WO2021097890A1 - 一种低频振感补偿方法、装置及电子设备 - Google Patents

一种低频振感补偿方法、装置及电子设备 Download PDF

Info

Publication number
WO2021097890A1
WO2021097890A1 PCT/CN2019/121579 CN2019121579W WO2021097890A1 WO 2021097890 A1 WO2021097890 A1 WO 2021097890A1 CN 2019121579 W CN2019121579 W CN 2019121579W WO 2021097890 A1 WO2021097890 A1 WO 2021097890A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
signal
compensation signal
compensation
period
Prior art date
Application number
PCT/CN2019/121579
Other languages
English (en)
French (fr)
Inventor
黄兴志
汤赟
王尧
马杰
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021097890A1 publication Critical patent/WO2021097890A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • G06F2218/14Classification; Matching by matching peak patterns

Definitions

  • the present invention relates to the technical field of electronic equipment, and in particular to a low-frequency vibration inductance compensation method, device and electronic equipment.
  • the electric signal with specially designed waveform can be used to drive the linear vibration device to complete the vibration that meets the requirements of tactile intensity within a specified time. Due to the short duration, usually a few milliseconds to more than ten milliseconds, this kind of electrical signal driving the vibrating device is also called a short signal.
  • a short signal can be functionally divided into two segments. The function of the first segment is to drive the vibration device to increase the vibration intensity from zero to the level required by the tactile intensity in the shortest possible time; the function of the second segment is to drive The vibration device reduces the vibration intensity from the peak level to the zero level in the shortest possible time. Therefore, the first segment of the short signal is called the acceleration segment, and the second segment of the short signal is called the braking segment. In application scenarios such as the virtual home button of a mobile phone or some APP operations, short signals can achieve a crisp and concentrated vibration effect.
  • the conventional vibration device has insufficient low-frequency acceleration response, and therefore, the vibration sensation generated by it is usually difficult to achieve the low-frequency thick tactile effect.
  • the main purpose of the present invention is to provide a low-frequency vibration compensation method, device and electronic equipment to solve the problem of insufficient low-frequency acceleration response of the vibrating device in the prior art, resulting in low vibration and poor tactile effects.
  • a first aspect of the embodiments of the present invention provides a low-frequency vibration inductance compensation method, including:
  • the vibration device After the vibration device receives the vibration instruction, before the vibration device responds to the vibration instruction, acquiring an original vibration signal that drives the vibration device to vibrate;
  • Making the vibrating device respond to the vibration command, driving the vibrating device through the vibrating compensation signal, and adjusting the waveform peak value of the vibrating compensation signal, so that the vibrator of the vibrating device collides with the housing;
  • the impact of the vibrator of the vibrating device with the housing is used to compensate the low-frequency vibration feeling of the vibrating device
  • the impact frequency of the vibrator of the vibrating device and the housing is k is a positive integer.
  • the setting of a start-up compensation signal with a target period according to the peak period of the original vibration signal includes:
  • each target period of the start-up compensation signal to include a voltage driving period and a no-signal output period
  • the peak time point of the start-up compensation signal coincides with the peak time point of the original vibration signal
  • the vibration device does not receive a signal.
  • the target period of the start-up compensation signal is n ⁇ k, and when k is a positive integer greater than 1, within one target period ,
  • the duration of the voltage drive output period is The duration of the no signal output period is
  • the target period of the start-up compensation signal is n ⁇ k, and when k is 1, the duration of the voltage drive output period is The duration of the no signal output period is
  • the vibration device is made to respond to the vibration command, the vibration device is driven by the vibration compensation signal, and the waveform peak value of the vibration compensation signal is adjusted , So that the vibrator of the vibrating device collides with the housing, including:
  • the pulse voltage is used to increase the input voltage of the vibration device to the target input voltage when the vibration device is driven by the vibration compensation signal, so that the waveform peak value of the vibration compensation signal reaches the Standard waveform peak value.
  • the vibration device is made to respond to the vibration command, the vibration device is driven by the vibration compensation signal, and the waveform peak value of the vibration compensation signal is adjusted , So that before the vibrator of the vibrating device collides with the housing, including:
  • the driving the vibrating device by the vibration-starting compensation signal and adjusting the waveform peak value of the vibration-starting compensation signal to make the vibrator of the vibration device collide with the housing includes:
  • the vibration device is driven by the vibration compensation signal, and the waveform peak value of the vibration compensation signal is adjusted to make the vibrator of the vibration device collide with the housing;
  • the method when the duration of the acceleration segment signal ends, after stopping driving the vibration device, the method includes:
  • the vibration device is driven by the brake segment signal.
  • a second aspect of the embodiments of the present invention provides a low-frequency vibration inductance compensation device, including:
  • the original vibration signal acquisition module is configured to obtain the original vibration signal for driving the vibration device to vibrate after the vibration device receives the vibration instruction and before the vibration device responds to the vibration instruction;
  • the start-up compensation signal setting module is used to set the start-up compensation signal with the target period according to the peak period of the original vibration signal
  • the driving module is used to make the vibration device respond to the vibration instruction, drive the vibration device through the vibration start-up compensation signal, and adjust the waveform peak value of the vibration start-up compensation signal, so that the vibrator of the vibration device collides with the housing;
  • the impact of the vibrator of the vibrating device with the housing is used to compensate the low-frequency vibration feeling of the vibrating device
  • the impact frequency of the vibrator of the vibrating device and the housing is k is a positive integer.
  • a third aspect of the embodiments of the present invention provides an electronic device, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the computer program, the first The steps of the method provided by the aspect.
  • a fourth aspect of the embodiments of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement the steps of the method provided in the first aspect.
  • the embodiment of the present invention provides a low-frequency vibration compensation method. After the vibration device receives the vibration instruction, before responding to the vibration instruction, the period and waveform peak value are modified based on the original vibration signal that drives the vibration device to vibrate. , To obtain the adjusted start-up compensation signal. This signal can make the vibrator of the vibrating device collide with the housing, resulting in a larger acceleration response, and since the peak period of the original vibration signal is n, the start-up The target period of the compensation signal is n ⁇ k. Therefore, the low-frequency vibration compensation method proposed in the embodiment of the present invention improves the acceleration response of the vibration device without increasing the signal frequency, thereby enhancing the vibration feeling generated by the vibration device and improving The tactile effect produced by the vibrating device under low frequency conditions.
  • FIG. 1 is a schematic diagram of the implementation process of a low-frequency vibration inductance compensation method provided by Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of the waveform of the start-up compensation signal when k is 1 according to the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of the waveform of the start-up compensation signal when k is 2 according to the first embodiment of the present invention
  • FIG. 4 is a schematic diagram of a waveform of a vibration start-up compensation signal provided by Embodiment 1 of the present invention.
  • Embodiment 1 of the present invention is a schematic diagram of the effect of start-up compensation provided by Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the implementation process of the low-frequency vibration inductance compensation method provided by the second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the composition structure of the low-frequency vibration inductance compensation device provided by the third embodiment of the present invention.
  • the embodiment of the present invention provides a low-frequency vibration inductance compensation method, which is improved based on the driving signal of the vibration device to improve the low-frequency vibration inductance of the vibration device.
  • the method includes but is not limited to the following steps:
  • the vibration instruction may be an instruction that the user operates the electronic device to cause the electronic device to send to the vibration device, such as a pressing instruction on the display screen of the electronic device.
  • the vibration device should immediately respond to the user's operation on the electronic device to generate vibration.
  • the vibration device also causes the vibration device to perform step S101 and step S102 before responding to the vibration command.
  • the vibrating device responds to the vibration command, the vibrating device is caused to perform step S103, and finally a strong vibration feeling is generated.
  • the short signal that drives the vibration device to vibrate is divided into an acceleration section signal and a braking section signal, and the initial value of the acceleration section signal is actually a very regular sinusoidal signal, that is, the original vibration signal in step S101.
  • the original vibration signal can be a sinusoidal signal, the value of its peak period is actually the same as the value of its function period, and the waveform of the start-up compensation signal set according to the original vibration signal should be the same or similar to the original vibration signal .
  • step S102 shows a detailed implementation of the above step S102, which includes:
  • the target period is set to be an integer multiple of the peak period of the original vibration signal, and each target period of the start-up compensation signal is set to include a voltage driving period and a no signal output period.
  • the peak time point of the start-up compensation signal coincides with the peak time point of the original vibration signal
  • the vibration device does not receive a signal.
  • only one waveform peak appears in a target period of the start-up compensation signal, and the waveform peak only appears during the voltage driving period, and does not exist during other periods when the waveform peak of the original vibration signal appears. Voltage drive period.
  • the target period of the start-up compensation signal is n ⁇ k, and when k is a positive integer greater than 1, the duration of the voltage drive output period is The duration of the no signal output period is
  • the target period of the start-up compensation signal is n ⁇ k, and when k is 1, the duration of the voltage drive output period is The duration of the no signal output period is
  • the embodiment of the present invention also shows that when k is 1 and k is 2, the start-up compensation signal with the target period is set according to the peak period of the original vibration signal:
  • the lines in the upper part of Fig. 2 and Fig. 3 represent the original vibration signal
  • the lines in the lower part of Fig. 2 and Fig. 3 represent the start-up compensation signal with the target period
  • Fig. 2 marks a period of the start-up compensation signal
  • the voltage driving period A and the no-signal output period B included in FIG. 3 mark the voltage driving period A'and the no-signal output period B'included in one cycle of the start-up compensation signal.
  • the waveform peak value of the start-up compensation signal coincides with a peak time point of the original vibration signal.
  • the waveform peak of the start-up compensation signal still coincides with a peak time point of the original vibration signal, that is, a target period It only includes the waveform peak value of a start-up compensation signal, and it is in the voltage driving period.
  • the impact of the vibrator of the vibrating device with the housing is used to compensate the low-frequency vibration feeling of the vibrating device
  • the impact frequency of the vibrator of the vibrating device and the housing is k is a positive integer.
  • the waveform of the start-up compensation signal is the same or similar to that of the original vibration signal, but its period is in a multiple relationship. It can be seen from the above that the frequency of the start-up compensation signal is always lower than the frequency of the original In the embodiments of the present invention, the vibration inductance is not improved by increasing the signal frequency, and the vibration inductance compensation method provided in the embodiments of the present invention can be applied under low frequency conditions.
  • the adjusted start-up compensation signal is based on the original vibration signal, and the period and the waveform peak value in the period are changed.
  • the vibration device is driven by the adjusted start-up compensation signal, the vibration device is not Blocking the input of the original vibration signal will not input another driving signal to the vibration device.
  • the impact frequency between the vibrator of the vibrator and the housing is the vibration frequency that the user can feel. If the target period of the vibration compensation signal is 0.1s, the user will feel the vibration every 0.1s, that is to say At this time, the user has a vibration experience with a frequency of 10 Hz.
  • the peak value of the waveform of the start-up compensation signal corresponds to the intensity of the vibration sense
  • the target period of the start-up compensation signal corresponds to the sense frequency.
  • step S103 shows a detailed implementation of the above step S103, which includes:
  • the pulse voltage is used to increase the input voltage of the vibration device to the target input voltage when the vibration device is driven by the adjusted start-up compensation signal, so that the waveform peak value of the start-up compensation signal Reach the peak of the standard waveform.
  • the periodic pulse voltage is used to increase each waveform peak value of the start-up compensation signal to reach the standard waveform peak value corresponding to the vibration inductance requirement.
  • the peak value of the standard waveform corresponding to the vibration inductance requirement indicates that the corresponding voltage value can cause the vibrator of the vibrating device to collide with the housing.
  • the pulse voltage has periodicity, and the period of the pulse voltage should be the same as the peak period of the start-up compensation signal.
  • the embodiment of the present invention also exemplarily shows the waveform diagram of the vibration compensation signal after adjusting the waveform peak value, and the vibration device is driven by the vibration compensation signal after adjusting the waveform peak value.
  • Frequency response curve in the device As shown in FIGS. 4 and 5, the embodiment of the present invention also exemplarily shows the waveform diagram of the vibration compensation signal after adjusting the waveform peak value, and the vibration device is driven by the vibration compensation signal after adjusting the waveform peak value.
  • the vibration compensation signal after adjusting the waveform peak value has a higher waveform peak value, and this waveform peak value indicates that the corresponding voltage value can make the vibrator of the vibrating device collide with the housing.
  • the curve is the frequency response curve of the vibrating device when the low-frequency vibration inductance compensation method provided by the embodiment of the present invention is not used. It can be seen that the response of the front section is relatively small; in Fig. 5, the straight line with arrows is the implementation of the present invention. After the low-frequency vibration inductance compensation method provided in the example, the frequency response curve of the vibrating device shows that in the previous response time, the acceleration response is significantly enhanced by compensation.
  • the low-frequency vibration compensation method In the low-frequency vibration compensation method provided by the embodiment of the present invention, after the vibration device receives the vibration instruction, before responding to the vibration instruction, the period and waveform peak value are modified based on the original vibration signal that drives the vibration device to vibrate, Obtain the adjusted start-up compensation signal.
  • This signal can make the vibrator of the vibrating device collide with the housing when driving the vibrating device, resulting in a larger acceleration response, and since the peak period of the original vibration signal is n, the start-up compensation The target period of the signal is n ⁇ k. Therefore, the low-frequency vibration compensation method proposed in the embodiment of the present invention improves the acceleration response of the vibration device without increasing the signal frequency, thereby enhancing the vibration feeling generated by the vibration device and improving the low frequency The tactile effect produced by the vibration device under the conditions.
  • the main improvement is the vibration in the acceleration stage of the vibration device. Therefore, the embodiment of the present invention also proposes another low-frequency vibration inductance compensation method based on the above-mentioned first embodiment. .
  • the embodiment of the present invention provides a low-frequency vibration compensation method, including steps S601 to S604, where step S601 and step S602 are the same as steps S101 and S102 in the above-mentioned embodiment.
  • the method further includes:
  • S6031 Obtain an acceleration signal corresponding to the original vibration signal and drive the vibration device to vibrate, and acquire the duration of the acceleration signal;
  • S6032 Determine the duration of the acceleration section signal as the time when the vibration device receives the start-up compensation signal
  • step S103 in the first embodiment should be the following steps in the embodiment of the present invention:
  • S604 During the duration of the acceleration signal, drive the vibrating device through a vibration start-up compensation signal, and adjust the waveform peak value of the start-up compensation signal, so that the vibrator of the vibration device collides with the housing;
  • the short signal is functionally divided into the acceleration section and the braking section, in the embodiment of the present invention, by identifying the duration of the acceleration section signal, the low-frequency vibration compensation method provided in the first embodiment is better. It is widely used in vibration devices and electronic equipment to improve the way to improve the tactile effect produced by vibration devices under low-frequency conditions.
  • step S605 it may further include:
  • the vibration device is driven by the brake segment signal.
  • an embodiment of the present invention provides a low-frequency vibration inductance compensation device 70, which includes:
  • the original vibration signal acquisition module 71 is configured to obtain the original vibration signal for driving the vibration device to vibrate after the vibration device receives the vibration instruction and before the vibration device responds to the vibration instruction;
  • the start-up compensation signal setting module 72 is configured to set a start-up compensation signal with a target period according to the peak period of the original vibration signal;
  • the driving module 73 is used to make the vibration device respond to vibration commands, drive the vibration device through the vibration compensation signal, and adjust the waveform peak value of the vibration compensation signal so that the vibrator of the vibration device collides with the housing;
  • the impact between the vibrator of the vibrating device and the casing is used to compensate the low-frequency vibration feeling of the vibrating device;
  • the peak period of the original vibration signal is n and the target period of the start-up compensation signal is n ⁇ k, then the frequency of the impact between the vibrator of the vibrating device and the housing is k is a positive integer.
  • the waveform of the start-up compensation signal is the same or similar to that of the original vibration signal, but its period is in a multiple relationship. It can be seen from the above that the frequency of the start-up compensation signal is always lower than the frequency of the original vibration signal. Without increasing the signal frequency to improve the vibration feeling, the vibration feeling compensation method provided by the embodiments of the present invention can be applied under low frequency conditions.
  • the peak value of the waveform of the start-up compensation signal corresponds to the intensity of the vibration sense
  • the target period of the start-up compensation signal corresponds to the sense frequency.
  • An embodiment of the present invention also provides an electronic device including a memory, a processor, and a computer program stored on the memory and capable of running on the processor.
  • the processor executes the computer program, the implementation is as described in the first embodiment.
  • the embodiment of the present invention also provides a storage medium, the storage medium is a computer-readable storage medium, and a computer program is stored thereon.
  • the computer program is executed by a processor, the low-frequency vibration as described in the first embodiment is implemented. The various steps in the compensation method.

Abstract

本发明适用于电子设备技术领域,提供了一种低频振感补偿方法、装置及电子设备,方法包括:在振动装置接收到振动指令之后,振动装置响应振动指令之前,获取驱动振动装置起振的原始振动信号;根据原始振动信号的峰值周期,设置具有目标周期的起振补偿信号;令振动装置响应振动指令,通过起振补偿信号驱动振动装置,并调整起振补偿信号的波形峰值,以使振动装置振子与外壳撞击;其中,振动装置振子与外壳的撞击,用于补偿振动装置的低频振感;其中,当原始振动信号的峰值周期为n时,起振补偿信号的目标周期为n×k,则振动装置振子与外壳的撞击频率为 1/n×k。通过本发明可以增强振动装置产生的振感,改善低频条件下的振动装置所产生的触感效果。

Description

一种低频振感补偿方法、装置及电子设备 技术领域
本发明涉及电子设备技术领域,尤其涉及一种低频振感补偿方法、装置及电子设备。
背景技术
波形经过特殊设计的电信号,可以用来驱动线性振动装置在规定的时间内完成达到触感强度要求的振动。由于持续时间较短,通常是几毫秒至十几毫秒,这种驱动振动装置的电信号也被叫做短信号。一个短信号在功能上可以被分为两段,第一段的功能是驱动振动装置在尽可能短的时间内将振动强度从零水平提升到触感强度要求的水平;第二段的功能是驱动振动装置在尽可能短的时间内将振动强度从峰值水平降低到零水平。因此,短信号的第一段叫做加速段,短信号的第二段叫做刹车段。在手机的虚拟Home键或一些APP操作之类的应用场景中,短信号能够实现干脆、集中的振感效果。
然而,常规的振动装置低频加速度响应不足,因此,其产生的振感通常难以达到低频厚重的触感效果。
发明内容
本发明的主要目的在于提出一种低频振感补偿方法、装置及电子设备,以解决现有技术中振动装置低频加速度响应不足,使得其产生的振感小,触感效果差的问题。
为实现上述目的,本发明实施例第一方面提供一种低频振感补偿方法,包括:
在振动装置接收到振动指令之后,所述振动装置响应所述振动指令之前, 获取驱动所述振动装置起振的原始振动信号;
根据原始振动信号的峰值周期,设置具有目标周期的起振补偿信号;
令所述振动装置响应所述振动指令,通过所述起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击;
其中,所述振动装置振子与外壳的撞击,用于补偿所述振动装置的低频振感;
其中,当所述原始振动信号的峰值周期为n时,所述起振补偿信号的目标周期为n×k,则所述振动装置振子与外壳的撞击频率为
Figure PCTCN2019121579-appb-000001
k为正整数。
结合本发明第一方面,本发明第一实施方式中,所述根据原始振动信号的峰值周期,设置具有目标周期的起振补偿信号,包括:
设置所述目标周期为所述原始振动信号的峰值周期的整数倍,并设置所述起振补偿信号的每个目标周期包括电压驱动期和无信号输出期;
其中,在所述电压驱动期中,所述起振补偿信号的峰值时间点与所述原始振动信号的峰值时间点重合;
其中,在所述无信号输出期中,所述振动装置不接收信号。
结合本发明第一方面的第一实施方式,本发明第二实施方式中,所述起振补偿信号的目标周期为n×k,k为大于1的正整数时,在一个所述目标周期内,电压驱动输出期的时长为
Figure PCTCN2019121579-appb-000002
无信号输出期的时长为
Figure PCTCN2019121579-appb-000003
所述起振补偿信号的目标周期为n×k,k为1时,在一个所述目标周期内,电压驱动输出期的时长为
Figure PCTCN2019121579-appb-000004
无信号输出期的时长为
Figure PCTCN2019121579-appb-000005
结合本发明第一方面,本发明第三实施方式中,令所述振动装置响应所述振动指令,通过所述起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击,包括:
获取与振感需求对应的标准波形峰值;
根据所述标准波形峰值,计算在所述起振补偿信号的峰值时间点所需要的目标输入电压;
根据所述目标输入电压和所述目标周期设置脉冲电压;
将所述起振补偿信号和所述脉冲电压输入所述振动装置,以使振动装置振子与外壳撞击;
其中,所述脉冲电压,用于在通过起振补偿信号驱动所述振动装置时,将振动装置的输入电压提高至所述目标输入电压,以使所述起振补偿信号的波形峰值达到所述标准波形峰值。
结合本发明第一方面,本发明第四实施方式中,令所述振动装置响应所述振动指令,通过所述起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击之前,包括:
获取与所述原始振动信号对应的,驱动所述振动装置起振的加速段信号,并获取所述加速段信号的持续时间;
将所述加速段信号的持续时间确定为所述振动装置接收所述起振补偿信号的时间;
则所述通过起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击,包括:
在所述加速段信号的持续时间内,通过起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击;
当所述加速段信号的持续时间结束时,停止驱动所述振动装置。
结合本发明第一方面的第四实施方式,本发明第五实施方式中,当所述加速段信号的持续时间结束时,停止驱动所述振动装置之后,包括:
获取与所述原始振动信号对应的,驱动所述振动装置停振的刹车段信号;
通过所述刹车段信号驱动所述振动装置。
本发明实施例第二方面提供了一种低频振感补偿装置,包括:
原始振动信号获取模块,用于在振动装置接收到振动指令之后,所述振 动装置响应所述振动指令之前,获取驱动振动装置起振的原始振动信号;
起振补偿信号设置模块,用于根据原始振动信号的峰值周期,设置具有目标周期的起振补偿信号;
驱动模块,用于令所述振动装置响应所述振动指令,通过所述起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击;
其中,所述振动装置振子与外壳的撞击,用于补偿所述振动装置的低频振感;
其中,当所述原始振动信号的峰值周期为n时,所述起振补偿信号的目标周期为n×k,则所述振动装置振子与外壳的撞击频率为
Figure PCTCN2019121579-appb-000006
k为正整数。
本发明实施例的第三方面提供了一种电子设备,包括存储器、处理器以及存储在上述存储器中并可在上述处理器上运行的计算机程序,上述处理器执行上述计算机程序时实现如上第一方面所提供的方法的步骤。
本发明实施例的第四方面提供了一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行时实现如上第一方面所提供的方法的步骤。
本发明实施例提出一种低频振感补偿方法,在振动装置接收到振动指令之后,响应于振动指令之前,以驱动振动装置起振的原始振动信号为基础,做出周期和波形峰值上的修改,获得调整后的起振补偿信号,此信号在驱动振动装置时,能够使振动装置振子与外壳撞击,产生了一个较大的加速度响应,而由于原始振动信号的峰值周期为n时,起振补偿信号的目标周期为n×k,因此,本发明实施例提出的低频振感补偿方法,在不提高信号频率的前提下提高了振动装置的加速度响应,从而增强振动装置产生的振感,改善低频条件下的振动装置所产生的触感效果。
附图说明
图1为本发明实施例一提供的低频振感补偿方法的实现流程示意图;
图2为本发明实施例一提供的k为1时的起振补偿信号的波形示意图;
图3为本发明实施例一提供的k为2时的起振补偿信号的波形示意图;
图4为本发明实施例一提供的起振补偿信号的波形示意图;
图5为本发明实施例一提供的起振补偿效果示意图;
图6为本发明实施例二提供的低频振感补偿方法的实现流程示意图;
图7为本发明实施例三提供的低频振感补偿装置的组成结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本文中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,"模块"与"部件"可以混合地使用。
在后续的描述中,发明实施例序号仅仅为了描述,不代表实施例的优劣。
实施例一
如图1所示,本发明实施例提供了一种低频振感补偿方法,以振动装置 的驱动信号为基础进行改进,提高振动装置的低频振感,方法包括但不限于以下步骤:
S101、在振动装置接收到振动指令之后,所述振动装置响应所述振动指令之前,获取驱动振动装置起振的原始振动信号。
在上述步骤S101中,振动指令可以是用户操作电子设备、而使电子设备向振动装置发送的指令,如在电子设备显示屏上的按压指令。
在具体应用中,振动装置应立即响应于用户在电子设备上的操作,产生振动,但在本发明实施例中,振动装置在响应振动指令之前,还令振动装置执行步骤S101、步骤S102,在振动装置响应振动指令时,则令振动装置执行步骤S103,最终产生较强的振感。
在具体应用中,驱动振动装置振动的短信号分为加速段信号和刹车段信号,而加速段信号的初始值实际上是一个非常规则的正弦信号,即上述步骤S101中的原始振动信号。
S102、根据原始振动信号的峰值周期,设置具有目标周期的起振补偿信号。
在上述步骤S102中,原始振动信号可以为正弦信号,其峰值周期的数值实际上与其函数周期的数值相同,并且根据原始振动信号所设置的起振补偿信号的波形应与原始振动信号相同或相似。
本发明实施例还示出了上述步骤S102的一种详细实现方式,包括:
设置所述目标周期为所述原始振动信号的峰值周期的整数倍,并设置所述起振补偿信号的每个目标周期包括电压驱动期和无信号输出期。
其中,在所述电压驱动期中,所述起振补偿信号的峰值时间点与所述原始振动信号的峰值时间点重合;
其中,在所述无信号输出期中,所述振动装置不接收信号。
在本发明实施例中,起振补偿信号的一个目标周期内只会出现一个波形峰值,且波形峰值只会出现在电压驱动期内,在其他出现原始振动信号的波 形峰值的时间内,不存在电压驱动期。
则在一个实施例中,所述起振补偿信号的目标周期为n×k,k为大于1的正整数时,在一个所述目标周期内,电压驱动输出期的时长为
Figure PCTCN2019121579-appb-000007
无信号输出期的时长为
Figure PCTCN2019121579-appb-000008
所述起振补偿信号的目标周期为n×k,k为1时,在一个所述目标周期内,电压驱动输出期的时长为
Figure PCTCN2019121579-appb-000009
无信号输出期的时长为
Figure PCTCN2019121579-appb-000010
如图2和图3所示,本发明实施例还分别示出了k为1和k为2时,根据原始振动信号的峰值周期,所设置的具有目标周期的起振补偿信号:
图2和图3中上半部分的线条表示原始振动信号,图2和图3中下半部分的线条表示具有目标周期的起振补偿信号,并且图2中标出了起振补偿信号的一个周期中所包括的电压驱动期A和无信号输出期B,图3中标出了起振补偿信号的一个周期中所包括的电压驱动期A`和无信号输出期B`。
可见,在一个目标周期内,若原始振动信号具有一个波形峰值,起振补偿信号具有一个波形峰值,则起振补偿信号的波形峰值和原始振动信号的一个峰值时间点重合。在一个目标周期内,若原始振动信号具有多个波形峰值,起振补偿信号仍具有一个波形峰值,则起振补偿信号的波形峰值仍和原始振动信号的一个峰值时间点重合,即一个目标周期内仅包括一个起振补偿信号的波形峰值,且在电压驱动期内。
S103、令所述振动装置响应所述振动指令,通过所述起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击。
其中,所述振动装置振子与外壳的撞击,用于补偿所述振动装置的低频振感;
其中,当所述原始振动信号的峰值周期为n时,所述起振补偿信号的目标 周期为n×k,则所述振动装置振子与外壳的撞击频率为
Figure PCTCN2019121579-appb-000011
k为正整数。
在上述步骤S103中,起振补偿信号的波形与原始振动信号的波形是相同或相似的,但其周期呈倍数关系,由上可知起振补偿信号的频率始终小于原始振动信号的频率,则本发明实施例中没有通过增加信号频率提高振感,本发明实施例提供的振感补偿方法可以应用在低频条件下。
在上述步骤S103中,调整后的起振补偿信号是以原始振动信号为基础的,改变了其周期以及周期内的波形峰值,则在通过调整后的起振补偿信号驱动振动装置时,并不阻断原始振动信号的的输入,也不会向振动装置输入另一驱动信号。
在具体应用中,振动装置振子与外壳的撞击频率即用户所能感受到的振动频率,如果起振补偿信号的目标周期为0.1s,则每间隔0.1s用户就会有振感,也就是说此时用户具有频率为10Hz的振感体验。
则在本发明实施例中,起振补偿信号的波形峰值对应振感强度,起振补偿信号的目标周期对应振感频率,通过调整目标周期,可以使用户感受不同频率下的振感体验。
本发明实施例还示出了上述步骤S103的一种详细实现方式,包括:
S1031、获取与振感需求对应的标准波形峰值;
S1032、根据所述标准波形峰值,计算在所述起振补偿信号的峰值时间点所需要的目标输入电压;
S1033、根据所述目标输入电压和所述目标周期设置脉冲电压;
S1034、将所述起振补偿信号和所述脉冲电压输入所述振动装置,以使振动装置振子与外壳撞击;
其中,所述脉冲电压,用于在通过调整后的起振补偿信号驱动所述振动装置时,将振动装置的输入电压提高至所述目标输入电压,以使所述起振补偿信号的波形峰值达到所述标准波形峰值。
在上述步骤S1031至步骤S1034中,通过周期性的脉冲电压,提高起振 补偿信号的每个波形峰值,使其达到振感需求对应的标准波形峰值。
在具体应用中,振感需求对应的标准波形峰值表示其对应的电压值可以使振动装置振子与外壳进行撞击。
在具体应用中,脉冲电压具有周期性,且脉冲电压的周期应与起振补偿信号的峰值周期相同。
如图4和图5所示,本发明实施例还示例性的示出了调整波形峰值后的起振补偿信号的波形示意图,以及通过调整波形峰值后的起振补偿信号驱动振动装置后,振动装置中的频响曲线。
图4中,调整波形峰值后的起振补偿信号具有较高的波形峰值,此波形峰值表示其对应的电压值可以使振动装置振子与外壳进行撞击。
图5中,曲线为未使用本发明实施例所提供的低频振感补偿方法时,振动装置的频响曲线,可见其前段响应较小;图5中,带有箭头的直线为使用本发明实施例所提供的低频振感补偿方法后,振动装置的频响曲线,可见在前段响应时间中,其加速度响应明显被补偿增强。
本发明实施例提供的低频振感补偿方法,在振动装置接收到振动指令之后,响应于振动指令之前,以驱动振动装置起振的原始振动信号为基础,做出周期和波形峰值上的修改,获得调整后的起振补偿信号,此信号在驱动振动装置时,能够使振动装置振子与外壳撞击,产生了一个较大的加速度响应,而由于原始振动信号的峰值周期为n时,起振补偿信号的目标周期为n×k,因此,本发明实施例提出的低频振感补偿方法,在不提高信号频率的前提下提高了振动装置的加速度响应,从而增强振动装置产生的振感,改善低频条件下的振动装置所产生的触感效果。
实施例二
在实施例一提供的低频振感补偿方法中,主要改善的是振动装置起振加速段中的振感情况,因此,本发明实施例还基于上述实施例一,提出另一低 频振感补偿方法。
如图6所示,本发明实施例提供了一种低频振感补偿方法,包括步骤S601至步骤S604,其中,步骤S601、步骤S602与上述实施例中的步骤S101、步骤S102相同,此处不再赘述,则在实施例一的步骤S102之后,即本发明实施例中的步骤S602之后,还包括:
S6031、获取与所述原始振动信号对应的,驱动所述振动装置起振的加速段信号,并获取所述加速段信号的持续时间;
S6032、将所述加速段信号的持续时间确定为所述振动装置接收所述起振补偿信号的时间;
则实施例一中的步骤S103,在本发明实施例中应为如下步骤:
S604、在所述加速段信号的持续时间内,通过起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击;
S605、当所述加速段信号的持续时间结束时,停止驱动所述振动装置。
在具体应用中,由于短信号在功能上分为加速段和刹车段,因此,本发明实施例中,通过识别加速段信号的持续时间,将实施例一所提供的低频振感补偿方法较好地应用在振动装置及电子设备中,完善低频条件下的振动装置所产生的触感效果的提升方式。
在一个实施例中,上述步骤S605之后,还可以包括:
获取与所述原始振动信号对应的,驱动所述振动装置停振的刹车段信号;
通过所述刹车段信号驱动所述振动装置。
实施例三
如图7所示,本发明实施例提供一种低频振感补偿装置70,包括:
原始振动信号获取模块71,用于在振动装置接收到振动指令之后,振动装置响应振动指令之前,获取驱动振动装置起振的原始振动信号;
起振补偿信号设置模块72,用于根据原始振动信号的峰值周期,设置具有目标周期的起振补偿信号;
驱动模块73,用于令振动装置响应振动指令,通过起振补偿信号驱动振动装置,并调整起振补偿信号的波形峰值,以使振动装置振子与外壳撞击;
其中,振动装置振子与外壳的撞击,用于补偿振动装置的低频振感;
其中,当原始振动信号的峰值周期为n时,起振补偿信号的目标周期为n×k,则振动装置振子与外壳的撞击频率为
Figure PCTCN2019121579-appb-000012
k为正整数。
可见,起振补偿信号的波形与原始振动信号的波形是相同或相似的,但其周期呈倍数关系,由上可知起振补偿信号的频率始终小于原始振动信号的频率,则本发明实施例中没有通过增加信号频率提高振感,本发明实施例提供的振感补偿方法可以应用在低频条件下。
此外,在本发明实施例中,起振补偿信号的波形峰值对应振感强度,起振补偿信号的目标周期对应振感频率,通过调整目标周期,可以使用户感受不同频率下的振感体验。
本发明实施例还提供一种电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如实施例一中所述的低频振感补偿方法中的各个步骤。
本发明实施例还提供一种存储介质,所述存储介质为计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现如实施例一中所述的低频振感补偿方法中的各个步骤。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种低频振感补偿方法,其特征在于,包括:
    在振动装置接收到振动指令之后,所述振动装置响应所述振动指令之前,获取驱动所述振动装置起振的原始振动信号;
    根据原始振动信号的峰值周期,设置具有目标周期的起振补偿信号;
    令所述振动装置响应所述振动指令,通过所述起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以述振动装置振子与外壳撞击;
    其中,所述振动装置振子与外壳的撞击,用于补偿所述振动装置的低频振感;
    其中,当所述原始振动信号的峰值周期为n时,所述起振补偿信号的目标周期为n×k,则所述振动装置振子与外壳的撞击频率为
    Figure PCTCN2019121579-appb-100001
    k为正整数。
  2. 如权利要求1所述的低频振感补偿方法,其特征在于,所述根据原始振动信号的峰值周期,设置具有目标周期的起振补偿信号,包括:
    设置所述目标周期为所述原始振动信号的峰值周期的整数倍,并设置所述起振补偿信号的每个目标周期包括电压驱动期和无信号输出期;
    其中,在所述电压驱动期中,所述起振补偿信号的峰值时间点与所述原始振动信号的峰值时间点重合;
    其中,在所述无信号输出期中,所述振动装置不接收信号。
  3. 如权利要求2所述的低频振感补偿方法,其特征在于,所述起振补偿信号的目标周期为n×k,k为大于1的正整数时,在一个所述目标周期内,电压驱动输出期的时长为
    Figure PCTCN2019121579-appb-100002
    无信号输出期的时长为
    Figure PCTCN2019121579-appb-100003
    所述起振补偿信号的目标周期为n×k,k为1时,在一个所述目标周期 内,电压驱动输出期的时长为
    Figure PCTCN2019121579-appb-100004
    无信号输出期的时长为
    Figure PCTCN2019121579-appb-100005
  4. 如权利要求1所述的低频振感补偿方法,其特征在于,令所述振动装置响应所述振动指令,通过所述起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击,包括:
    获取与振感需求对应的标准波形峰值;
    根据所述标准波形峰值,计算在所述起振补偿信号的峰值时间点所需要的目标输入电压;
    根据所述目标输入电压和所述目标周期设置脉冲电压;
    将所述起振补偿信号和所述脉冲电压输入所述振动装置,以使振动装置振子与外壳撞击;
    其中,所述脉冲电压,用于在通过起振补偿信号驱动所述振动装置时,将振动装置的输入电压提高至所述目标输入电压,以使所述起振补偿信号的波形峰值达到所述标准波形峰值。
  5. 如权利要求1所述的低频振感补偿方法,其特征在于,令所述振动装置响应所述振动指令,通过所述起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击之前,包括:
    获取与所述原始振动信号对应的,驱动所述振动装置起振的加速段信号,并获取所述加速段信号的持续时间;
    将所述加速段信号的持续时间确定为所述振动装置接收所述起振补偿信号的时间;
    则所述通过起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击,包括:
    在所述加速段信号的持续时间内,通过起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击;
    当所述加速段信号的持续时间结束时,停止驱动所述振动装置。
  6. 如权利要求5所述的低频振感补偿方法,其特征在于,当所述加速段 信号的持续时间结束时,停止驱动所述振动装置之后,包括:
    获取与所述原始振动信号对应的,驱动所述振动装置停振的刹车段信号;
    通过所述刹车段信号驱动所述振动装置。
  7. 一种低频振感补偿装置,其特征在于,包括:
    原始振动信号获取模块,用于在振动装置接收到振动指令之后,所述振动装置响应所述振动指令之前,获取驱动振动装置起振的原始振动信号;
    起振补偿信号设置模块,用于根据原始振动信号的峰值周期,设置具有目标周期的起振补偿信号;
    驱动模块,用于令所述振动装置响应所述振动指令,通过所述起振补偿信号驱动所述振动装置,并调整所述起振补偿信号的波形峰值,以使振动装置振子与外壳撞击;
    其中,所述振动装置振子与外壳的撞击,用于补偿所述振动装置的低频振感;
    其中,当所述原始振动信号的峰值周期为n时,所述起振补偿信号的目标周期为n×k,则所述振动装置振子与外壳的撞击频率为
    Figure PCTCN2019121579-appb-100006
    k为正整数。
  8. 一种电子设备,其特征在于,包括:至少一个处理器,以及与所述至少一个处理器通信连接的存储器;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至6中任一所述的低频振感补偿方法。
  9. 一种计算机可读存储介质,所述存储介质为计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如权利要求1至6任一项所述的低频振感补偿方法中的各个步骤。
PCT/CN2019/121579 2019-11-22 2019-11-28 一种低频振感补偿方法、装置及电子设备 WO2021097890A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911154996.0 2019-11-22
CN201911154996.0A CN111078043B (zh) 2019-11-22 2019-11-22 一种低频振感补偿方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2021097890A1 true WO2021097890A1 (zh) 2021-05-27

Family

ID=70311268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121579 WO2021097890A1 (zh) 2019-11-22 2019-11-28 一种低频振感补偿方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN111078043B (zh)
WO (1) WO2021097890A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113255577A (zh) * 2021-06-18 2021-08-13 中铁大桥科学研究院有限公司 一种斜拉桥施工振动参数的主动控制智能数据处理方法
CN114001193A (zh) * 2021-09-18 2022-02-01 上海华兴数字科技有限公司 作业机械的启停减振控制方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025479A1 (en) * 2009-07-31 2011-02-03 Hwang Hyokune Apparatus and method for generating vibration pattern
CN105511514A (zh) * 2015-12-31 2016-04-20 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
US20170338762A1 (en) * 2016-05-19 2017-11-23 AAC Technologies Pte. Ltd. Signal generating method for accurately controlling a motor
CN109710067A (zh) * 2018-12-20 2019-05-03 上海艾为电子技术股份有限公司 一种线性谐振装置及其刹车方法
CN110058718A (zh) * 2017-12-27 2019-07-26 乐金显示有限公司 指纹感测显示设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060505A (ja) * 2010-09-10 2012-03-22 On Semiconductor Trading Ltd 振動スピーカの駆動制御回路
JP6704010B2 (ja) * 2018-04-09 2020-06-03 レノボ・シンガポール・プライベート・リミテッド 電子機器、及び制御方法
CN109144606A (zh) * 2018-08-06 2019-01-04 瑞声科技(新加坡)有限公司 一种马达驱动方法、终端设备以及计算机可读存储介质
CN109951602B (zh) * 2019-02-26 2020-10-27 维沃移动通信有限公司 一种振动控制方法及移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025479A1 (en) * 2009-07-31 2011-02-03 Hwang Hyokune Apparatus and method for generating vibration pattern
CN105511514A (zh) * 2015-12-31 2016-04-20 歌尔声学股份有限公司 一种智能终端的触觉振动控制系统和方法
US20170338762A1 (en) * 2016-05-19 2017-11-23 AAC Technologies Pte. Ltd. Signal generating method for accurately controlling a motor
CN110058718A (zh) * 2017-12-27 2019-07-26 乐金显示有限公司 指纹感测显示设备
CN109710067A (zh) * 2018-12-20 2019-05-03 上海艾为电子技术股份有限公司 一种线性谐振装置及其刹车方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113255577A (zh) * 2021-06-18 2021-08-13 中铁大桥科学研究院有限公司 一种斜拉桥施工振动参数的主动控制智能数据处理方法
CN113255577B (zh) * 2021-06-18 2021-12-14 中铁大桥科学研究院有限公司 一种斜拉桥施工振动参数的主动控制智能数据处理方法
CN114001193A (zh) * 2021-09-18 2022-02-01 上海华兴数字科技有限公司 作业机械的启停减振控制方法、装置及电子设备
CN114001193B (zh) * 2021-09-18 2024-03-15 上海华兴数字科技有限公司 作业机械的启停减振控制方法、装置及电子设备

Also Published As

Publication number Publication date
CN111078043A (zh) 2020-04-28
CN111078043B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US11320907B2 (en) Audio-haptic signal generator
US9454881B2 (en) Haptic warping system
US10026276B2 (en) Haptic system with increased LRA bandwidth
US20150097657A1 (en) Generating haptic effects while minimizing cascading
US8619051B2 (en) Haptic feedback system with stored effects
JP6929009B2 (ja) モータブレーキ信号的生成方法と装置
WO2013186845A1 (ja) 電子機器、振動発生プログラム、及び振動パターン利用システム
EP2762999B1 (en) Overdrive voltage for an actuator to generate haptic effects
US20140320402A1 (en) Self calibration for haptic devices
WO2021097890A1 (zh) 一种低频振感补偿方法、装置及电子设备
JP2020021481A (ja) シーンベースの振動フィードバック方法および携帯端末
CN104423710A (zh) 将触觉信号变换成振动触知触觉效果模式集合的触觉变形系统
US20190267043A1 (en) Automated haptic effect accompaniment
CN104049892A (zh) 可智能调整振动强度的移动终端及其振动强度调整方法
WO2013186844A1 (ja) 電子機器、及び駆動制御プログラム
WO2021168900A1 (zh) 动态触觉振动效果的实现方法、装置和存储介质
CN112764558A (zh) 一种书写模组、反馈方法、电子设备及计算机存储介质
US10922932B2 (en) Acoustic user interface
CN113778229A (zh) 信号控制系统、显示设备、控制方法、装置及存储介质
US10725589B2 (en) Method of implementing button click using control of input signal
EP3674849A1 (en) Haptic effect signal processing
CN106776443A (zh) 一种用于电子设备的调节系统及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953314

Country of ref document: EP

Kind code of ref document: A1