WO2022000650A1 - 触觉效果的优化方法及设备、计算机可读存储介质 - Google Patents

触觉效果的优化方法及设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2022000650A1
WO2022000650A1 PCT/CN2020/104649 CN2020104649W WO2022000650A1 WO 2022000650 A1 WO2022000650 A1 WO 2022000650A1 CN 2020104649 W CN2020104649 W CN 2020104649W WO 2022000650 A1 WO2022000650 A1 WO 2022000650A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
waveform
value
maximum
optimization method
Prior art date
Application number
PCT/CN2020/104649
Other languages
English (en)
French (fr)
Inventor
郑亚军
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022000650A1 publication Critical patent/WO2022000650A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user

Definitions

  • the present invention relates to the technical field of haptic feedback, and in particular, to a method and device for optimizing haptic effects, and a computer-readable storage medium.
  • the present invention mainly provides a haptic effect optimization method and device, and a computer-readable storage medium, which can solve the problem of distortion of the actually played haptic effect in the prior art due to the difference of device parameters and the limitation of device output capability.
  • a technical solution adopted in the present invention is to provide a method for optimizing a haptic effect, the optimization method comprising: obtaining a vibration waveform of a preset haptic effect; calculating a voltage corresponding to the device according to the vibration waveform waveform; determine whether the maximum absolute value of the voltage in the voltage waveform is greater than the maximum voltage output value of the device; if it is determined to be yes, determine the point where the absolute value of the voltage in the voltage waveform exceeds the maximum voltage output value of the device Whether the accumulated voltage energy value is greater than the preset threshold energy value; if it is determined to be yes, the determination result is fed back to the vibration waveform, and the vibration waveform is optimized.
  • the feeding back the judgment result to the vibration waveform and optimizing the vibration waveform includes: compressing the point where the absolute value of the voltage in the voltage waveform exceeds the maximum voltage output value of the device according to a preset ratio. Voltage amplitude; an optimized vibration waveform is formed according to the compressed voltage amplitude.
  • the voltage value in the voltage waveform is clipped deal with.
  • the clipping processing on the voltage value in the voltage waveform includes: judging whether the absolute value of the voltage corresponding to each point in the voltage waveform is greater than the maximum voltage output value of the device; if the judgment is yes, Then, perform low-pass filtering on the maximum voltage output value of the device, and output the filtered voltage; if it is judged to be no, output the voltage value corresponding to the current point in the voltage waveform.
  • the voltage value corresponding to the current point in the voltage waveform is output.
  • the optimization method further includes the filtered voltage to the vibration system, so that the device plays a haptic effect based on the voltage value.
  • the vibration waveform of the preset haptic effect includes one of a displacement waveform, a velocity waveform and an acceleration waveform.
  • the device for realizing haptic effects includes a processor and a memory, the memory stores computer instructions, and the processor Coupled with the memory, the processor operatively executes the computer instructions to implement the optimization method described above.
  • another technical solution adopted by the present invention is to provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the above-mentioned optimization method.
  • the beneficial effects of the present invention are: different from the situation in the prior art, in the embodiment of the present invention, before the haptic effect is played, the equalization voltage of the original vibration waveform is calculated, and the equalization voltage and the maximum output capability of the device are judged and fed back, and according to the feedback As a result, the original vibration waveform is corrected, thereby reducing the distortion of the haptic effect, reducing the need for targeted design of the haptic effect, and improving the user experience brought by the haptic effect.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for optimizing a haptic effect provided by the present invention
  • FIG. 2 is a schematic diagram of an embodiment of the vibration waveform of the present invention.
  • FIG. 3 is a schematic diagram of an embodiment of the voltage waveform of the present invention.
  • FIG. 4 is a schematic flowchart of an embodiment of step S500 in FIG. 1 of the present invention.
  • Fig. 5 is the comparative schematic diagram of an embodiment before and after vibration waveform optimization of the present invention.
  • Fig. 6 is the effect schematic diagram after vibration waveform optimization of the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of the voltage waveform of the present invention.
  • FIG. 8 is a schematic flowchart of an embodiment of step S600 in FIG. 1 of the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of an output voltage waveform after clipping processing of the present invention.
  • FIG. 10 is a schematic block diagram of an embodiment of an optimization device for haptic effects provided by the present invention.
  • FIG. 11 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for optimizing a haptic effect provided by the present invention. As shown in FIG. 1, the method for optimizing a haptic effect provided by the present invention includes the following steps:
  • the responsive vibration waveform can be called according to different requirements of different scenarios.
  • the vibration waveform is a quantized value of the haptic effect, and its form may include displacement waveform, velocity waveform and displacement waveform of the mover of the vibration system.
  • FIG. 2 is a schematic diagram of an embodiment of the vibration waveform of the present invention.
  • the present invention introduces the optimization method of the haptic effect in detail by taking the vibration waveform V0 as an acceleration waveform as an example.
  • different forms of waveforms may be selected according to different specific application scenarios, which are not specifically limited here.
  • the vibration waveform of the preset haptic effect can be stored in electronic device memory or cloud storage, wherein the above electronic device can be any device with communication and storage functions, such as: tablet computer, mobile phone, electronic reader, remote control, Smart devices with network functions such as personal computers (PCs), notebook computers, in-vehicle devices, Internet TVs, and wearable devices.
  • PCs personal computers
  • notebook computers notebook computers
  • in-vehicle devices Internet TVs
  • wearable devices wearable devices.
  • the calculation of the voltage waveform U0 in the present invention adopts an equalization algorithm, and the vibration waveform (velocity waveform V0) obtained in step S100 is substituted into the electromechanical coupling equation to calculate the corresponding voltage waveform U0, as shown in Figure 3, Figure 3 It is a schematic diagram of an embodiment of the voltage waveform of the present invention.
  • m represents the mass of the actual play of the motor mover
  • c denotes the actual playback motor mechanical damping
  • k denotes a real play motor spring coefficient
  • BL represents the electromechanical coupling coefficient
  • R e represent the actual playback of the motor coil resistance
  • L e is a real play motor Coil inductance
  • i is the current
  • u is the equilibrium voltage
  • x is the displacement, for speed, for acceleration.
  • S300 determine whether the maximum absolute value of the voltage in the voltage waveform is greater than the maximum voltage output value of the device.
  • step S400 is entered.
  • the maximum absolute value Max(U0) of the voltage in the voltage waveform U0 is less than the maximum voltage output value of the device 10V, then there is no need to feed back the result to the above vibration waveform for optimization processing, and directly output each point in the voltage waveform U0.
  • the equalizing voltage value is applied to the vibration system, so that the electronic device can play the haptic effect based on the equalizing voltage.
  • S400 Determine whether the accumulated voltage energy value at the point where the absolute value of the voltage in the voltage waveform exceeds the maximum voltage output value of the device is greater than a preset threshold energy value.
  • step S300 if it is judged in step S300 that the maximum absolute value Max(U0) of the voltage in the voltage waveform U0 is greater than the maximum voltage output value 10V of the device, then it is further judged that the absolute value Max(U0) of the voltage in the voltage waveform exceeds the device's maximum voltage output value. Whether the accumulated voltage energy value of the point with the maximum voltage output value of 10 is greater than the preset threshold energy value E0. That is, the voltage value of the point where the absolute value exceeds 10V in the voltage waveform U0 in Fig. 3 is accumulated, and the accumulation formula is:
  • E1 is the accumulated voltage energy value at the point where the absolute value Max(U0) of the voltage in the voltage waveform exceeds the maximum voltage output value of the device by 10V
  • the threshold energy value E0 refers to the preset energy value.
  • the threshold energy value E0 is preset according to different application scenarios, that is, weighing the guarantee of the vibration waveform and the algorithm complexity, and the threshold energy value E0 is greater than the maximum voltage of the device.
  • step S500 if it is determined that the absolute value Max(U0) of the voltage in the voltage waveform U0 exceeds the maximum voltage output value of the device, the accumulated voltage energy value E1 is greater than the preset threshold energy value E0, then go to step S500, otherwise, if it is determined that the voltage waveform The accumulated voltage energy value E1 at the point where the absolute value Max(U0) of the voltage in U0 exceeds the maximum voltage output value of the device is smaller than the preset threshold energy value E0, then go to step S600 to perform clipping processing on the voltage value in the voltage waveform U0 .
  • FIG. 4 is a schematic flowchart of an embodiment of step S500 of the present invention. As shown in FIG. 4, step S500 further includes the following sub-steps:
  • the waveform compression algorithm is used to optimize the original vibration waveform V0, that is, the voltage amplitude of the point where the voltage of the vibration waveform V0 exceeds the maximum voltage output value Vmax of the device is compressed according to a preset ratio. Let the ratio be S (S ⁇ 1), and the compression at the point n where the voltage in the vibration waveform V0 exceeds the maximum voltage output value Vmax of the device is:
  • the algorithm used in the present invention is a self-feedback iterative algorithm, that is, “feedback to the vibration waveform, and optimize it”.
  • the optimization mentioned here can be a variety of optimization methods.
  • the “waveform compression” method is adopted.
  • various optimization methods such as signal splicing can also be used, which are not specifically limited here.
  • FIG. 5 is a schematic diagram of the comparison of an embodiment before and after the vibration waveform optimization of the present invention
  • FIG. 6 is a schematic diagram of the effect after the vibration waveform optimization of the present invention. It can be seen from FIG. 6 that the method of the present invention is used to optimize the original vibration waveform. After that, the result is closer to the expected value.
  • the equalization voltage of the original vibration waveform is calculated, and the equalization voltage and the maximum output capability of the device are judged and fed back, and the original vibration waveform is corrected according to the feedback result, thereby reducing the distortion of the haptic effect and reducing the haptic effect.
  • the cost of targeted design of haptic effects and the user experience brought about by improved haptic effects.
  • FIG. 7 is a schematic diagram of another embodiment of the voltage waveform of the present invention
  • FIG. 8 is a schematic flowchart of an embodiment of step S600 of the present invention. If the absolute value Max of the voltage in the voltage waveform U0 is determined in step S400 (U0) The accumulated voltage energy value E1 of the point exceeding the maximum voltage output value of the device is less than the preset threshold energy value E0, then the voltage value in the voltage waveform is directly clipped, as shown in Figure 7 without triggering feedback, directly Clipping processing.
  • step S600 further includes the following sub-steps:
  • S610 respectively determine whether the absolute value of the voltage corresponding to each point in the voltage waveform is greater than the maximum voltage output value of the device.
  • step S400 if in step S400 it is judged that the absolute value Max(U0) of the voltage in the voltage waveform U0 exceeds the maximum voltage output value of the device, the accumulated voltage energy value E1 is smaller than the preset threshold energy value E0, the feedback is not triggered, and the The voltage clipping process is performed on the point where the absolute value Max(U0) of the voltage in the voltage waveform U0 exceeds the maximum voltage output value of the device.
  • the absolute value of the voltage corresponding to each point in the voltage waveform U0 is U0(n ) is compared with the maximum voltage output value Vmax of the equipment, if U0(n) is greater than the maximum voltage output value Vmax of the equipment, then enter step S620, otherwise if U0(n) is less than the maximum voltage output value Vmax of the equipment, then enter step S630 .
  • S620 Perform low-pass filtering on the maximum voltage output value of the device, and output the filtered voltage.
  • FIG. 9 is a schematic diagram of an embodiment of the output voltage waveform after clipping processing of the present invention. It can be clearly seen from FIG.
  • the actual voltage value at point n in the voltage waveform U0 is output as the final equilibrium voltage value to excite the vibration system.
  • the equalization voltage of the original vibration waveform is calculated, and the equalization voltage and the maximum output capability of the device are judged and fed back, and the original vibration waveform is corrected according to the feedback result, thereby reducing the distortion of the haptic effect and reducing the haptic effect.
  • Chen Ben who designed haptic effects in a targeted manner, and improved the user experience brought by haptic effects.
  • FIG. 10 is a schematic block diagram of an embodiment of a device for optimizing haptic effects provided by the present invention.
  • the device for optimizing haptic effects in this embodiment includes a processor 310 and a memory 320.
  • the processor 310 is coupled to the memory 320, and the memory 320 Computer instructions are stored, and the processor 310 executes the computer instructions during operation to realize the optimization method of the haptic effect in any of the above embodiments.
  • the processor 310 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 310 may be an integrated circuit chip with signal processing capability.
  • Processor 310 may also be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor without limitation.
  • FIG. 11 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • the computer-readable storage medium in this embodiment stores a computer program 410, and the computer program 410 can be executed by a processor to realize the above-mentioned A method of optimizing a haptic effect in any of the embodiments.
  • the readable storage medium may be a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • the medium of program code, or terminal equipment such as computers, servers, mobile phones, and tablets.
  • the present invention provides a method and device for optimizing haptic effects, and a computer-readable storage medium.
  • the equalizing voltage of the original vibration waveform is calculated, and the equalizing voltage and the maximum output capability of the device are judged. and feedback, and correct the original vibration waveform according to the feedback results, thereby reducing the distortion of haptic effects, reducing the need for targeted design of haptic effects, and improving the user experience brought by haptic effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种触觉效果的优化方法及设备、计算机可读存储介质,该优化方法包括获取预设触觉效果的振动波形(S100);根据振动波形计算出设备对应的电压波形(S200);判断电压波形中电压的最大绝对值是否大于设备的最大电压输出值(S300);若判断为是,判断电压波形中电压的绝对值超过设备的最大电压输出值的点的累加电压能量值是否大于预设门限能量值(S400);若判断为是,则将判断结果反馈至振动波形,并对振动波形进行优化处理(S500)。通过上述方法,能够降低触觉效果的失真,降低针对性设计触觉效果的陈本以及提升触觉效果带来的用户体验。

Description

触觉效果的优化方法及设备、计算机可读存储介质 技术领域
本发明涉及触觉反馈技术领域,特别是涉及一种触觉效果的优化方法及设备、计算机可读存储介质。
背景技术
电子设备中的触觉反馈给人们带来的高级感、真实感能够大大的提升用户体验。不同的触觉效果随着应用需求的增加,也变得越来越丰富。同时,由于电子设备中内部零件、设备的结构、与设备选用的振动器的种类繁多,给触觉效果设计带来了很大的挑战。
设计人员为实现在不同种电子设备中播放同一触觉效果,通常采用储存振动波形的方法,根据当前设备的设备参数,进行均衡计算,生成适用于该设备的电压信号,但是由于设备参数的差异性与设备输出能力的限制,生成的电压信号被截取后播放,从而导致实际播放的触觉效果与原设计的触觉效果相差甚远。
发明内容
本发明主要是提供一种触觉效果的优化方法及设备、计算机可读存储介质,能够解决现有技术中由于设备参数的差异性与设备输出能力的限制,导致实际播放的触觉效果失真的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种触觉效果的优化方法,所述优化方法包括:获取预设触觉效果的振动波形;根据所述振动波形计算出设备对应的电压波形;判断所述电压波形中电压的最大绝对值是否大于所述设备的最大电压输出值;若判断为是,判断所述电压波形中电压的绝对值超过所述设备的最大电压输出值的点的累加电压能量值是否大于预设门限能量值;若判断为是,则将判断结果反馈至所述振动波形,并对所述振动波形进行优化处理。
其中,所述将判断结果反馈至所述振动波形,并对所述振动波形进行优化包括:按照预设比例压缩所述电压波形中电压的绝对值超过所述设备的最大电压输出值的点的电压幅值;根据压缩后的所述电压幅值形成优化后的振动波形。
其中,若判断所述电压波形中电压的绝对值超过所述设备的最大电压输出值的点的累加电压能量值是小于预设门限能量值,则对所述电压波形中的电压值进行削波处理。
其中,所述对所述电压波形中的电压值进行削波处理包括:分别判断所述电压波形中每一点对应的电压的绝对值是否大于所述设备的最大电压输出值;若判断为是,则对所述设备的最大电压输出值进行低通滤波,并输出滤波后的电压;若判断为否,则输出所述电压波形中当前 点对应的电压值。
其中,若判断所述电压波形中电压的最大绝对值小于所述设备的最大电压输出值,则输出所述电压波形中当前点对应的电压值。
其中,所述优化方法进一步包括滤波后的电压至振动系统,以使得所述设备基于所述电压值进行触觉效果播放。
其中,所述预设触觉效果的振动波形包括位移波形、速度波形以及加速度波形中的一种。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种触觉效果的优化设备,所述触觉效果的实现设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现上述的优化方法。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现如上述的优化方法。
本发明的有益效果是:区别于现有技术的情况,本发明实施例在触觉效果播放之前,计算原始振动波形的均衡电压,并将均衡电压与设备最大输出能力进行判断和反馈,并根据反馈结果修正原始振动波形,从而降低触觉效果的失真,降低针对性设计触觉效果的陈本以及提升触觉效果带来的用户体验。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明提供的触觉效果的优化方法一实施例的流程示意图;
图2是本发明振动波形一实施方式的示意图;
图3是本发明电压波形一实施方式的示意图;
图4是本发明图1中步骤S500一实施方式的流程示意图;
图5是本发明振动波形优化前后一实施方式的对比示意图;
图6是本发明振动波形优化后的效果示意图;
图7是本发明电压波形另一实施方式的示意图;
图8是本发明图1中步骤S600一实施方式的流程示意图;
图9是本发明削波处理后输出电压波形一实施方式的示意图;
图10是本发明提供的触觉效果的优化设备实施例的示意框图;
图11是本发明提供的计算机可读存储介质实施例的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实 施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请一并参阅图1,图1是本发明提供的触觉效果的优化方法一实施例的流程示意图,如图1本发明提供的触觉效果的优化方法包括如下步骤:
S100,获取预设触觉效果的振动波形。
本发明中可以根据不同场景的不同需求调用响应的振动波形。可选地,可以理解的是振动波形为触觉效果的量化值,其形式可以包含振动系统动子的位移波形、速度波形以及位移波形。进一步结合图2,图2为本发明振动波形一实施方式的示意图,本发明以振动波形V0为加速度波形为例详细介绍该触觉效果的优化方法。当然,在其他实施方式中可以根据具体应用场景的不同选择不同形式的波形,此处不做具体限定。
进一步,该预设触觉效果的振动波形可以储在电子设备存储器或者云存储器中,其中上述电子设备可以是任何具备通信和存储功能的设备,例如:平板电脑、手机、电子阅读器、遥控器、个人计算机(Personal Computer,PC)、笔记本电脑、车载设备、网络电视、可穿戴设备等具有网络功能的智能设备。
S200,根据振动波形计算出设备对应的电压波形。
可选地,本发明中电压波形U0的计算采用均衡算法,将步骤S100中获取的振动波形(速度波形V0)代入机电耦合方程,以计算得出对应的电压波形U0,如图3,图3为本发明电压波形一实施方式的示意图。
具体的,该机电耦合方程为:
Figure PCTCN2020104649-appb-000001
Figure PCTCN2020104649-appb-000002
其中,m表示实际播放马达动子的质量,c表示实际播放马达机械阻尼,k表示实际播放马达弹簧系数;BL表示机电耦合系数,R e表示实际播放马达线圈电阻,L e为表示实际播放马达线圈电感,i为电流,u为均衡电压,x为位移,
Figure PCTCN2020104649-appb-000003
为速度,
Figure PCTCN2020104649-appb-000004
为加速度。
S300,判断电压波形中电压的最大绝对值是否大于设备的最大电压输出值。
结合图3中的电压波形U0,判断该电压波形U0中电压的最大绝对值Max(U0)是否大于设备的最大电压输出值Vmax,其中设备的最大电压输出值Vmax表征了该设备的最大输出能力,本发明中以电子设备最大电压输出值Vmax为10V举例说明。如图3,若判断电压波形U0中电压的最大绝对值Max(U0)大于该设备的最大电压输出值10V,则进入步骤S400。反之,若判断电压波形U0中电压的最大绝对值Max(U0)小于该设备的最大电压输出值10V,则无需将该结果反馈至上述振动波 形进行优化处理,直接输出该电压波形U0中每一点的均衡电压值至振动系统,以使得电子设备基于该均衡电压进行触觉效果播放。
S400,判断电压波形中电压的绝对值超过设备的最大电压输出值的点的累加电压能量值是否大于预设门限能量值。
进一步结合图3,若步骤S300中判断电压波形U0中电压的最大绝对值Max(U0)大于该设备的最大电压输出值10V,则进一步判断电压波形中电压的绝对值Max(U0)超过设备的最大电压输出值10的点的累加电压能量值是否大于预设门限能量值E0。即对图3中电压波形U0中绝对值超过10V的点的电压值进行累加,且其累加公式为:
E1=∑(Vn)
其中,E1为电压波形中电压的绝对值Max(U0)超过设备的最大电压输出值10V的点的累加电压能量值,门限能量值E0指预设定的能量值,该值越大对振动波形保真度越低,同时算法复杂度越低,所以门限能量值E0根据不同的应用场景,即权衡振动波形的保证度与算法复杂度进行预设置,且该门限能量值E0大于设备的最大电压输出值Vmax。本发明实施例中,可以设置该门限能量值E0=3*Vmax,当然在其他实施方式中,还可以设置为其他值,此处不做具体限定。
具体地,若判断电压波形U0中电压的绝对值Max(U0)超过设备的最大电压输出值的点的累加电压能量值E1大于预设门限能量值E0,则进入步骤S500,反之若判断电压波形U0中电压的绝对值Max(U0)超过设备的最大电压输出值的点的累加电压能量值E1小于预设门限能量值E0,则进入步骤S600,对电压波形U0中的电压值进行削波处理。
S500,将判断结果反馈至振动波形,并对振动波形进行优化处理。
请进一步结合图4,图4为本发明步骤S500一实施方式的流程示意图,如图4步骤S500进一步包括如下子步骤:
S510,按照预设比例压缩电压波形中电压的绝对值超过设备的最大电压输出值的点的电压幅值。
可选地,若判断电压波形U0中电压的绝对值Max(U0)超过设备的最大电压输出值的点的累加电压能量值E1大于预设门限能量值E0,则将该判断结果反馈至原振动波形V0处,并对振动波形V0进行优化处理。在本实施例中采用波形压缩算法对原振动波形V0进行优化,即按照预设的比例对振动波形V0电压超过设备最大电压输出值Vmax的点的电压幅值进行压缩,举例来说,若预设比例为S(S<1),振动波形V0中电压超过设备最大电压输出值Vmax的点n处压缩为:
V0(n)=V0(n)*S
本发明采用的算法是一种自反馈的迭代算法,即“反馈至振动波形,并进行优化”,这里讲到的优化可以是多种优化方式,本发明实施例中采用提“波形压缩”的优化方式,在其他实施方式中也可以采用信号拼 接等多种优化方式,此处不做具体限定。
S520,根据压缩后的电压幅值形成优化后的振动波形。
根据压缩后的电压幅值更新振动波形V0,以形成优化后的振动波形。结合图5和图6,图5为本发明振动波形优化前后一实施方式的对比示意图,图6为本发明振动波形优化后的效果示意图,由图6可知采用本发明方法对原始振动波形进行优化后,其结果更加接近期望值。
上述实施方式中,在触觉效果播放之前,计算原始振动波形的均衡电压,并将均衡电压与设备最大输出能力进行判断和反馈,并根据反馈结果修正原始振动波形,从而降低触觉效果的失真,降低针对性设计触觉效果的成本以及提升触觉效果带来的用户体验。
S600,对电压波形中的电压值进行削波处理。
进一步结合图7和图8,图7是本发明电压波形另一实施方式的示意图,图8为本发明步骤S600一实施方式的流程示意图,若步骤S400中判断电压波形U0中电压的绝对值Max(U0)超过设备的最大电压输出值的点的累加电压能量值E1小于预设门限能量值E0,则直接对电压波形中的电压值进行削波处理,如图7中不触发反馈,直接进行削波处理。
如图8,步骤S600进一步包括如下子步骤:
S610,分别判断电压波形中每一点对应的电压的绝对值是否大于设备的最大电压输出值。
可选地,若步骤S400中判断电压波形U0中电压的绝对值Max(U0)超过设备的最大电压输出值的点的累加电压能量值E1小于预设门限能量值E0,则不触发反馈,直接对电压波形U0中电压的绝对值Max(U0)超过设备的最大电压输出值的点的进行电压削波处理,结合图3,分别将电压波形U0中每一点对应的电压的绝对值U0(n)和设备的最大电压输出值Vmax进行比较,若U0(n)大于设备的最大电压输出值Vmax,则进入步骤S620,反之若U0(n)小于设备的最大电压输出值Vmax,则进入步骤S630。
S620,对设备的最大电压输出值进行低通滤波,并输出滤波后的电压。
若电压波形U0中n点处的电压绝对值U0(n)大于设备的最大电压输出值Vmax,则进一步对设备的最大电压输出值Vmax进行低通滤波处理,并输出滤波后的电压至振动系统。可以理解的是,步骤S620中为了避免更新后电压存在较多的高频分量,因此需要对设备的最大电压输出值Vmax进行低通滤波。请一并结合图9,图9为本发明削波处理后输出电压波形一实施方式的示意图。由图9可一明显看出,对于超过设备最大输出电压的部分,经过本发明的削波处理后已经明显控制在设备的最大输出能力之内,如此可以降低触觉效果的失真。S630,输出电压 波形中当前点对应的电压值。
可选地,若电压波形U0中n点处的电压绝对值U0(n)小于设备的最大电压输出值Vmax,则输出n点处的实际电压值作为最终的均衡电压值激励振动系统。
上述实施方式中,在触觉效果播放之前,计算原始振动波形的均衡电压,并将均衡电压与设备最大输出能力进行判断和反馈,并根据反馈结果修正原始振动波形,从而降低触觉效果的失真,降低针对性设计触觉效果的陈本以及提升触觉效果带来的用户体验。
参阅图10,图10是本发明提供的触觉效果的优化设备实施例的示意框图,本实施例中的触觉效果的优化设备包括处理器310及存储器320,处理器310与存储器320耦合,存储器320存储有计算机指令,处理器310在工作时执行计算机指令以实现上述任一实施例中的触觉效果的优化方法。
其中,处理器310还可以称为CPU(Central Processing Unit,中央处理单元)。处理器310可能是一种集成电路芯片,具有信号的处理能力。处理器310还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,但不仅限于此。
参阅图11,图11是本发明提供的计算机可读存储介质实施例的示意框图,本实施例中的计算机可读存储介质存储有计算机程序410,该计算机程序410能够被处理器执行以实现上述任一实施例中的触觉效果的优化方法。
可选的,该可读存储介质可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
区别于现有技术,本发明提供一种触觉效果的优化方法及设备、计算机可读存储介质,在触觉效果播放之前,计算原始振动波形的均衡电压,并将均衡电压与设备最大输出能力进行判断和反馈,并根据反馈结果修正原始振动波形,从而降低触觉效果的失真,降低针对性设计触觉效果的陈本以及提升触觉效果带来的用户体验。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

  1. 一种触觉效果的优化方法,其特征在于,所述优化方法包括:
    获取预设触觉效果的振动波形;
    根据所述振动波形计算出设备对应的电压波形;
    判断所述电压波形中电压的最大绝对值是否大于所述设备的最大电压输出值;
    若判断为是,判断所述电压波形中电压的绝对值超过所述设备的最大电压输出值的点的累加电压能量值是否大于预设门限能量值;
    若判断为是,则将判断结果反馈至所述振动波形,并对所述振动波形进行优化处理。
  2. 根据权利要求1所述的优化方法,其特征在于,所述将判断结果反馈至所述振动波形,并对所述振动波形进行优化包括:
    按照预设比例压缩所述电压波形中电压的绝对值超过所述设备的最大电压输出值的点的电压幅值;
    根据压缩后的所述电压幅值形成优化后的振动波形。
  3. 根据权利要求1所述的优化方法,其特征在于,若判断所述电压波形中电压的绝对值超过所述设备的最大电压输出值的点的累加电压能量值是小于预设门限能量值,则对所述电压波形中的电压值进行削波处理。
  4. 根据权利要求3所述的优化方法,其特征在于,所述对所述电压波形中的电压值进行削波处理包括:
    分别判断所述电压波形中每一点对应的电压的绝对值是否大于所述设备的最大电压输出值;
    若判断为是,则对所述设备的最大电压输出值进行低通滤波,并输出滤波后的电压;
    若判断为否,则输出所述电压波形中当前点对应的电压值。
  5. 根据权利要求1所述的优化方法,其特征在于,若判断所述电压波形中电压的最大绝对值小于所述设备的最大电压输出值,则输出所述电压波形中当前点对应的电压值。
  6. 根据权利要求4所述的优化方法,其特征在于,所述优化方法进一步包括输出滤波后的电压至振动系统,以使得所述设备基于所述电压值进行触觉效果播放。
  7. 根据权利要求1所述的优化方法,其特征在于,所述预设触觉效果的振动波形包括位移波形、速度波形以及加速度波形中的一种。
  8. 一种触觉效果的优化设备,其特征在于,所述触觉效果的优化设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现如 权利要求1~7中任一项所述的优化方法。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行以实现如权利要求1~7中任一项所述的优化方法。
PCT/CN2020/104649 2020-06-30 2020-07-24 触觉效果的优化方法及设备、计算机可读存储介质 WO2022000650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010612511.4A CN111766946B (zh) 2020-06-30 2020-06-30 触觉效果的优化方法及设备、计算机可读存储介质
CN202010612511.4 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022000650A1 true WO2022000650A1 (zh) 2022-01-06

Family

ID=72724777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104649 WO2022000650A1 (zh) 2020-06-30 2020-07-24 触觉效果的优化方法及设备、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111766946B (zh)
WO (1) WO2022000650A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102609078A (zh) * 2011-01-20 2012-07-25 宏达国际电子股份有限公司 具有触觉反馈的电子装置及提供触觉反馈的方法
CN104063056A (zh) * 2006-04-06 2014-09-24 伊梅森公司 用于增强的触觉效果的系统和方法
US20150205357A1 (en) * 2014-01-21 2015-07-23 Senseg Ltd. Controlling output current for electrosensory vibration
CN106293055A (zh) * 2015-06-26 2017-01-04 三星电子株式会社 电子设备以及用于提供其触觉反馈的方法
CN109324684A (zh) * 2017-07-30 2019-02-12 意美森公司 用于提供升压保护逻辑的装置和方法
CN110995079A (zh) * 2019-12-16 2020-04-10 瑞声科技(新加坡)有限公司 电机振动信号的生成方法、装置、终端及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227971A (ja) * 2016-06-20 2017-12-28 豊田合成株式会社 触覚提示装置及び触覚提示方法
CN107015639B (zh) * 2017-01-24 2020-02-04 瑞声科技(新加坡)有限公司 触觉反馈的动态范围控制方法、触觉反馈系统及电子终端
CN107515675B (zh) * 2017-08-23 2020-09-15 业成科技(成都)有限公司 压力反馈方法及装置、计算机设备及存储介质
CN111338477A (zh) * 2020-02-25 2020-06-26 瑞声科技(新加坡)有限公司 触觉振动效果的实现方法、装置和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104063056A (zh) * 2006-04-06 2014-09-24 伊梅森公司 用于增强的触觉效果的系统和方法
CN102609078A (zh) * 2011-01-20 2012-07-25 宏达国际电子股份有限公司 具有触觉反馈的电子装置及提供触觉反馈的方法
US20150205357A1 (en) * 2014-01-21 2015-07-23 Senseg Ltd. Controlling output current for electrosensory vibration
CN106293055A (zh) * 2015-06-26 2017-01-04 三星电子株式会社 电子设备以及用于提供其触觉反馈的方法
CN109324684A (zh) * 2017-07-30 2019-02-12 意美森公司 用于提供升压保护逻辑的装置和方法
CN110995079A (zh) * 2019-12-16 2020-04-10 瑞声科技(新加坡)有限公司 电机振动信号的生成方法、装置、终端及存储介质

Also Published As

Publication number Publication date
CN111766946A (zh) 2020-10-13
CN111766946B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
AU2017404565B2 (en) Electronic device, method and system of identity verification and computer readable storage medium
WO2021253576A1 (zh) 触觉效果的实现方法及设备、计算机可读存储介质
CN110191396B (zh) 一种音频处理方法、装置、终端及计算机可读存储介质
WO2023116133A1 (zh) 基于马达的振感调整方法、设备和计算机可读存储介质
CN107240396B (zh) 说话人自适应方法、装置、设备及存储介质
WO2021248849A1 (zh) 一种驱动电压生成方法、装置、存储介质和电子设备
WO2020097824A1 (zh) 音频处理方法、装置、存储介质及电子设备
WO2016105216A1 (en) Cepstral variance normalization for audio feature extraction
JPWO2019220755A1 (ja) 情報処理装置および情報処理方法
WO2022000650A1 (zh) 触觉效果的优化方法及设备、计算机可读存储介质
WO2022000638A1 (zh) 一种触觉效果的实现方法及设备、计算机可读存储介质
WO2021016932A1 (zh) 数据处理方法、装置及计算机可读存储介质
WO2021258484A1 (zh) 振动系统中的电机保护方法及设备、存储介质
CN114171043A (zh) 回声的确定方法、装置、设备以及存储介质
WO2021253557A1 (zh) 一种触觉效果的实现方法及设备、计算机可读存储介质
CN109716432B (zh) 增益处理方法及其装置、电子设备、信号采集方法及其系统
US9313582B2 (en) Hearing aid and method of enhancing speech output in real time
JP6432386B2 (ja) 音響信号処理装置および音響信号処理プログラム
WO2022000635A1 (zh) 触觉效果的设计方法及设备、计算机可读存储介质
WO2024021310A1 (zh) 马达振子的位移压缩方法、装置、终端设备及存储介质
WO2021243616A1 (zh) 马达单体寻找方法
WO2024055416A1 (zh) 一种触觉反馈信号的生成方法、电子设备及存储介质
JP7159884B2 (ja) 情報処理装置および情報処理方法
TWI566240B (zh) 音訊處理方法
CN117453506A (zh) 振动评估方法、装置、计算机设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943062

Country of ref document: EP

Kind code of ref document: A1