WO2021125865A2 - 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 - Google Patents

양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2021125865A2
WO2021125865A2 PCT/KR2020/018621 KR2020018621W WO2021125865A2 WO 2021125865 A2 WO2021125865 A2 WO 2021125865A2 KR 2020018621 W KR2020018621 W KR 2020018621W WO 2021125865 A2 WO2021125865 A2 WO 2021125865A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
mol
doping
lithium
nickel
Prior art date
Application number
PCT/KR2020/018621
Other languages
English (en)
French (fr)
Other versions
WO2021125865A3 (ko
Inventor
박종일
남상철
이택규
최권영
박정우
이상혁
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Publication of WO2021125865A2 publication Critical patent/WO2021125865A2/ko
Publication of WO2021125865A3 publication Critical patent/WO2021125865A3/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a cathode active material a method for manufacturing the same, and a lithium secondary battery including the same.
  • the material with the highest capacity is LiNiO 2 .
  • LiNiO 2 easily collapses during charging and discharging and has low thermal stability due to oxidation number problem, making it difficult to commercialize.
  • a technology for substituting another stable transition metal for an unstable Ni site has been developed.
  • an NCM-based positive electrode active material in which Co and Mn are substituted has been developed.
  • Nb and Ta as doping elements, it is intended to provide a positive electrode active material having significantly increased initial capacity and lifespan characteristics.
  • the positive active material for a lithium secondary battery may include lithium metal oxide particles including lithium, nickel, cobalt, manganese, and doping elements, and the doping elements may include Nb and Ta.
  • a method for manufacturing a cathode active material for a lithium secondary battery includes preparing a precursor through a co-precipitation reaction after preparing a nickel raw material, a cobalt raw material, and a manganese raw material, the precursor, the lithium raw material and the doping raw material Preparing a mixture by mixing, and sintering the mixture to obtain a cathode active material, wherein the doping raw material may include an Nb oxide containing Ta, or a mixture of Nb oxide and Ta oxide.
  • a lithium secondary battery according to another embodiment may include a positive electrode including the positive electrode active material according to an embodiment, a negative electrode, and a non-aqueous electrolyte.
  • the positive active material according to an embodiment contains Nb and Ta as doping elements at the same time, initial capacity and lifespan characteristics may be remarkably improved.
  • first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and/or sections. These terms are used only to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
  • % means weight %, and 1 ppm is 0.0001 weight %.
  • a positive active material for a lithium secondary battery includes lithium metal oxide particles including lithium, nickel, cobalt, manganese, and a doping element.
  • the doping elements include Nb and Ta.
  • Doping elements known to date include, for example, mono-valent ions such as Ag + , Na + , Co 2+ , Cu 2+ , Mg 2+ , Zn 2+ , Ba 2+ , Al 3+ , Fe 3+ , Cr 3+ , Ga 3+ , Zr 4+ , and multi-valent ions such as Ti 4+ and the like. Each of these elements has different effects on the battery life and output characteristics.
  • Nb and Ta among these doping elements, room temperature and high temperature lifetime characteristics and thermal stability may be improved while securing high capacity, and initial resistance characteristics and resistance increase rate may be remarkably reduced.
  • Nb and Ta have a size of 72pm and have a size similar to 76pm, which is the size of Li ions, so that they are easily doped at the Li site.
  • Nb compounds for example, a niobium pentoxide (Nb 2 O 5 , Optical grade) compound having a sub-micron size is used as a doping element, so it is easy to dope Nb into the lithium metal oxide particles.
  • a niobium pentoxide (Nb 2 O 5 , Optical grade) compound having a sub-micron size is used as a doping element, so it is easy to dope Nb into the lithium metal oxide particles.
  • the positive active material of the present embodiment may exhibit a synergistic effect because it contains at least two doping elements, among others, Nb and Ta together.
  • the doping amount of Nb may be 0.1 mol% to 2.0 mol%, more specifically, 0.1 mol% to 1.0 mol%, based on 100 mol% of nickel, cobalt, manganese, and a doping element.
  • the doping amount of Nb satisfies the above range, excellent capacity characteristics may be exhibited and high temperature lifetime characteristics may be improved.
  • the doping amount of Ta may be 0.0001 mol% to 0.5 mol%, more specifically, 0.0015 mol% to 0.3 mol%, based on 100 mol% of nickel, cobalt, manganese, and the doping element.
  • the doping amount of Ta satisfies the above range, excellent discharge capacity and high-temperature lifespan characteristics can be remarkably improved.
  • the lithium secondary battery to which it is applied exhibits excellent capacity and, at the same time, remarkably improves high-temperature lifespan characteristics.
  • the doping element may further include one or more from the group consisting of Zr, Ti, Mg, Al, W, Mo, and B in addition to Nb and Ta.
  • characteristics such as room temperature and high temperature lifetime characteristics, resistance characteristics, and thermal stability of the lithium secondary battery may be further improved.
  • the content of nickel in the metal in the lithium metal oxide may be 80 mol% or more, more specifically 85 mol% or more, or 90 mol% or more.
  • the content of nickel in the metal in the lithium metal oxide is 80% or more, a positive electrode active material having high output characteristics can be implemented. Since the positive active material of the present embodiment having such a composition has a higher energy density per volume, the capacity of a battery to which it is applied can be improved, and it is also suitable for use in electric vehicles.
  • the grain size of the lithium metal oxide particles may be in the range of 80 nm to 210 nm, more specifically, in the range of 80 nm to 170 nm.
  • the discharge capacity is relatively decreased, so that the desired capacity cannot be secured.
  • the grain size is less than 80 nm, the discharge capacity is similarly reduced, and the lifetime characteristics are deteriorated due to cracking due to weak grain strength. That is, when the grain size satisfies the above range, since it indicates that the cathode active material is properly crystallized, both capacity and lifespan characteristics are improved.
  • the positive active material may further include a coating layer positioned on the surface of the lithium metal oxide particles.
  • the coating layer may include boron, boron oxide, lithium boron oxide, or a combination thereof.
  • the content and thickness of the coating layer can be appropriately adjusted, and there is no need to specifically limit it.
  • a method of manufacturing a cathode active material includes preparing a precursor through a co-precipitation reaction after preparing a nickel raw material, a cobalt raw material, and a manganese raw material, mixing the precursor, lithium raw material, and doping raw material into a mixture and obtaining a positive electrode active material by sintering the mixture, wherein the doping raw material may include Nb oxide containing Ta.
  • a nickel raw material, a cobalt raw material, and a manganese raw material are prepared, and then a precursor is prepared through a co-precipitation reaction.
  • the nickel raw material, the cobalt raw material, and the manganese raw material are materials in which metal cations and arbitrary anions of each raw material are ionically bonded, and are not particularly limited as long as they dissolve in water and dissociate into cations and anions.
  • a precursor of an appropriate size After preparing these raw materials, it is possible to prepare a precursor of an appropriate size by putting it into a reactor and co-precipitating it. Specifically, the precipitate obtained through the co-precipitation process is filtered and dried to prepare a precursor.
  • an Nb oxide containing Ta or a mixture of Nb oxide and Ta oxide may be used as a doping raw material.
  • the Ta content ratio may be, for example, in a range of 10% to 0.01%.
  • the positive active material doped with Nb and Ta in the same content as described in the embodiment may be manufactured. That is, when the mixing ratio of Nb and Ta satisfies the above range, the initial capacity and lifespan characteristics of the positive active material may be improved.
  • a positive active material may be obtained by calcining the mixture prepared as described above.
  • the doping amount of Nb in the positive electrode active material prepared as described above may be in the range of 0.1 mol% to 2.0 mol%, more specifically, 0.1 mol% to 1.0 mol%, based on 100 mol% of nickel, cobalt, manganese and doping elements.
  • the doping amount of Ta may be in the range of 0.0001 mol% to 0.5 mol%, more specifically, 0.0015 mol% to 0.3 mol%, based on 100 mol% of nickel, cobalt, manganese, and the doping element.
  • a detailed description of the positive active material is the same as that described in the exemplary embodiment, and thus will be omitted herein.
  • the obtaining of the positive active material may further include, more specifically, washing the mixture with water after preparing a sintered body by calcining the mixture, and forming a surface layer on the washed sintered body.
  • the firing may be performed, for example, at 700 to 800° C. for 8 to 20 hours.
  • the washing with water is to remove residual lithium present on the surface, and may be performed using, for example, distilled water.
  • the water-washed sintered body may be dried to remove moisture and the like.
  • the drying may be performed, for example, in a temperature range of 80° C. to 300° C. for 1 hour to 30 hours.
  • the step of forming a surface layer on the dried sintered body may be performed.
  • the forming of the surface layer surrounding the outer surface of the sintered body may include preparing a mixture by mixing the sintered body and raw materials for forming the surface layer and heat-treating the mixture.
  • the raw material for forming the surface layer may be, for example, at least one selected from the group consisting of B, Zr, Al, W, Nb, P, Ce, Ti, Ta, Co, Si, and Mn.
  • the step of preparing a mixture by mixing the lithium metal oxide particles and the raw material for forming the surface layer is not limited by dry mixing or wet mixing.
  • the heat treatment step for example, in a temperature range of 200 °C to 800 °C, for 1 hour to 10 hours, air (Air), oxygen (O 2 ) or nitrogen (N 2 ) To be performed in an atmosphere.
  • Air air
  • O 2 oxygen
  • N 2 nitrogen
  • a lithium secondary battery comprising a positive electrode including a positive electrode active material according to an embodiment of the present invention described above, a negative electrode including a negative electrode active material, and an electrolyte positioned between the positive electrode and the negative electrode to provide.
  • the positive active material layer may include a binder and a conductive material.
  • the binder serves to well adhere the positive active material particles to each other and also to adhere the positive active material to the current collector.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, any electronically conductive material may be used without causing chemical change.
  • the negative electrode includes a current collector and a negative active material layer formed on the current collector, and the negative active material layer includes a negative electrode active material.
  • the negative active material includes a material capable of reversibly intercalating/deintercalating lithium ions, lithium metal, an alloy of lithium metal, a material capable of doping and dedoping lithium, or a transition metal oxide.
  • the material capable of reversibly intercalating/deintercalating lithium ions is a carbon material, and any carbon-based negative active material generally used in lithium ion secondary batteries may be used, and a representative example thereof is crystalline carbon. , amorphous carbon or these may be used together.
  • the lithium metal alloy includes lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn from the group consisting of Alloys of selected metals may be used.
  • Materials capable of doping and dedoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-Y alloy (where Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, An element selected from the group consisting of rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (wherein Y is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, a rare earth) an element selected from the group consisting of elements and combinations thereof, and not Sn); and the like.
  • the negative active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder serves to well adhere the negative active material particles to each other and also to adhere the negative active material to the current collector.
  • the conductive material is used to impart conductivity to the electrode, and any electronically conductive material may be used without causing chemical change in the configured battery.
  • the current collector one selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with conductive metal, and combinations thereof may be used.
  • the negative electrode and the positive electrode are prepared by mixing an active material, a conductive material, and a binder in a solvent to prepare an active material composition, and applying the composition to a current collector. Since such an electrode manufacturing method is widely known in the art, a detailed description thereof will be omitted herein.
  • the solvent may include, but is not limited to, N-methylpyrrolidone.
  • the electrolyte includes a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the lithium salt is dissolved in an organic solvent, serves as a source of lithium ions in the battery, enables basic lithium secondary battery operation, and serves to promote movement of lithium ions between the positive electrode and the negative electrode.
  • a separator may exist between the positive electrode and the negative electrode.
  • a separator polyethylene, polypropylene, polyvinylidene fluoride, or a multilayer film of two or more layers thereof may be used, a polyethylene/polypropylene two-layer separator, a polyethylene/polypropylene/polyethylene three-layer separator, and polypropylene/polyethylene/poly It goes without saying that a mixed multilayer film such as a propylene three-layer separator or the like can be used.
  • Lithium secondary batteries can be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries depending on the type of separator and electrolyte used, and can be classified into cylindrical, prismatic, coin-type, pouch-type, etc. according to the shape. According to the size, it can be divided into a bulk type and a thin film type. Since the structure and manufacturing method of these batteries are well known in the art, a detailed description thereof will be omitted.
  • the cathode active material precursor was prepared by a general co-precipitation method.
  • NiSO 4 ⁇ 6H 2 O was used as a raw material for nickel , CoSO 4 ⁇ 7H 2 O as a raw material for cobalt , and MnSO 4 ⁇ H 2 O as a raw material for manganese. These raw materials were dissolved in distilled water to prepare an aqueous metal salt solution.
  • N 2 was purged to prevent oxidation of metal ions during the co-precipitation reaction, and the reactor temperature was maintained at 50°C.
  • NH 4 (OH) was added as a chelating agent to the co-precipitation reactor, and NaOH was used to adjust the pH.
  • the precipitate obtained according to the co-precipitation process was filtered, washed with distilled water, and dried in a cake dryer at 180° C. to prepare a cathode active material precursor.
  • composition of the prepared precursor was (Ni 0.885 Co 0.095 Mn 0.02 )(OH) 2 , and the average particle diameter (D50) was 16.5 ⁇ m.
  • the mixture was charged into a roller hearth kiln (RHK) and calcined while maintaining an oxygen atmosphere. Firing conditions were maintained at 750 °C for 10 h after raising the temperature at 750 °C for 4 h, and then cooling.
  • RHK roller hearth kiln
  • the cooled calcined product was crushed and classified, washed with distilled water, filtered, and dried.
  • the dry product was mixed with boron oxide in a proportion of 0.5 mol% and then heat-treated at 250° C. to prepare a cathode active material.
  • the prepared positive electrode active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.88 Co 0.095 Mn 0.02 )O 2 .
  • the mixture was charged into a roller hearth kiln (RHK) and calcined while maintaining an oxygen atmosphere. Firing conditions were maintained at 750 °C for 10 h after raising the temperature at 750 °C for 4 h, and then cooling.
  • RHK roller hearth kiln
  • the cooled calcined product was crushed and classified, washed with distilled water, filtered, and dried.
  • the dry product was mixed with boron oxide in a proportion of 0.5 mol% and then heat-treated at 250° C. to prepare a cathode active material.
  • the prepared positive electrode active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.884 Co 0.095 Mn 0.02 Nb 0.001 Ta 0.000005 )O 2 .
  • the positive electrode was prepared by uniformly mixing 0.003 moles (including 0.000015 moles of Ta) of Nb 2 O 5 (CBMM, Optical Grade, D50 ⁇ 1 ⁇ m, containing 1,000 ppm of Ta) when preparing the mixture.
  • An active material was prepared.
  • the prepared cathode active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.884 Co 0.095 Mn 0.02 Nb 0.003 Ta 0.0000015 )O 2 .
  • the cathode was prepared in the same manner as in Example 1, except that it was prepared by uniformly mixing 0.005 mol (including 0.000025 mol of Ta) of Nb 2 O 5 (CBMM, Optical Grade, D50 ⁇ 1 ⁇ m, containing 1,000 ppm of Ta) when preparing the mixture.
  • An active material was prepared.
  • the prepared cathode active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.884 Co 0.095 Mn 0.02 Nb 0.005 Ta 0.0000025 )O 2 .
  • Example 2 Same as Example 1, except that hydrated-Nb 2 O 5 (CBMM, HY-340, D50 ⁇ 1 ⁇ m, containing 1,000ppm of Ta) 0.001mol (including 0.000005mol of Ta) was prepared by uniformly mixing when preparing the mixture A positive electrode active material was prepared by the method.
  • CBMM, HY-340, D50 ⁇ 1 ⁇ m, containing 1,000ppm of Ta 0.001mol (including 0.000005mol of Ta) was prepared by uniformly mixing when preparing the mixture
  • a positive electrode active material was prepared by the method.
  • the prepared positive electrode active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.884 Co 0.095 Mn 0.02 Nb 0.001 Ta 0.000005 )O 2 .
  • Example 2 Same as Example 1, except that hydrated-Nb 2 O 5 (CBMM, HY-340, D50 ⁇ 1 ⁇ m, containing 1,000 ppm of Ta) 0.003 mol (including 0.000015 mol of Ta) was prepared by uniformly mixing when preparing the mixture A positive electrode active material was prepared by the method.
  • CBMM, HY-340, D50 ⁇ 1 ⁇ m, containing 1,000 ppm of Ta) 0.003 mol (including 0.000015 mol of Ta) was prepared by uniformly mixing when preparing the mixture
  • a positive electrode active material was prepared by the method.
  • the prepared positive electrode active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.884 Co 0.095 Mn 0.02 Nb 0.003 Ta 0.000015 )O 2 .
  • Example 2 Same as in Example 1, except that hydrated-Nb 2 O 5 (CBMM, HY-340, D50 ⁇ 1 ⁇ m, containing 1,000 ppm of Ta) 0.005 mol (including 0.000025 mol of Ta) was prepared by uniformly mixing when preparing the mixture A positive electrode active material was prepared by the method.
  • CBMM, HY-340, D50 ⁇ 1 ⁇ m, containing 1,000 ppm of Ta) 0.005 mol (including 0.000025 mol of Ta) was prepared by uniformly mixing when preparing the mixture
  • a positive electrode active material was prepared by the method.
  • the prepared positive electrode active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.884 Co 0.095 Mn 0.02 Nb 0.005 Ta 0.000025 )O 2 .
  • a positive active material was prepared in the same manner as in Example 1, except that 0.001 moles of ANO (ammonium niobium oxalate, manufactured by CBMM, Ta 20ppm or less) were uniformly mixed during the preparation of the mixture.
  • ANO ammonium niobium oxalate, manufactured by CBMM, Ta 20ppm or less
  • the prepared positive active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.884 Co 0.095 Mn 0.02 Nb 0.001 )O 2 .
  • a positive active material was prepared in the same manner as in Example 1, except that 0.003 moles of ANO (ammonium niobium oxalate, manufactured by CBMM, Ta or less) were uniformly mixed during the preparation of the mixture.
  • ANO ammonium niobium oxalate, manufactured by CBMM, Ta or less
  • the prepared positive active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.884 Co 0.095 Mn 0.02 Nb 0.003 )O 2 .
  • a positive active material was prepared in the same manner as in Example 1, except that 0.005 mol of ANO (ammonium niobium oxalate, manufactured by CBMM, Ta or less) was uniformly mixed during the preparation of the mixture.
  • ANO ammonium niobium oxalate, manufactured by CBMM, Ta or less
  • the prepared positive active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.880 Co 0.095 Mn 0.02 Nb 0.005 )O 2 .
  • the cathode was prepared in the same manner as in Example 1, except that 0.01 mol (including 0.00005 mol of Ta) was prepared by uniformly mixing Nb 2 O 5 (CBMM, Optical Grade, D50 ⁇ 1 ⁇ m, containing 1,000 ppm of Ta) when preparing the mixture.
  • An active material was prepared.
  • the prepared positive active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.875 Co 0.095 Mn 0.02 Nb 0.01 Ta 0.00005 )O 2 .
  • the positive electrode was prepared by uniformly mixing 0.02 mol (including 0.0001 mol of Ta) of Nb 2 O 5 (CBMM, Optical Grade, D50 ⁇ 1 ⁇ m, containing 1,000 ppm) when preparing the mixture.
  • An active material was prepared.
  • the prepared positive active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.865 Co 0.095 Mn 0.02 Nb 0.02 Ta 0.0001 )O 2 .
  • the prepared cathode active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.882 Co 0.095 Mn 0.02 Nb 0.003 Ta 0.0001 )O 2 .
  • the prepared positive active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.882 Co 0.095 Mn 0.02 Nb 0.003 Ta 0.0003 )O 2
  • a cathode active material was prepared in the same manner as in Example 1, except that 0.003 moles of Nb 2 O 5 (high purity chemistry, 99.98%, D50 ⁇ 1 ⁇ m, Ta ⁇ 10ppm or less) were uniformly mixed during the preparation of the mixture.
  • the prepared positive electrode active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.882 Co 0.095 Mn 0.02 Nb 0.003 )O 2 .
  • a cathode active material was prepared in the same manner as in Example 1, except that 0.003 moles of Ta 2 O 5 (high purity chemistry, 99.99%, D50 ⁇ 1 ⁇ m) were uniformly mixed during the preparation of the mixture.
  • the prepared cathode active material had an average particle diameter (D50) of 16 ⁇ m, and the overall composition was Li(Ni 0.882 Co 0.095 Mn 0.02 Ta 0.003 )O 2 .
  • CR2032 coin cells were manufactured using the positive active materials prepared according to Examples 1 to 11 and Comparative Examples 1 to 2, and then electrochemical evaluation was performed.
  • the positive electrode active material, polyvinylidene fluoride binder (trade name: KF1100) and denka black conductive material are mixed in a weight ratio of 96:2:2, and the mixture is mixed with N-methyl-2 so that the solid content is about 30% by weight.
  • -Pyrrolidone N-Methyl-2-pyrrolidone was added to a solvent to prepare a cathode active material slurry.
  • the slurry was coated on an aluminum foil (thickness: 15 ⁇ m) as a positive electrode current collector using a doctor blade, dried and rolled to prepare a positive electrode.
  • the loading amount of the positive electrode was about 14.6 mg/cm 2 , and the rolling density was about 3.1 g/cm 3 .
  • a 2032 coin-type half-cell was manufactured by a conventional method using the positive electrode, the lithium metal negative electrode (thickness 300 ⁇ m, MTI), the electrolyte, and a polypropylene separator.
  • Capacity evaluation was 200mAh/g as a reference capacity, and charging/discharging conditions were applied constant current (CC) / constant voltage (CV) 2.5V to 4.25V, cut-off of 0.005C.
  • the initial capacity was 0.1C charge/0.1C discharge once charged and discharged, the discharge capacity was measured, and the results are shown in Table 1 below as the discharge capacity.
  • the initial resistance value was calculated by measuring the voltage change after 60 seconds in the 0.2C equation condition and shown in Table 1 below.
  • the cycle life characteristics are shown in Table 1 below by measuring the 30th capacity ratio to the first capacity after measuring 30 times under 0.33C charge/0.33C discharge conditions at high temperature (45°C).
  • the crystalline sizes of the positive active materials prepared according to Examples 1 to 13 and Comparative Example 1 were obtained by X-ray diffraction measurement using CuK ⁇ rays. The measured grain sizes are shown in Table 1 below.
  • the initial capacity at room temperature was 219 mAh/g and the capacity retention rate was 80.4% after 30 cycles compared to the initial.
  • the optimal range for the Nb oxide containing Ta is that the Ta content ratio (Ta/Nb) is in the range of 10% to 0.01%, as shown in this example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 실시예들은, 양극 활물질 및 이를 포함하는 리튬 이차 전지에 관한 것이다. 일 실시예에 따르면, 리튬, 니켈, 코발트, 망간 및 도핑 원소를 포함하는 리튬 금속 산화물 입자를 포함하고, 상기 도핑 원소는 Nb 및 Ta를 포함하는 리튬 이차 전지용 양극 활물질을 제공할 수 있다.

Description

양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지에 대한 것이다.
최근 IT 모바일 기기 및 소형 전력구동장치(e-bike, 소형 EV등)의 폭발적인 수요증대, 주행거리 400km이상의 전기차 개발 요구에 힘입어 이를 구동하기 위한 고용량, 고에너지 밀도를 갖는 이차전지 개발이 전세계적으로 활발히 진행되고 있다. 이러한 고용량 전지를 제조하기 위해서는 양극재의 영향이 절대적이다.
현존하는 층상계(layered) 양극 활물질 중 가장 용량이 높은 소재는 LiNiO2이다. 그러나, LiNiO2는 충방전시 구조붕괴가 쉽게 일어나고 산화수 문제에 의한 열적 안정성이 낮아 상용화가 어려운 실정이다. 이러한 문제를 해결하기 위해서 불안정한 Ni 자리(site)에 다른 안정한 전이금속을 치환하는 기술이 개발되었으며, 그 예로 Co 및 Mn이 치환된 NCM계 양극 활물질이 개발되었다.
그러나 NCM계 양극 활물질의 경우 고용량 확보를 위하여 니켈의 함량을 증가시키면 구조적으로 불안정해지는 문제가 있다.
따라서, 니켈 함량이 높은 니켈코발트망간계 양극 활물질의 구조적 안정성을 향상시키고, 우수한 용량을 확보하면서도 수명 및 저항 특성이 우수하고 열 안정성도 뛰어난 양극 활물질의 개발이 시급하다.
본 실시예에서는 Nb 및 Ta를 도핑 원소로 적용함으로써 초기 용량 및 수명 특성이 현저하게 증가된 양극 활물질을 제공하고자 한다.
일 실시예에 따른 리튬 이차 전지용 양극 활물질은, 리튬, 니켈, 코발트, 망간 및 도핑 원소를 포함하는 리튬 금속 산화물 입자를 포함하고, 상기 도핑 원소는 Nb 및 Ta를 포함할 수 있다.
다른 실시예에 따른 리튬 이차 전지용 양극 활물질의 제조방법은, 니켈 원료 물질, 코발트 원료 물질 및 망간 원료 물질을 준비한 후 공침 반응을 통해 전구체를 제조하는 단계, 상기 전구체, 리튬 원료 물질 및 도핑 원료 물질을 혼합하여 혼합물을 제조하는 단계, 상기 혼합물을 소성하여 양극 활물질을 수득하는 단계를 포함하고, 상기 도핑 원료 물질은 Ta를 포함하고 있는 Nb 산화물, 또는 Nb 산화물과 Ta 산화물의 혼합물을 포함할 수 있다.
또 다른 실시예에 따른 리튬 이차 전지는, 일 실시예에 따른 양극 활물질을 포함하는 양극, 음극, 및 비수 전해질을 포함할 수 있다.
일 실시예에 따른 양극 활물질은, 도핑 원소로 Nb 및 Ta를 동시에 포함하기 때문에 초기 용량 및 수명 특성을 현저하게 향상시킬 수 있다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
일 실시예에 따른 리튬 이차 전지용 양극 활물질은, 리튬, 니켈, 코발트, 망간 및 도핑 원소를 포함하는 리튬 금속 산화물 입자를 포함한다.
상기 도핑 원소는 Nb 및 Ta를 포함한다.
리튬 금속 산화물을 도핑하여 수명 및 다양한 전기 화학적 성능을 확보하기 위해서는 도핑 원소의 선정이 중요하다. 현재까지 알려진 도핑 원소로는 예를 들면, Ag+, Na+와 같은 1가 이온(mono-valent)과 Co2+, Cu2+, Mg2+, Zn2+, Ba2+, Al3+, Fe3+, Cr3+, Ga3+, Zr4+, Ti4+와 같은 2가 이상의 다가 이온(multi-valent)등이 있다. 이러한 원소 별로 전지의 수명 및 출력 특성에 미치는 영향이 다르다.
본 실시예에서는 이러한 도핑 원소 중 Nb 및 Ta를 포함함으로써, 고 용량을 확보하면서도 상온 및 고온 수명 특성과 열 안정성을 향상시키고, 초기 저항 특성 및 저항 증가율을 현저하게 감소시킬 수 있다.
구체적으로, Nb 및 Ta는 +3가의 이온일 경우 72pm 크기를 가지며, Li이온 크기인 76pm와 유사한 크기를 가져 쉽게 Li 자리에 도핑이 이루어 지며, +5가의 이온은 Ni 자리에 도핑되기 때문에 Li이 빠져나가는 충전상태에서 Ni 이온 가를 좀더 안정적으로 만들어주어 리튬 이차 전지의 방전 용량 및 수명특성을 획기적으로 향상시킬 수 있다.
본 발명에서는 Nb 화합물 중에서도, 예를 들면, 서브 마이크론 크기의 오산화 니오븀(Nb2O5, Optical grade) 화합물을 도핑 원소로 이용하기 때문에 리튬 금속 산화물 입자 내에 Nb 도핑이 쉽다.
즉, 본 실시예의 양극 활물질은 단일 원소 도핑과는 달리 적어도 2개의 도핑 원소, 그 중에서도 Nb 및 Ta를 함께 포함하기 때문에 시너지 효과를 나타낼 수 있다.
본 실시예에서, 상기 Nb의 도핑량은 니켈, 코발트, 망간 및 도핑 원소 100 몰%에 대하여, 0.1몰% 내지 2.0몰%, 보다 구체적으로, 0.1몰% 내지 1.0몰% 일 수 있다. Nb의 도핑량이 상기 범위를 만족하는 경우, 우수한 용량 특성을 나타냄과 동시에 고온 수명 특성을 향상시킬 수 있다.
상기 Ta의 도핑량은 니켈, 코발트, 망간 및 도핑 원소 100 몰%에 대하여, 0.0001몰% 내지 0.5몰%, 보다 구체적으로, 0.0015몰% 내지 0.3몰% 일 수 있다. Ta의 도핑량이 상기 범위를 만족하는 경우, 우수한 방전용량과 고온 수명 특성을 현저하게 향상시킬 수 있다.
이와 같이, 본 실시예의 양극 활물질은 도핑 원소로 Nb 및 Ta을 포함하기 때문에 이를 적용한 리튬 이차 전지는 우수한 용량을 나타냄과 동시에, 고온 수명 특성이 획기적으로 향상된다.
이러한 효과는 Nb 및 Ta를 함께 도핑 원소로 사용하는 경우 얻어지는 것으로서, 만약 이 중에서 하나라도 포함하지 않는 경우에는 원하는 물성을 얻을 수 없다.
아울러 상기 도핑 원소는 Nb 및 Ta 외에 Zr, Ti, Mg, Al, W, Mo 및 B로 이루어진 그룹으로부터 1종 이상을 더 포함할 수 있다.
이러한 도핑 원소를 더 포함하는 경우, 리튬 이차 전지의 상온 및 고온 수명 특성, 저항 특성, 열 안정성 등의 특성을 보다 향상시킬 수 있다.
한편, 본 실시예에서, 상기 리튬 금속 산화물 내 금속 중 니켈의 함량은 80몰% 이상, 보다 구체적으로 85몰% 이상 또는 90 몰% 이상일 수 있다.
본 실시예와 같이 리튬 금속 산화물 내 금속 중 니켈의 함량이 80% 이상인 경우 고출력 특성을 갖는 양극 활물질을 구현할 수 있다. 이러한 조성을 갖는 본 실시예의 양극 활물질은 부피당 에너지 밀도가 높아지므로 이를 적용하는 전지의 용량을 향상시킬 수 있으며, 전기 자동차 용으로 사용하기에도 적합하다.
본 실시예에서 상기 리튬 금속 산화물 입자의 결정립 크기는 80nm 내지 210nm 범위, 보다 구체적으로 80nm 내지 170nm 범위일수 있다. 결정립 크기가 210nm를 초과하는 경우 방전 용량이 상대적을 감소하여 원하는 용량을 확보할 수 없다. 또한, 결정립 크기가 80nm 미만인 경우도 마찬가지로 방전용량이 감소하고, 입자강도가 약해 깨짐으로 인한 수명특성 저하가 발생한다. 즉, 결정립 크기가 상기 범위를 만족하는 경우 양극 활물질의 결정화가 적절하게 이루어진 것을 나타내기 때문에 용량 및 수명 특성이 모두 향상된다.
일 실시예에서, 상기 양극 활물질은 리튬 금속 산화물 입자 표면에 위치하는 코팅층을 더 포함할 수도 있다. 상기 코팅층은 보론, 보론 산화물, 리튬 보론 산화물 또는 이들의 조합을 포함할 수 있다. 다만 이는 예시일 뿐, 양극 활물질에 사용되는 다양한 코팅 물질이 이용될 수 있다. 또한, 상기 코팅층의 함량 및 두께는 적절하게 조절할 수 있으며, 특별하게 한정할 필요는 없다.
다른 실시예에 따른 양극 활물질의 제조방법은, 니켈 원료 물질, 코발트 원료 물질 및 망간 원료 물질을 준비한 후 공침 반응을 통해 전구체를 제조하는 단계, 상기 전구체, 리튬 원료 물질 및 도핑 원료 물질을 혼합하여 혼합물을 제조하는 단계, 상기 혼합물을 소성하여 양극 활물질을 수득하는 단계를 포함하고, 상기 도핑 원료 물질은 Ta를 포함하고 있는 Nb 산화물을 포함할 수 있다.
먼저, 니켈 원료 물질, 코발트 원료 물질 및 망간 원료 물질을 준비한 후, 공침 반응을 통해 전구체를 제조한다.
니켈 원료 물질, 코발트 원료 물질 및 망간 원료 물질은, 각 원료 물질의 금속 양이온 및 임의의 음이온이 이온 결합된 물질로, 물에 용해되어 양이온 및 음이온으로 해리되는 물질이라면 특별히 제한되지 않는다.
이들 원료 물질들을 준비한 후 반응기에 투입하여 공침시킴으로써 적절한 크기의 전구체를 제조할 수 있다. 구체적으로 공침 공정을 통해 수득된 침전물을 여과 및 건조 후 전구체를 제조한다.
이러한 공침 반응의 구체적인 조건, 여과 및 건조 조건은 특별히 제한되지 않으며, 당업계에 알려진 통상의 방법으로 수행될 수 있다.
다음, 수득된 상기 전구체, 리튬 원료 물질 및 도핑 원료 물질을 혼합하여 혼합물을 제조한다. 본 실시예에서는 도핑 원료 물질로 Ta를 포함하고 있는 Nb 산화물 또는 Nb 산화물과 Ta 산화물의 혼합물을 사용할 수 있다.
상기 Ta를 포함하고 있는 Nb 산화물, 또는 Nb 산화물과 Ta 산화물의 혼합물에서, Ta 함량 비율(Ta/Nb)은 예를 들면, 10% 내지 0.01% 범위일 수 있다. Nb 및 Ta의 혼합비율이 상기 범위를 만족하는 경우 일 실시예에 기재된 것과 같은 함량으로 Nb 및 Ta가 도핑된 양극 활물질을 제조할 수 있다. 즉, Nb 및 Ta의 혼합비율이 상기 범위를 만족하는 경우 양극 활물질의 초기 용량 및 수명 특성을 향상시킬 수 있다.
상기와 같이 제조된 혼합물을 소성하여 양극 활물질을 수득할 수 있다.
이와 같이 제조된 양극 활물질에서 Nb의 도핑량은 니켈, 코발트, 망간 및 도핑 원소 100 몰%에 대하여, 0.1몰% 내지 2.0몰%, 보다 구체적으로, 0.1몰% 내지 1.0몰% 범위일 수 있다. 또한, Ta의 도핑량은 니켈, 코발트, 망간 및 도핑 원소 100 몰%에 대하여, 0.0001몰% 내지 0.5몰%, 보다 구체적으로, 0.0015몰% 내지 0.3몰% 범위일 수 있다. 양극 활물질에 대한 구체적인 설명은 일 실시예에서 설명한 것과 동일한 바 여기서는 생략하기로 한다.
한편, 상기 양극 활물질을 수득하는 단계는, 보다 구체적으로, 상기 혼합물을 소성하여 소성체를 제조한 후 수세하는 단계, 그리고 수세된 소성체에 표면층을 형성하는 단계를 더 포함할 수 있다.
상기 소성하는 단계는 예를 들면, 700 내지 800℃ 범위에서 8 내지 20 시간 동안 수행될 수 있다.
상기 수세하는 단계는 표면에 존재하는 잔류리튬을 제거하기 위한 것으로, 예를 들면, 증류수를 이용하여 수행될 수 있다.
다음, 상기 수세된 소성체는 건조하여 수분 등을 제거할 수 있다. 상기 건조는, 예를 들어, 80℃ 내지 300℃의 온도 범위에서, 1 시간 내지 30 시간 동안 수행될 수 있다.
다음, 상기 건조된 소성체에 표면층을 형성하는 단계를 수행할 수 있다.
구체적으로, 소성체의 외면을 둘러싸는 표면층을 형성하는 단계는, 상기 소성체 및 표면층 형성을 위한 원료 물질을 혼합하여 혼합물을 제조하는 단계와 상기 혼합물을 열처리는 단계를 포함할 수 있다.
상기 표면층 형성을 위한 원료 물질은, 예를 들면, B, Zr, Al, W, Nb, P, Ce, Ti, Ta, Co, Si 및 Mn로 이루어진 그룹으로부터 선택된 하나 이상일 수 있다. 상기 리튬 금속 산화물 입자 및 표면층 형성을 위한 원료 물질을 혼합하여 혼합물을 제조하는 단계는 건식 혼합 또는 습식 혼합 방식에 구애 받지 않는다.
다음으로, 상기 열처리 하는 단계는, 예를 들면, 200℃ 내지 800℃ 의 온도 범위에서, 1 시간 내지 10 시간 동안, 공기(Air), 산소(O2) 또는 질소(N2) 분위기에서 수행될 수 있다.
본 실시예의 양극 활물질을 제조하기 위한 보다 상세한 조건에 대해서는 후술하는 실시예에서 보다 구체적으로 설명 하도록 한다.
본 발명의 또 다른 실시예에서는, 전술한 본 발명의 일 구현예에 따른 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 및 상기 양극 및 음극 사이에 위치하는 전해질을 포함하는 리튬 이차 전지를 제공한다.
상기 양극 활물질과 관련된 설명은 전술한 본 발명의 일 실시예와 동일하기 때문에 생략하도록 한다.
상기 양극 활물질층은 바인더 및 도전재를 포함할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 활물질을 포함한다.
상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다. 상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 음극과 양극은 활물질, 도전재 및 결착제를 용매 중에서 혼합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피롤리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수 도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
이하, 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
제조예 1 -NCM 전구체의 제조
양극 활물질 전구체는 일반적인 공침법에 의해 제조하였다.
니켈 원료 물질로는 NiSO4·6H2O, 코발트 원료 물질로는 CoSO4·7H2O, 망간 원료 물질로는 MnSO4·H2O을 이용하였다. 이들 원료를 증류수에 용해시켜 금속염 수용액을 제조하였다.
공침 반응기를 준비한 후, 공침 반응 시 금속 이온의 산화를 방지하기 위해 N2를 퍼징(purging)하였으며, 반응기 온도는 50℃를 유지하였다.
상기 공침 반응기에 킬레이팅제로 NH4(OH)를 투입하였고, pH조절을 위해 NaOH를 사용하였다. 공침 공정에 따라 수득된 침전물을 여과하고, 증류수로 세척한 후, 180℃ Cake dryer에서 건조하여 양극 활물질 전구체를 제조하였다.
제조된 전구체의 조성은 (Ni0.885Co0.095Mn0.02)(OH)2 이고, 평균 입경(D50)은 16.5㎛였다.
비교예 1 - 도핑 안된 양극 활물질의 제조
상기 제조예 1에서 제조한 전구체 1몰을 기준으로, LiOH·H2O(강펑, battery grade) 1.05몰을 균일하게 혼합하여 혼합물을 제조하였다.
상기 혼합물을 RHK(Roller hearth Kiln)에 장입하여 산소 분위기를 유지하면서 소성하였다. 소성조건은 750℃에서 4h 승온 후 750℃에서 10h 유지하였으며, 이후 냉각하였다.
냉각된 소성품은 해쇄 및 분급을 거친 후 증류수로 세척하여 필터링 한 후 건조하였다. 건조품은 0.5mol% 비율의 보론 산화물과 함께 혼합 후 250℃에서 열처리하여 양극 활물질을 제조하였다. 제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.88Co0.095Mn0.02)O2 이었다.
실시예 1 - Nb 0.001몰 + Ta 0.000005몰 도핑
상기 제조예 1에서 제조한 전구체 1몰을 기준으로, LiOH·H2O(강펑, battery grade) 1.05몰, Nb2O5(CBMM, Optical Grade, D50≤1㎛, Ta 1,000ppm 함유) 0.001몰(Ta 0.000005몰 포함)을 균일하게 혼합하여 혼합물을 제조하였다.
상기 혼합물을 RHK(Roller hearth Kiln)에 장입하여 산소 분위기를 유지하면서 소성하였다. 소성조건은 750℃에서 4h 승온 후 750℃에서 10h 유지하였으며, 이후 냉각하였다.
냉각된 소성품은 해쇄 및 분급을 거친 후 증류수로 세척하여 필터링 한 후 건조하였다. 건조품은 0.5mol% 비율의 보론 산화물과 함께 혼합 후 250℃에서 열처리하여 양극 활물질을 제조하였다. 제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.884Co0.095Mn0.02Nb0.001Ta0.000005)O2 이었다.
실시예 2 - Nb 0.003몰 + Ta 0. 000015몰 도핑
혼합물 제조시 Nb2O5(CBMM, Optical Grade, D50≤1㎛, Ta 1,000ppm 함유) 0.003몰(Ta 0.000015몰 포함)을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.884Co0.095Mn0.02Nb0.003Ta0.0000015)O2 이었다.
실시예 3 - Nb 0.005몰 + Ta 0.000025몰 도핑
혼합물 제조시 Nb2O5(CBMM, Optical Grade, D50≤1㎛, Ta 1,000ppm 함유) 0.005몰(Ta 0.000025몰 포함)을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다. 제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.884Co0.095Mn0.02Nb0.005Ta0.0000025)O2 이었다.
실시예 4 - Nb 0.001몰 + Ta 0.000005몰 도핑
혼합물 제조시 hydrated-Nb2O5(CBMM, HY-340, D50≤1㎛, Ta 1,000ppm 함유) 0.001몰(Ta 0.000005몰 포함)을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.884Co0.095Mn0.02Nb0.001Ta0.000005)O2 이었다.
실시예 5 - Nb 0.003몰 + Ta 0.000015몰 도핑
혼합물 제조시 hydrated-Nb2O5(CBMM, HY-340, D50≤1㎛, Ta 1,000ppm 함유) 0.003몰(Ta 0.000015몰 포함)을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.884Co0.095Mn0.02Nb0.003Ta0.000015)O2 이었다.
실시예 6 - Nb 0.005몰 + Ta 0.000025몰 도핑
혼합물 제조시 hydrated-Nb2O5(CBMM, HY-340, D50≤1㎛, Ta 1,000ppm 함유) 0.005몰(Ta 0.000025몰 포함)을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.884Co0.095Mn0.02Nb0.005Ta0.000025)O2 이었다.
비교예 2 - Nb 0.001몰 도핑
혼합물 제조시 ANO(ammonium niobium oxalate, 제조사 CBMM, Ta 20ppm 이하) 0.001몰을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.884Co0.095Mn0.02Nb0.001)O2 이었다.
비교예 3 - Nb 0.003몰 도핑
혼합물 제조시 ANO(ammonium niobium oxalate, 제조사 CBMM, Ta 20ppm 이하) 0.003몰을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.884Co0.095Mn0.02Nb0.003)O2 이었다.
비교예 4 - Nb 0.005몰 도핑
혼합물 제조시 ANO(ammonium niobium oxalate, 제조사 CBMM, Ta 20ppm 이하) 0.005몰을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.880Co0.095Mn0.02Nb0.005)O2 이었다.
실시예 7 - Nb 0.01몰 + Ta 0.00005몰 도핑
혼합물 제조시 Nb2O5(CBMM, Optical Grade, D50≤1㎛, Ta 1,000ppm 함유) 0.01몰(Ta 0.00005몰 포함)을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.875Co0.095Mn0.02Nb0.01Ta0.00005)O2 이었다.
실시예 8 - Nb 0.02몰 + Ta 0.0001몰 도핑
혼합물 제조시 Nb2O5(CBMM, Optical Grade, D50≤1㎛, Ta 1,000ppm 함유) 0.02몰(Ta 0.0001몰 포함)을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.865Co0.095Mn0.02Nb0.02Ta0.0001)O2 이었다.
실시예 9 - Nb 0.003몰 + Ta 0.0001몰 도핑
혼합물 제조시 Nb2O5(고순도화학, 99.98%, D50≤1㎛, Ta <10ppm 이하) 0.003몰과 Ta2O5(고순도화학, 99.99%, D50≤1㎛) 0.0001몰을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.882Co0.095Mn0.02Nb0.003Ta0.0001)O2 이었다.
실시예 10 - Nb 0.003몰 + Ta 0.0003몰 도핑
혼합물 제조시 Nb2O5(고순도화학, 99.98%, D50≤1㎛, Ta <10ppm 이하) 0.003몰과 Ta2O5(고순도화학, 99.99%, D50≤1㎛) 0.0003몰을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.882Co0.095Mn0.02Nb0.003Ta0.0003)O2 이었다
비교예 2 - Nb 0.003몰 도핑
혼합물 제조시 Nb2O5(고순도화학, 99.98%, D50≤1㎛, Ta <10ppm 이하) 0.003몰을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.882Co0.095Mn0.02Nb0.003)O2 이었다.
비교예 3 - Ta 0.003몰 도핑
혼합물 제조시 Ta2O5(고순도화학, 99.99%, D50≤1㎛) 0.003몰을 균일하게 혼합하여 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
제조된 양극 활물질은 평균 입경(D50)이 16㎛이고, 전체 조성은 Li(Ni0.882Co0.095Mn0.02Ta0.003)O2 이었다.
실험예 1 - 전기 화학 평가
(1) 코인형 반쪽 전지 제조
실시예 1 내지 11 및 비교예 1 내지 2에 따라 제조된 양극 활물질을 이용하여 CR2032코인셀을 제조한 후 전기화학 평가를 진행하였다.
구체적으로, 양극 활물질, 폴리비닐리덴 플루오라이드 바인더(상품명: KF1100) 및 덴카블랙 도전재를 96:2:2의 중량비로 혼합하고, 이 혼합물을 고형분이 약 30 중량%가 되도록 N-메틸-2-피롤리돈(N-Methyl-2-pyrrolidone) 용매에 첨가하여 양극 활물질 슬러리를 제조하였다.
상기 슬러리를 닥터 블레이드(Doctor blade)를 이용하여 양극 집전체인 알루미늄 포일(Al foil, 두께: 15 ㎛) 상에 코팅하고, 건조한 후 압연하여 양극을 제조하였다. 상기 양극의 로딩량은 약 14.6 mg/㎠이었고, 압연 밀도는 약 3.1g/cm3이었다.
상기 양극, 리튬 금속 음극(두께 300㎛, MTI), 전해액과 폴리프로필렌 세퍼레이터를 사용하여 통상의 방법으로 2032 코인형 반쪽 전지를 제조하였다. 상기 전해액은 1M LiPF6를 에틸렌 카보네이트, 디메틸 카보네이트 및 에틸메틸 카보네이트 (EMC)의 혼합 용매(혼합비 EC:DMC:EMC=3:4:3 부피%)에 용해시켜 혼합 용액을 제조한 후 여기에 비닐렌 카보네이트(VC) 1.5 중량%를 첨가하여 사용하였다.
(2) 충방전 특성 평가
상기 (1)에서 제조된 코인형 반쪽 전지를 상온(25℃에서 10시간 동안 에이징(aging)한 후, 충방전 테스트를 진행하였다.
용량평가는 200mAh/g을 기준 용량으로 하였고, 충방전 조건은 정전류(CC) / 정전압(CV) 2.5V 내지 4.25V, 0.005C 컷-오프를 적용하였다.
초기 용량은 0.1C 충전/0.1C 방전 1회 충방전을 실시하여, 방전 용량을 측정한 후, 그 결과를 방전 용량으로 하기 표 1에 나타내었다.
초기 저항 값은 0.2C 방정 조건에서 60초후의 전압 변동을 측정하여 계산하여 하기 표 1에 나타내었다.
사이클 수명 특성은 고온(45℃)에서 0.33C충전/0.33C 방전 조건에서 30회를 측정 후 첫번째 용량 대비 30번째 용량 비율을 측정하여 하기 표 1에 나타내었다.
실험예 2 - 결정립 크기 측정
상기 실시예 1 내지 13 및 비교예 1에 따라 제조된 양극 활물질의 결정립 크기(crystalline size)를 CuKα선을 사용하여 X-선 회절 측정으로 얻었다. 측정된 결정립 크기를 하기 표 1에 나타내었다.
구분 Nb
도핑량
(mol)
Ta
도핑량
(mol)
0.1C
충전용량
(mAh/g)
0.1C
방전용량
(mAh/g)
효율
(%)
초기저항
(Ω)
45℃
싸이클 수명
[@30th, %]
결정립 크기
(nm)
비교예 1 0 0 238 219.0 92.0 29.5 80.4 142
실시예 1 0.001 0.000005 230.1 220.1 95.3 27.7 86.3 210
실시예 2 0.003 0.000015 231.5 222.0 95.9 26.7 90.3 176
실시예 3 0.005 0.000025 232.2 223.2 96.1 26.4 97.8 106
실시예 4 0.001 0.000005 233.7 221.1 94.6 27.8 84.3 209
실시예 5 0.003 0.000015 234.0 220.4 94.2 27.9 86.3 172
실시예 6 0.005 0.000025 234.4 223.8 95.5 27.9 89.1 120
비교예 2 0.001 0 234.5 221.9 94.6 29.0 89.5 217
비교예 3 0.003 0 231.4 216.5 93.5 28.4 88.8 160
비교예 4 0.005 0 233.6 214.5 91.8 28.5 93.6 133
실시예 7 0.01 0.00005 233.9 225.6 96.4 26.7 92.2 91
실시예 8 0.02 0.0001 233.6 219.5 94.3 27.5 89.6 79
실시예 9 0.003 0.0001 234.3 219.7 93.8 27.5 94.3 134
실시예 10 0.003 0.0003 233.9 219.7 93.9 26.3 95.5 121
비교예 5 0.003 0 233.3 217.1 93.5 28.3 89.2 189
표 1을 참고하면, 도핑 하지 않은 비교예 1의 양극 활물질의 경우 상온 초기 용량이 219mAh/g이면서 초기 대비 30회 사이클 진행 후 80.4%의 용량 유지율(retention capacity)를 나타내었다.
이에 반해, Nb 및 Ta를 함께 도핑한 실시예 1 내지 10의 양극 활물질은 비교예 1에 비해 초기 용량 및 사이클 수명 특성이 모두 증가한 것을 확인할 수 있다.
한편, Nb 도핑 원료 중 상대적으로 Ta 함량이 < 100ppm 수준으로 낮은 소재인 암모늄 니오븀 옥살레이트(ammonium niobium oxalate)를 0.001몰 정도로 소량 사용한 비교예 2의 경우, 초기 저항이 증가하는 것을 확인할 수 있다.
또한, 암모늄 니오븀 옥살레이트의 사용량을 늘린 비교예 3 및 4의 경우에는 용량이 감소하는 문제점이 있는 것을 알 수 있다.
따라서, Ta를 포함하고 있는 Nb 산화물은, 본 실시예에서 제시한 바와 같이, Ta 함량 비율(Ta/Nb)이 10% 내지 0.01% 범위인 것이 최적 범위임을 확인할 수 있다.
한편, 순도 99.99%의 Nb만 도핑한 비교예 5의 경우에서도 활물질의 방전 용량이 217mAh/g로 감소하여 Ta 및 Nb가 도핑된 실시예 1 내지 10의 양극 활물질과 비교할 때, 용량이 저하되고, 초기저항은 증가함을 확인할 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (11)

  1. 리튬, 니켈, 코발트, 망간 및 도핑 원소를 포함하는 리튬 금속 산화물 입자를 포함하고,
    상기 도핑 원소는 Nb 및 Ta를 포함하는 리튬 이차 전지용 양극 활물질.
  2. 제1항에 있어서,
    상기 도핑 원소는 Zr, Ti, Mg, Al, W, Mo 및 B로 이루어진 그룹으로부터 1종 이상을 더 포함하는 리튬 이차 전지용 양극 활물질.
  3. 제1항에 있어서,
    상기 Nb의 도핑량은 니켈, 코발트, 망간 및 도핑 원소 100 몰%에 대하여, 0.1몰% 내지 2몰%인 리튬 이차 전지용 양극 활물질.
  4. 제1항에 있어서,
    상기 Ta의 도핑량은 니켈, 코발트, 망간 및 도핑 원소 100 몰%에 대하여, 0.0015몰% 내지 0.5몰%인 리튬 이차 전지용 양극 활물질.
  5. 제1항에 있어서,
    상기 리튬 금속 산화물 입자의 결정립 크기는 80nm 내지 210nm 범위인 리튬 이차 전지용 양극 활물질.
  6. 제1항에 있어서,
    상기 리튬 금속 산화물 입자 내 금속 중 니켈의 함량은 80몰% 이상인 리튬 이차 전지용 양극 활물질.
  7. 니켈 원료 물질, 코발트 원료 물질 및 망간 원료 물질을 준비한 후 공침 반응을 통해 전구체를 제조하는 단계;
    상기 전구체, 리튬 원료 물질 및 도핑 원료 물질을 혼합하여 혼합물을 제조하는 단계;
    상기 혼합물을 소성하여 양극 활물질을 수득하는 단계;
    상기 활물질을 코팅 열처리하여 최종 양극 활물질을 수득하는 단계
    를 포함하고,
    상기 도핑 원료 물질은 Ta를 포함하고 있는 Nb 산화물 Ta를 포함하고 있는 Nb 산화물, 또는 Nb 산화물과 Ta 산화물의 혼합물을 포함하는 리튬 이차 전지용 양극 활물질의 제조방법.
  8. 제7항에 있어서,
    상기 Ta를 포함하고 있는 Nb 산화물, 또는 Nb 산화물과 Ta 산화물의 혼합물에서, Ta 함량 비율(Ta/Nb)은 10% 내지 0.01% 범위인 리튬 이차 전지용 양극 활물질의 제조방법.
  9. 제7항에 있어서,
    상기 양극 활물질에서 Nb의 도핑량은 니켈, 코발트, 망간 및 도핑 원소 100 몰%에 대하여, 0.1몰% 내지 2몰%인 리튬 이차 전지용 양극 활물질의 제조방법.
  10. 제7항에 있어서,
    상기 양극 활물질에서 Ta의 도핑량은 니켈, 코발트, 망간 및 도핑 원소 100 몰%에 대하여, 0.0015몰% 내지 0.5몰%인 리튬 이차 전지용 양극 활물질의 제조방법.
  11. 제1항 내지 제6항 중 어느 한 항의 양극 활물질을 포함하는 양극;
    음극; 및
    비수 전해질
    을 포함하는 리튬 이차 전지.
PCT/KR2020/018621 2019-12-20 2020-12-18 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 WO2021125865A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0172469 2019-12-20
KR1020190172469A KR20210080081A (ko) 2019-12-20 2019-12-20 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Publications (2)

Publication Number Publication Date
WO2021125865A2 true WO2021125865A2 (ko) 2021-06-24
WO2021125865A3 WO2021125865A3 (ko) 2021-08-05

Family

ID=76477884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018621 WO2021125865A2 (ko) 2019-12-20 2020-12-18 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Country Status (2)

Country Link
KR (1) KR20210080081A (ko)
WO (1) WO2021125865A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230034556A (ko) * 2021-09-03 2023-03-10 포스코홀딩스 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609544B1 (ko) * 2013-03-26 2016-04-06 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
KR20170063387A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR102024744B1 (ko) * 2016-12-28 2019-09-25 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019013605A1 (ko) * 2017-07-14 2019-01-17 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
CN110268560B (zh) * 2017-09-19 2022-04-26 株式会社Lg化学 二次电池用正极活性材料以及包含其的锂二次电池

Also Published As

Publication number Publication date
WO2021125865A3 (ko) 2021-08-05
KR20210080081A (ko) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2019151813A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2019151814A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019168301A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019059552A2 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021125877A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2018038501A1 (ko) 리튬이온전지용 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬이온전지
WO2019225879A1 (ko) 리튬 이차전지용 음극활물질 및 이의 제조방법
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2019245286A1 (ko) 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2021125865A2 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2021125870A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2020153701A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2022203434A1 (ko) 양극 활물질의 제조방법
WO2020111318A1 (ko) 리튬 이차전지용 양극 활물질
WO2019093869A2 (ko) 이차전지용 양극 활물질의 제조방법
WO2022092488A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904178

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904178

Country of ref document: EP

Kind code of ref document: A2