WO2021258484A1 - 振动系统中的电机保护方法及设备、存储介质 - Google Patents

振动系统中的电机保护方法及设备、存储介质 Download PDF

Info

Publication number
WO2021258484A1
WO2021258484A1 PCT/CN2020/104651 CN2020104651W WO2021258484A1 WO 2021258484 A1 WO2021258484 A1 WO 2021258484A1 CN 2020104651 W CN2020104651 W CN 2020104651W WO 2021258484 A1 WO2021258484 A1 WO 2021258484A1
Authority
WO
WIPO (PCT)
Prior art keywords
curve
frequency
displacement
time
value
Prior art date
Application number
PCT/CN2020/104651
Other languages
English (en)
French (fr)
Inventor
郑亚军
向征
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021258484A1 publication Critical patent/WO2021258484A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/02Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type

Definitions

  • the present invention relates to the technical field of motor vibration, in particular to a motor protection method, equipment and storage medium in a vibration system.
  • linear motors can be precisely controlled, provide rich tactile effects, and bring users a perfect tactile experience.
  • the linear motor drives the tooling where the motor is located to reciprocate through the reciprocating movement of the vibrator, so as to realize the vibration tactile feeling on the tooling.
  • one-way vibration of a linear motor is often used to provide a vibration tactile sensation.
  • the one-way vibration is also easy to control.
  • the vibrator will not only reciprocate in the desired direction (referred to as: X-direction vibration), but also in other directions (referred to as: non-directional vibration).
  • X-direction vibration is the "expected” designed by the designer, and the "unexpected” caused by the motor working when the motor is working in different directions. Therefore, the excitation voltage designed by the staff is all aimed at the response of the motor in the desired direction, thus ignoring the response in other directions.
  • the actual linear motor is a multi-degree-of-freedom vibration system with multiple resonant frequencies, and each direction has its corresponding resonant frequency. Then, when the center frequency of the designed excitation voltage is near the corresponding resonant frequency in the opposite direction, it will cause large vibration in the opposite direction, resulting in a larger "undesired" anisotropic vibration component of the motor, which will cause the tactile effect to deteriorate. , And even lead to a reduction in the life of the equipment.
  • the present invention mainly provides a motor protection method, equipment, and storage medium in a vibration system, which can solve the problems of poor tactile effect and reduced equipment life caused by excessive motor vibration components in the prior art.
  • a technical solution adopted by the present invention is to provide a motor protection method in a vibration system.
  • the motor protection method includes: obtaining the time-frequency curve of the original excitation voltage signal; obtaining the anti-displacement protection curve, And combine the time-frequency curve to obtain the time-domain curve of the original excitation voltage signal; calculate the safety threshold voltage at each moment according to the time-domain curve to obtain the safety threshold voltage curve; judge the original excitation voltage at each moment separately Whether the voltage value of the excitation voltage signal is greater than the voltage value at the time corresponding to the safety threshold voltage curve; if the judgment is yes, the voltage value of the original excitation voltage signal is corrected according to the voltage value at the time corresponding to the safety threshold voltage curve.
  • the obtaining the time-frequency curve of the original excitation voltage signal includes: performing Fourier transform on the original excitation voltage signal to obtain the time-frequency relationship of the original excitation voltage signal; and marking each time-frequency curve according to the time-frequency relationship The center frequency at a time to obtain the time-frequency curve.
  • the obtaining the anti-displacement protection curve and combining the time-frequency curve to obtain the time-domain curve of the original excitation voltage signal includes: separately obtaining the frequency information corresponding to each moment in the time-frequency curve; The frequency information corresponding to each moment is compared with the different displacement protection curve to obtain the displacement protection value corresponding to each moment, thereby obtaining the time domain curve.
  • the calculation of the safety threshold voltage at each moment according to the time domain curve to obtain the safety threshold voltage curve includes: obtaining the maximum output voltage of the device; calculating according to the time domain curve and the maximum output voltage of the device Obtain the safety threshold voltage curve.
  • the obtaining the different direction displacement protection curve includes: obtaining the different direction displacement frequency response curve under the maximum output voltage of the equipment; obtaining the displacement response value of each frequency in the different direction displacement frequency response curve; The frequency displacement response value and the threshold value of the different direction displacement are calculated to obtain the said different direction displacement protection curve.
  • calculating the displacement response value of each frequency and the threshold value of the different direction displacement to obtain the different direction displacement protection curve includes: separately judging the displacement of each frequency in the different direction displacement frequency response curve Whether the response value is less than or equal to the threshold value of the different direction displacement; if the judgment is yes, the displacement protection value of the corresponding frequency in the displacement protection curve is 1; if the judgment is no, the corresponding displacement protection value in the displacement protection curve
  • the frequency displacement protection value is the ratio of the threshold value of the different direction displacement and the displacement response value of the corresponding frequency in the said different direction displacement frequency response curve.
  • the protection method further includes outputting the voltage value of the original excitation voltage signal if it is determined that the voltage value of the original excitation voltage signal is less than the voltage value at the time corresponding to the safety threshold curve voltage.
  • the protection method further includes outputting the corrected voltage value of the original excitation voltage signal to the vibration system, so that the device performs haptic effect playback based on the corrected voltage value of the original excitation voltage signal.
  • the motor protection device includes a processor and a memory, and the memory stores computer instructions.
  • the processor is coupled to the memory, and the processor executes the computer instructions during operation to implement the above-mentioned motor protection method.
  • another technical solution adopted by the present invention is to provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the above-mentioned motor protection method.
  • the beneficial effect of the present invention is that, different from the situation in the prior art, the embodiment of the present invention corrects the original excitation voltage signal through the preset anisotropic displacement protection curve, and at the same time, combines the safety threshold voltage value of the motor to limit the voltage value to a safe level. Within the voltage range, excessive vibration of the motor can be avoided, which effectively protects the normal operation of the motor.
  • Fig. 1 is a schematic flowchart of an embodiment of a motor protection method according to the present invention
  • FIG. 2 is a schematic flowchart of an embodiment of step S100 in FIG. 1 of the present invention.
  • Figure 3 is a schematic diagram of the original excitation voltage signal of the present invention.
  • Figure 5 is a schematic diagram of the time-frequency curve of the original excitation voltage signal of the present invention.
  • FIG. 6 is a schematic flowchart of an embodiment of step S200 in FIG. 1 of the present invention.
  • FIG. 7 is a schematic diagram of the protection curve of the different direction displacement of the present invention.
  • FIG. 8 is a schematic flowchart of another embodiment of step S200 in FIG. 1 of the present invention.
  • Figure 9 is a schematic diagram of the time domain curve of the present invention.
  • FIG. 10 is a schematic flowchart of an embodiment of step S300 in FIG. 1 of the present invention.
  • FIG. 11 is a schematic block diagram of an embodiment of a motor protection device in a vibration system provided by the present invention.
  • FIG. 12 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • FIG. 1 is a schematic flowchart of an embodiment of a motor protection method according to the present invention. As shown in FIG. 1, the motor protection method provided by the present invention includes the following steps:
  • step S100 in FIG. 2 further includes the following sub-steps:
  • S110 Perform Fourier transform on the original excitation voltage signal to obtain the time-frequency relationship of the original excitation voltage signal.
  • short-time Fourier transform is performed on the acquired original excitation voltage signal V0, so as to obtain the time-frequency relationship FT of the original excitation voltage signal.
  • FIG. 3 is a schematic diagram of the original excitation voltage signal of the present invention
  • FIG. 4 is a schematic diagram of the time-frequency relationship of the original excitation voltage signal of the present invention.
  • the analysis of the time-frequency relationship based on short-time Fourier can refer to the prior art, which will not be repeated here.
  • S120 Mark the center frequency of each moment according to the time-frequency relationship to obtain a time-frequency curve.
  • the center frequency of each moment of the time-frequency relationship FT is marked, so as to obtain the time-frequency curve FC of the original excitation voltage signal, as shown in FIG. 5, which is the original Schematic diagram of the time-frequency curve of the excitation voltage signal.
  • S200 Obtain a displacement protection curve, and combine the time-frequency curve to obtain a time-domain curve of the original excitation voltage signal.
  • step S200 is a schematic flowchart of an embodiment of step S200 of the present invention. As shown in FIG. 6, this embodiment is a method for acquiring a displacement protection curve. Specifically, step S200 further includes the following sub-steps:
  • the displacement frequency response curve YZ under the maximum output voltage Vmax of the device can be obtained through software simulation or actual measurement (both methods can be used to measure the size of the frequency sweep response).
  • the criterion for judging the excessive vibration of the motor structure in the present invention is: whether the magnitude of the non-directional displacement of the vibrator exceeds the threshold value of the non-directional displacement.
  • different motor structures have different thresholds for displacement in different directions. If the magnitude of the anti-vibration displacement exceeds the threshold value of the anti-vibration, the vibrator may be equipped with other parts, causing the motor to work abnormally.
  • the displacement response value YZ of each frequency and the different displacement threshold value Yzmax of the structure are respectively calculated to obtain the different displacement protection curve DCP, as shown in FIG. 7, which is the different displacement protection curve of the present invention.
  • FIG. 7 is the different displacement protection curve of the present invention.
  • FIG. 7 is the different displacement protection curve of the present invention.
  • different structures have different displacement thresholds, and the obtained different displacement protection curves are also different. Specifically, respectively determine whether the displacement response value YZ of each frequency in the different direction displacement frequency response curve is less than or equal to the threshold value Yzmax of the different direction displacement;
  • the displacement protection value of the corresponding frequency in the displacement protection curve is the different direction displacement threshold value Yzmax and the different direction displacement frequency response curve
  • the ratio of the displacement response value YZ corresponding to the frequency, and the calculation of the different direction displacement protection curve DCP is as follows:
  • the abscissa of the DCP of the reverse displacement protection curve in the present invention is the frequency f
  • the ordinate is the protection value (0,1] (weighted value in Figure 7), which represents each frequency point, and the displacement protection value It is different.
  • the smaller the displacement protection value of the ordinate the higher the degree of protection.
  • the anisotropic displacement protection curve obtained through the above steps is stored in the memory of the device for retrieval and use.
  • the device referred to in the present invention can be any device with communication and storage functions, such as: tablet computer, mobile phone, e-reader, remote control, personal computer (PC), notebook computer, in-vehicle equipment, network TV , Wearable devices and other smart devices with network functions.
  • step S200 further includes the following sub-steps:
  • S210a Obtain frequency information corresponding to each moment in the time-frequency curve respectively.
  • S220a Compare the frequency information corresponding to each moment with the displacement protection curve to obtain the displacement protection value corresponding to each moment, thereby obtaining a time domain curve.
  • Fig. 9 is a schematic diagram of the time domain curve of the present invention.
  • S300 Calculate the safety threshold voltage at each moment according to the time domain curve, so as to obtain the safety threshold voltage curve.
  • step S300 is a schematic flowchart of an embodiment of step S300 of the present invention. As shown in FIG. 10, step S300 further includes the following sub-steps:
  • S320 Calculate according to the time domain curve and the maximum output voltage of the device to obtain a safety threshold voltage curve.
  • S400 Determine whether the voltage value of the original excitation voltage signal at each moment is greater than the voltage value at the corresponding moment of the safety threshold voltage curve.
  • the original excitation voltage signal and the safety threshold voltage curve are compared. Specifically, it is determined whether the voltage value of the original excitation voltage signal V0 at each moment is greater than the voltage value corresponding to the safety threshold voltage curve VC, that is, the point-by-point comparison method is used to determine whether the voltage value V0(t) of the original excitation signal is greater than If the safety threshold voltage VC(t) at the corresponding time is greater than that, then go to step S500, otherwise if it is less, then go to step S600.
  • the voltage value of the original excitation signal V0(t)>VC(t) If the voltage value of the original excitation signal V0(t)>VC(t), then the voltage value V0(t) of the original excitation signal is corrected to the safety threshold voltage VC(t) at the corresponding moment, and VC(t) is output to vibration
  • the system enables the device to play haptic effects based on the corrected voltage value of the original excitation voltage signal.
  • the original excitation voltage signal is corrected by the preset anisotropic displacement protection curve, and combined with the safety threshold voltage value of the motor, the voltage value is limited within the safe voltage range, which can avoid excessive anti-vibration of the motor. Effectively protect the normal operation of the motor.
  • FIG. 11 is a schematic block diagram of an embodiment of a motor protection device in a vibration system provided by the present invention.
  • the motor protection device in this embodiment includes a processor 310 and a memory 320.
  • the processor 310 is coupled to the memory 320, and the memory 320 Computer instructions are stored, and the processor 310 executes the computer instructions during work to implement the motor protection method in any of the above embodiments.
  • the processor 310 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 310 may be an integrated circuit chip with signal processing capabilities.
  • the processor 310 may also be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component .
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, but is not limited to this.
  • FIG. 12 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
  • the computer-readable storage medium in this embodiment stores a computer program 410, which can be executed by a processor to realize the foregoing The motor protection method in any embodiment.
  • the readable storage medium may be a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc., which can store The medium of the program code, or a terminal device such as a computer, server, mobile phone, or tablet.
  • the present invention provides a motor protection method, equipment, and storage medium in a vibration system.
  • the original excitation voltage signal is corrected by preset anisotropic displacement protection curve, and combined with the safety threshold voltage value of the motor,
  • the voltage value is limited within the safe voltage range, which can avoid excessive vibration of the motor and effectively protect the normal operation of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明提供了一种振动系统中的电机保护方法及设备、计算机可读存储介质,该电机保护方法包括:获取原始激励电压信号的时频曲线;获取异向位移保护曲线,并结合时频曲线得到原始激励电压信号的时域曲线;根据时域曲线计算每一时刻的安全门限电压,从而得到安全门限电压曲线;分别判断每一时刻的原始激励电压信号的电压值是否大于安全门限电压曲线对应时刻的电压值;若判断为是,则根据安全门限电压曲线对应时刻的电压值修正原始激励电压信号的电压值。通过上述实施方式,本发明能够避免电机的异向振动过大,有效的保护了电机的正常工作。

Description

振动系统中的电机保护方法及设备、存储介质 技术领域
本发明涉及电机振动技术领域,特别是涉及一种振动系统中的电机保护方法及设备、存储介质。
背景技术
触觉反馈在便携式电子设备及车载触控屏上的广泛应用,推动了线性电机的快速发展。线性电机作为单向的电磁驱动器,能够受到精确的控制,提供丰富的触觉效果,给用户带来完美的触觉体验。
通常线性电机通过振子的往复运动,带动电机所在的工装往复运动,从而实现工装上的振动触感。实际工程中,往往是运用线性电机单向的振动,提供振动触感,在设计振动触感时,单向的振动也便于控制。但是由于线性电机的结构特征,电机在工作时,振子除了在期望的方向往复振动(称之为:X向振动),也会在其他方向振动(称之为:异向振动)。
工程上,X向振动是设计人员设计的“期望的”,异向振动时电机工作时带来的“非期望”。所以,工作人员设计出来的激励电压,都是针对于电机的期望方向的响应,从而忽略了其他方向的响应。众所周知,实际的线性电机为多自由度振动系统,存在多个谐振频率,且每个方向都会有其对应的谐振频率。那么,设计的激励电压的中心频率,在异向对应的谐振频率附近时,会引起异向的较大振动,导致电机的“非期望的”异向振动分量较大,从而引起触觉效果变差,甚至导致设备寿命的缩减。
发明内容
本发明主要是提供一种振动系统中的电机保护方法及设备、存储介质,能够解决现有技术中因电机异向振动分量过大造成的触觉效果变差、设备寿命缩减的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种振动系统中的电机保护方法,所述电机保护方法包括:获取原始激励电压信号的时频曲线;获取异向位移保护曲线,并结合所述时频曲线得到所述原始激励电压信号的时域曲线;根据所述时域曲线计算每一时刻的安全门限电压,从而得到安全门限电压曲线;分别判断每一时刻的所述原始激励电压信号的电压值是否大于所述安全门限电压曲线对应时刻的电压值;若判断为是,则根据所述安全门限电压曲线对应时刻的电压值修正所述原始激励电压信号的电压值。
其中,所述获取原始激励电压信号的时频曲线包括:对所述原始激励电压信号进行傅里叶变换,以获取所述原始激励电压信号的时频关系; 根据所述时频关系,标记每一时刻的中心频率,以获取所述时频曲线。
其中,所述获取异向位移保护曲线,并结合所述时频曲线得到所述原始激励电压信号的时域曲线包括:分别获取所述时频曲线中每一时刻对应的频率信息;将每一时刻对应的所述频率信息分别和所述异向位移保护曲线进行对照以得到每一时刻对应的位移保护值,从而得到所述时域曲线。
其中,所述根据所述时域曲线计算每一时刻的安全门限电压,以得到安全门限电压曲线包括:获取设备的最大输出电压;根据所述时域曲线及所述设备的最大输出电压计算以得到所述安全门限电压曲线。
其中,所述获取异向位移保护曲线包括:获取设备最大输出电压下的异向位移频响曲线;获取所述异向位移频响曲线中每一频率的位移响应值;分别将所述每一频率的位移响应值和异向位移的门限值进行计算,以得到所述异向位移保护曲线。
其中,将所述每一频率的位移响应值和异向位移的门限值进行计算,以得到所述异向位移保护曲线包括:分别判断所述异向位移频响曲线中每一频率的位移响应值是否小于或等于所述异向位移的门限值;若判断为是,则所述位移保护曲线中对应频率的位移保护值为1;若判断为否,则所述位移保护曲线中对应频率的位移保护值为所述异向位移的门限值和所述异向位移频响曲线中对应频率的位移响应值之比。
其中,所述保护方法进一步包括若判断所述原始激励电压信号的电压值小于所述安全门限曲线电压对应时刻的电压值,则输出所述原始激励电压信号的电压值。
其中,所述保护方法进一步包括输出修正后的所述原始激励电压信号的电压值至振动系统,以使得设备基于修正后的所述原始激励电压信号的电压值进行触觉效果播放。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种振动系统中的电机保护设备,所述电机的保护设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现上述的电机保护方法。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现如上述的电机保护方法。
本发明的有益效果是:区别于现有技术的情况,本发明实施例通过预设异向位移保护曲线对原始激励电压信号进行修正,同时结合电机的安全门限电压值,将电压值限制在安全电压范围内,能够避免电机的异向振动过大,有效的保护了电机的正常工作。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描 述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明电机保护方法一实施方式的流程示意图;
图2是本发明图1中步骤S100一实施方式的流程示意图;
图3是本发明原始激励电压信号的示意图;
图4是本发明原始激励电压信号的时频关系的曲线示意图;
图5是本发明原始激励电压信号的时频曲线示意图;
图6是本发明图1中步骤S200一实施方式的流程示意图;
图7是本发明异向位移保护曲线的示意图;
图8是本发明图1中步骤S200另一实施方式的流程示意图;
图9是本发明时域曲线的示意图;
图10是本发明图1中步骤S300一实施方式的流程示意图;
图11是本发明提供的振动系统中电机保护设备一实施方式的示意框图;
图12是本发明提供的计算机可读存储介质实施例的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请一并参阅图1,图1为本发明电机保护方法一实施方式的流程示意图,如图1,本发明提供的电机保护方法包括如下步骤:
S100,获取原始激励电压信号的时频曲线。
请进一步结合图2,图2为本发明步骤S100一实施方式的流程示意图,如图2步骤S100进一步包括如下子步骤:
S110,对原始激励电压信号进行傅里叶变换,以获取所述原始激励电压信号的时频关系。
本发明中对获取到的原始激励电压信号V0进行短时傅里叶变换,从而获取该原始激励电压信号的时频关系FT。结合图3和图4,图3为本发明原始激励电压信号的示意图,图4为本发明原始激励电压信号的时频关系的曲线示意图。可选地,基于短时傅里叶的时频关系分析可以参照现有技术,此处不再赘述。
S120,根据时频关系,标记每一时刻的中心频率,以获取时频曲线。
进一步,根据获取到的原始激励电压信号的时频关系FT,标记时频关系FT每一时刻的中心频率,从而获取原始激励电压信号的时频曲线FC,如图5,图5为本发明原始激励电压信号的时频曲线示意图。
S200,获取位移保护曲线,并结合时频曲线得到原始激励电压信号的时域曲线。
请进一步结合图6,图6为本发明步骤S200一实施方式的流程示意图,如图6所示本实施例中为位移保护曲线的获取方式,具体地步骤S200进一步包括如下子步骤:
S210,获取设备最大输出电压下的异向位移频响曲线。
具体地,可以通过软件仿真或者实际测量(两种方式都可以采用扫频测量响应的大小)获取设备最大输出电压Vmax下的位移频响曲线YZ。
S220,获取异向位移频响曲线中每一频率的位移响应值。
S230,分别将每一频率的位移响应值和异向位移的门限值进行计算,以得到位移保护曲线。
可以理解的是,本发明中电机结构的异向振动过大的评判标准为:振子的异向位移大小是否超过异向位移的门限值。其中不同的电机结构,其异向位移的门限值不同。如果异向振动位移大小超过该异向位移的门限值,则振子就有可能装上其他部件,导致电机不正常工作。
可选地,分别将每一频率的位移响应值YZ和结构的异向位移门限值Yzmax进行计算,以得到异向位移保护曲线DCP,如图7,图7为本发明异向位移保护曲线的示意图。其中,不同结构其异向位移门限值不同,且得到的异向位移保护曲线也不相同。具体地,分别判断异向位移频响曲线中每一频率的位移响应值YZ是否小于或等于所述异向位移的门限值Yzmax;
1、若获取到的位移响应值YZ大于异向位移门限值Yzmax,则表示移保护曲线中对应频率的位移保护值为异向位移的门限值Yzmax和所述异向位移频响曲线中对应频率的的位移响应值YZ之比,且异向位移保护曲线DCP的计算如下:
DCP=Yzmax/YZ;
2、若获取到的位移响应值YZ小于或等于异向位移门限值Yzmax,则表示位移保护曲线中对应频率的位移保护值为1,且异向位移保护曲线DCP的计算如下:
DCP=1;
可以理解的是,本发明中异向位移保护曲线DCP的横坐标为频率f,纵坐标为(0,1]的保护值(图7中的加权值),表征每个频点,位移保护值是不一样的。其中,纵坐标的位移保护值越小,则表示其保护程度越高。当D异向位移保护曲线DCP中频率取fn时,若DPC(fn)=1,则表示该频点fn不需要保护,若DPC(fn)=0.1表示该频点fn需要较大保护。
可选地,将通过上述步骤得到的异向位移保护曲线存储在设备的存储器中,以待调取使用。其中,本发明所指的设备可以是任何具备通信和存储功能的设备,例如:平板电脑、手机、电子阅读器、遥控器、个 人计算机(Personal Computer,PC)、笔记本电脑、车载设备、网络电视、可穿戴设备等具有网络功能的智能设备。
可选地,请进一步结合图8,图8为本发明步骤S200另一实施方式的流程示意图,如图8,步骤S200进一步包括如下子步骤:
S210a,分别获取时频曲线中每一时刻对应的频率信息。
进一步获取时频曲线FC中每一时刻对应的频率信息。
S220a,将每一时刻对应的频率信息分别和位移保护曲线进行对照以得到每一时刻对应的位移保护值,从而得到时域曲线。
根据时频曲线FC寻找每一时刻对应的频率,进一步对照异向位移保护曲线DCP,得到对应频率的位移保护值,如此便可得到每一时刻对应的位移保护值,从而得到时域曲线PC,如图9,图9为本发明时域曲线的示意图。
S300,根据时域曲线计算每一时刻的安全门限电压,从而得到安全门限电压曲线。
请进一步结合图10,图10为本发明步骤S300一实施方式的流程示意图,如图10,步骤S300进一步包括如下子步骤:
S310,获取设备的最大输出电压。
获取设备的最大输出电压值Xmax。
S320,根据时域曲线及设备的最大输出电压计算以得到安全门限电压曲线。
进一步,将时域曲线PC乘以设备的最大输出电压值Xmax,从而得到安全门限电压曲线VC,其表达式为:
VC=PC*Xmax;
S400,分别判断每一时刻的原始激励电压信号的电压值是否大于安全门限电压曲线对应时刻的电压值。
进一步,在得到安全门限电压曲线VC后,将原始激励电压信号和安全门限电压曲线进行比较。具体地,分别判断每一时刻的原始激励电压信号V0的电压值是否大于安全门限电压曲线VC对应时刻的电压值,即采用逐点对比的方式判断原始激励信号的电压值V0(t)是否大于对应时刻的安全门限电压VC(t),若大于则进入步骤S500,反之若小于,则进入步骤S600。
S500,根据安全门限电压曲线对应时刻的电压值修正原始激励电压信号的电压值。
若原始激励信号的电压值V0(t)>VC(t),则将原始激励信号的电压值V0(t)修正为对应时刻的安全门限电压VC(t),并输出VC(t)至振动系统,以使得设备基于修正后的原始激励电压信号的电压值进行触觉效果播放。
S600,输出原始激励电压信号的电压值。
若判断原始激励信号的电压值V0(t)<VC(t),此时无需对原始激励电压信号进行修正,直接输出该原始激励信号的电压值V0(t)至振动系统,以使得设备基于原始激励电压信号的电压值进行触觉效果播放。
上述实施方式中,通过预设异向位移保护曲线对原始激励电压信号进行修正,同时结合电机的安全门限电压值,将电压值限制在安全电压范围内,能够避免电机的异向振动过大,有效的保护了电机的正常工作。
参阅图11,图11是本发明提供的振动系统中的电机保护设备实施例的示意框图,本实施例中的电机保护设备包括处理器310及存储器320,处理器310与存储器320耦合,存储器320存储有计算机指令,处理器310在工作时执行计算机指令以实现上述任一实施例中的电机保护方法。
其中,处理器310还可以称为CPU(Central Processing Unit,中央处理单元)。处理器310可能是一种集成电路芯片,具有信号的处理能力。处理器310还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,但不仅限于此。
参阅图12,图12是本发明提供的计算机可读存储介质实施例的示意框图,本实施例中的计算机可读存储介质存储有计算机程序410,该计算机程序410能够被处理器执行以实现上述任一实施例中的电机保护方法。
可选的,该可读存储介质可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
区别于现有技术,本发明提供一种振动系统中的电机保护方法及设备、存储介质,通过预设异向位移保护曲线对原始激励电压信号进行修正,同时结合电机的安全门限电压值,将电压值限制在安全电压范围内,能够避免电机的异向振动过大,有效的保护了电机的正常工作。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种振动系统中的电机保护方法,其特征在于,所述电机保护方法包括:
    获取原始激励电压信号的时频曲线;
    获取异向位移保护曲线,并结合所述时频曲线得到所述原始激励电压信号的时域曲线;
    根据所述时域曲线计算每一时刻的安全门限电压,从而得到安全门限电压曲线;
    分别判断每一时刻的所述原始激励电压信号的电压值是否大于所述安全门限电压曲线对应时刻的电压值;
    若判断为是,则根据所述安全门限电压曲线对应时刻的电压值修正所述原始激励电压信号的电压值。
  2. 根据权利要求1所述的电机保护方法,其特征在于,所述获取原始激励电压信号的时频曲线包括:
    对所述原始激励电压信号进行傅里叶变换,以获取所述原始激励电压信号的时频关系;
    根据所述时频关系,标记每一时刻的中心频率,以获取所述时频曲线。
  3. 根据权利要求1所述的电机保护方法,其特征在于,所述获取异向位移保护曲线,并结合所述时频曲线得到所述原始激励电压信号的时域曲线包括:
    分别获取所述时频曲线中每一时刻对应的频率信息;
    将每一时刻对应的所述频率信息分别和所述异向位移保护曲线进行对照以得到每一时刻对应的位移保护值,从而得到所述时域曲线。
  4. 根据权利要求1所述的电机保护方法,其特征在于,所述根据所述时域曲线计算每一时刻的安全门限电压,以得到安全门限电压曲线包括:
    获取设备的最大输出电压;
    根据所述时域曲线及所述设备的最大输出电压计算以得到所述安全门限电压曲线。
  5. 根据权利要求1所述的电机保护方法,其特征在于,所述获取异向位移保护曲线包括:
    获取设备最大输出电压下的异向位移频响曲线;
    获取所述异向位移频响曲线中每一频率的位移响应值;
    分别将所述每一频率的位移响应值和异向位移的门限值进行计算,以得到所述异向位移保护曲线。
  6. 根据权利要求1所述的电机保护方法,其特征在于,将所述每 一频率的位移响应值和异向位移的门限值进行计算,以得到所述异向位移保护曲线包括:
    分别判断所述异向位移频响曲线中每一频率的位移响应值是否小于或等于所述异向位移的门限值;
    若判断为是,则所述位移保护曲线中对应频率的位移保护值为1;
    若判断为否,则所述位移保护曲线中对应频率的位移保护值为所述异向位移的门限值和所述异向位移频响曲线中对应频率的位移响应值之比。
  7. 根据权利要求1所述的电机保护方法,其特征在于,所述保护方法进一步包括若判断所述原始激励电压信号的电压值小于所述安全门限曲线电压对应时刻的电压值,则输出所述原始激励电压信号的电压值。
  8. 根据权利要求1所述的电机保护方法,其特征在于,所述保护方法进一步包括输出修正后的所述原始激励电压信号的电压值至振动系统,以使得设备基于修正后的所述原始激励电压信号的电压值进行触觉效果播放。
  9. 一种振动系统中的电机保护设备,其特征在于,所述电机保护设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现如权利要求1~8中任一项所述的电机保护方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行以实现如权利要求1~8中任一项所述的电机保护方法。
PCT/CN2020/104651 2020-06-24 2020-07-24 振动系统中的电机保护方法及设备、存储介质 WO2021258484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010589201.5 2020-06-24
CN202010589201.5A CN111669099B (zh) 2020-06-24 2020-06-24 振动系统中的电机保护方法及设备、存储介质

Publications (1)

Publication Number Publication Date
WO2021258484A1 true WO2021258484A1 (zh) 2021-12-30

Family

ID=72389932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104651 WO2021258484A1 (zh) 2020-06-24 2020-07-24 振动系统中的电机保护方法及设备、存储介质

Country Status (2)

Country Link
CN (1) CN111669099B (zh)
WO (1) WO2021258484A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491323B (zh) * 2020-11-27 2022-04-26 瑞声新能源发展(常州)有限公司科教城分公司 线性马达超行程控制方法、装置、计算机设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195949A (ja) * 1996-01-18 1997-07-29 Sanyo Electric Co Ltd リニアコンプレッサの駆動装置
US20180016881A1 (en) * 2016-07-16 2018-01-18 Baker Hughes Incorporated Systems and Methods for Operating a Linear Motor to Prevent Impacts with Hard Stops
CN109274309A (zh) * 2018-09-28 2019-01-25 Oppo广东移动通信有限公司 马达控制方法、装置、电子设备及存储介质
CN109361337A (zh) * 2018-12-13 2019-02-19 上海艾为电子技术股份有限公司 线性谐振装置的驱动电压波形的频率校准方法及相关装置
CN110380664A (zh) * 2019-06-24 2019-10-25 瑞声科技(新加坡)有限公司 一种马达振动控制方法、装置及计算机可读存储介质
CN111030547A (zh) * 2019-11-29 2020-04-17 瑞声科技(新加坡)有限公司 马达激励信号处理方法及装置
CN111106783A (zh) * 2019-12-18 2020-05-05 瑞声科技(新加坡)有限公司 一种信号制作方法、信号制作装置、振动马达及触屏设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111259328B (zh) * 2020-01-16 2021-03-02 东南大学 一种自由振动位移响应驱动的航天器结构非线性特征检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195949A (ja) * 1996-01-18 1997-07-29 Sanyo Electric Co Ltd リニアコンプレッサの駆動装置
US20180016881A1 (en) * 2016-07-16 2018-01-18 Baker Hughes Incorporated Systems and Methods for Operating a Linear Motor to Prevent Impacts with Hard Stops
CN109274309A (zh) * 2018-09-28 2019-01-25 Oppo广东移动通信有限公司 马达控制方法、装置、电子设备及存储介质
CN109361337A (zh) * 2018-12-13 2019-02-19 上海艾为电子技术股份有限公司 线性谐振装置的驱动电压波形的频率校准方法及相关装置
CN110380664A (zh) * 2019-06-24 2019-10-25 瑞声科技(新加坡)有限公司 一种马达振动控制方法、装置及计算机可读存储介质
CN111030547A (zh) * 2019-11-29 2020-04-17 瑞声科技(新加坡)有限公司 马达激励信号处理方法及装置
CN111106783A (zh) * 2019-12-18 2020-05-05 瑞声科技(新加坡)有限公司 一种信号制作方法、信号制作装置、振动马达及触屏设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG MINGSHENG; ZOU HUIMING; WANG MIN; TIAN CHANGQING: "Fourier Series Analysis Applied in Linear Compressor Vibration Analysis", 2018 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), IEEE, 5 August 2018 (2018-08-05), pages 1065 - 1069, XP033415806, ISBN: 978-1-5386-6074-4, DOI: 10.1109/ICMA.2018.8484394 *

Also Published As

Publication number Publication date
CN111669099B (zh) 2023-07-04
CN111669099A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
US20190235475A1 (en) Method and apparatus for controlling motor vibration
US9263184B2 (en) Simulation apparatus and simulation method
US11645562B2 (en) Search point determining method and search point determining apparatus
US9647908B2 (en) Method, apparatus and system for determining software performance
US20150323994A1 (en) Dynamic haptic effect modification
WO2021258484A1 (zh) 振动系统中的电机保护方法及设备、存储介质
CN107831899A (zh) 马达的振动控制方法、装置、移动终端和可读存储介质
WO2023202355A1 (zh) 一种基于边界面塑性模型的土体状态数据计算方法及装置
US20130166229A1 (en) Magnetic property analyzing apparatus and method
CN111552370B (zh) 振动信号的校准方法、存储介质及电子设备
CN111553097A (zh) 触控显示装置马达的驱动信号获取方法及终端设备
WO2021208121A1 (zh) 振动系统快速停止的方法、装置、计算机设备及存储介质
JP2014090213A (ja) 定電力密度スケーリングの方法
CN117079645A (zh) 语音模型优化方法、装置、设备及介质
CN111221734A (zh) 一种图形接口的验证方法、装置及计算机存储介质
CN108710434A (zh) 触控振动器的模型参数值求解方法及触控振动器
JP3636674B2 (ja) 映像の類似度評価方法及びその装置
WO2022000638A1 (zh) 一种触觉效果的实现方法及设备、计算机可读存储介质
US20150341008A1 (en) Variable equalization
WO2022000650A1 (zh) 触觉效果的优化方法及设备、计算机可读存储介质
WO2022000651A1 (zh) 马达应用频率带宽的评估方法及设备、存储介质
WO2021253557A1 (zh) 一种触觉效果的实现方法及设备、计算机可读存储介质
JP4088645B2 (ja) Lsiシステム設計方法
CN114614992B (zh) 签名值输出及验证方法、装置、计算机设备、存储介质
US20210135683A1 (en) Method, electronic device and computer program product for processing data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941717

Country of ref document: EP

Kind code of ref document: A1