WO2021128017A1 - 控制线性电机振动频率的方法、装置和存储介质 - Google Patents

控制线性电机振动频率的方法、装置和存储介质 Download PDF

Info

Publication number
WO2021128017A1
WO2021128017A1 PCT/CN2019/128028 CN2019128028W WO2021128017A1 WO 2021128017 A1 WO2021128017 A1 WO 2021128017A1 CN 2019128028 W CN2019128028 W CN 2019128028W WO 2021128017 A1 WO2021128017 A1 WO 2021128017A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
linear motor
driving voltage
vibration
formula
Prior art date
Application number
PCT/CN2019/128028
Other languages
English (en)
French (fr)
Inventor
郑亚军
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/128028 priority Critical patent/WO2021128017A1/zh
Publication of WO2021128017A1 publication Critical patent/WO2021128017A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Definitions

  • the present invention relates to the technical field of tactile perception, and in particular to a method, device and storage medium for controlling the vibration frequency of a linear motor.
  • linear motor As a kind of electromagnetic induction transducer, linear motor is widely used in industrial production and daily application. With the advancement of technology and the improvement of people's quality of life, the use of linear motors in portable devices plays an increasingly important role. Linear motors can provide a rich vibration experience. At the same time, linear motors in portable devices are generally very small due to their size limitations. Then, how to accurately control the linear motor so that the linear motor can produce rich shock effects is an important problem that plagues signal design engineers.
  • a high-quality vibration effect mainly depends on the amplitude and frequency of the vibration waveform. Often under the condition of ensuring a large amplitude, by controlling the vibration frequency, a rich and high-quality vibration effect can be achieved.
  • the energized coil generates a driving force in the vertical magnetic field
  • the vibrator generates acceleration under the action of the driving force, thereby generating displacement, resulting in spring compression and spring force; in the subsequent process, the spring
  • the vector sum of force, resistance, and driving force forms the combined external force of the vibrator.
  • linear motors are required to have more precise and rich vibration effects. It is very necessary to control the vibration frequency of linear motors more accurately.
  • the invention provides a method, a device and a storage medium for controlling the vibration frequency of a linear motor, which realizes more precise control of the vibration frequency of the linear motor, improves the vibration effect of the linear motor, and improves the vibration experience of the linear motor.
  • the method for controlling the vibration frequency of a linear motor provided by the present invention includes:
  • Step S10 Define the basic vibration waveform, drive voltage waveform, and waveform splicing mode of the vibration frequency of the linear motor; wherein the basic vibration waveform is the calculation relationship between the speed and time of the linear motor's vibrator, and the vibrator is the A linear motor drives a vibrating unit, the driving voltage waveform is a driving voltage waveform for driving the linear motor to vibrate calculated based on the basic vibration waveform, and the waveform splicing method is to combine adjacent basic vibrations with opposite monotonicity The waveforms are spliced to form a complete vibration waveform;
  • Step S20 Calculate the duration of the designated basic vibration waveform
  • Step S30 Calculate the first coefficient of the driving voltage waveform according to the basic vibration waveform, the driving voltage waveform, and the duration of the basic vibration waveform;
  • Step S40 Calculate the second coefficient of the driving voltage waveform according to the designated displacement at the end of the basic vibration waveform and the preset displacement at the beginning of the basic vibration waveform;
  • Step S50 calculating the calculated voltage value of the driving voltage waveform according to the first coefficient and the second coefficient;
  • Step S60 comparing the calculated voltage value with the maximum output voltage value to obtain a driving voltage value for driving the linear motor to vibrate and a driving voltage waveform composed of a plurality of driving voltage values;
  • Step S70 Splicing the basic vibration waveform according to the waveform splicing mode, and output the spliced driving voltage waveform.
  • step S10 includes: defining a basic vibration waveform; wherein the basic vibration waveform is defined by a first formula, and the first formula is expressed as:
  • x represents a monotonous displacement curve
  • t represents the time
  • step S10 further includes:
  • the driving voltage waveform is defined by the second formula, and the second formula is expressed as:
  • ⁇ and ⁇ are undetermined coefficients; among them, ⁇ is the first coefficient of the driving voltage waveform, and ⁇ is the second coefficient of the driving voltage waveform;
  • the electromechanical equation of the linear motor that defines the driving voltage waveform; wherein, the electromechanical equation of the linear motor is defined by the third formula, and the third formula is expressed as:
  • m is the mass of the oscillator
  • c is the damping coefficient
  • k is a spring coefficient of elasticity
  • R e is the static resistance
  • L e is the inductance
  • x is a displacement transducer, Is the vibrator speed, Is the acceleration of the vibrator, i is the current, u is the voltage, and t is the time;
  • the displacement curve x(n) is solved; wherein the fourth formula and the fifth formula are used to calculate the displacement curve x(n), and the fourth formula is expressed as:
  • the waveform splicing method is defined, and the waveform splicing method is to splice adjacent basic vibration waveforms with opposite monotonicity to form a complete vibration waveform.
  • step S20 calculates the time length T of the basic vibration waveform according to the frequency F n of the designated vibration signal; wherein, the time length T of the basic vibration waveform is calculated using the sixth formula and the seventh formula, the The sixth formula is expressed as:
  • the seventh formula is expressed as:
  • N is a natural number
  • N 1.
  • the first coefficient ⁇ of the driving voltage waveform is calculated; wherein, the first coefficient ⁇ is calculated using an eighth formula, and the eighth formula is expressed as:
  • step S40 includes:
  • Step S410 According to the specified displacement at the end of the basic vibration waveform and the displacement at the beginning of the preset basic vibration waveform, set the maximum displacement at the end time as x max to calculate the basic vibration waveform; wherein the ninth formula is used to calculate the For the basic vibration waveform, the ninth formula is expressed as:
  • Step S420 Calculate the second coefficient ⁇ of the driving voltage waveform according to the maximum displacement limit at the end time; wherein, the second coefficient ⁇ of the driving voltage waveform is calculated using a tenth formula, and the tenth formula is expressed as:
  • step S60 includes:
  • Step S610 Determine the magnitude relationship between the calculated voltage value u max and the maximum output voltage value V max .
  • Step S620 When the calculated voltage value u max is greater than the maximum output voltage value V max , perform step S620; otherwise, perform step S630;
  • Step S620 output the calculated voltage value as a driving voltage value
  • Step S630 Perform self-correction and reset the displacement at the beginning of the basic vibration waveform.
  • the present invention provides a device for controlling the vibration frequency of a linear motor.
  • the device for controlling the vibration frequency of the linear motor includes a memory and a processor.
  • the memory stores the vibration frequency of the linear motor that can be run on the processor.
  • the program for controlling the vibration frequency of the linear motor is executed by the processor, the steps of the method for controlling the vibration frequency of the linear motor are implemented.
  • the present invention provides a storage medium
  • the storage medium is a computer-readable storage medium
  • the storage medium stores a program for controlling the vibration frequency of a linear motor
  • the program for controlling the vibration frequency of a linear motor can be configured by one or more programs.
  • Each processor executes to implement the steps of the method for controlling the vibration frequency of the linear motor as described above.
  • the method, device and storage medium for controlling the vibration frequency of a linear motor provided by the present invention achieve precise control of the vibration frequency of the linear motor by defining the calculation of the basic vibration waveform and the driving voltage waveform, and improve the performance of the linear motor.
  • the vibration effect provides users with a richer vibration experience.
  • FIG. 1 is a schematic diagram of a process provided by Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flowchart of step S40 in FIG. 1;
  • FIG. 3 is a schematic flowchart of step S60 in FIG. 1;
  • Embodiment 4 is an example of an effect diagram of basic vibration waveform splicing provided by Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of the internal structure of a device for controlling the vibration frequency of a linear motor provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a program module for controlling the vibration frequency of a linear motor in an apparatus for controlling the vibration frequency of a linear motor provided by an embodiment of the present invention.
  • the present invention provides a method for controlling the vibration frequency of a linear motor.
  • the method for controlling the vibration frequency of a linear motor includes:
  • Step S10 Define the basic vibration waveform, drive voltage waveform, and waveform splicing mode of the vibration frequency of the linear motor; wherein the basic vibration waveform is the calculation relationship between the speed and time of the linear motor's vibrator, and the vibrator is the A linear motor drives a vibrating unit, the driving voltage waveform is a driving voltage waveform for driving the linear motor to vibrate calculated based on the basic vibration waveform, and the waveform splicing method is to combine adjacent basic vibrations with opposite monotonicity The waveforms are spliced to form a complete vibration waveform;
  • Step S20 Calculate the duration of the designated basic vibration waveform
  • Step S30 Calculate the first coefficient of the driving voltage waveform according to the definitions of the basic vibration waveform and the driving voltage waveform and the duration of the basic vibration waveform;
  • Step S40 Calculate the second coefficient of the driving voltage waveform according to the designated displacement at the end of the basic vibration waveform and the preset displacement at the beginning of the basic vibration waveform;
  • Step S50 calculating the calculated voltage value of the driving voltage waveform according to the first coefficient and the second coefficient;
  • Step S60 comparing the calculated voltage value with the maximum output voltage value to obtain a driving voltage value for driving the linear motor to vibrate and a driving voltage waveform composed of a plurality of driving voltage values;
  • Step S70 Splicing the basic vibration waveform according to the waveform splicing mode, and output the spliced driving voltage waveform.
  • the step S10 includes:
  • the basic vibration waveform is defined; wherein, the basic vibration waveform is defined by the first formula, and the first formula is expressed as:
  • x represents a monotonous displacement curve
  • t represents the time
  • the driving voltage waveform is defined by the second formula, and the second formula is expressed as:
  • u is the voltage
  • ⁇ and ⁇ are undetermined coefficients; among them, ⁇ is the first coefficient of the driving voltage waveform, and ⁇ is the second coefficient of the driving voltage waveform;
  • the electromechanical equation of the linear motor that defines the driving voltage waveform; wherein, the electromechanical equation of the linear motor is defined by the third formula, and the third formula is expressed as:
  • m is the mass of the oscillator
  • c is the damping coefficient
  • k is a spring coefficient of elasticity
  • R e is the static resistance
  • L e is the inductance
  • x is a displacement transducer, Is the vibrator speed, Is the acceleration of the vibrator, i is the current, u is the voltage, and t is the time;
  • the displacement curve x(n) is solved; wherein the fourth formula and the fifth formula are used to calculate the displacement curve x(n), and the fourth formula is expressed as:
  • the waveform splicing method is defined, and the waveform splicing method is to splice adjacent basic vibration waveforms with opposite monotonicity to form a complete vibration waveform.
  • the definition of the basic vibration waveform follows the spatial continuity of the linear motor vibration motion, and provides a reasonable and reliable mathematical foundation for subsequent waveform splicing.
  • the definition of the driving voltage waveform follows the electromechanical coupling characteristics of the linear motor motion, and provides the core physical basis for realizing precise control of the vibration frequency.
  • the displacement of the vibrator is used for calculation, and the physical quantities of the speed and acceleration of the vibrator can be obtained by derivation of the displacement, and both fall within the protection scope of the present invention.
  • the linear motor drives the displacement of the vibrator to change, and the change of the displacement of the vibrator generates vibration of the vibrator, and the change of the displacement of the vibrator generates the vibration frequency.
  • the frequency F n of the vibration signal is determined according to the specified vibration signal.
  • the seventh formula is expressed as:
  • N is a natural number
  • step S30 Calculate the first coefficient ⁇ of the driving voltage waveform; wherein, the first coefficient ⁇ is calculated using an eighth formula, and the eighth formula is expressed as:
  • is related to T, that is, related to F n , and ⁇ is the key coefficient that determines the frequency of the vibration waveform.
  • the step S40 calculate the second coefficient of the driving voltage waveform according to the displacement at the end of the designated basic vibration waveform and the displacement at the beginning of the preset basic vibration waveform;
  • the structure of the linear motor is restricted, and the movement space of the vibrator is limited, so when the vibrator is displaced, the position of the displacement needs to be limited.
  • the step S40 includes:
  • Step S410 According to the specified displacement at the end of the basic vibration waveform and the displacement at the beginning of the preset basic vibration waveform, set the maximum displacement at the end time as x max to calculate the basic vibration waveform; wherein the ninth formula is used to calculate the For the basic vibration waveform, the ninth formula is expressed as:
  • Step S420 Calculate the second coefficient ⁇ of the driving voltage waveform according to the maximum displacement limit at the end time; wherein, the second coefficient ⁇ of the driving voltage waveform is calculated using a tenth formula, and the tenth formula is expressed as:
  • the driving voltage of the connection time u t constituting the driving voltage waveform.
  • the step S60 includes:
  • Step S610 Determine the magnitude relationship between the calculated voltage value u max and the maximum output voltage value V max , and when the calculated voltage value u max is less than the maximum output voltage value V max , perform step S620; otherwise, perform step S630;
  • Step S620 output the calculated voltage value as a driving voltage value
  • Step S630 Perform self-correction, perform self-correction, and reset the displacement at the beginning of the basic vibration waveform.
  • the driving voltage waveform u of the vibration waveform is obtained according to the above steps, the first coefficient and the second coefficient are obtained, and then combined with the current state of the vibrator (displacement x), the driving voltage waveform u of the basic vibration waveform is calculated, due to the adjustment of the initial displacement x 0 , so that
  • Step S70 Splicing the basic vibration waveform according to the waveform splicing mode, and output the spliced driving voltage waveform.
  • the waveform U obtained by splicing by the above method includes U1′, U2′, U3′, and U1′, U2′, U3′ in FIG. 4 are the effects of multi-segment basic vibration waveform splicing , Not a complete vibration waveform.
  • the method for controlling the vibration frequency of a linear motor realizes precise control of the vibration frequency of the linear motor by defining the calculation of the basic vibration waveform and the driving voltage waveform, and can achieve a variety of shock-sensing effects.
  • Button vibration effect design, mobile phone ringtone vibration design, game vibration effect design and other application scenarios provide users with a richer and perfect tactile experience, provide convenient and efficient design methods for vibration effect designers, and have extremely high applications value.
  • the present invention also provides a device for controlling the vibration frequency of a linear motor.
  • the device for controlling the vibration frequency of a linear motor includes a memory and a processor, and the memory stores a control that can run on the processor.
  • a program for the vibration frequency of the linear motor which implements the steps of the method for controlling the vibration frequency of the linear motor when the program for controlling the vibration frequency of the linear motor is executed by the processor.
  • the present invention provides a storage medium, the storage medium is a computer-readable storage medium, the storage medium stores a program for controlling the vibration frequency of a linear motor, and the program for controlling the vibration frequency of a linear motor can be configured by one or more programs.
  • Each processor executes to implement the steps of the method for controlling the vibration frequency of the linear motor described above.
  • FIG. 5 is a schematic diagram of the internal structure of a device for controlling the vibration frequency of a linear motor provided by an embodiment of the present invention.
  • the device for controlling the vibration frequency of a linear motor includes at least a memory 11, a processor 12, a communication bus 13, and a network. Interface 14.
  • the memory 11 includes at least one type of readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), magnetic memory, magnetic disk, optical disk, and the like.
  • the memory 11 may be an internal storage unit of the device for controlling the vibration frequency of the linear motor, for example, the hard disk of the device for controlling the vibration frequency of the linear motor.
  • the memory 11 may also be an external storage device of the device for controlling the vibration frequency of the linear motor, such as a plug-in hard disk or a smart media card (SMC) equipped on the device for controlling the vibration frequency of the linear motor. Secure Digital (SD) card, flash card (Flash Card), etc.
  • SD Secure Digital
  • flash card Flash Card
  • the memory 11 may also include both an internal storage unit of the device for controlling the vibration frequency of the linear motor and an external storage device.
  • the memory 11 can be used not only to store application software and various data installed in the device that controls the vibration frequency of the linear motor, such as the code of the program that controls the vibration frequency of the linear motor, etc., but also to temporarily store data that has been output or will be output. .
  • the processor 12 may be a central processing unit (CPU), controller, microcontroller, microprocessor, or other data processing chip, for running program codes or processing stored in the memory 11 Data, such as the execution of a program that controls the vibration frequency of a linear motor, etc.
  • CPU central processing unit
  • controller microcontroller
  • microprocessor or other data processing chip, for running program codes or processing stored in the memory 11 Data, such as the execution of a program that controls the vibration frequency of a linear motor, etc.
  • the communication bus 13 is used to realize the connection and communication between these components.
  • the network interface 14 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface), and is usually used to establish a communication connection between the device for controlling the vibration frequency of the linear motor and other electronic devices.
  • a standard wired interface and a wireless interface such as a WI-FI interface
  • the device for controlling the vibration frequency of the linear motor may further include a user interface.
  • the user interface may include a display (Display) and an input unit such as a keyboard (Keyboard).
  • the optional user interface may also include a standard wired interface and a wireless interface.
  • the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode, organic light-emitting diode) touch device, etc.
  • the display can also be appropriately called a display screen or a display unit, which is used to display the information processed in the device for controlling the vibration frequency of the linear motor and to display the visualized user interface.
  • Figure 5 only shows a device for controlling the vibration frequency of a linear motor with components 11-14 and a program for controlling the vibration frequency of the linear motor.
  • Those skilled in the art can understand that the structure shown in Figure 6 does not constitute a control for the linear motor.
  • the limit of the vibration frequency of the device may include fewer or more components than shown in the figure, or a combination of certain components, or a different component arrangement.
  • the memory 11 stores a program for controlling the vibration frequency of the linear motor; when the processor 12 executes the program for controlling the vibration frequency of the linear motor stored in the memory 11, the following steps are implemented :
  • Step S10 Define the basic vibration waveform, the driving voltage waveform and the waveform splicing method of the vibration frequency of the linear motor;
  • Step S20 Calculate the duration of the designated basic vibration waveform
  • Step S30 Calculate the first coefficient of the driving voltage waveform according to the basic vibration waveform, the driving voltage waveform, and the duration of the basic vibration waveform;
  • Step S40 Calculate the second coefficient of the driving voltage waveform according to the designated displacement at the end of the basic vibration waveform and the preset displacement at the beginning of the basic vibration waveform;
  • Step S50 calculating the calculated voltage value of the driving voltage waveform according to the first coefficient and the second coefficient;
  • Step S60 comparing the calculated voltage value with the maximum output voltage value to obtain a driving voltage value for driving the linear motor to vibrate and a driving voltage waveform composed of a plurality of driving voltage values;
  • Step S70 Splicing the basic vibration waveform according to the waveform splicing mode, and output the spliced driving voltage waveform.
  • FIG. 6 is a schematic diagram of the program module of the program for controlling the vibration frequency of the linear motor in an embodiment of the device for controlling the vibration frequency of the linear motor of the present invention.
  • the program for controlling the vibration frequency of the linear motor can be divided into definitions
  • the module 10, the calculation module 20, the splicing module 30 and the output module 40 are exemplarily:
  • the definition module 10 is used to define the basic vibration waveform, the driving voltage waveform and the waveform splicing method of the vibration frequency of the linear motor;
  • the calculation module 20 is used to calculate the first coefficient of the driving voltage waveform, the second coefficient of the driving voltage waveform, the calculated voltage value of the driving voltage waveform, and the driving voltage waveform;
  • the splicing module 30 is used for splicing the driving voltage waveform of the basic vibration waveform
  • the output module 40 is used to output the driving voltage waveform.
  • the embodiment of the present invention also provides a storage medium, the storage medium is a computer-readable storage medium, the storage medium stores a program for controlling the vibration frequency of a linear motor, and the program for controlling the vibration frequency of the linear motor can be One or more processors execute to achieve the following operations:
  • Step S10 Define the basic vibration waveform, the driving voltage waveform and the waveform splicing method of the vibration frequency of the linear motor;
  • Step S20 Calculate the duration of the designated basic vibration waveform
  • Step S30 Calculate the first coefficient of the driving voltage waveform according to the basic vibration waveform, the driving voltage waveform, and the duration of the basic vibration waveform;
  • Step S40 Calculate the second coefficient of the driving voltage waveform according to the designated displacement at the end of the basic vibration waveform and the preset displacement at the beginning of the basic vibration waveform;
  • Step S50 calculating the calculated voltage value of the driving voltage waveform according to the first coefficient and the second coefficient;
  • Step S60 comparing the calculated voltage value with the maximum output voltage value to obtain a driving voltage value for driving the linear motor to vibrate and a driving voltage waveform composed of a plurality of driving voltage values;
  • Step S70 Splicing the basic vibration waveform according to the waveform splicing mode, and output the spliced driving voltage waveform.
  • the specific implementation of the storage medium of the present invention is basically the same as the foregoing embodiments of the method and device for controlling the vibration frequency of a linear motor, and will not be repeated here.
  • sequence numbers of the above-mentioned embodiments of the present invention are only for description, and do not represent the superiority of the embodiments.
  • the terms “include”, “include” or any other variants thereof in this article are intended to cover non-exclusive inclusion, so that a process, device, article or method including a series of elements not only includes those elements, but also includes those elements that are not explicitly included.
  • the other elements listed may also include elements inherent to the process, device, article, or method. If there are no more restrictions, the element defined by the sentence "including one" does not exclude the existence of other identical elements in the process, device, article, or method that includes the element.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM) as described above. , Magnetic disk, optical disk), including several instructions to make a terminal device (can be a drone, a mobile phone, a computer, a server, or a network device, etc.) execute the method described in each embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)

Abstract

本发明提供一种控制线性电机振动频率的方法、装置和存储介质。所述控制线性电机振动频率的方法包括:定义线性电机的振动频率的基础振动波形、驱动电压波形和波形拼接方式;计算出指定的基础振动波形的时长;计算驱动电压波形的第一系数;计算得到驱动电压波形的第二系数;根据所述第一系数和第二系数计算出驱动电压波形的计算电压值;将所述计算电压值与最大输出电压值进行比较,得到驱动所述线性电机振动的驱动电压值以及由多个所述驱动电压值组成的驱动电压波形;对驱动电压波形进行拼接,输出基础振动波形的驱动电压波形。本发明实现精确地控制线性电机振动频率,提高了线性电机的振动效果,为用户提供了更加丰富的振动体验。

Description

控制线性电机振动频率的方法、装置和存储介质 【技术领域】
本发明涉及触觉感知技术领域,尤其涉及一种控制线性电机振动频率的方法、装置和存储介质。
【背景技术】
线性电机作为一种电磁感应的换能器,在工业生产及日常运用中有着广泛的运用。随着科技的进步,人们生活质量的提升,使得线性电机在便携式设备中的运用扮演着越来越重要的角色。线性电机可以提供丰富的振动体验,同时由于便携式设备中的线性电机受到尺寸的限制,一般都做的十分小巧。那么,如何精确控制线性电机,使得线性电机能够产生丰富的震感效果是困扰信号设计工程师的一个重要难题。
众所周知,一个优质的震感效果,主要取决于振动波形的幅度及频率。往往在保证大振幅的情况下,通过控制振动频率,即可实现丰富且优质的振动效果。针对于我们常用的线性电机,其工作原理:通电线圈在垂直磁场中产生驱动力,振子在该驱动力的作用下,产生加速度,从而产生位移,导致弹簧压缩产生弹簧力;后续过程中,弹簧力、阻力、驱动力的矢量和形成振子合外力,根据牛顿第三定律F=ma可以计算出振子的运动的状态。
随着人们对振动体验需求的提高,要求线性电机具有更精确和丰富的振动效果,如何更加精确控制线性电机振动频率是十分必要的。
【发明内容】
本发明提供一种控制线性电机振动频率的方法、装置和存储介质,实现更加精确地控制线性电机的振动频率,提高线性电机的振动效果,提升线性电机的振动体验。
本发明提供的控制线性电机振动频率的方法包括:
步骤S10:定义线性电机的振动频率的基础振动波形、驱动电压波形和波形拼接方式;其中,所述基础振动波形是所述线性电机的振子的速度与时间的计算关系,所述振子为所述线性电机驱动振动的单元,所述驱动电压波形是根据所述基础振动波形计算得到的驱动所述线性电机振动的驱动电压波形,所述波形拼接方式是将具有相反单调性的相邻的基础振动波形进行拼接形成完整的振动波形;
步骤S20:计算出指定的基础振动波形的时长;
步骤S30:根据所述基础振动波形、所述驱动电压波形和所述基础振动波形的时长计算驱动电压波形的第一系数;
步骤S40:根据指定的基础振动波形结束时的位移和预设基础振动波形开始时的位移,计算出驱动电压波形的第二系数;
步骤S50:根据所述第一系数和第二系数计算出驱动电压波形的计算电压值;
步骤S60:将所述计算电压值与最大输出电压值进行比较,得到驱动所述线性电机振动的驱动电压值以及由多个所述驱动电压值组成的驱动电压波形;
步骤S70:根据所述波形拼接方式对所述基础振动波形进行拼接,输出拼接后的驱动电压波形。
进一步地,所述步骤S10包括:定义基础振动波形;其中,通过第一公式定义基础振动波形,所述第一公式表示为:
Figure PCTCN2019128028-appb-000001
其中,x表示一段单调的位移曲线,t表示时刻,t=0表示起始时刻,t=T表示经过的一段时间T,x′ (t=0)=0表示起始时刻t的斜率,即振子的速度为零,x′(t=T)=0表示经过一段时间T后,终止时刻的斜率为零。
进一步地,所述步骤S10还包括:
定义驱动电压波形;其中,通过第二公式定义驱动电压波形,所述第二公式表示为:
u=αx+β
其中,u为电压,α、β为待定系数;其中,α为驱动电压波形的第一系数, β为驱动电压波形的第二系数;
定义驱动电压波形的线性电机的机电方程;其中,通过第三公式定义所述线性电机的机电方程,所述第三公式表示为:
Figure PCTCN2019128028-appb-000002
其中,m为振子质量,c为阻尼系数,k为弹簧弹性系数,R e为静态电阻,L e为电感,BL为电磁系数;x为振子位移,
Figure PCTCN2019128028-appb-000003
为振子速度,
Figure PCTCN2019128028-appb-000004
为振子加速度,i为电流,u为电压,t为时间;
对指定的驱动电压波形,求解位移曲线x(n);其中,使用第四公式和第五公式计算解位移曲线x(n),所述第四公式表示为:
Figure PCTCN2019128028-appb-000005
求解二阶微分方程,得到位移曲线x(t),所述第五公式表示为:
Figure PCTCN2019128028-appb-000006
其中,C 1、C 2为待定系数,
Figure PCTCN2019128028-appb-000007
其中,不考虑电感的影响,即L e=0。
进一步地,定义所述波形拼接方式,所述波形拼接方式是将具有相反单调性的相邻的基础振动波形进行拼接形成完整的振动波形。
进一步地,所述步骤S20对根据指定的振动信号的频率F n,计算基础振动波形的时间长度T;其中,使用第六公式和第七公式计算所述基础振动波形的时间长度T,所述第六公式表示为:
Figure PCTCN2019128028-appb-000008
所述第七公式表示为:
Figure PCTCN2019128028-appb-000009
N为自然数
其中,对于单调曲线,N=1。
进一步地,计算所述驱动电压波形的第一系数α;其中,使用第八公式计算所述第一系数α,所述第八公式表示为:
Figure PCTCN2019128028-appb-000010
进一步地,所述步骤S40包括:
步骤S410:根据所述指定的基础振动波形结束时的位移和预设基础振动波形开始时的位移,设定最大的终止时刻位移为x max,计算基础振动波形;其中,使用第九公式计算所述基础振动波形,所述第九公式表示为:
Figure PCTCN2019128028-appb-000011
步骤S420:根据最大的终止时刻位移限制,计算所述驱动电压波形的第二系数β;其中,使用第十公式计算所述驱动电压波形的第二系数β,所述第十公式表示为:
Figure PCTCN2019128028-appb-000012
进一步地,所述步骤S60包括:
步骤S610:判断所述计算电压值u max与最大输出电压值V max的大小关系,当所述计算电压值u max大于最大输出电压值V max时,执行步骤S620;否则执行步骤S630;
步骤S620:将所述计算电压值作为驱动电压值输出;
步骤S630:进行自修正,重新预设基础振动波形开始时的位移。
此外,本发明提供一种控制线性电机振动频率的装置,所述控制线性电机振动频率的装置包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的控制线性电机振动频率的程序,所控制线性电机振动频率的程序被所述处理器执行时实现如上述的控制线性电机振动频率的方法的步骤。
同时,本发明提供一种存储介质,所述存储介质为计算机可读存储介质,所述存储介质上存储有控制线性电机振动频率的程序,所述控制线性电机振动频率的程序可被一个或者多个处理器执行,以实现如上述的控制线性电机振动 频率的方法的步骤。
与现有技术相比,本发明提供的控制线性电机振动频率的方法、装置和存储介质,通过定义基础振动波形和驱动电压波形的计算,实现精确地控制线性电机振动频率,提高了线性电机的振动效果,为用户提供了更加丰富的振动体验。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明实施例一提供的流程示意图;
图2为图1中的步骤S40的流程示意图;
图3为图1中的步骤S60的流程示意图;
图4为本发明实施例一提供的基础振动波形拼接的效果图示例;
图5为本发明一实施例提供的控制线性电机振动频率的装置内部结构示意图;
图6为本发明一实施例提供的控制线性电机振动频率的装置中的控制线性电机振动频率的程序模块示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种控制线性电机振动频率的方法,所述控制线性电机振动频率的方法包括:
步骤S10:定义线性电机的振动频率的基础振动波形、驱动电压波形和波形 拼接方式;其中,所述基础振动波形是所述线性电机的振子的速度与时间的计算关系,所述振子为所述线性电机驱动振动的单元,所述驱动电压波形是根据所述基础振动波形计算得到的驱动所述线性电机振动的驱动电压波形,所述波形拼接方式是将具有相反单调性的相邻的基础振动波形进行拼接形成完整的振动波形;
步骤S20:计算出指定的基础振动波形的时长;
步骤S30:根据所述基础振动波形和驱动电压波形的定义和所述基础振动波形时长计算驱动电压波形的第一系数;
步骤S40:根据指定的基础振动波形结束时的位移和预设基础振动波形开始时的位移,计算出驱动电压波形的第二系数;
步骤S50:根据所述第一系数和第二系数计算出驱动电压波形的计算电压值;
步骤S60:将所述计算电压值与最大输出电压值进行比较,得到驱动所述线性电机振动的驱动电压值以及由多个所述驱动电压值组成的驱动电压波形;
步骤S70:根据所述波形拼接方式对所述基础振动波形进行拼接,输出拼接后的驱动电压波形。
具体地,所述步骤S10包括:
定义基础振动波形;其中,通过第一公式定义基础振动波形,所述第一公式表示为:
Figure PCTCN2019128028-appb-000013
其中,x表示一段单调的位移曲线,t表示时刻,t=0表示起始时刻,t=T表示经过的一段时间T,x′ (t=0)=0表示起始时刻t的斜率,即振子的速度为零,x′(t=T)=0表示经过一段时间T后,终止时刻的斜率为零。
定义驱动电压波形;其中,通过第二公式定义驱动电压波形,所述第二公式表示为:
u=αx+β
其中,u为电压,α、β为待定系数;其中,α为驱动电压波形的第一系数,β为驱动电压波形的第二系数;
定义驱动电压波形的线性电机的机电方程;其中,通过第三公式定义所述线性电机的机电方程,所述第三公式表示为:
Figure PCTCN2019128028-appb-000014
其中,m为振子质量,c为阻尼系数,k为弹簧弹性系数,R e为静态电阻,L e为电感,BL为电磁系数;x为振子位移,
Figure PCTCN2019128028-appb-000015
为振子速度,
Figure PCTCN2019128028-appb-000016
为振子加速度,i为电流,u为电压,t为时间;
对指定的驱动电压波形,求解位移曲线x(n);其中,使用第四公式和第五公式计算解位移曲线x(n),所述第四公式表示为:
Figure PCTCN2019128028-appb-000017
求解二阶微分方程,得到位移曲线x(t),所述第五公式表示为:
Figure PCTCN2019128028-appb-000018
其中,C 1、C 2为待定系数,
Figure PCTCN2019128028-appb-000019
其中,不考虑电感的影响,即L e=0。
定义所述波形拼接方式,所述波形拼接方式是将具有相反单调性的相邻的基础振动波形进行拼接形成完整的振动波形。
所述基础振动波形定义,遵循线性电机振动运动的空间连续性,为后续波形拼接提供了合理可靠的数学基础。所述驱动电压波形的定义,遵循线性电机运动机电耦合特性,为实现精确控制振动频率提供了核心的物理基础。具体在一实施例中,以振子的位移进行计算,所述振子的速度与加速度的物理量均可通过位移求导得到,都属于本发明保护范围。
具体地,所述线性电机驱动所述振子位移发生改变,由所述振子位移的改变产生振子振动,振子位移的改变产生振动频率,在步骤S20中,对根据指定的振动信号的频率F n,计算基础振动波形的时间长度T;其中,使用第六公式和第七公式计算所述基础振动波形的时间长度T,所述第六公式表示为:
Figure PCTCN2019128028-appb-000020
所述第七公式表示为:
Figure PCTCN2019128028-appb-000021
N为自然数
其中,由于线性电机带动振子的振动为单调曲线,因此对于单调曲线,N=1。
进一步地,步骤S30:计算所述驱动电压波形的第一系数α;其中,使用第八公式计算所述第一系数α,所述第八公式表示为:
Figure PCTCN2019128028-appb-000022
可以看出,α取值与T相关,即与F n相关,α说明是决定振动波形频率的关键系数。
请参阅图2,所述步骤S40:根据指定的基础振动波形结束时的位移和预设基础振动波形开始时的位移,计算出驱动电压波形的第二系数;具体在一实施例中,由于受到线性电机的结构限制,所述振子的运动空间是有限的,所以在振子位移运动的时候需要对位移的位置进行限定。具体地,所述步骤S40包括:
步骤S410:根据所述指定的基础振动波形结束时的位移和预设基础振动波形开始时的位移,设定最大的终止时刻位移为x max,计算基础振动波形;其中,使用第九公式计算所述基础振动波形,所述第九公式表示为:
Figure PCTCN2019128028-appb-000023
步骤S420:根据最大的终止时刻位移限制,计算所述驱动电压波形的第二系数β;其中,使用第十公式计算所述驱动电压波形的第二系数β,所述第十公式表示为:
Figure PCTCN2019128028-appb-000024
步骤S50:根据所述第一系数和第二系数计算出驱动电压波形的计算电压值,即:u=αx+β。
对应于每一时刻t,得到驱动电压u t,连接时刻的驱动电压u t构成所述驱动 电压波形。
请参阅图3,所述步骤S60包括:
步骤S610:判断所述计算电压值u max与最大输出电压值V max的大小关系,当所述计算电压值u max小于最大输出电压值V max时,执行步骤S620;否则执行步骤S630;
步骤S620:将所述计算电压值作为驱动电压值输出;
步骤S630:进行自修正,进行自修正,重新预设基础振动波形开始时的位移。
由于受到线性电机的最大输出电压值V max的限制,当计算的电压值大于最大输出电压值V max时,需要进行自修正,即重新预设基础振动波形起始位移x 0,重新计算输出基础振动波形的驱动电压波形u,根据上述步骤求得第一系数和第二系数,再结合振子当前时刻的状态(位移x),计算基础振动波形的驱动电压波形u,由于调整了起始位移x 0,使|x 0+x max|缩小,因此最终得到合理的驱动电压u。
步骤S70:根据所述波形拼接方式对所述基础振动波形进行拼接,输出拼接后的驱动电压波形。
通过上述方法计算多段基础振动波形的驱动电压u 1、u 2、u 3、…,然后按照多段基础振动波形进行拼接得到波形U=[u 1,u 2,u 3,…]。请参阅图4,具体在一实施例中,经过上述方法拼接得到的波形U包括U1′、U2′、U3′,图4中的U1′、U2′、U3′为多段基础振动波形拼接的效果,并非完整地振动波形。
与现有技术相比,本发明提供的控制线性电机振动频率的方法,通过定义基础振动波形和驱动电压波形的计算,实现精确地控制线性电机振动频率,可以实现多种震感效果,在手机虚拟按键振动效果设计,手机铃声振动设计,游戏振动效果设计等多种应用场景中适用,为用户提供更加丰富且完美的触觉体验,为振动效果设计人员提供便利高效的设计方法,具有极高的应用价值。
为实现上述目的,本发明还提供一种控制线性电机振动频率的装置,所述控制线性电机振动频率的装置包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的控制线性电机振动频率的程序,所述控制线性电机振动频 率的程序被所述处理器执行时实现上述的控制线性电机振动频率的方法的步骤。
此外,本发明提供一种存储介质,所述存储介质为计算机可读存储介质,所述存储介质上存储有控制线性电机振动频率的程序,所述控制线性电机振动频率的程序可被一个或者多个处理器执行,以实现上述的控制线性电机振动频率的方法的步骤。
请参阅图5,是本发明实施例提供了一种控制线性电机振动频率的装置的内部结构示意图,所述控制线性电机振动频率的装置至少包括存储器11、处理器12、通信总线13,以及网络接口14。
其中,存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器11在一些实施例中可以是控制线性电机振动频率的装置的内部存储单元,例如该控制线性电机振动频率的装置的硬盘。存储器11在另一些实施例中也可以是控制线性电机振动频率的装置的外部存储设备,例如控制线性电机振动频率的装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器11还可以既包括控制线性电机振动频率的装置的内部存储单元也包括外部存储设备。存储器11不仅可以用于存储安装于控制线性电机振动频率的装置的应用软件及各类数据,例如控制线性电机振动频率的程序的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
处理器12在一些实施例中可以是一中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行存储器11中存储的程序代码或处理数据,例如执行控制线性电机振动频率的程序等。
通信总线13用于实现这些组件之间的连接通信。
网络接口14可选的可以包括标准的有线接口、无线接口(如WI-FI接口),通常用于在该控制线性电机振动频率的装置与其他电子设备之间建立通信连接。
可选地,该控制线性电机振动频率的装置还可以包括用户接口,用户接口可以包括显示器(Display)、输入单元比如键盘(Keyboard),可选的用户接口还可以包括标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)触摸器等。其中,显示器也可以适当的 称为显示屏或显示单元,用于显示在控制线性电机振动频率的装置中处理的信息以及用于显示可视化的用户界面。
图5仅示出了具有组件11-14以及控制线性电机振动频率的程序的控制线性电机振动频率的装置,本领域技术人员可以理解的是,图6示出的结构并不构成对控制线性电机振动频率的装置的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。
在图5所示的控制线性电机振动频率的装置实施例中,存储器11中存储有控制线性电机振动频率的程序;处理器12执行存储器11中存储的控制线性电机振动频率的程序时实现如下步骤:
步骤S10:定义线性电机的振动频率的基础振动波形、驱动电压波形和波形拼接方式;
步骤S20:计算出指定的基础振动波形的时长;
步骤S30:根据所述基础振动波形、所述驱动电压波形和所述基础振动波形的时长计算驱动电压波形的第一系数;
步骤S40:根据指定的基础振动波形结束时的位移和预设基础振动波形开始时的位移,计算出驱动电压波形的第二系数;
步骤S50:根据所述第一系数和第二系数计算出驱动电压波形的计算电压值;
步骤S60:将所述计算电压值与最大输出电压值进行比较,得到驱动所述线性电机振动的驱动电压值以及由多个所述驱动电压值组成的驱动电压波形;
步骤S70:根据所述波形拼接方式对所述基础振动波形进行拼接,输出拼接后的驱动电压波形。
参照图6所示,为本发明控制线性电机振动频率的装置一实施例中的控制线性电机振动频率的程序的程序模块示意图,该实施例中,控制线性电机振动频率的程序可以被分割为定义模块10、计算模块20、拼接模块30和输出模块40,示例性地:
定义模块10,用于定义线性电机的振动频率的基础振动波形、驱动电压波形和波形拼接方式;
计算模块20,用于计算驱动电压波形的第一系数、驱动电压波形的第二系数、驱动电压波形的计算电压值和驱动电压波形;
拼接模块30,用于拼接所述基础振动波形的驱动电压波形;
输出模块40,用于输出所述驱动电压波形。
上述定义模块10、计算模块20、拼接模块30和输出模块40等程序模块被执行时所实现的功能或操作步骤与上述实施例大体相同,在此不再赘述。
此外,本发明实施例还提出一种存储介质,所述存储介质为计算机可读存储介质,所述存储介质上存储有控制线性电机振动频率的程序,所述控制线性电机振动频率的程序可被一个或多个处理器执行,以实现如下操作:
步骤S10:定义线性电机的振动频率的基础振动波形、驱动电压波形和波形拼接方式;
步骤S20:计算出指定的基础振动波形的时长;
步骤S30:根据所述基础振动波形、所述驱动电压波形和所述基础振动波形的时长计算驱动电压波形的第一系数;
步骤S40:根据指定的基础振动波形结束时的位移和预设基础振动波形开始时的位移,计算出驱动电压波形的第二系数;
步骤S50:根据所述第一系数和第二系数计算出驱动电压波形的计算电压值;
步骤S60:将所述计算电压值与最大输出电压值进行比较,得到驱动所述线性电机振动的驱动电压值以及由多个所述驱动电压值组成的驱动电压波形;
步骤S70:根据所述波形拼接方式对所述基础振动波形进行拼接,输出拼接后的驱动电压波形。
本发明的存储介质具体实施方式与上述控制线性电机振动频率的方法和装置各实施例基本相同,在此不作累述。
需要说明的是,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。并且本文中的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方 案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是无人机、手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种控制线性电机振动频率的方法,其特征在于,所述控制线性电机振动频率的方法包括:
    步骤S10:定义线性电机的振动频率的基础振动波形、驱动电压波形和波形拼接方式;其中,所述基础振动波形是所述线性电机的振子的速度与时间的计算关系,所述振子为所述线性电机驱动振动的单元,所述驱动电压波形是根据所述基础振动波形计算得到的驱动所述线性电机振动的驱动电压波形,所述波形拼接方式是将具有相反单调性的相邻的基础振动波形进行拼接形成完整的振动波形;
    步骤S20:计算出指定的基础振动波形的时长;
    步骤S30:根据所述基础振动波形、所述驱动电压波形和所述基础振动波形的时长计算驱动电压波形的第一系数;
    步骤S40:根据指定的基础振动波形结束时的位移和预设基础振动波形开始时的位移,计算出驱动电压波形的第二系数;
    步骤S50:根据所述第一系数和第二系数计算出驱动电压波形的计算电压值;
    步骤S60:将所述计算电压值与最大输出电压值进行比较,得到驱动所述线性电机振动的驱动电压值以及由多个所述驱动电压值组成的驱动电压波形;
    步骤S70:根据所述波形拼接方式对所述基础振动波形进行拼接,输出拼接后的驱动电压波形。
  2. 根据权利要求1所述的控制线性电机振动频率的方法,其特征在于,所述步骤S10包括:定义基础振动波形;其中,通过第一公式定义基础振动波形,所述第一公式表示为:
    Figure PCTCN2019128028-appb-100001
    其中,x表示一段单调的位移曲线,t表示时刻,t=0表示起始时刻,t=T表示经过的一段时间T,x′ (t=0)=0表示起始时刻t的斜率,即振子的速度为零,x′(t=T)=0表示经过一段时间T后,终止时刻的斜率为零。
  3. 根据权利要求2所述的控制线性电机振动频率的方法,其特征在于,所 述步骤S10还包括:
    定义驱动电压波形;其中,通过第二公式定义驱动电压波形,所述第二公式表示为:
    u=αx+β
    其中,u为电压,α、β为待定系数;其中,α为驱动电压波形的第一系数,β为驱动电压波形的第二系数;
    定义驱动电压波形的线性电机的机电方程;其中,通过第三公式定义所述线性电机的机电方程,所述第三公式表示为:
    Figure PCTCN2019128028-appb-100002
    其中,m为振子质量,c为阻尼系数,k为弹簧弹性系数,R e为静态电阻,L e为电感,BL为电磁系数;x为振子位移,
    Figure PCTCN2019128028-appb-100003
    为振子速度,
    Figure PCTCN2019128028-appb-100004
    为振子加速度,i为电流,u为电压,t为时间;
    对指定的驱动电压波形,求解位移曲线x(n);其中,使用第四公式和第五公式计算解位移曲线x(n),所述第四公式表示为:
    Figure PCTCN2019128028-appb-100005
    求解二阶微分方程,得到位移曲线x(t),所述第五公式表示为:
    Figure PCTCN2019128028-appb-100006
    其中,C 1、C 2为待定系数,
    Figure PCTCN2019128028-appb-100007
    其中,不考虑电感的影响,即L e=0。
  4. 根据权利要求2所述的控制线性电机振动频率的方法,其特征在于,定义所述波形拼接方式,所述波形拼接方式是将具有相反单调性的相邻的基础振动波形进行拼接形成完整的振动波形。
  5. 根据权利要求1所述的控制线性电机振动频率的方法,其特征在于,所述步骤S20对根据指定的振动信号的频率F n,计算基础振动波形的时间长度T; 其中,使用第六公式和第七公式计算所述基础振动波形的时间长度T,所述第六公式表示为:
    Figure PCTCN2019128028-appb-100008
    所述第七公式表示为:
    Figure PCTCN2019128028-appb-100009
    N为自然数
    其中,对于单调曲线,N=1。
  6. 根据权利要求1所述的控制线性电机振动频率的方法,其特征在于,计算所述驱动电压波形的第一系数α;其中,使用第八公式计算所述第一系数α,所述第八公式表示为:
    Figure PCTCN2019128028-appb-100010
  7. 根据权利要求1所述的控制线性电机振动频率的方法,其特征在于,所述步骤S40包括:
    步骤S410:根据所述指定的基础振动波形结束时的位移和预设基础振动波形开始时的位移,设定最大的终止时刻位移为x max,计算基础振动波形;其中,使用第九公式计算所述基础振动波形,所述第九公式表示为:
    Figure PCTCN2019128028-appb-100011
    步骤S420:根据最大的终止时刻位移限制,计算所述驱动电压波形的第二系数β;其中,使用第十公式计算所述驱动电压波形的第二系数β,所述第十公式表示为:
    Figure PCTCN2019128028-appb-100012
  8. 根据权利要求1所述的控制线性电机振动频率的方法,其特征在于,所述步骤S60包括:
    步骤S610:判断所述计算电压值u max与最大输出电压值V max的大小关系,当所述计算电压值u max大于最大输出电压值V max时,执行步骤S620;否则执行 步骤S630;
    步骤S620:将所述计算电压值作为驱动电压值输出;
    步骤S630:进行自修正,重新预设基础振动波形开始时的位移。
  9. 一种控制线性电机振动频率的装置,其特征在于,所述控制线性电机振动频率的装置包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的控制线性电机振动频率的程序,所控制线性电机振动频率的程序被所述处理器执行时实现如权利要求1至8中任一项所述的控制线性电机振动频率的方法的步骤。
  10. 一种存储介质,其特征在于,所述存储介质为计算机可读存储介质,所述存储介质上存储有控制线性电机振动频率的程序,所述控制线性电机振动频率的程序可被一个或者多个处理器执行,以实现如权利要求1至8中任一项所述的控制线性电机振动频率的方法的步骤。
PCT/CN2019/128028 2019-12-24 2019-12-24 控制线性电机振动频率的方法、装置和存储介质 WO2021128017A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128028 WO2021128017A1 (zh) 2019-12-24 2019-12-24 控制线性电机振动频率的方法、装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128028 WO2021128017A1 (zh) 2019-12-24 2019-12-24 控制线性电机振动频率的方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2021128017A1 true WO2021128017A1 (zh) 2021-07-01

Family

ID=76575712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128028 WO2021128017A1 (zh) 2019-12-24 2019-12-24 控制线性电机振动频率的方法、装置和存储介质

Country Status (1)

Country Link
WO (1) WO2021128017A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140028221A1 (en) * 2012-07-24 2014-01-30 Apple Inc. Method of Adaptively Tuning Motor Speed
CN105227003A (zh) * 2015-10-08 2016-01-06 瑞声光电科技(常州)有限公司 多电机频率控制系统及其控制方法
CN105656392A (zh) * 2016-03-04 2016-06-08 歌尔声学股份有限公司 一种马达振动控制方法及系统
CN106301137A (zh) * 2016-08-31 2017-01-04 歌尔股份有限公司 主动控制线性马达振动的方法、装置、系统及电子设备
CN110380664A (zh) * 2019-06-24 2019-10-25 瑞声科技(新加坡)有限公司 一种马达振动控制方法、装置及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140028221A1 (en) * 2012-07-24 2014-01-30 Apple Inc. Method of Adaptively Tuning Motor Speed
CN105227003A (zh) * 2015-10-08 2016-01-06 瑞声光电科技(常州)有限公司 多电机频率控制系统及其控制方法
CN105656392A (zh) * 2016-03-04 2016-06-08 歌尔声学股份有限公司 一种马达振动控制方法及系统
CN106301137A (zh) * 2016-08-31 2017-01-04 歌尔股份有限公司 主动控制线性马达振动的方法、装置、系统及电子设备
CN110380664A (zh) * 2019-06-24 2019-10-25 瑞声科技(新加坡)有限公司 一种马达振动控制方法、装置及计算机可读存储介质

Similar Documents

Publication Publication Date Title
US9030428B2 (en) Generating haptic effects for dynamic events
US10248212B2 (en) Encoding dynamic haptic effects
US10296092B2 (en) Generating haptic effects while minimizing cascading
US8619051B2 (en) Haptic feedback system with stored effects
CN101828217B (zh) 用于触觉反馈设备的数字包络调制器
US20140167941A1 (en) Haptic system with increased lra bandwidth
US9189098B2 (en) Systems and methods for syncing haptic feedback calls
US11876474B2 (en) Linear resonant device, and braking method for same
US20140247227A1 (en) Haptic device with linear resonant actuator
CN109388234B (zh) 触觉效果编码和呈现系统
CN102246122A (zh) 用于便携式终端的触觉功能控制的方法
JP2019122256A (ja) モータブレーキ信号的生成方法と装置
WO2021168898A1 (zh) 触觉振动效果的实现方法、装置和存储介质
US20190346926A1 (en) Method for generating a haptic effect and device employing the method
CN111600453B (zh) 振动马达的选择方法、装置、终端和存储介质
WO2021168900A1 (zh) 动态触觉振动效果的实现方法、装置和存储介质
WO2021128017A1 (zh) 控制线性电机振动频率的方法、装置和存储介质
CN111490712B (zh) 控制线性电机振动频率的方法、装置和存储介质
WO2021097890A1 (zh) 一种低频振感补偿方法、装置及电子设备
KR101166548B1 (ko) 무공진주파수 진동 모터의 진동패턴 구현 방법
US11645896B2 (en) Systems, devices, and methods for providing actuator braking
CN111555690A (zh) 马达振动位移的控制方法、存储介质及电子设备
WO2022000635A1 (zh) 触觉效果的设计方法及设备、计算机可读存储介质
EP3629128A1 (en) User device and method for generating haptic feedback in a user device
Kim et al. A linearvibrotactile actuator for mobile devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957742

Country of ref document: EP

Kind code of ref document: A1