shell 210 ) of the first casing 200 may be realized by using a spring plate (not shown in the figure) welded on the grounding plate (ie the A shell 210 ). ) to the first antenna segment 710 of the antenna 700, or to lock one end 711 of the first antenna segment 710 to the ground plate (ie, the A shell 210) by a fastener (not shown in the figure), or to lock the first antenna segment 710
  • One end 711 of an antenna segment 710 is welded to the ground plate (ie, the A shell 210 ) to achieve conduction and grounding.
  • the first antenna segment 710 has a first end (ie one end 711 of the first antenna segment 710 ) and a second end
  • the second antenna segment has a first end and a second end (ie the second antenna segment 720 ) 721)
  • the first end of the second antenna segment 720 is connected to the second end of the first antenna segment 710, so that the second antenna segment 720 is at the first end of the second antenna segment 720 and the first antenna segment 710
  • the second end of the first antenna segment 710 is angled.
  • the second antenna segment 720 further includes a feeder (in this embodiment, the feeder is the horizontal segment 723 of the second antenna segment 720 ), and the radio frequency module 800 (see FIG. 8 ) of the foldable electronic device 100 passes through the feeder Feed directly or coupled to the feed of the second antenna segment 720 . That is, the radio frequency signal output by the radio frequency module 800 (see FIG. 8 ) is received through the second antenna section 720, so that the antenna 700 radiates the signal outward.
  • the antenna 700 is disposed in the slot 500 of the foldable electronic device 100 .
  • the second antenna segment 720 is located below the first antenna segment 710
  • the second antenna segment 720 is located below the first antenna segment 710 .
  • the A casing 210 is the ground plate), that is, the slot 730 is located below the first antenna segment 710, so that the radiation of the antenna itself is directed towards the other area 610 between the first casing 200 and the second casing 300 (the other area 610 is different from the other area 610).
  • the opening and closing area 600 is opposite), and the electric field excited in the closed slot 500 is superimposed (radiated toward the opening and closing area 600 between the first casing 200 and the second casing 300, that is, towards the first casing 200 and the second casing 300).
  • the superimposed total radiation pattern is relatively uniformly distributed in all directions, thereby reducing the directivity of the antenna.
  • the second antenna segment 720 is an L-shaped antenna segment, and one end of the vertical segment 722 of the L-shaped antenna segment (ie, the first segment of the L-shaped antenna segment) is connected to the first antenna segment 710 , and one end of the horizontal segment 723 of the L-shaped antenna segment (ie, the second segment of the L-shaped antenna segment) is a free end, that is, one end of the horizontal segment 723 of the L-shaped antenna segment and the ground plate of the first housing 200 have a Slot 730. That is, there are vertical segments 722 and horizontal segments 723 perpendicular to each other in the L-shaped antenna segment.
  • the second antenna segment 720 may also adopt antenna segments of other shapes, for example, two or more segments of antenna segments connected in sequence that are not perpendicular to each other, and each A segment of the antenna segment may be a straight segment, a bent segment or a curved segment, which does not limit the protection scope of the present application.
  • the horizontal section 723 of the L-shaped antenna section is parallel to the first antenna section 710 and is disposed opposite to each other at a distance from each other.
  • the horizontal segment 723 of the L-shaped antenna segment can also be inclined relative to the first antenna segment 710 and arranged at a relative interval, wherein the extension line of the horizontal segment 723 is connected to the first antenna segment 710.
  • the extension of an antenna segment 710 is positioned at an angle (eg, an acute angle).
  • the antenna 700 is a C-shaped structure, that is, viewed from the length direction L of the antenna, the antenna 700 is similar to a C-shaped structure.
  • the antenna 700 may also adopt other suitable shapes.
  • the first antenna segment 710 and the second antenna segment 720 of the antenna 700 are formed by bending a metal sheet, that is, all antenna segments of the antenna are formed by bending an integral metal sheet.
  • the first antenna segment 710 is a patch antenna segment
  • the second antenna segment 720 is an L-shaped patch antenna segment, that is, the L-shaped patch antenna segment is an L-shaped patch antenna segment.
  • a plastic medium support can also be placed in the slot, and an antenna (typically LDS) can be formed on the plastic medium support in the form of LDS (Laser Direct Structuring).
  • LDS Longser Direct Structuring
  • the dielectric constant of the plastic dielectric support is 3), which does not limit the protection scope of the present application.
  • the length and width of the first antenna segment 710, the length and width of the second antenna segment 720, and the size of the capacitance all affect the resonant frequency of the antenna, and are adjusted according to specific environments.
  • the width of the antenna will affect the resonant frequency and the directional pattern performance of the antenna and the magnitude of its directivity will be specifically explained below. Influence on the resonance frequency: the antenna itself is the resonance of the LC, the structure of the antenna along its length direction has a certain inductance, and the slot 730 of the antenna has a certain capacitance. The width of the antenna will affect the equivalent inductance value of the antenna, which will affect the resonant frequency of the antenna.
  • the influence on the directivity pattern and directivity is that the directivity pattern of the antenna itself faces another area 610 opposite to the opening and closing area 600.
  • the direction of the antenna itself when the width of the antenna is wider, the better the degree of concentration of the antenna pattern in a certain direction, and the narrower the width of the antenna, the pattern of the antenna itself will not be too concentrated in a certain direction, but There is a distribution in the whole direction.
  • the width of the vertical segment 722 of the second antenna segment 720 and the width of the horizontal segment 723 of the second antenna segment 720 are less than 1/2 wavelength (the wavelength is the working wavelength of the antenna), and the first antenna segment 710 The width is less than 1/2 wavelength (this wavelength is the working wavelength of the antenna).
  • the width of the L-shaped patch antenna segment is less than or equal to the width of the patch antenna segment, that is, the width of the vertical segment 722 of the second antenna segment 720 and the width of the horizontal segment 723 of the second antenna segment 720 are less than or equal to the width of the second antenna segment 720.
  • the width of an antenna segment 710 is less than or equal to the width of the patch antenna segment, that is, the width of the vertical segment 722 of the second antenna segment 720 and the width of the horizontal segment 723 of the second antenna segment 720 are less than or equal to the width of the second antenna segment 720.
  • the width of an antenna segment 710 In this way, the radiation of the antenna itself can be more concentrated toward the other area 610 between the first casing 200 and the second casing 300 (the other area 610 is opposite to the opening and closing area 600 ), so that the directivity of the antenna can be further reduced .
  • the first antenna segment 710 is equivalent to the function of a reflector, which reflects the radiated energy to another area 610 opposite to the opening and closing area 600
  • the width of the vertical segment 722 of the second antenna segment 720 and the width of the horizontal segment 723 of the second antenna segment 720 are less than or equal to the width of the first antenna segment 710
  • the radiation generated by the antenna itself can be concentrated and opened and closed.
  • the electric field excited in the closed slot 500 is superimposed toward the opening and closing area 600, and the superimposed total radiation pattern is relatively uniform in the omnidirectional distribution, which can further reduce the direction of the antenna sex.
  • the width of the L-shaped patch antenna segment may also be slightly larger than the width of the patch antenna segment, which may be adjusted according to actual needs.
  • the width of the L-shaped patch antenna segment is equal to the width of the patch antenna segment, and in the width direction W of the antenna, the L-shaped patch antenna segment and the patch antenna segment are flush. That is to say, the width of the vertical segment 722 of the second antenna segment 720 and the width of the horizontal segment 723 of the second antenna segment 720 are equal to the width of the first antenna segment 710. In the width direction W of the antenna, the second antenna segment 720 The vertical section 722 of the second antenna section 720 and the horizontal section 723 of the second antenna section 720 are both flush with the first antenna section 710 .
  • FIG. 8 is a schematic structural diagram of an embodiment of the antenna 700 feeding power.
  • FIG. 9 is a schematic diagram of a circuit structure of an embodiment in which the antenna 700 is fed in an unfolded state.
  • the radio frequency signal output by the radio frequency module 800 is received through the horizontal segment 723 of the L-shaped antenna segment (that is, the horizontal segment 723 of the second antenna segment 720 ), so that the antenna 700 is directed to external radiation signal.
  • the horizontal section 723 of the L-shaped antenna section receives the radio frequency signal output by the radio frequency module 800 , and is connected to the capacitor C through one end 721 of the horizontal section 723 , and then to the radio frequency through the capacitor C module 800 to receive radio frequency signals.
  • the radio frequency module 800 is disposed in the second housing 300 (see FIGS. 3 to 4 ).
  • the radio frequency module 800 feeds power to one end 721 of the horizontal segment 723 of the L-shaped antenna segment after being connected to the capacitor C through the feed line.
  • the direction of the feeder can be reasonably arranged according to the structure of the foldable electronic device, and the length of the feeder can be reserved for a suitable length as required (for example, the feeder can extend from the second shell
  • the body passes through the rotating shaft between the first casing and the second casing to reach the first casing, and the feed line passing through the rotating shaft can be reserved for a suitable length), which can ensure that the foldable electronic device Reliable connection between the feed line, the radio frequency module 800 and the capacitor C when switching from the folded state to the unfolded state.
  • the radio frequency module 800 may also be disposed in the first casing 200 (see FIGS. 3 to 4 ), which does not limit the protection scope of the present application.
  • the position of the capacitor C in FIG. 8 only shows the electrical connection position relationship in the circuit structure, and does not reflect the mechanical and physical position of the capacitor C.
  • the mechanical and physical position of the capacitor C can be set on the antenna or the first casing according to actual needs. For example, when the antenna is formed by bending a metal sheet, the capacitor is arranged on a circuit board on the first casing, one end of the capacitor is electrically connected to one end of the feed line, and the other end is electrically connected to a circuit board arranged on the circuit board.
  • One end of the shrapnel, the other end of the shrapnel is elastically connected to one end of the horizontal section of the antenna; when the antenna is formed by laser direct molding on the plastic dielectric support, the capacitor C can be directly set on the antenna.
  • FIG. 10 is a schematic diagram of a circuit structure of another embodiment of the antenna 700 for feeding power in an unfolded state.
  • the width of the L-shaped patch antenna segment is smaller than that of the patch antenna segment, and in the width direction W of the antenna, the L-shaped patch antenna segment is located in the middle of the patch antenna segment. That is to say, the width of the vertical segment 722 of the second antenna segment 720 and the width of the horizontal segment 723 of the second antenna segment 720 are smaller than the width of the first antenna segment 710.
  • the second antenna segment 720 Both the vertical section 722 of the second antenna section 720 and the horizontal section 723 of the second antenna section 720 are located in the middle of the first antenna section 710 .
  • the horizontal segment 723 of the L-shaped antenna segment receives the radio frequency signal output by the radio frequency module 800 , and is also connected to the capacitor C through one end 721 of the horizontal segment 723 , and then through the capacitor C.
  • C is connected to the radio frequency module 800 to receive radio frequency signals.
  • FIG. 11 is a schematic structural diagram of another implementation manner of feeding the antenna 700 .
  • FIG. 12 is an enlarged schematic structural diagram of part C in FIG. 11 .
  • One end 721 of the horizontal section 723 of the second antenna section 720 is provided with a gap 724, and the main body 741 of a feeding branch 740 is located in the gap 724, so that an isolation gap 742 is formed between the main body 741 of the feeding branch 740 and the horizontal section 723,
  • the portion of the feed branch 740 other than the body 741 is located outside the notch 724 .
  • the portion of the feeding branch 740 located outside the notch 724 is connected to the radio frequency module 800 .
  • the horizontal segment 723 of the L-shaped antenna segment receives the RF signal output by the RF module 800 .
  • the isolation gap 742 is a U-shaped gap. That is to say, the excitation of the antenna 700 itself is to realize distributed coupling feeding through the U-shaped gap between the horizontal section 723 of the second antenna section 720 and the feeding branch 740 .
  • the distributed coupling feed is a distributed capacitive coupling feed.
  • FIG. 13 is a schematic structural diagram of still another implementation manner of feeding the antenna 700 .
  • a metal post 750 is connected to the surface of the horizontal segment 723 of the L-shaped antenna segment opposite to the first antenna segment 710 , and the free end of the metal post 750 is connected to the radio frequency module 800 .
  • the horizontal section 723 of the L-shaped antenna section (ie the horizontal section 723 of the second antenna section 720 ) receives the RF signal output by the radio frequency module 800 , and is connected to the metal column 750 through the horizontal section 723 , and then connected to the radio frequency module 800 through the metal column 750 to receive the RF signal. radio frequency signal.
  • the metal column 750 is disposed at the middle position of the horizontal section 723 of the second antenna section 720 in the length direction L of the antenna. It can be understood by those skilled in the art that, in other alternative embodiments, other metal parts (such as metal sheets, Metal bars, etc.) are connected to the radio frequency module 800, which does not limit the protection scope of the present application.
  • Inductive feeding refers to a coupling structure without capacitive elements or distributed in the feeding path.
  • the full-wave electromagnetic simulation software HFSS is used for simulation analysis, and the simulation effect diagrams of FIGS. 14 to 20 b are obtained.
  • FIG. 14 is a simulation curve diagram of the S-parameter performance of the antenna according to Embodiment 1 of the present application.
  • FIG. 15 is a simulation curve diagram of the efficiency of the antenna according to Embodiment 1 of the present application.
  • FIG. 16 is a radiation pattern of the antenna according to Embodiment 1 of the present application.
  • the abscissa represents the frequency, and the unit is GHz, and the ordinate represents the amplitude value of S11, and the unit is dB.
  • S11 is one of the S-parameters.
  • S11 represents the reflection coefficient, this parameter represents the transmission efficiency of the antenna, the smaller the value, the smaller the energy reflected by the antenna itself, and the higher the efficiency of the antenna.
  • the two points marked in the curve in the figure represent the two resonant frequency points of the antenna, point 1 is mainly the resonant frequency point of the antenna itself, the resonant frequency at this point is 2.4976GHz, and S11 is -11.337dB.
  • Point 2 is biased towards the resonant frequency point of the operating mode of the slot, the resonant frequency at this point is 2.45GHz, and S11 is -14.374dB.
  • the antenna has good impedance matching, that is, S11 is less than -10dB, that is to say, the working frequency band of the antenna covers 2.42GHz to 2.57GHz. That is to say, the absolute bandwidth of -10dB S11 of the antenna is 0.15GHz, and the relative bandwidth of -10dB S11 of the antenna is 6.0%, so it has the characteristic of moderate bandwidth.
  • the abscissa represents the frequency, in GHz, and the ordinate represents the radiation frequency and matching frequency of the antenna, in dB.
  • the two curves in the figure represent the radiation efficiency of the antenna and the system efficiency, respectively.
  • the radiation efficiency of an antenna is a value that measures the radiation capability of the antenna.
  • the losses caused by metal loss and dielectric loss affect the radiation efficiency.
  • the system efficiency of the antenna is the actual efficiency after considering the matching of the antenna ports, that is, the system efficiency of the antenna is the actual efficiency of the antenna. Those skilled in the art can understand that efficiency is generally expressed as a percentage, and there is a corresponding conversion relationship between it and dB.
  • dB value For example, if 50% of the energy is radiated out, the conversion to dB value is -3dB; 90% of the energy is radiated out. , converted into dB value is -0.046dB; so the closer the efficiency is to 0dB, the better.
  • the radiation efficiency of the antenna in the working frequency band 2.42GHz ⁇ 2.57GHz is -0.7dB ⁇ -0.5dB, which has good radiation characteristics, and the antenna in the working frequency band 2.42GHz ⁇ 2.57GHz system
  • the efficiency is -1.5dB to -0.7dB, and it has better port impedance matching.
  • FIG. 16 shows the radiation pattern of the antenna when the operating frequency is 2.45GHz.
  • the radiation pattern shown in FIG. 16 includes radiation patterns of two parts, the radiation of the antenna itself disposed in the closed slot and the radiation of the closed slot.
  • the antenna faces the opening and closing area of the first casing and the second casing (ie, towards the area where the first included angle is located) and towards another area opposite to the opening and closing area (ie, towards the second area).
  • the radiated energy in the area where the included angle is located) is relatively uniform, especially the energy towards the area where the second included angle ⁇ 2 is located is significantly enhanced, and the directivity coefficient of the antenna is reduced from 8.437dBi to 5.8dBi. That is to say, the energy radiated in the omnidirectional direction of the antenna is relatively uniform, not concentrated in a certain angular direction.
  • the operating frequency of the antenna is 2.45GHz
  • the radiation efficiency of the antenna is -0.5434dB
  • the system efficiency of the antenna is -0.7050dB.
  • FIG. 17 shows a schematic diagram of the current distribution structure of the foldable electronic device at a position close to the antenna when the frequency is 2.4976 GHz.
  • FIG. 18 shows a schematic diagram of the electric field distribution structure of the foldable electronic device at a position close to the antenna when the frequency is 2.4976 GHz.
  • FIG. 19 is a schematic diagram of the local electric field distribution structure of the antenna.
  • 20a and 20b are schematic diagrams of local current distribution structures of the antenna under different viewing angles.
  • the viewing angle in FIG. 20a mainly reflects the structure in the length direction of the antenna.
  • the viewing angle in Fig. 20b mainly reflects the structure in the width direction of the antenna.
  • the figure shows the electric field distribution of the antenna itself, and the darker part indicates that the electric field intensity is larger, among which, through the gap (between one end of the horizontal section of the second antenna segment and the ground plate (ie the A shell)
  • the radiation port of the antenna is mainly the gap between the antenna and the ground plate, and the electric field through the gap is radiated outwards)
  • the electric field strength in the direction of the area where the second included angle is located that is, another area opposite to the opening and closing area) maximum (see the dashed box in Figure 19)
  • the electric field strength of the horizontal segment of the second antenna segment flowing in the direction of the area where the second included angle is located is second, so that the radiation intensity of the antenna toward the direction of the area where the second included angle is located is the largest,
  • the directional diagram of the antenna itself is in the direction of the area where the second included angle is located, and the electric field radiation excited out of the slot after the antenna is placed in the slot is in the direction of the area where the first included angle ⁇ 1 is located
  • FIG. 21 is a partial structural schematic diagram of the cooperation between the antenna 700A and the first casing 200A in the foldable electronic device according to Embodiment 2 of the present application.
  • FIG. 22 is a schematic structural diagram of an implementation manner of feeding the antenna 700A according to Embodiment 2 of the present application.
  • FIG. 23 is a schematic diagram of the circuit structure of the antenna 700A according to Embodiment 2 of the present application for feeding power in the unfolded state.
  • 24 and 25 are schematic diagrams of the three-dimensional structure of the antenna 700A according to Embodiment 2 of the present application under different viewing angles, wherein the viewing angle of FIG. 24 mainly reflects the structure in the length direction of the antenna 700A, and the viewing angle of FIG. structure in the width direction.
  • the structure of the antenna 700A of this embodiment compared with the structure of the antenna provided in Embodiment 1, also includes a first antenna segment 710A and a second antenna segment 710A connected in sequence along the length direction of the antenna 700A.
  • the difference between the two antenna segments 720A is that the structure of the second antenna segment 720A of the antenna 700A is different.
  • the second antenna segment 720A only includes the vertical segment 722A, and the horizontal segment has been removed.
  • the second antenna segment A gap 730A is formed between one end 721A of the vertical section 722A of the 720A and the ground plate of the first casing 200A (ie, the A casing 210A).
  • the radio frequency signal output by the radio frequency module 800A is received through the vertical segment 722A of the second antenna segment 720A, so that the antenna 700A radiates the signal outward.
  • the vertical section 722A of the second antenna section 720A receives the radio frequency signal output by the radio frequency module 800A.
  • One end 721A of the vertical section 722A is connected to the capacitor C, and then the capacitor C is connected to the radio frequency module 800A to receive the radio frequency signal.
  • the excitation of the antenna itself can also be fed through distributed capacitive coupling at one end of the vertical segment of the second antenna segment, or by A metal column is set in the middle of the two antenna segments to feed directly (ie, through inductive feeding).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请公开了一种用于可折叠电子设备的天线及可折叠电子设备。可折叠电子设备包括通过位于两侧的转轴旋转连接的第一壳体和第二壳体、天线,第一壳体相对于第二壳体能够在展开状态和折叠状态之间切换,天线设置于闭合的槽内。天线采用立体结构天线。天线包括沿天线的长度方向依次相接设置的第一天线段和第二天线段,在展开状态下,第二天线段位于第一天线段的下方;第一天线段的一端连接于第一壳体的接地板,且第一天线段从一端朝向展开状态下的第一壳体和第二壳体的开合区背离第一壳体的方向延伸。第二天线段的一端与第一壳体的接地板之间具有缝隙,通过第二天线段接收射频模块输出的射频信号。本申请能够有效地改善天线的方向性。

Description

用于可折叠电子设备的天线及可折叠电子设备
本申请要求于2020年09月10日提交中国专利局、申请号为CN202010945216.0、申请名称为“用于可折叠电子设备的天线及可折叠电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通讯天线领域,尤其是涉及一种用于可折叠电子设备的天线及可折叠电子设备。
背景技术
笔记本电脑主要包括A壳、B壳、C壳和D壳四部分,A壳是与屏幕相对设置的外壳,B壳是屏幕所在面的壳体,C壳是键盘所在面的壳体,D壳是与键盘对应的外壳。其中,将A壳与B壳的总成定义为第一壳体,将C壳与D壳的总成定义为第二壳体。第一壳体和第二壳体之间通过转轴连接,且第一壳体、第二壳体和两侧的转轴之间会形成一个空间。该笔记本电脑上一般会配置WIFI天线用于无线上网,并将WIFI天线布置在上述的空间内,为确保WIFI天线的使用性能,对WIFI天线的方向性提出了需求。
发明内容
本申请实施例提供了一种用于可折叠电子设备的天线及可折叠电子设备,能够有效地改善天线的方向性。
本申请实施例提供了一种用于可折叠电子设备的天线,可折叠电子设备包括第一壳体和第二壳体,第一壳体和第二壳体通过位于其间的转轴旋转连接,以使可折叠电子设备在展开状态和折叠状态之间切换,第一壳体为可折叠电子设备的显示屏所在一侧的壳体,第二壳体为可折叠电子设备的键盘所在一侧的壳体,天线设置于第一壳体、第二壳体和转轴围绕形成的空间内,可折叠电子设备在展开状态下时,第一壳体和第二壳体之间形成开合区;
天线包括沿天线的长度方向依次相接设置的第一天线段和第二天线段,其中,
第一天线段具有第一端和第二端,第一天线段的第一端连接于第一壳体的接地板,且第一天线段从第一天线段的第一端朝向开合区延伸到第一天线段的第二端;
第二天线段具有第一端和第二端,第二天线段的第一端与第一天线段的第二端相接,使得第二天线段在第二天线段的第一端处和第一天线段在第一天线段的第二端处成角度设置,第二天线段的第二端与第一壳体的接地板间隔设置,且第一天线段的整体相对于第二天线段的整体远离第一壳体的下边缘设置,其中,第二天线段还包括馈电部,可折叠电子设备的射频模块通过馈电线直接馈电于或耦合馈电于第二天线段的馈电部。
在本方案中,将天线设置于第一壳体、第二壳体和转轴围绕形成的空间内,第一天线段的整体相对于第二天线段的整体远离第一壳体的下边缘设置,且第二天线段的第二端与第一壳体的接地板间隔 设置,这样使得天线自身的辐射朝向第一壳体和第二壳体之间的与开合区相反的另一区域(即在展开状态下,第一壳体的接地板的背面与第二壳体的背面所形成的背面区域,也即第一壳体和第二壳体之间所形成的大角度区域),再叠加空间内激励的电场(朝向第一壳体和第二壳体之间的开合区方向辐射,即朝向第一壳体和第二壳体之间所形成的小角度区域方向辐射)的部分,叠加后的总辐射方向图是在全向内相对均匀分布,从而降低了天线的方向性。
本申请实施例提供了一种用于可折叠电子设备的天线,可折叠电子设备包括第一壳体和第二壳体,第一壳体和第二壳体之间通过位于两侧的转轴旋转连接,以使第一壳体相对于第二壳体能够在展开状态和折叠状态之间切换,第一壳体、第二壳体和位于两侧的转轴之间围绕形成有闭合的槽,天线设置于可折叠电子设备的槽内,在展开状态下使用可折叠电子设备时,第一壳体位于第二壳体的上方;
天线采用立体结构天线;
天线包括沿天线的长度方向依次相接设置的第一天线段和第二天线段,在展开状态下,第二天线段位于第一天线段的下方;第一天线段的一端连接于第一壳体的接地板,且第一天线段从一端朝向展开状态下的第一壳体和第二壳体的开合区背离第一壳体的方向延伸;
第二天线段的一端为自由端,自由端与第一壳体的接地板之间具有缝隙,通过第二天线段接收射频模块输出的射频信号,以使天线向外发射。
在本方案中,将天线设置于可折叠电子设备的槽内,在展开状态下,第二天线段位于第一天线段的下方,且第二天线段的自由端与第一壳体的接地板之间具有缝隙,即该缝隙位于第一天线段的下方,这样使得天线自身的辐射朝向第一壳体和第二壳体之间的与开合区相反的另一区域(即在展开状态下,第一壳体的接地板的背面与第二壳体的背面所形成的背面区域,也即第一壳体和第二壳体之间所形成的大角度区域),再叠加闭合的槽内激励的电场(朝向第一壳体和第二壳体之间的开合区方向辐射,即朝向第一壳体和第二壳体之间所形成的小角度区域方向辐射)的部分,叠加后的总辐射方向图是在全向内相对均匀分布,从而降低了天线的方向性。
在一些实施例中,第二天线段为L形天线段,包括相交设置的第一段(即竖直段)和第二段(即水平段),L形天线段的第一段相接于第一天线段,且L形天线段的第二段的一端为第二天线段的第二端。
在一些实施例中,L形天线段的第一段与第一天线段垂直设置,L形天线段的第二段与第一天线段平行设置。
在一些实施例中,L形天线段的第二段为馈电部。
在一些可能的实施例中,通过L形天线段的第二段(即水平段)接收射频模块输出的射频信号,以使天线向外发射。
在一些实施例中,L形天线段的第二段的一端连接一电容的一端,电容的另一端通过馈电线连接射频模块。L形天线段的水平段接收射频模块输出的射频信号,是通过水平段的一端连接电容,再通过电容连接射频模块来接收射频信号。
在一些实施例中,L形天线段的第二段的一端设有缺口,天线还包括一馈电枝节,馈电枝节的主体位于缺口内,馈电枝节的主体与第二段之间形成有隔离间隙,馈电枝节的除主体外的部分位于缺口外,馈电枝节的位于缺口外的部分通过馈电线连接射频模块,并通过隔离间隙耦合馈电于L形天线段的第二段。
在一些可能的实施例中,L形天线段的第二段的一端设有缺口,天线还包括一馈电枝节,馈电枝节位于缺口内,馈电枝节与第二段之间形成有隔离间隙,馈电枝节通过馈电线连接射频模块,并通过 隔离间隙耦合馈电于L形天线段的第二段。
在一些可能的实施例中,L形天线段的第二段(即水平段)的一端设有缺口,一馈电枝节的主体位于缺口内,使得馈电枝节的主体与水平段之间形成有隔离间隙,馈电枝节的除主体外的部分位于缺口外,馈电枝节的位于缺口外的部分连接射频模块;
L形天线段的水平段接收射频模块输出的射频信号,是通过馈电枝节接收射频信号后,通过隔离间隙耦合至水平段来接收射频信号。
在一些实施例中,L形天线段的第二段的与第一天线段相对设置的面上连接有金属柱,金属柱的自由端通过馈电线连接射频模块。
L形天线段的第二段接收射频模块输出的射频信号,是通过第二段连接金属柱,再通过金属柱连接射频模块来接收射频信号。
在一些实施例中,天线的第一天线段和第二天线段由金属片弯折构成。
在一些实施例中,第一天线段为片状天线段,第二天线段为L形片状天线段。
在一些实施例中,第二天线段的宽度小于或等于第一天线段的宽度。这样能够使得天线自身的辐射更加集中朝向第一壳体和第二壳体之间的与开合区相反的另一区域,从而能够进一步降低天线的方向性。
在一些实施例中,当第二天线段的宽度小于第一天线段的宽度时,在天线的宽度方向上,第二天线段位于第一天线段的中部;
当第二天线段的宽度等于第一天线段的宽度时,在天线的宽度方向上,第二天线段和第一天线段平齐。
在一些实施例中,第二天线段的第二端与第一壳体的接地板之间具有缝隙;并且,天线采用立体结构天线,第一天线段、第二天线段和第一壳体之间围绕形成有一空腔,空腔与缝隙连通。
本申请实施例提供了一种用于可折叠电子设备的天线,可折叠电子设备包括第一壳体和第二壳体,第一壳体和第二壳体通过位于其间的转轴旋转连接,以使可折叠电子设备在展开状态和折叠状态之间切换,天线设置于第一壳体、第二壳体和转轴围绕形成的空间内,可折叠电子设备在展开状态下时,第一壳体位于第二壳体上方,第一壳体和第二壳体之间形成开合区;
天线采用立体结构天线,天线包括沿天线的长度方向依次相接设置的第一天线段和第二天线段,可折叠电子设备在展开状态下时,第二天线段位于第一天线段的下方;其中,
第一天线段具有第一端和第二端,第一天线段的第一端连接于第一壳体的接地板,且第一天线段从第一天线段的第一端朝向开合区延伸到第一天线段的第二端;
第二天线段具有第一端和第二端,第二天线段的第一端与第一天线段的第二端相接,使得第二天线段在第二天线段的第一端处和第一天线段在第一天线段的第二端处成角度设置,第二天线段的第二端与第一壳体的接地板间隔设置,其中,第二天线段还包括馈电部,可折叠电子设备的射频模块通过馈电线直接馈电于或耦合馈电于第二天线段的馈电部。
本申请实施例还提供了一种可折叠电子设备,其包括以上任一实施例所提供的用于可折叠电子设备的天线。
在一些实施例中,可折叠电子设备为可折叠笔记本电脑。
附图说明
图1a为笔记本电脑在展开状态下的立体结构示意图(一),该视角为侧视方向,其中,图中未示出天线;图1b为笔记本电脑在展开状态下的立体结构示意图(二),该视角为正视方向,即笔记本电脑的屏幕朝向用户的方向,其中,图中未示出天线;图1c为笔记本电脑中闭合的槽馈电的结构示意图;图1d为单独激励闭合的槽的辐射方向图;
图2a为笔记本电脑在展开状态下闭合的槽内放置有平面的倒F天线的立体结构示意图(一),该视角为侧视方向;图2b为笔记本电脑在展开状态下闭合的槽内放置有平面的倒F天线的立体结构示意图(二),该视角为正视方向,即笔记本电脑的屏幕朝向用户的方向;图2c为笔记本电脑在展开状态下的俯视结构示意图;图2d为图2c中A部分的放大结构示意图;图2e为图2d中平面的倒F天线馈电的结构示意图;图2f为平面的倒F天线的立体结构示意图;图2g为平面的倒F天线的辐射方向图;
图3为本申请实施例1的可折叠电子设备在展开状态下的立体结构示意图(一),该视角为侧视方向;
图4为本申请实施例1的可折叠电子设备在展开状态下的立体结构示意图(二),该视角为正视方向,即可折叠电子设备的屏幕朝向用户的方向;
图5为图3中B部分的放大结构示意图;
图6为本申请实施例1的天线的立体结构示意图(一),该视角主要体现了天线的长度方向上的结构;
图7为本申请实施例1的天线的立体结构示意图(二),该视角主要体现了天线的宽度方向上的结构;
图8为本申请实施例1的天线馈电的一实施方式的结构示意图;
图9为本申请实施例1的天线在展开状态下馈电的一实施方式的电路结构示意图;
图10为本申请实施例1的天线的另一实施方式在展开状态下馈电的电路结构示意图;
图11为本申请实施例1的天线馈电的又一实施方式的结构示意图;
图12为图11中C部分的放大结构示意图;
图13为本申请实施例1的天线馈电的再一实施方式的结构示意图;
图14为本申请实施例1的天线的S参数性能仿真曲线图;
图15为本申请实施例1的天线的效率仿真曲线图;
图16为本申请实施例1的天线的辐射方向图;
图17为本申请实施例1的可折叠电子设备的靠近天线的位置处的电流分布结构示意图;
图18为本申请实施例1的可折叠电子设备的靠近天线的位置处的电场分布结构示意图;
图19为本申请实施例1的天线的局部电场分布结构示意图;
图20a为本申请实施例1的天线的局部电流分布结构示意图(一),该视角主要体现了天线的长度方向上的结构;图20b为本申请实施例1的天线的局部电流分布结构示意图(二),该视角主要体现了天线的宽度方向上的结构;
图21为本申请实施例2的可折叠电子设备中天线与第一壳体配合的局部结构示意图;
图22为本申请实施例2的天线馈电的一实施方式的结构示意图;
图23为本申请实施例2的天线在展开状态下馈电的电路结构示意图;
图24为本申请实施例2的天线的立体结构示意图(一),该视角主要体现了天线的长度方向上的结构;
图25为本申请实施例2的天线的立体结构示意图(二),该视角主要体现了天线的宽度方向上的结构。
附图标记说明:
100':笔记本电脑;200':第一壳体;210':A壳;300':第二壳体;310':C壳;320':D壳;400':转轴;500':闭合的槽;510':一侧;520':另一侧;600':开合区;700':平面的倒F天线;710':接地部;720':辐射体;722':馈电点;800':射频模块;
L':辐射体的长度;W':辐射体的宽度;L1':接地部的长度;W1':接地部的宽度;L2':闭合的槽的长度;W2':闭合的槽的宽度;d1':馈电点与辐射体的开放端之间的距离;d2':馈电点与接地部之间的距离;d3':平面的倒F天线的左端与闭合的槽的左端之间的距离;d4':平面的倒F天线的右端与闭合的槽的右端之间的距离;s1':辐射体与A壳之间的间隙;s2':辐射体与第二壳体之间的间隙。
100:可折叠电子设备;200:第一壳体;210:A壳;220:下边缘;300:第二壳体;310:C壳;320:D壳;400:转轴;500:槽;600:开合区;610:另一区域;700:天线;710:第一天线段;711:一端;720:第二天线段;721:一端;722:竖直段;723:水平段;724:缺口;730:缝隙;740:馈电枝节;741:主体;742:隔离间隙;750:金属柱;760:空腔;800:射频模块;
200A:第一壳体;210A:A壳;700A:天线;710A:第一天线段;720A:第二天线段;721A:一端;722A:竖直段;730A:缝隙;800A:射频模块;
α1:第一夹角;α2:第二夹角;L:天线的长度方向;W:天线的宽度方向;L1:第一天线段的长度;W1:第一天线段的宽度;L2:第二天线段的竖直段的长度;W2:第二天线段的竖直段的宽度;L3:第二天线段的水平段的长度;W3:第二天线段的水平段的宽度;L4:槽的长度;W4:槽的宽度;d1:第一天线段与第二天线段的水平段之间的距离;d2:第二天线段的一端与第一壳体的接地板之间的距离;d3:第二天线段的竖直段与第二壳体之间的距离;d4:天线的左端与槽的左端之间的距离;d5:天线的右端与槽的右端之间的距离。
具体实施方式
以下由特定的具体实施例说明本申请的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本申请的其他优点及功效。虽然本申请的描述将结合一些实施例一起介绍,但这并不代表此申请的特征仅限于该实施方式。恰恰相反,结合实施方式作申请介绍的目的是为了覆盖基于本申请的权利要求而有可能延伸出的其它选择或改造。为了提供对本申请的深度了解,以下描述中将包含许多具体的细节。本申请也可以不使用这些细节实施。此外,为了避免混乱或模糊本申请的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请 和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
如图1a~图1b,笔记本电脑100'主要包括A壳210'、B壳(图中未示出)、C壳310'和D壳320'四部分,A壳210'是与屏幕相对设置的外壳(即笔记本电脑100'处于折叠状态时位于最顶端的顶壳),B壳是屏幕所在面的壳体,C壳310'是键盘所在面的壳体,D壳320'是与键盘对应的外壳。其中,将A壳210'与B壳的总成定义为第一壳体200',将C壳310'与D壳320'的总成定义为第二壳体300'。第一壳体200'和第二壳体300'之间通过转轴400'(或称为铰链)连接,因此,第一壳体200'、第二壳体300'和两侧的转轴400'之间会形成一个空的区域,这个区域是一个空间,该空间就是用于放置天线的区域。在本方案中,结合图1b~图1c予以理解,该空间为闭合的槽500',即该槽500'的周向方向封闭。
该笔记本电脑100'上一般会配置WIFI天线用于无线上网,该WIFI天线布置在上述的区域内(即槽500'内),需要该WIFI天线的方向图在空间的覆盖比较均匀。天线对空间中不同方向具有不同的辐射或接收能力,这就是天线的方向性,它是天线在远场区辐射场的一个特性。一般方向性越低,方向图在空间的覆盖就越均匀。而在笔记本电脑100'上的WIFI天线需要其方向性尽量低,所以需要一些方法来降低天线的方向性。其中,方向性系数是指:在离天线某一距离处,天线在最大辐射方向上的辐射功率流密度、与相同辐射功率的理想无方向性天线在同一距离处的辐射功率流密度之比。
一般第一壳体200'和第二壳体300'正常工作时是展开的状态,例如展开成110°的角度,主要考虑在这个角度下的方向图和方向图的方向性大小。特别的,需要说明的是放置在上述区域的天线的辐射方向图是由两部分组成的:1、天线本身的电流、或者等效磁流辐射;2、因为第一壳体200'的A壳210'、第二壳体300'和两侧转轴400'会构成一个闭合的槽500',该闭合的槽500'受到激励时也会产生辐射。
如图1a~图1c所示,若将天线放置在闭合的槽500'这个区域内会激励出该闭合的槽500'内的电场,也会产生一部分辐射。
为了验证单独激励闭合的槽500'时该闭合的槽500'的方向性性能,采用全波电磁仿真软件HFSS进行仿真分析,获得图1d所示的该闭合的槽500'的辐射方向图。在该仿真分析中,结合图1c予以理解,对该闭合的槽500'单独激励的方式,就是馈电直接从该闭合的槽500'的一侧510'连接到另一侧520'。该闭合的槽500'激励的工作频率为2.45GHz。
在图1d中,灰度越深,表示场强越大,其中,灰度最深的部分表示场强最大。从图1d可以看到,该闭合的槽产生的电场大部分朝向第一壳体和第二壳体的开合区的方向辐射。并且,在该仿真结果中,测得该闭合的槽的方向性系数为8.621dBi,天线的辐射效率为-0.1844dB,天线的系统效率为-2.964dB。天线辐射效率是衡量天线辐射能力的值,金属损耗、介质损耗带来的损耗影响辐射效率。天线的系统效率是考虑天线端口匹配后的实际效率,即天线的系统效率为天线的实际效率。
从上可知,参见图1a~图1d,单独激励该笔记本电脑100'上的闭合的槽500'时,闭合的槽500'集中朝向第一壳体200'和第二壳体300'的开合区600'的方向辐射。也就是说,该闭合的槽500'内电场辐射受到第一壳体200'(即A壳210'与B壳的总成)和第二壳体300'(即C壳310'和D壳320'的总成)的影响明显,方向图是朝向第一壳体200'和第二壳体300'的开合区600'(即所形成的110°夹角的区域)方向的。
如图2a~图2f所示,在笔记本电脑100'中,第一壳体200'(即A壳210'与B壳的总成)、第二壳体300'(即C壳310'与D壳320'的总成)和两侧的转轴400'之间形成的闭合的槽500'内放置有WIFI天线,该WIFI天线采用平面的倒F天线700',平面的倒F天线700'在笔记本电脑100'整机中的位置具体如图2a~图2c所示,平面的倒F天线700'的具体结构如图2d~图2f所示。
如图2e所示,平面的倒F天线700'的接地部710'上接地端(即接地点)连接于第一壳体200'的A壳210'(即接地板),平面的倒F天线700'的辐射体720'上馈电点722'串联一电容C后连接于射频模块800'。
为了验证平面的倒F天线700'的方向性性能,采用全波电磁仿真软件HFSS进行仿真分析,获得了图2g所示的平面的倒F天线700'的辐射方向图。图2g所示的辐射方向图中包括设置在闭合的槽500'内的平面的倒F天线700'本身的辐射,以及该闭合的槽500'的辐射这两部分的辐射方向图。
获取图2g所示的曲线图的仿真条件如下表1所示(请结合图2c-图2e予以理解):
表1
参数 平面的倒F天线
平面的倒F天线的工作频率 2.45GHz
电容C的电容量 0.4pF
辐射体的长度L(mm) 22
辐射体的宽度W(mm) 7
接地部的长度L1(mm) 9
接地部的宽度W1(mm) 3.5
馈电点与辐射体的开放端之间的距离d1(mm) 6.5
馈电点与接地部之间的距离d2(mm) 6.5
辐射体与A壳之间的间隙s1(mm) 3.5
辐射体与第二壳体之间的间隙s2(mm) 1
闭合的槽的长度L2(mm) 254.5
闭合的槽的宽度W2(mm) 11.5
平面的倒F天线的左端与闭合的槽的左端之间的距离d3(mm) 202
平面的倒F天线的右端与闭合的槽的右端之间的距离d4(mm) 30.5
在图2g中,灰度越深,表示场强越大,其中,灰度最深的部分表示场强最大。从图2g可以看到,平面的倒F天线(该平面的倒F天线放置于闭合的槽)产生的电场大部分朝向第一壳体和第二壳体的开合区的方向辐射。并且,在该仿真结果中,测得该平面的倒F天线的方向性系数为8.437dBi,天线的辐射效率为-0.5818dB,天线的系统效率为-1.957dB。
从上可知,平面的倒F天线700'本身的辐射是基本全向的,但是受到第一壳体200'和第二壳体300'形成的夹角反射结构(即对应开合区600'的结构)的影响大,而使得平面的倒F天线700'的辐射方向图的能量如图2g所示都朝向第一壳体和第二壳体300'的开合区600'的方向,方向性系数为8.437dBi左右。
本申请以下实施例1和实施例2所描述的技术方案对天线的方向性进行进一步地改善。
实施例1
请参见图3~图5,图3和图4为本申请实施例1的可折叠电子设备100在展开状态下的不同视角的立体结构示意图。其中,图3的视角为侧视方向,图4的视角为正视方向,即可折叠电子设备100的屏幕朝向用户的方向。图5为图3中B部分的放大结构示意图。
如图3~图5所示,本申请实施例1提供了一种可折叠电子设备100,该可折叠电子设备100包括第一壳体200、第二壳体300和天线700。在本实施方式中,该可折叠电子设备100以可折叠笔记本电脑进行举例说明。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,该可折叠电子设备100也可以为可折叠平板电脑或可折叠智能手机等其它可折叠电子设备,在此并不对本申请的保护范围产生限定作用。
如图3~图4所示,第一壳体200和第二壳体300之间通过位于两侧的转轴400旋转连接,以使可折叠电子设备100能够在展开状态和折叠状态之间切换。第一壳体200和第二壳体300之间形成有开合区600(即对应图3中第一壳体200和第二壳体300之间形成的第一夹角α1所在的区域),该开合区600为第一壳体200相对于第二壳体300在展开或折叠过程中的移动轨迹区。第一壳体200和第二壳体300之间还形成有与该开合区600相反的另一区域610(即对应图3中第一壳体200和第二壳体300之间形成的第二夹角α2所在的区域)。在可折叠电子设备100处于展开状态下时,第一壳体200与第二壳体300相互展开,第一壳体200位于第二壳体300的上方,且第一夹角α1小于第二夹角α2,即第一夹角α1所在的区域为小角度区域,第二夹角α2所在的区域为大角度区域。第一夹角α1一般为110度,第二夹角α2一般为250度。在可折叠电子设备100处于折叠状态时,第一壳体200与第二壳体300相互折叠,第一夹角α1为0度,第二夹角α2为360度。当然,本领域技术人员可以理解的是,用户也可以根据实际的需求将可折叠电子设备100在展开状态下第一夹角α1和第二夹角α2的角度调整成合适的角度,在此并不对本申请的保护范围产生限定作用。并且,本领域技术人员可以理解的是,在可折叠电子设备100处于展开状态下,第二壳体300呈水平状态放置,并且放置于工作台(比如办公桌)上,即确保可折叠电子设备100能够平稳地放置,且用户可以正常使用该可折叠电子设备100。
在本实施方式中,第一壳体200包括相互固定的A壳210和B壳(图中未示出),第二壳体300包括相互固定的C壳310和D壳320,且A壳210为第一壳体200的接地板,即可折叠电子设备100的地(GND)。A壳210是与屏幕相对设置的外壳(即可折叠笔记本电脑处于折叠状态时位于最顶端 的顶壳),B壳是屏幕所在面的壳体,C壳310是键盘所在面的壳体,D壳320是与键盘对应的外壳。也就是说,第一壳体200为可折叠电子设备100的显示屏所在一侧的壳体,第二壳体300为可折叠电子设备100的键盘所在一侧的壳体。
其中,第一壳体200、第二壳体300和位于两侧的转轴400之间围绕形成有一空间,天线700设置于可折叠电子设备100的该空间内。在本实施方式中,该空间为闭合的槽500,即槽500的周向方向封闭,天线700设置于可折叠电子设备100的该槽500内。在本实施方式中,该天线700主要应用于WIFI天线。当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,该天线还可以应用于其它需要低方向性场合的天线。
请参见图6~图7,图6和图7分别为本申请实施例1的天线700的不同视角的立体结构示意图。其中,图6中的视角主要体现了天线的长度方向L上的结构。图7中的视角主要体现了天线的宽度方向W上的结构。
如图6~图7所示,该天线700采用立体结构天线。结合图5予以理解,天线700包括沿天线的长度方向L依次相接设置的第一天线段710和第二天线段720。在展开状态下,第二天线段720位于第一天线段710的下方。结合图4和图5予以理解,第一天线段710的整体相对于第二天线段720的整体远离第一壳体200的下边缘220设置,也就是说,第一天线段710和第一壳体200的下边缘220位于第二天线段720的相反的两侧。在一个实施例中,第一壳体200的下边缘为第一壳体200上的靠近第二壳体300的边缘。在一个实施例中,第一壳体200的A壳210的下边缘为第一壳体200的下边缘220。在可折叠电子设备100处于展开状态时A壳210中位于最下方的边缘A壳210的下边缘为在可折叠电子设备100处于展开状态时A壳210中位于最下方的边缘。本领域技术人员可以理解的是,相接指的是第一天线段710的一端与第二天线段720的一端是端对端连接。天线的长度方向L指的是天线的延伸路径方向,即如图6所示的天线的弯折方向。本领域技术人员可以理解的是,在本实施方式中,将天线分成第一天线段和第二天线段这两段进行描述,仅是为了描述更加方便,其并不是对天线的结构、功能和性能上进行区分。
如图5~图7所示,第一天线段710的一端711(即第一天线段的第一端)连接于第一壳体200的接地板(即A壳210),且第一天线段710从一端711朝向开合区600背离第一壳体200的方向延伸,结合图3予以理解,该开合区600为可折叠电子设备100在展开状态下时第一壳体200和第二壳体300的开合区600。第一天线段710的一端711和第一壳体200的接地板(即A壳210)的接地具体实现可以是,通过焊接在接地板(即A壳210)上的弹片(图中未示出)弹接到天线700的第一天线段710上、或者通过紧固件(图中未示出)将第一天线段710的一端711锁到接地板(即A壳210)上、或将第一天线段710的一端711焊接于接地板(即A壳210)上等方式,来实现导通接地。在本实施方式中,第一天线段710具有第一端(即第一天线段710的一端711)和第二端,第二天线段具有第一端和第二端(即第二天线段720的一端721),第二天线段720的第一端与第一天线段710的第二端相接,使得第二天线段720在第二天线段720的第一端处和第一天线段710在第一天线段710的第二端处成角度设置。
第二天线段720的一端721(即第二天线段的第二端)为自由端,自由端与第一壳体200的接地板之间具有缝隙730。第一天线段710、第二天线段720和第一壳体200之间围绕形成有一空腔760,空腔760与缝隙730连通。第二天线段720还包括馈电部(在本实施方式中,该馈电部为第二天线段720的水平段723),可折叠电子设备100的射频模块800(参见图8)通过馈电线直接馈电于或耦合馈电于第二天线段720的馈电部。也就是说,通过第二天线段720接收射频模块800(参见图8)输 出的射频信号,以使天线700向外辐射信号。
如图3~图7所示,将天线700设置于可折叠电子设备100的槽500内,在展开状态下,第二天线段720位于第一天线段710的下方,且第二天线段720的自由端与第一壳体200的接地板之间具有缝隙730(也就是说,第二天线段720的自由端与第一壳体200的接地板间隔设置,在本实施方式中,A壳210为接地板),即该缝隙730位于第一天线段710的下方,这样使得天线自身的辐射朝向第一壳体200和第二壳体300之间的另一区域610(该另一区域610与开合区600相反),再叠加闭合的槽500内激励的电场(朝向第一壳体200和第二壳体300之间的开合区600方向辐射,即朝向第一壳体200和第二壳体300之间所形成的小角度区域方向辐射)的部分,叠加后的总辐射方向图是在全方向相对均匀分布,从而降低了天线的方向性。
如图5~图7所示,第二天线段720为L形天线段,L形天线段的竖直段722(即L形天线段的第一段)的一端相接于第一天线段710,且L形天线段的水平段723(即L形天线段的第二段)的一端为自由端,即L形天线段的水平段723的一端与第一壳体200的接地板之间具有缝隙730。也就是说,在L形天线段中具有相互垂直的竖直段722和水平段723。本领域技术人员可以理解的是,在可替代的实施方式中,第二天线段720也可以采用其它形状的天线段,比如,相互不垂直的依次相接的两段或多段天线段,且每一段天线段可以为直线段、弯折段或曲线段,在此并不对本申请的保护范围产生限定作用。
其中,L形天线段的水平段723与第一天线段710平行且面对面相对间隔设置。本领域技术人员可以理解的是,在可替代的其它实施方式中,L形天线段的水平段723也可以相对第一天线段710倾斜并相对间隔设置,其中,水平段723的延长线与第一天线段710的延长线成角度(例如,锐角)设置。
从图6可以看出,天线700是一个类似C型的结构,即从天线的长度方向L上看,天线700的形状类似C形。本领域技术人员可以理解的是,在可替代的其它实施方式中,天线700也可以采用其它合适的形状。
如图6~图7所示,天线700的第一天线段710和第二天线段720由金属片弯折构成,也就是说,天线的所有天线段由一块整体的金属片弯折构成。其中,第一天线段710为片状天线段,第二天线段720为L形片状天线段,即L形天线段采用L形片状天线段。本领域技术人员可以理解,在可替代的其它实施方式中,也可以通过在槽内放置塑料介质支架,在塑料介质支架上采用LDS(Laser Direct Structuring,激光直接成型)的形式形成天线(典型的塑料介质支架的介电常数为3),在此并不对本申请的保护范围产生限定作用。
其中,第一天线段710的长度和宽度、第二天线段720的长度和宽度以及电容的大小都会影响天线的谐振频率,是根据具体的环境来调节的。
其中,以下具体说明天线的宽度会影响天线的谐振频率和方向图表现以及其方向性的大小。对谐振频率的影响:天线本身是LC的谐振,天线的沿其长度方向上的结构具有一定的感性,天线的缝隙730处具有一定的容性。天线的宽度会影响天线的等效电感值,从而会影响天线的谐振频率。
对方向图和方向性的影响,具体的,从本申请的优化方向性的原理角度来说,因为方向性优化的关键点是天线本身的方向图朝向与开合区600相反的另一区域610的方向,当天线的宽度越宽时,天线本身的方向图朝某个方向的集中程度越好,天线的宽度越窄时,天线本身的方向图就不会太集中于某个方向,而是在整个方向中都有分布。
在本实施方式中,第二天线段720的竖直段722的宽度和第二天线段720的水平段723的宽度小 于1/2波长(该波长为天线的工作波长),第一天线段710的宽度小于1/2波长(该波长为天线的工作波长)。
具体地,L形片状天线段的宽度小于或等于片状天线段的宽度,即第二天线段720的竖直段722的宽度和第二天线段720的水平段723的宽度小于或等于第一天线段710的宽度。这样能够使得天线自身的辐射更加集中朝向第一壳体200和第二壳体300之间的另一区域610(该另一区域610与开合区600相反),从而能够进一步降低天线的方向性。可以通过以下机理来解释,天线的大部分辐射是通过缝隙730辐射,第一天线段710相当于是一个反射板的作用,把辐射的能量都往与开合区600相反的另一区域610反射,在第二天线段720的竖直段722的宽度和第二天线段720的水平段723的宽度小于或等于第一天线段710的宽度时,这样能够使得天线自身产生的辐射集中朝向与开合区600相反的另一区域610,再叠加闭合的槽500内激励的电场朝向开合区600的部分,叠加后的总辐射方向图是在全向内相对均匀分布,这样能够进一步降低天线的方向性。本领域技术人员可以理解的是,在可替代的其它实施方式中,L形片状天线段的宽度也可以稍微大于片状天线段的宽度,可以根据实际的需要进行调整。
在本实施方式中,如图6~图7,L形片状天线段的宽度等于片状天线段的宽度,在天线的宽度方向W上,L形片状天线段和片状天线段平齐。也就是说,第二天线段720的竖直段722的宽度和第二天线段720的水平段723的宽度等于第一天线段710的宽度,在天线的宽度方向W上,第二天线段720的竖直段722和第二天线段720的水平段723均与第一天线段710平齐。
请参见图8~图9,图8为天线700馈电的一实施方式的结构示意图。图9为天线700在展开状态下馈电的一实施方式的电路结构示意图。如图8~图9所示,在本实施方式中,通过L形天线段的水平段723(即第二天线段720的水平段723)接收射频模块800输出的射频信号,以使天线700向外辐射信号。
具体地,L形天线段的水平段723(即第二天线段720的水平段723)接收射频模块800输出的射频信号,是通过水平段723的一端721连接电容C,再通过电容C连接射频模块800来接收射频信号。
在本实施方式中,射频模块800设置于第二壳体300(参见图3~图4),射频模块800通过馈电线连接电容C后对L形天线段的水平段723的一端721馈电。本领域技术人员可以理解的是,馈电线的走向可以根据可折叠电子设备的结构进行合理布局,且馈电线的长度可以根据需要预留合适的一段长度(比如,该馈电线可以从第二壳体穿过位于第一壳体和第二壳体之间的转轴后到达第一壳体,且穿过转轴的这段馈电线可以预留合适的一段长度),这样能够保证在可折叠电子设备从折叠状态切换成展开状态时馈电线与射频模块800、电容C的可靠连接。当然,在可替代的其它实施方式中,射频模块800也可以设置于第一壳体200(参见图3~图4),在此并不对本申请的保护范围产生限定作用。
本领域技术人员可以理解的是,图8中电容C的位置仅示意电路结构中的电连接位置关系,并不体现该电容C的机械物理位置。该电容C的机械物理位置可以根据实际需要设置于天线或第一壳体。比如,在天线由金属片弯折而成时,电容设置于第一壳体上的一电路板,电容的一端电连接于馈电线的一端,另一端电连接于设置于该电路板上的一弹片的一端,该弹片的另一端弹接于天线的水平段的一端;在塑料介质支架上采用激光直接成型的形式形成天线时,可在天线上直接设置电容C。
请参见图10,图10为天线700的另一实施方式在展开状态下馈电的电路结构示意图。如图10所示,L形片状天线段的宽度小于片状天线段的宽度,在天线的宽度方向W上,L形片状天线段位于 片状天线段的中部。也就是说,第二天线段720的竖直段722的宽度和第二天线段720的水平段723的宽度小于第一天线段710的宽度,在天线的宽度方向W上,第二天线段720的竖直段722和第二天线段720的水平段723均位于第一天线段710的中部。
在本实施方式中,L形天线段的水平段723(即第二天线段720的水平段723)接收射频模块800输出的射频信号,也是通过水平段723的一端721连接电容C,再通过电容C连接射频模块800来接收射频信号。
请参见图11~图12,图11为天线700馈电的又一实施方式的结构示意图。图12为图11中C部分的放大结构示意图。第二天线段720的水平段723的一端721设有缺口724,一馈电枝节740的主体741位于缺口724内,使得馈电枝节740的主体741与水平段723之间形成有隔离间隙742,馈电枝节740的除主体741外的部分位于缺口724外。馈电枝节740的位于缺口724外的部分连接射频模块800。L形天线段的水平段723(即第二天线段720的水平段723)接收射频模块800输出的射频信号,是通过馈电枝节740接收射频信号后,通过隔离间隙742耦合至水平段723来接收射频信号。该隔离间隙742为U字形间隙。也就是说,天线700本身的激励是通过第二天线段720的水平段723与馈电枝节740之间的U字形间隙实现分布式耦合馈电。该分布式耦合馈电为分布式电容耦合馈电。本领域技术人员可以理解的是,在可替代的其它实施方式中,馈电枝节740连接射频模块800的部分也可以位于缺口724内,在此并不对本申请的保护范围产生限定作用。
请参见图13,图13为天线700馈电的再一实施方式的结构示意图。如图13所示,L形天线段的水平段723的与第一天线段710相对设置的面上连接有金属柱750,金属柱750的自由端连接射频模块800。L形天线段的水平段723(即第二天线段720的水平段723)接收射频模块800输出的射频信号,是通过水平段723连接金属柱750,再通过金属柱750连接射频模块800来接收射频信号。在本实施方式中,金属柱750设置于第二天线段720的水平段723在天线的长度方向L上的中间位置。本领域技术人员可以理解的是,在可替代的其它实施方式中,L形天线段的水平段723的与第一天线段710相对设置的面上也可以通过设置其它金属件(比如金属片、金属条等)连接射频模块800,在此并不对本申请的保护范围产生限定作用。
从上可知,图13中所示出的天线是通过感性直接馈电。感性馈电就是指馈电通路中没有电容元件或分布式的耦合结构。
以下结合图14-图20b对天线的性能做具体地说明。
为了验证本申请实施例的天线的方向性性能,采用全波电磁仿真软件HFSS进行仿真分析,获得了图14~图20b的仿真效果图。
获取图14~图20b所示的仿真效果图的仿真条件如下表2所示(请结合图3-图9予以理解):
表2
参数 本申请实施例1的天线
天线的工作频率 2.45GHz
电容C的电容量 0.4pF
第一天线段的长度L1(mm) 10
第一天线段的宽度W1(mm) 29
第二天线段的竖直段的长度L2(mm) 5
第二天线段的竖直段的宽度W2(mm) 29
第二天线段的水平段的长度L3(mm) 7
第二天线段的水平段的宽度W3(mm) 29
第一天线段与第二天线段的水平段之间的距离d1(mm) 5
第二天线段的一端与第一壳体的接地板之间的距离d2(mm) 3
第二天线段的竖直段与第二壳体之间的距离d3(mm) 3.5
槽的长度L4(mm) 235
槽的宽度W4(mm) 13.5
天线的左端与槽的左端之间的距离d4(mm) 180mm
天线的右端与槽的右端之间的距离d5(mm) 26mm
请参见图14~图16,图14为本申请实施例1的天线的S参数性能仿真曲线图。图15为本申请实施例1的天线的效率仿真曲线图。图16为本申请实施例1的天线的辐射方向图。
其中,在图14中,横坐标表示频率,单位为GHz,纵坐标表示S11的幅度值,单位为dB。S11属于S参数中的一种。S11表示反射系数,此参数表示天线的发射效率,值越小则表示天线本身反射回来的能量越小,这样天线的效率就越高。其中,图中的曲线中标记的两个点表示天线的两个谐振频率点,点1主要是天线本身的谐振频率点,该点处的谐振频率为2.4976GHz,S11为-11.337dB。点2偏向槽的工作模式的谐振频率点,该点处的谐振频率为2.45GHz,S11为-14.374dB。
从图14可以看到,在2.42GHz~2.57GHz的频段内,天线具有较好的阻抗匹配,即S11小于-10dB,也就是说,天线的工作频段覆盖2.42GHz~2.57GHz。也就是说,天线的-10dB S11的绝对带宽为0.15GHz,天线的-10dB S11的相对带宽为6.0%,从而具有带宽适中的特性。
参见图15,横坐标表示频率,单位为GHz,纵坐标表示天线的辐射频率和匹配频率,单位为dB。图中的两条曲线分别表示天线的辐射效率和系统效率。天线的辐射效率是衡量天线辐射能力的值,金属损耗、介质损耗带来的损耗影响辐射效率。天线的系统效率是考虑天线端口匹配后的实际效率,即天线的系统效率为天线的实际效率。本领域技术人员可以理解,效率一般是用百分比来表示,其与dB之间存在相应的换算关系,例如有50%的能量辐射出去,换算成dB值就是-3dB;有90%的能量辐射出去,换算成dB值就是-0.046dB;所以效率越接近0dB越好。
从图15中可以看到,天线在工作频段2.42GHz~2.57GHz内的辐射效率为-0.7dB~-0.5dB,具有较好的辐射特性,且天线在工作频段2.42GHz~2.57GHz内的系统效率为-1.5dB~-0.7dB,具有较好的端口阻抗匹配。
请参见图16,图16给出了在工作频率为2.45GHz时天线的辐射方向图。在图16中,灰度越深,表示场强越大,其中,灰度最深的部分表示场强最大。在图16所示的辐射方向图中包括设置在闭合的槽内的天线本身的辐射以及该闭合的槽的辐射这两部分的辐射方向图。
从图16中可以看出,天线朝向第一壳体和第二壳体的开合区(即朝向第一夹角所在的区域)和朝向与开合区相反的另一区域(即朝向第二夹角所在的区域)的辐射能量比较均匀,特别是朝向第二夹角α2所在的区域方向的能量有明显的增强,该天线的方向性系数为从8.437dBi降低到了5.8dBi。也就是说,在天线的全向内辐射的能量都是相对均匀的,不是集中在某一个角度方向的。并且,天线 的工作频率为2.45GHz时,天线的辐射效率为-0.5434dB,天线的系统效率为-0.7050dB。
以下结合图17~图20b来详细说明本申请天线的工作机理。
请参见图17~图18,图17给出频率为2.4976GHz时可折叠电子设备的靠近天线的位置处的电流分布结构示意图。图18给出频率为2.4976GHz时可折叠电子设备的靠近天线的位置处的电场分布结构示意图。
从图17中可以看出,较强的电流都集中在天线附近,即图中虚线框所在的区域。从图18中可以看出,较强的电场都集中在天线附近,即图中虚线框所在的区域。其中,在图18中,箭头表示槽的内部电场的方向,圆圈表示槽内部电场方向发生改变的位置。该图就是为了说明天线谐振频率点(即谐振频率为2.4976GHz)处天线本身和槽的内部电场分布的规律。
请参见图19~图20b,图19为天线的局部电场分布结构示意图。图20a和图20b为不同视角下天线的局部电流分布结构示意图。其中,图20a中的视角主要体现了天线的长度方向上的结构。图20b中的视角主要体现了天线的宽度方向上的结构。
如图19所示,该图表示天线自身的电场分布,颜色较深的部分表示电场强度较大,其中,通过缝隙(第二天线段的水平段的一端与接地板(即A壳)之间的缝隙,天线的辐射口主要是天线与接地板之间的缝隙,通过缝隙的电场向外辐射)流向第二夹角所在区域(即与开合区相反的另一区域)的方向的电场强度最大(参见图19中虚线框部分),第二天线段的水平段流向第二夹角所在区域的方向的电场强度次之,从而使得天线朝向第二夹角所在区域的方向辐射的强度最大,这样一来由于天线本身的方向图是朝第二夹角所在区域的方向,而将天线放置在槽内后激励出槽的电场辐射是朝第一夹角α1所在区域的方向,所以天线的整个方向图表现就变成朝向第一夹角α1所在区域的方向和第二夹角所在区域的方向的辐射都有,比较均匀,于是方向性就会变低。
如图20a和图20b所示,仅给出天线本身的电流分布。其中,图中的箭头分别表示第二天线段的水平段上的电流流动方向、第二天线段的竖直段上的电流流动方向、第一天线段上的电流流动方向。从图20a和图20b可以看出,整个天线上的电流分布是从馈电处(即缝隙附近)依次经第二天线段的水平段、竖直段、第一天线段朝接地方向流动的。
实施例2
请参见图21~图25,图21为本申请实施例2的可折叠电子设备中天线700A与第一壳体200A配合的局部结构示意图。图22为本申请实施例2的天线700A馈电的一实施方式的结构示意图。图23为本申请实施例2的天线700A在展开状态下馈电的电路结构示意图。图24和图25为本申请实施例2的天线700A在不同视角下的立体结构示意图,其中,图24的视角主要体现了天线700A的长度方向上的结构,图25的视角主要体现了天线700A的宽度方向上的结构。
如图21~图25所示,本实施例的天线700A的结构与实施例1所提供的天线的结构相比,其也包括沿天线700A的长度方向依次相接的第一天线段710A和第二天线段720A,其不同之处在于,天线700A的第二天线段720A的结构不同,具体为,第二天线段720A仅包括竖直段722A,已去除水平段,此时,第二天线段720A的竖直段722A的一端721A与第一壳体200A的接地板(即A壳210A)之间形成缝隙730A。
如图22~图23所示,通过第二天线段720A的竖直段722A接收射频模块800A输出的射频信号,以使天线700A向外辐射信号。具体地,即第二天线段720A的竖直段722A接收射频模块800A输出的射频信号,是通过竖直段722A的一端721A连接电容C,再通过电容C连接射频模块800A来接收射频信号。
当然,本领域技术人员可以理解的是,在可替代的其它实施方式中,天线本身的激励也可以通过第二天线段的竖直段的一端采用分布式电容耦合馈电,或者,通过在第二天线段的中间位置设置金属柱直接馈电(即通过感性馈电)。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

  1. 一种用于可折叠电子设备的天线,所述可折叠电子设备包括第一壳体和第二壳体,所述第一壳体和所述第二壳体通过位于其间的转轴旋转连接,以使所述可折叠电子设备在展开状态和折叠状态之间切换,所述第一壳体为所述可折叠电子设备的显示屏所在一侧的壳体,所述第二壳体为所述可折叠电子设备的键盘所在一侧的壳体,所述天线设置于所述第一壳体、所述第二壳体和所述转轴围绕形成的空间内,所述可折叠电子设备在所述展开状态下时,所述第一壳体和所述第二壳体之间形成开合区,其特征在于:
    所述天线包括沿所述天线的长度方向依次相接设置的第一天线段和第二天线段,其中,
    所述第一天线段具有第一端和第二端,所述第一天线段的第一端连接于所述第一壳体的接地板,且所述第一天线段从所述第一天线段的第一端朝向所述开合区延伸到所述第一天线段的第二端;
    所述第二天线段具有第一端和第二端,所述第二天线段的第一端与所述第一天线段的第二端相接,使得所述第二天线段在所述第二天线段的第一端处和所述第一天线段在第一天线段的第二端处成角度设置,所述第二天线段的第二端与所述第一壳体的所述接地板间隔设置,且所述第一天线段的整体相对于所述第二天线段的整体远离所述第一壳体的下边缘设置,其中,所述第二天线段还包括馈电部,所述可折叠电子设备的射频模块通过馈电线直接馈电于或耦合馈电于所述第二天线段的所述馈电部。
  2. 如权利要求1所述的天线,其特征在于,所述第二天线段为L形天线段,包括相交设置的第一段和第二段,所述L形天线段的所述第一段相接于所述第一天线段,且所述L形天线段的所述第二段的一端为所述第二天线段的第二端。
  3. 如权利要求2所述的天线,其特征在于,所述L形天线段的所述第一段与所述第一天线段垂直设置,所述L形天线段的所述第二段与所述第一天线段平行设置。
  4. 如权利要求2或3所述的天线,其特征在于,所述L形天线段的所述第二段为所述馈电部。
  5. 如权利要求4所述的天线,其特征在于,所述L形天线段的所述第二段的一端连接一电容的一端,所述电容的另一端通过所述馈电线连接所述射频模块。
  6. 如权利要求4所述的天线,其特征在于,所述L形天线段的所述第二段的一端设有缺口,所述天线还包括一馈电枝节,所述馈电枝节的主体位于所述缺口内,所述馈电枝节的主体与所述第二段之间形成有隔离间隙,所述馈电枝节的除所述主体外的部分位于所述缺口外,所述馈电枝节的位于所述缺口外的部分通过所述馈电线连接所述射频模块,并通过所述隔离间隙耦合馈电于所述L形天线段的所述第二段。
  7. 如权利要求4所述的天线,其特征在于,所述L形天线段的所述第二段的与所述第一天线段相对设置的面上连接有金属柱,所述金属柱的自由端通过所述馈电线连接所述射频模块。
  8. 如权利要求1~7中任一项所述的天线,其特征在于,所述天线的所述第一天线段和所述第二天线段由金属片弯折构成。
  9. 如权利要求1~8中任一项所述的天线,其特征在于,所述第一天线段为片状天线段,所述第二天线段为L形片状天线段。
  10. 如权利要求9所述的天线,其特征在于,所述第二天线段的宽度小于或等于所述第一天线段的宽度。
  11. 如权利要求10所述的天线,其特征在于,
    当所述第二天线段的宽度小于所述第一天线段的宽度时,在所述天线的宽度方向上,所述第二天 线段位于所述第一天线段的中部;
    当所述第二天线段的宽度等于所述第一天线段的宽度时,在所述天线的宽度方向上,所述第二天线段和所述第一天线段平齐。
  12. 如权利要求1~11中任一项所述的天线,其特征在于,所述第二天线段的第二端与所述第一壳体的所述接地板之间具有缝隙;并且,所述天线采用立体结构天线,所述第一天线段、所述第二天线段和所述第一壳体之间围绕形成有一空腔,所述空腔与所述缝隙连通。
  13. 一种用于可折叠电子设备的天线,所述可折叠电子设备包括第一壳体和第二壳体,所述第一壳体和所述第二壳体通过位于其间的转轴旋转连接,以使所述可折叠电子设备在展开状态和折叠状态之间切换,所述天线设置于所述第一壳体、所述第二壳体和所述转轴围绕形成的空间内,所述可折叠电子设备在所述展开状态下时,所述第一壳体位于所述第二壳体上方,所述第一壳体和所述第二壳体之间形成开合区,其特征在于:
    所述天线采用立体结构天线,所述天线包括沿所述天线的长度方向依次相接设置的第一天线段和第二天线段,所述可折叠电子设备在所述展开状态下时,所述第二天线段位于所述第一天线段的下方;其中,
    所述第一天线段具有第一端和第二端,所述第一天线段的第一端连接于所述第一壳体的接地板,且所述第一天线段从所述第一天线段的第一端朝向所述开合区延伸到所述第一天线段的第二端;
    所述第二天线段具有第一端和第二端,所述第二天线段的第一端与所述第一天线段的第二端相接,使得所述第二天线段在所述第二天线段的第一端处和所述第一天线段在第一天线段的第二端处成角度设置,所述第二天线段的第二端与所述第一壳体的所述接地板间隔设置,其中,所述第二天线段还包括馈电部,所述可折叠电子设备的射频模块通过馈电线直接馈电于或耦合馈电于所述第二天线段的所述馈电部。
  14. 一种可折叠电子设备,其特征在于,其包括如权利要求1~13中任一项所述的用于可折叠电子设备的天线。
  15. 如权利要求14所述的可折叠电子设备,其特征在于,所述可折叠电子设备为可折叠笔记本电脑。
PCT/CN2021/110863 2020-09-10 2021-08-05 用于可折叠电子设备的天线及可折叠电子设备 WO2022052690A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/044,303 US20240030607A1 (en) 2020-09-10 2021-08-05 Antenna for Foldable Electronic Device and Foldable Electronic Device
EP21865746.8A EP4210165A4 (en) 2020-09-10 2021-08-05 ANTENNA FOR FOLDABLE ELECTRONIC DEVICE AND FOLDABLE ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010945216.0A CN114171891B (zh) 2020-09-10 2020-09-10 用于可折叠电子设备的天线及可折叠电子设备
CN202010945216.0 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022052690A1 true WO2022052690A1 (zh) 2022-03-17

Family

ID=80475559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110863 WO2022052690A1 (zh) 2020-09-10 2021-08-05 用于可折叠电子设备的天线及可折叠电子设备

Country Status (4)

Country Link
US (1) US20240030607A1 (zh)
EP (1) EP4210165A4 (zh)
CN (1) CN114171891B (zh)
WO (1) WO2022052690A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310572A1 (en) * 2010-06-18 2011-12-22 Kabushiki Kaisha Toshiba Electronic apparatus
CN103367867A (zh) * 2012-04-09 2013-10-23 宏碁股份有限公司 通信装置
CN105789823A (zh) * 2016-03-30 2016-07-20 联想(北京)有限公司 一种电子设备
CN106058429A (zh) * 2016-07-22 2016-10-26 常熟市泓博通讯技术股份有限公司 带天线的电子装置
CN108428994A (zh) * 2018-03-23 2018-08-21 英业达科技有限公司 便携式电子装置
WO2020168915A1 (zh) * 2019-02-18 2020-08-27 华为技术有限公司 一种天线及电子装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773773A (zh) * 2004-11-10 2006-05-17 智捷科技股份有限公司 一种平面倒f型天线
TW200840141A (en) * 2007-03-30 2008-10-01 Advanced Connectek Inc A pivot coupling device
CN102544714A (zh) * 2010-12-08 2012-07-04 上海安费诺永亿通讯电子有限公司 一种折叠小型宽带天线
CN102790262B (zh) * 2011-05-19 2014-11-05 光宝电子(广州)有限公司 天线与具有该天线的电子装置
TWI532259B (zh) * 2012-08-27 2016-05-01 鴻海精密工業股份有限公司 寬頻天線元件
CN204045734U (zh) * 2014-07-21 2014-12-24 瑞声精密制造科技(常州)有限公司 多频段天线系统
CN104901015B (zh) * 2015-05-28 2017-06-13 清华大学 一种兼顾窄边框与多频段覆盖的移动终端用lte天线
GB2542257B (en) * 2015-07-24 2019-09-11 Smart Antenna Tech Limited Reconfigurable antenna for incorporation in the hinge of a laptop computer
US10268236B2 (en) * 2016-01-27 2019-04-23 Apple Inc. Electronic devices having ventilation systems with antennas
TWI732931B (zh) * 2016-09-29 2021-07-11 仁寶電腦工業股份有限公司 天線結構
CN106502321B (zh) * 2016-09-29 2019-08-30 苏州佳世达电通有限公司 一种电子装置
US10965030B2 (en) * 2018-04-30 2021-03-30 Samsung Electro-Mechanics Co., Ltd. Antenna apparatus
CN209390110U (zh) * 2018-10-26 2019-09-13 Oppo广东移动通信有限公司 电子设备
CN210272673U (zh) * 2019-08-07 2020-04-07 深圳市卓睿通信技术有限公司 宽带双频毫米波天线及天线系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310572A1 (en) * 2010-06-18 2011-12-22 Kabushiki Kaisha Toshiba Electronic apparatus
CN103367867A (zh) * 2012-04-09 2013-10-23 宏碁股份有限公司 通信装置
CN105789823A (zh) * 2016-03-30 2016-07-20 联想(北京)有限公司 一种电子设备
CN106058429A (zh) * 2016-07-22 2016-10-26 常熟市泓博通讯技术股份有限公司 带天线的电子装置
CN108428994A (zh) * 2018-03-23 2018-08-21 英业达科技有限公司 便携式电子装置
WO2020168915A1 (zh) * 2019-02-18 2020-08-27 华为技术有限公司 一种天线及电子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4210165A4

Also Published As

Publication number Publication date
EP4210165A4 (en) 2024-03-13
CN114171891B (zh) 2023-11-17
EP4210165A1 (en) 2023-07-12
CN114171891A (zh) 2022-03-11
US20240030607A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
TWI643405B (zh) 天線系統
US8558748B2 (en) Printed dual-band Yagi-Uda antenna and circular polarization antenna
US20040061648A1 (en) Miniature broadband ring-like microstrip patch antenna
WO2015001475A2 (en) Orthogonal multi-antennas for mobile handsets based on characteristic mode manipulation
US8907860B2 (en) Stand-alone multi-band antenna
TWI245454B (en) Low sidelobes dual band and broadband flat endfire antenna
US10096889B2 (en) Mobile device
GB2542257B (en) Reconfigurable antenna for incorporation in the hinge of a laptop computer
TWI724635B (zh) 天線結構及電子裝置
TW201511406A (zh) 寬頻天線
TWI678841B (zh) 電子裝置及其天線組件
Rezaeieh et al. Miniaturized planar Yagi antenna utilizing capacitively coupled folded reflector
TW202112001A (zh) 天線結構
TWI624997B (zh) 行動裝置
EP3544115B1 (en) Balanced dipole unit and broadband omnidirectional collinear array antenna
WO2022052690A1 (zh) 用于可折叠电子设备的天线及可折叠电子设备
TWI725324B (zh) 行動裝置
Chiu et al. Printed loop antenna with a U-shaped tuning element for hepta-band laptop applications
TWI774301B (zh) 電子裝置與天線饋入模組
US10211517B2 (en) Mobile device
JPH08195609A (ja) 携帯無線機内蔵逆fアンテナ
CN109309287B (zh) 天线系统
TWI464962B (zh) 複合式多天線系統及其無線通訊裝置
US10819025B2 (en) Antenna structure
US10903551B2 (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18044303

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021865746

Country of ref document: EP

Effective date: 20230406