WO2022000635A1 - 触觉效果的设计方法及设备、计算机可读存储介质 - Google Patents

触觉效果的设计方法及设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2022000635A1
WO2022000635A1 PCT/CN2020/103900 CN2020103900W WO2022000635A1 WO 2022000635 A1 WO2022000635 A1 WO 2022000635A1 CN 2020103900 W CN2020103900 W CN 2020103900W WO 2022000635 A1 WO2022000635 A1 WO 2022000635A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
acceleration
acceleration waveform
design method
velocity
Prior art date
Application number
PCT/CN2020/103900
Other languages
English (en)
French (fr)
Inventor
郑亚军
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022000635A1 publication Critical patent/WO2022000635A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors

Definitions

  • the present invention relates to the technical field of haptic feedback, and in particular, to a method and device for designing a haptic effect, and a computer-readable storage medium.
  • haptic effects have gradually become an indispensable criterion for improving user experience. Rich and stunning tactile effects bring a perfect user experience in practical applications. For example, application scenarios such as ringtone vibration, game vibration, haptic feedback, and information reminders are increasing, and the requirements for haptic effects are getting higher and higher.
  • Equalization algorithm is a commonly used design method for haptic effects at present. This method can calculate the voltage waveform from the desired vibration waveform through the electromechanical coupling characteristics of the vibration system, and excite the vibration system with the voltage waveform to obtain the corresponding haptic effect.
  • the haptic effect is the subjective feeling of the human, which can usually be quantified as the acceleration of the vibration system, that is, the vibration system vibrates at different accelerations, which can produce different haptic effects.
  • the design method of the haptic effect in the prior art mainly realizes the design of the haptic effect by defining the acceleration waveform and directly using the acceleration equalization algorithm to calculate the voltage waveform.
  • this method there is a risk of "uncontrollable outside the waveform", that is, the existing design method cannot guarantee the vibration of the vibration system at moments other than the defined acceleration waveform.
  • the acceleration waveform is defined as a sine wave of 100 milliseconds
  • the actual vibration acceleration waveform is indeed a sine wave within 100 milliseconds, but after 100 milliseconds, the vibration system is still vibrating, and the acceleration and displacement have not returned to zero. control status.
  • the present invention mainly provides a haptic effect design method and device, and a computer-readable storage medium, which can remove the drift problem generated when the displacement is obtained by the quadratic integration of acceleration, and avoid the vibration of the vibration system at moments other than the acceleration waveform.
  • a technical solution adopted by the present invention is to provide a haptic effect and a design method for a haptic effect, the design method comprising: acquiring an acceleration waveform and a signal sampling rate of a vibration system; Integrate and optimize the acceleration waveform with the signal sampling rate to obtain an optimized displacement waveform; calculate an equalization voltage according to the optimized displacement waveform, so as to play a haptic effect according to the equalized voltage.
  • performing integral optimization processing on the acceleration waveform according to the acceleration waveform and the signal sampling rate to obtain the optimized displacement waveform includes: obtaining a transformation matrix and a The velocity waveform corresponding to the acceleration waveform is obtained; the transformation matrix and the velocity waveform are integrated and optimized twice to obtain the optimized displacement waveform.
  • performing multiple integration optimization processing on the transformation matrix and the velocity waveform to obtain an optimized displacement waveform includes: performing the first integration optimization processing on the transformation matrix and the velocity waveform, so as to obtain Optimized velocity waveform; integrating the optimized velocity waveform to obtain a displacement waveform; performing a second integration optimization process on the displacement waveform and the transformation matrix to obtain the optimized displacement waveform.
  • the obtaining a conversion matrix and a velocity waveform corresponding to the acceleration waveform according to the acceleration waveform and the signal sampling rate respectively includes: generating a time series according to the acceleration waveform and the signal sampling rate; The sequence generates the transformation matrix.
  • the calculation formula of the time series is:
  • T is the time series
  • N is the data length of the acceleration waveform
  • fs is the signal sampling rate
  • obtaining the conversion matrix and the velocity waveform corresponding to the acceleration waveform according to the acceleration waveform and the signal sampling rate respectively includes: judging whether the acceleration waveform is a column sequence; The acceleration waveform is converted into a sequence of numbers; the acceleration waveform after being converted into a sequence of sequences is integrated for the first time to obtain the velocity waveform.
  • VX n VX n-1 -M*(M ⁇ VX n-1 )
  • VX n represents the output waveform
  • VX n-1 represents the input waveform
  • M represents the transformation matrix
  • calculating an equalization voltage according to the optimized displacement waveform to play the haptic effect according to the equalized voltage includes: substituting the optimized displacement waveform into the motor coupling equation to obtain the equalized voltage; the equalizing voltage excites the vibrating system to obtain the haptic effect
  • another technical solution adopted by the present invention is to provide a device for realizing haptic effect, wherein the device for realizing haptic effect includes a processor and a memory, wherein the memory stores computer instructions, and the processor Coupled with the memory, the processor operatively executes the computer instructions to implement the design method described above.
  • another technical solution adopted by the present invention is to provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the above-mentioned design method.
  • the embodiment of the present invention directly defines the acceleration waveform of the vibration system, and performs multiple integral optimization processing on the acceleration waveform to obtain the displacement waveform, which can remove the acceleration quadratic integral to obtain the displacement waveform.
  • the drift problem caused by displacement can avoid the vibration of the vibration system outside the acceleration waveform.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for designing a haptic effect provided by the present invention
  • FIG. 2 is a schematic flowchart of an embodiment of step S200 in FIG. 1 of the present invention.
  • FIG. 3 is a schematic flowchart of an embodiment of step S210 in FIG. 2 of the present invention.
  • FIG. 4 is a schematic flowchart of another embodiment of step S210 in FIG. 2 of the present invention.
  • FIG. 5 is a schematic flowchart of an embodiment of step S220 in FIG. 2 of the present invention.
  • Fig. 6 is the comparative schematic diagram of the displacement waveform after optimization of the present invention and the displacement waveform obtained by direct integration in the prior art;
  • FIG. 7 is a schematic diagram of the comparison of the vibration acceleration waveforms generated by the balanced voltage of the present invention and the balanced voltage excitation vibration system of the prior art according to the present invention
  • FIG. 8 is a schematic flowchart of an embodiment of step S300 in FIG. 1 of the present invention.
  • FIG. 9 is a schematic block diagram of an embodiment of a device for designing haptic effects provided by the present invention.
  • FIG. 10 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for designing a haptic effect according to the present invention. As shown in FIG. 1, the method for designing a haptic effect provided by the present invention includes the following steps:
  • the acceleration waveform A0 of the vibration system is defined in the embodiment of the present invention, and the direct quantification of the haptic effect is realized by the acceleration waveform A0 of the vibration system. Further obtain the signal sampling rate fs of the acceleration waveform A0.
  • FIG. 2 is a schematic flowchart of an embodiment of step S200 of the present invention. As shown in FIG. 2, step S200 provided by the present invention further includes the following sub-steps:
  • S210 Acquire a conversion matrix and a velocity waveform corresponding to the acceleration waveform respectively according to the acceleration waveform and the signal sampling rate.
  • step S210 further includes the following sub-steps as shown in FIG. 3:
  • a conversion matrix M is generated according to the time series T.
  • Fig. 4 is a schematic flow chart of another embodiment of step S210 of the present invention, the embodiment of Fig. 4 mainly introduces the speed waveform obtained by integrating the acceleration waveform A0, and step S210 further includes the following sub-steps:
  • the acceleration waveform A0 is a set of numbers representing the amplitude and amplitude of the acceleration waveform. For example, if the acceleration waveform is a waveform similar to a sine wave, and the amplitude of the waveform is 1, then A0 is a set of numbers from -1 to 1. composed array. Moreover, the embodiment of the present invention requires the acceleration waveform A0 to be calculated in the form of a sequence of numbers, so it needs to be judged whether it is a sequence of numbers before integrating it. If the acceleration waveform A0 is a sequence of columns, go directly to step S214a, otherwise go to step S212a.
  • acceleration waveform A0 is a row sequence, it is converted into a column sequence.
  • the first integration is performed on the acceleration waveform converted into a sequence of numbers, so as to obtain a velocity waveform.
  • the first integration of the acceleration waveform A0 converted into a sequence of numbers can obtain the velocity waveform V0.
  • the acceleration waveform A0 is a sequence of numbers
  • it is directly integrated for the first time to obtain the velocity waveform V0.
  • steps S211-S212 and steps S211a-S214a can be performed simultaneously, and the specific sequence is not limited here.
  • the transformation matrix M and the velocity waveform V0 are input into the integral optimization model, and the displacement waveform is obtained after multiple integral optimization processes, wherein the formula of the integral optimization model is:
  • VX n VX n-1 -M ⁇ (M ⁇ VX n-1 )
  • VX n represents the output waveform
  • VX n-1 represents the input waveform
  • M represents the transformation matrix
  • FIG. 5 is a schematic flowchart of an embodiment of step S220 of the present invention, which introduces the integral optimization process in detail. Step S220 further includes the following sub-steps:
  • S221 perform the first integral optimization processing on the transformation matrix and the velocity waveform to obtain the optimized velocity waveform.
  • the optimized velocity waveform V1 (that is, the output waveform VX n in the above formula) can be obtained. .
  • the optimized velocity waveform V1 is integrated to obtain the displacement waveform D0.
  • the transformation matrix M and the displacement waveform D0 (for the input waveform VX n-1 in the above formula) can be obtained after the second integral optimization process is input into the integral optimization model to obtain the optimized displacement waveform D1 (for the above formula)
  • the output waveform VX n The output waveform VX n ).
  • FIG. 6 is a schematic diagram of the comparison between the optimized displacement waveform of the present invention and the displacement waveform obtained by direct integration in the prior art
  • FIG. 7 is the balanced voltage excitation according to the present application and the prior art.
  • the acceleration waveform is directly integrated, and energy accumulation will occur, causing the integrated displacement value to have a tendency to drift.
  • the displacement value is not zero, indicating the end of the acceleration waveform.
  • the vibrator of the vibration system hovers at an unbalanced position, then when the driving voltage ends, the vibrator is subjected to the spring restoring force and oscillates freely, that is, it is in a state of "uncontrollable outside the waveform".
  • the obtained displacement can achieve zero displacement at the end of the waveform (that is, the vibrator is in the equilibrium position), then after the waveform ends, there will be no free oscillation problem, that is, at the end of the waveform. A state that is "controllable outside the waveform".
  • the drift problem generated when the displacement is obtained by the quadratic integration of the acceleration can be eliminated, and the time other than the acceleration waveform can be avoided. Vibration of the vibrating system.
  • displacement equalization is performed on the optimized displacement waveform D1 obtained after multiple optimization and integration processes to obtain a voltage waveform, and the desired vibration effect can be obtained by using the voltage waveform to excite the vibration system. Since the direct quantification index of the haptic effect in the present invention is the acceleration waveform of the vibration system, this definition method has a high degree of engineering.
  • the equalization algorithm is a commonly used signal design method, which is obtained by solving the electromechanical coupling equation of the vibration system.
  • the electromechanical coupling equation of the system is as follows:
  • m represents the mass of the actual play of the motor mover
  • c denotes the actual playback motor mechanical damping
  • k denotes a real play motor spring coefficient
  • BL represents the electromechanical coupling coefficient
  • R e represent the actual playback of the motor coil resistance
  • L e is a real play motor Coil inductance
  • i is the current
  • u is the equilibrium voltage
  • x is the displacement, for speed, for acceleration.
  • FIG. 8 is a schematic flowchart of an embodiment of step S300 of the present invention. As shown in FIG. 8, step S300 further includes the following sub-steps:
  • the displacement x, velocity and acceleration Substitute into the motor coupling equation to obtain the equilibrium voltage u, where, degree acceleration Obtained by the first derivative and the second derivative of the displacement x, respectively. Understandably,
  • the vibration system is excited by the balanced voltage to obtain a haptic effect.
  • the haptic effect can be played.
  • the drift problem generated when the displacement is obtained by the quadratic integration of the acceleration can be eliminated, and the time other than the acceleration waveform can be avoided. Vibration of the vibrating system.
  • FIG. 9 is a schematic block diagram of an embodiment of a device for designing a haptic effect provided by the present invention.
  • the device for realizing a haptic effect in this embodiment includes a processor 310 and a memory 320 .
  • the processor 310 is coupled to the memory 320 , and the memory 320 Computer instructions are stored, and the processor 310 executes the computer instructions during operation to implement the design method of the haptic effect in any of the above embodiments.
  • the processor 310 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 310 may be an integrated circuit chip with signal processing capability.
  • Processor 310 may also be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor without limitation.
  • FIG. 10 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • the computer-readable storage medium in this embodiment stores a computer program 410, and the computer program 410 can be executed by a processor to realize the above-mentioned A method of designing a haptic effect in any of the embodiments.
  • the readable storage medium may be a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • the medium of program code, or terminal equipment such as computers, servers, mobile phones, and tablets.
  • the present invention directly defines the acceleration waveform of the vibration system, and performs multiple integral optimization processing on the acceleration waveform to obtain the displacement waveform, which can eliminate the drift problem generated when the displacement is obtained by the quadratic integration of the acceleration, and avoid the acceleration waveform. Vibration of the vibratory system at external moments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种触觉效果的设计方法及设备、计算机可读存储介质,该方法包括获取振动系统的加速度波形及信号采样率(S100);根据加速度波形及信号采样率对加速度波形进行积分优化处理,以得到优化后的位移波形(S200);根据优化后的位移波形计算得出均衡电压,以根据均衡电压进行触觉效果播放(S300)。通过上述方法,能够去除加速度二次积分得到位移时产生的漂移问题,避免加速度波形之外时刻的振动系统的振动。

Description

触觉效果的设计方法及设备、计算机可读存储介质 技术领域
本发明涉及触觉反馈技术领域,特别是涉及一种触觉效果的设计方法及设备、计算机可读存储介质。
背景技术
触觉效果在目前的电子设备市场中,逐渐成为一种不可或缺的提升用户体验的评判标准。丰富惊艳的触觉效果,在实际应用中带来完美的用户体验。例如铃声振动、游戏振动、触觉反馈、信息提醒等应用场景日益增多,对于触觉效果的要求越来越高。均衡算法是目前触觉效果常用的设计方法,该方法可以通过振动系统的机电耦合特性,由期望的振动波形计算得到电压波形,将电压波形激励振动系统,即可得到响应的触觉效果。其中,触觉效果是人主观的感受,通常可以量化为振动系统的加速度,即振动系统以不同的加速度振动,可以产生不同的触觉效果。
现有技术中触觉效果的设计方法,主要通过定义加速度波形,直接利用加速度均衡算法,计算出来电压波形,实现触觉效果的设计。但是采用该方法,存在“波形之外不可控”的风险,即采用现有的设计方法不能保证定义加速度波形之外时刻的振动系统的振动。举例来说,定义加速度波形为100毫秒的正弦波,实际产生的振动加速度波形在100毫秒内确实为正弦波,但是100毫秒之后,振动系统依然在振动,加速度和位移并未归零,处于不可控状态。
发明内容
本发明主要是提供一种触觉效果的设计方法及设备、计算机可读存储介质,能够去除加速度二次积分得到位移时产生的漂移问题,避免加速度波形之外时刻的振动系统的振动。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种触觉效果一种触觉效果的设计方法,所述设计方法包括:获取振动系统的加速度波形及信号采样率;根据所述加速度波形及所述信号采样率对所述加速度波形进行积分优化处理,以得到优化后的位移波形;根据所述优化后的位移波形计算得出均衡电压,以根据所述均衡电压进行触觉效果播放。
其中,所述根据所述加速度波形及所述信号采样率对所述加速度波形进行积分优化处理以得到优化后位移波形包括:根据所述加速度波形及所述信号采样率分别获取转换矩阵以及和所述加速度波形对应的速度波形;将所述转换矩阵及所述速度波形进行两次积分优化处理,从而得到优化后的位移波形。
其中,所述将所述转换矩阵及所述速度波形进行多次积分优化处理, 从而得到优化后的位移波形包括:将所述转换矩阵及所述速度波形进行第一次积分优化处理,以得到优化后的速度波形;对所述优化后的速度波形进行积分以得到位移波形;将所述位移波形及所述转换矩阵进行第二次积分优化处理,以得到所述优化后的位移波形。
其中,所述根据所述加速度波形及所述信号采样率分别获取转换矩阵以及和所述加速度波形对应的速度波形包括:根据所述加速度波形及所述信号采样率生成时间序列;根据所述时间序列生成所述转换矩阵。其中,所述时间序列的计算公式为:
T=[0:N-1]/fs
其中,T为所述时间序列,N为所述加速度波形的数据长度,fs为所述信号采样率。
其中,所述根据所述加速度波形及所述信号采样率分别获取转换矩阵以及和所述加速度波形对应的速度波形包括:判断所述加速度波形是否为列数列;若判断为否,则将所述加速度波形转换为列数列;将转换为列数列后的所述加速度波形进行第一次积分,从而得到所述速度波形。
其中,所述积分优化处理的公式为:
VX n=VX n-1-M*(M\VX n-1)
其中,VX n表示输出波形,VX n-1表示输入波形,M表示所述转换矩阵。
其中,根据所述优化后的位移波形计算得出均衡电压,以根据所述均衡电压进行触觉效果播放包括:将所述优化后的位移波形代入所述电机耦合方程以得到所述均衡电压;将所述均衡电压激励所述振动系统,以得到所述触觉效果
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种触觉效果的实现设备,所述触觉效果的实现设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现上述的设计方法。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现如上述的设计方法。
本发明的有益效果是:区别于现有技术的情况,本发明实施例通过直接定义振动系统的加速度波形,并对该加速度波形进行多次积分优化处理得到位移波形,能够去除加速度二次积分得到位移时产生的漂移问题,避免加速度波形之外时刻的振动系统的振动。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图 仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明提供的触觉效果的设计方法一实施例的流程示意图;
图2是本发明图1中步骤S200一实施方式的流程示意图;
图3是本发明图2中步骤S210一实施方式的流程示意图;
图4是本发明图2中步骤S210另一实施方式的流程示意图;
图5是本发明图2中步骤S220一实施方式的流程示意图;
图6是本发明优化后的位移波形和现有技术直接积分得到的位移波形的对比示意图;
图7是本发明根据本申请的均衡电压和现有技术的均衡电压激励振动系统产生的振动加速度波形的对比示意图;
图8是本发明图1中步骤S300一实施方式的流程示意图;
图9是本发明提供的触觉效果的设计设备实施例的示意框图;
图10是本发明提供的计算机可读存储介质实施例的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1为本发明触觉效果的设计方法一实施方式的流程示意图,如图1,本发明提供的触觉效果的设计方法包括如下步骤:
S100,获取振动系统的加速度波形及信号采样率。
可以理解的是,为实现对触觉效果的直接量化,本发明实施例中定义振动系统的加速度波形A0,通过振动系统的加速度波形A0来实现触觉效果的直接量化。进一步获取该加速度波形A0的信号采样率fs。
S200,根据加速度波形及信号采样率对加速度波形进行积分优化处理,以得到优化后的位移波形。
请进一步结合图2,图2为本发明步骤S200一实施方式的流程示意图,如图2本发明提供的步骤S200进一步包括如下子步骤:
S210,根据加速度波形及信号采样率分别获取转换矩阵以及和加速度波形对应的速度波形。
请进一步结合图3,图3为本发明步骤S210一实施方式的流程示意图,如图3步骤S210进一步包括如下子步骤:
S211,根据加速度波形及信号采样率生成时间序列。
获取加速度波形A0的数据长度N,结合信号采样率fs计算得出时间序列,且该时间序列的计算公式为:
T=[0:N-1]/fs。
S212,根据时间序列生成转换矩阵。
进一步,根据该时间序列T生成转换矩阵M,可选地本发明中转换矩阵M为N行2列的矩阵,且第一列数据为:M(:,1)=[1:N]/N,第二列数据为:M(:,2)=1。
请进一步结合图4,图4为本发明步骤S210另一实施方式的流程示意图,如图4该实施例主要介绍通过对加速度波形A0进行积分得到速度波形,且步骤S210进一步包括如下子步骤:
S211a,判断加速度波形是否为列数列。
可以理解的是加速度波形A0为表征加速度波形振幅幅度的一组数,举例来说,如果加速度波形是类似正弦波的波形,该波形的振幅为1,则A0是从-1到1一组数组成的数组。且本发明中实施例要求加速度波形A0以列数列形式运算,如此在对其进行积分之前需要判断其是否为列数列。若该加速度波形A0为列数列,则直接进入步骤S214a,反之则进入步骤S212a。
S212a,将加速度波形转换为列数列。
进一步,若判断该加速度波形A0为行数列,则将其转换为列数列。
S213a,将转换为列数列后的加速度波形进行第一次积分,从而得到速度波形。
进一步,对转换为列数列后的加速度波形A0进行第一次积分可以得到速度波形V0。
S214a,直接对加速波形进行第一次积分,从而得到速度波形。
可选地,若判断该加速度波形A0为列数列,则直接对其进行第一次积分,从而得到速度波形V0。
可以理解是的,本发明中步骤S211-S212以及步骤S211a-S214a可以同时进行,此处不限定其具体先后顺序。
S220,将转换矩阵及速度波形进行两次积分优化处理,从而得到优化后的位移波形。
进一步,将转换矩阵M以及速度波形V0输入积分优化模型中,进行多次积分优化处理后得到位移波形,其中积分优化模型的公式为:
VX n=VX n-1-M·(M\VX n-1)
其中,VX n表示输出波形,VX n-1表示输入波形,M表示所述转换矩阵。
具体到本发明实施例来说,第一次进入该积分优化模型的参数为转换矩阵M和速度波形V0,第二次进入该积分优化模型的参数为转换矩阵M和将速度波形V0进行积分后的位移波形D0。具体地,结合图5,图5为本发明步骤S220一实施方式的流程示意图,详细介绍该积分优化过程,步骤S220进一步包括如下子步骤:
S221,将转换矩阵及速度波形进行第一次积分优化处理,以得到优 化后的速度波形。
可选地,将转换矩阵M以及速度波形V0(即上述公式中的输入波形VX n-1)输入积分优化模型后,可以得到优化后的速度波形V1(即上述公式中的输出波形VX n)。
S222,对优化后的速度波形进行积分以得到位移波形。
进一步,对该优化后的速度波形V1进行积分处理,从而得到位移波形D0。
S223,将位移波形及转换矩阵进行第二次积分优化处理,以得到优化后的位移波形。
进一步,将转换矩阵M以及位移波形D0(对于上述公式中的输入波形VX n-1)输入该积分优化模型中进行第二次积分优化处理后能够得到优化后的位移波形D1(对于上述公式中的输出波形VX n)。
请进一步结合图6和图7,图6为本发明优化后的位移波形和现有技术直接积分得到的位移波形的对比示意图,图7是根据本申请的均衡电压和现有技术的均衡电压激励振动系统产生的振动加速度波形的对比示意图。
如图6和7中,现有技术中对加速度波形直接积分,会出现能量的积累,导致积分出来的位移值有漂移的趋势,导致加速波形结尾处,位移值不为零,说明加速度波形结尾处,振动系统的振子悬停在某一非平衡位置,那么当驱动电压结束之后,振子受到弹簧回复力,自由振荡,即处于“波形之外不可控”状态。若采用本发明对加速度波形进行多次积分优化处理后,得到的位移可以实现波形结尾处位移为零(即振子处于平衡位置),那么波形结束后,就不会存在自由振荡的问题,即处于“波形之外可控”的状态。
上述实施方式中,通过直接定义振动系统的加速度波形,并对该加速度波形进行多次积分优化处理得到位移波形,能够去除加速度二次积分得到位移时产生的漂移问题,避免加速度波形之外时刻的振动系统的振动。
S300,根据优化后的位移波形计算得出均衡电压,以根据均衡电压进行触觉效果播放。
具体地,对多次优化积分处理后得到优化后的位移波形D1进行位移均衡从而得到电压波形,且利用该电压波形激励振动系统即可得到期望的振动效果。因本发明中触觉效果的直接量化指标是振动系统的加速度波形,所以该定义方式具有高度的可工程化性。
其中,均衡算法为常用的信号设计方法,根据振动系统的机电耦合方程求解得到,系统机电耦合方程如下:
Figure PCTCN2020103900-appb-000001
Figure PCTCN2020103900-appb-000002
其中,m表示实际播放马达动子的质量,c表示实际播放马达机械阻尼,k表示实际播放马达弹簧系数;BL表示机电耦合系数,R e表示实际播放马达线圈电阻,L e为表示实际播放马达线圈电感,i为电流,u为均衡电压,x为位移,
Figure PCTCN2020103900-appb-000003
为速度,
Figure PCTCN2020103900-appb-000004
为加速度。
进一步结合图8,图8为本发明步骤S300一实施方式的流程示意图,如图8步骤S300进一步包括如下子步骤:
S310,将优化后的位移波形代入电机耦合方程以得到均衡电压。
可选地,将位移x、速度
Figure PCTCN2020103900-appb-000005
以及加速度
Figure PCTCN2020103900-appb-000006
分别代入电机耦合方程得到均衡电压u,其中,度
Figure PCTCN2020103900-appb-000007
加速度
Figure PCTCN2020103900-appb-000008
分别由位移x求一次导和两次导得到。可以理解的是,
S320,将均衡电压激励振动系统,以得到触觉效果。
具体的,输出均衡电压信号激励设备的振动器,即可实现触觉效果播放。
上述实施方式中,通过直接定义振动系统的加速度波形,并对该加速度波形进行多次积分优化处理得到位移波形,能够去除加速度二次积分得到位移时产生的漂移问题,避免加速度波形之外时刻的振动系统的振动。
参阅图9,图9是本发明提供的触觉效果的设计设备实施例的示意框图,本实施例中的触觉效果的实现设备包括处理器310及存储器320,处理器310与存储器320耦合,存储器320存储有计算机指令,处理器310在工作时执行计算机指令以实现上述任一实施例中的触觉效果的设计方法。
其中,处理器310还可以称为CPU(Central Processing Unit,中央处理单元)。处理器310可能是一种集成电路芯片,具有信号的处理能力。处理器310还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,但不仅限于此。
参阅图10,图10是本发明提供的计算机可读存储介质实施例的示意框图,本实施例中的计算机可读存储介质存储有计算机程序410,该计算机程序410能够被处理器执行以实现上述任一实施例中的触觉效果的设计方法。
可选的,该可读存储介质可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
区别于现有技术,本发明通过直接定义振动系统的加速度波形,并对该加速度波形进行多次积分优化处理得到位移波形,能够去除加速度 二次积分得到位移时产生的漂移问题,避免加速度波形之外时刻的振动系统的振动。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种触觉效果的设计方法,其特征在于,所述设计方法包括:
    获取振动系统的加速度波形及信号采样率;
    根据所述加速度波形及所述信号采样率对所述加速度波形进行积分优化处理,以得到优化后的位移波形;
    根据所述优化后的位移波形计算得出均衡电压,以根据所述均衡电压进行触觉效果播放。
  2. 根据权利要求1所述的设计方法,其特征在于,所述根据所述加速度波形及所述信号采样率对所述加速度波形进行积分优化处理以得到优化后位移波形包括:
    根据所述加速度波形及所述信号采样率分别获取转换矩阵以及和所述加速度波形对应的速度波形;
    将所述转换矩阵及所述速度波形进行两次积分优化处理,从而得到优化后的位移波形。
  3. 根据权利要求2所述的设计方法,其特征在于,所述将所述转换矩阵及所述速度波形进行多次积分优化处理,从而得到优化后的位移波形包括:
    将所述转换矩阵及所述速度波形进行第一次积分优化处理,以得到优化后的速度波形;
    对所述优化后的速度波形进行积分以得到位移波形;
    将所述位移波形及所述转换矩阵进行第二次积分优化处理,以得到所述优化后的位移波形。
  4. 根据权利要求2所述的设计方法,其特征在于,所述根据所述加速度波形及所述信号采样率分别获取转换矩阵以及和所述加速度波形对应的速度波形包括:
    根据所述加速度波形及所述信号采样率生成时间序列;
    根据所述时间序列生成所述转换矩阵。
  5. 根据权利要求4所述的设计方法,其特征在于,所述时间序列的计算公式为:
    T=[0:N-1]/fs
    其中,T为所述时间序列,N为所述加速度波形的数据长度,fs为所述信号采样率。
  6. 根据权利要求2所述的设计方法,其特征在于,所述根据所述加速度波形及所述信号采样率分别获取转换矩阵以及和所述加速度波形对应的速度波形包括:
    判断所述加速度波形是否为列数列;
    若判断为否,则将所述加速度波形转换为列数列;
    将转换为列数列后的所述加速度波形进行第一次积分,从而得到所述速度波形;
    若判断为是,则直接对所述加速波形进行第一次积分,从而得到所述速度波形。
  7. 根据权利要求1所述的设计方法,其特征在于,所述积分优化处理的公式为:VX n=VX n-1-M·(M\VX n-1)
    其中,VX n表示输出波形,VX n-1表示输入波形,M表示所述转换矩阵。
  8. 根据权利要求1所述的设计方法,其特征在于,根据所述优化后的位移波形计算得出均衡电压,以根据所述均衡电压进行触觉效果播放包括:
    将所述优化后的位移波形代入所述电机耦合方程以得到所述均衡电压;
    将所述均衡电压激励所述振动系统,以得到所述触觉效果。
  9. 一种触觉效果的设计设备,其特征在于,所述触觉效果的设计设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现如权利要求1~8中任一项所述的设计方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行以实现如权利要求1~8中任一项所述设计的方法。
PCT/CN2020/103900 2020-06-29 2020-07-23 触觉效果的设计方法及设备、计算机可读存储介质 WO2022000635A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010606302.9A CN111736704B (zh) 2020-06-29 2020-06-29 触觉效果的设计方法及设备、计算机可读存储介质
CN202010606302.9 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022000635A1 true WO2022000635A1 (zh) 2022-01-06

Family

ID=72652171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103900 WO2022000635A1 (zh) 2020-06-29 2020-07-23 触觉效果的设计方法及设备、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111736704B (zh)
WO (1) WO2022000635A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130264973A1 (en) * 2012-04-10 2013-10-10 Texas Instruments Incorporated Method and apparatus to drive a linear resonant actuator at its resonant frequency
WO2018208651A1 (en) * 2017-05-08 2018-11-15 Cirrus Logic International Semiconductor, Ltd. Integrated haptic system
CN110112984A (zh) * 2019-05-29 2019-08-09 维沃移动通信有限公司 一种线性马达的振动控制方法和移动终端
CN110609611A (zh) * 2018-06-15 2019-12-24 意美森公司 用于提供有限持续时间的触觉效果的系统、设备和方法
CN110609610A (zh) * 2018-06-15 2019-12-24 意美森公司 用于利用传感器融合来多速率控制触觉效果的系统和方法
CN111694437A (zh) * 2020-06-20 2020-09-22 瑞声科技(新加坡)有限公司 触觉效果的实现方法及设备、计算机可读存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190004082A1 (en) * 2017-06-28 2019-01-03 Immersion Corporation Systems and Methods for Determining a Device's Acceleration Using Its Internal Microphone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130264973A1 (en) * 2012-04-10 2013-10-10 Texas Instruments Incorporated Method and apparatus to drive a linear resonant actuator at its resonant frequency
WO2018208651A1 (en) * 2017-05-08 2018-11-15 Cirrus Logic International Semiconductor, Ltd. Integrated haptic system
CN110609611A (zh) * 2018-06-15 2019-12-24 意美森公司 用于提供有限持续时间的触觉效果的系统、设备和方法
CN110609610A (zh) * 2018-06-15 2019-12-24 意美森公司 用于利用传感器融合来多速率控制触觉效果的系统和方法
CN110112984A (zh) * 2019-05-29 2019-08-09 维沃移动通信有限公司 一种线性马达的振动控制方法和移动终端
CN111694437A (zh) * 2020-06-20 2020-09-22 瑞声科技(新加坡)有限公司 触觉效果的实现方法及设备、计算机可读存储介质

Also Published As

Publication number Publication date
CN111736704A (zh) 2020-10-02
CN111736704B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
CN112289342B (zh) 使用神经网络生成音频
JP6836529B2 (ja) 計算装置、計算プログラム、記録媒体及び計算方法
CN112650388B (zh) 马达振动信号生成方法、装置、计算机设备及存储介质
WO2020118608A1 (zh) 一种反卷积神经网络的硬件加速方法、装置和电子设备
WO2021208447A1 (zh) 信号处理方法、装置和电子设备
JP7003753B2 (ja) 探索点決定プログラム、探索点決定方法および探索点決定装置
US12033090B2 (en) Information processing device, PUBO solver, information processing method and non-transitory storage medium
CN110162171B (zh) 一种马达驱动信号设置方法、电子设备及存储介质
WO2021208446A1 (zh) 信号处理方法、装置和电子设备
JP2021039640A (ja) 学習装置、学習システム、および学習方法
WO2021253576A1 (zh) 触觉效果的实现方法及设备、计算机可读存储介质
JP7058202B2 (ja) 情報処理方法及び情報処理システム
WO2021248849A1 (zh) 一种驱动电压生成方法、装置、存储介质和电子设备
JP2023533631A (ja) ハードウェア用に最適化されたニューラルアーキテクチャ検索
JP2019008502A (ja) 結合振動子系の計算装置、プログラム及び方法
WO2022000635A1 (zh) 触觉效果的设计方法及设备、计算机可读存储介质
CN111587441A (zh) 使用以比特值为条件的回归神经网络生成输出示例
KR100502092B1 (ko) 진화론적 계산을 이용한 3차원 애니메이션 시스템 및 방법
WO2022000638A1 (zh) 一种触觉效果的实现方法及设备、计算机可读存储介质
JP2024508866A (ja) 振動評価方法、装置、コンピュータ機器、及びコンピュータプログラム
JP2000268064A (ja) 粒子集団の配置を生成する生成装置および方法
WO2020054402A1 (ja) ニューラルネットワーク処理装置、コンピュータプログラム、ニューラルネットワーク製造方法、ニューラルネットワークデータの製造方法、ニューラルネットワーク利用装置、及びニューラルネットワーク小規模化方法
JP2009223437A (ja) 新規信号生成装置、新規信号生成方法
WO2022000650A1 (zh) 触觉效果的优化方法及设备、计算机可读存储介质
WO2022260177A1 (ja) 推定装置、訓練装置、推定方法、訓練方法、プログラム及び非一時的コンピュータ可読媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942713

Country of ref document: EP

Kind code of ref document: A1