WO2021125844A1 - 인간 만능 줄기세포로부터 제작된 3d 오가노이드를 해체하여 희소돌기아교세포를 다량 확보하는 분화방법 - Google Patents

인간 만능 줄기세포로부터 제작된 3d 오가노이드를 해체하여 희소돌기아교세포를 다량 확보하는 분화방법 Download PDF

Info

Publication number
WO2021125844A1
WO2021125844A1 PCT/KR2020/018575 KR2020018575W WO2021125844A1 WO 2021125844 A1 WO2021125844 A1 WO 2021125844A1 KR 2020018575 W KR2020018575 W KR 2020018575W WO 2021125844 A1 WO2021125844 A1 WO 2021125844A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligodendrocytes
cells
differentiation
oligodendrocyte
cell
Prior art date
Application number
PCT/KR2020/018575
Other languages
English (en)
French (fr)
Inventor
이상훈
장미윤
우혜지
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to JP2022535117A priority Critical patent/JP2023511003A/ja
Priority to EP20900822.6A priority patent/EP4079843A4/en
Priority to US17/787,248 priority patent/US20230021826A1/en
Publication of WO2021125844A1 publication Critical patent/WO2021125844A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0622Glial cells, e.g. astrocytes, oligodendrocytes; Schwann cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/46Amines, e.g. putrescine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/105Insulin-like growth factors [IGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/135Platelet-derived growth factor [PDGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/148Transforming growth factor alpha [TGF-a]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • C12N2501/392Sexual steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/41Hedgehog proteins; Cyclopamine (inhibitor)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2503/00Use of cells in diagnostics
    • C12N2503/02Drug screening
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • C12N2509/10Mechanical dissociation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/32Polylysine, polyornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin

Definitions

  • the present invention relates to a method for differentiating oligodendrocytes in large quantities by separating and disassembling 3D organoids prepared from human pluripotent stem cells to secure a large amount of oligodendrocyte precursors.
  • Neurological inflammatory diseases in which oligodendrocytes are affected include multiple sclerosis and multiple system atrophy (MSA).
  • MSA multiple system atrophy
  • multiple system atrophy is a disease that does not have a definite treatment agent and shows a rapid clinical course.
  • the lesion site is different and clear depending on the type, so it is a disease suitable for stem cell transplantation.
  • a technology to differentiate from stem cells into human oligodendrocytes is required, and differentiation from human embryonic stem cells (hESC) or human pluripotent stem cells (hiPSC) into oligodendrocytes is required.
  • hESC human embryonic stem cells
  • hiPSC human pluripotent stem cells
  • oligodendrocytes obtained by differentiation of oligodendrocytes from human pluripotent stem cells is low. That is, in the methods developed so far, differentiation into oligodendrocytes is directly induced without a step in which proliferation is possible, so there is a limit to the amount of oligodendrocytes that can be obtained through one differentiation.
  • Non-Patent Document 1 Differentiation of human oligodendrocytes from pluripotent stem cells, Nature Protocols. 2009;4(11):1614-22.
  • Non-Patent Document 2 Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination, Cell Stem Cell Volume 12, Issue 2 Pages 139-264 (7 February 2013)
  • Non-Patent Document 3 Efficient Generation of Myelinating Oligodendrocytes from Primary Progressive Multiple Sclerosis Patients by Induced Pluripotent Stem Cells, Stem Cell Reports, VOLUME 3, ISSUE 2, P250-259, AUGUST 12, 2014
  • Non-Patent Document 4 Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures, Nature neuroscience, 2019 Mar;22(3):484-491.
  • the present inventors have made research efforts to solve the above problems, under the assumption that the cells extracted from the three-dimensional culture will be functionally superior to the conventional two-dimensional cultured cells (Oligodendrocyte progenitor cells; OPCs). ), a ventral patterning organoid, which has undergone specific patterning in a manner that can contain a large number of , was produced, and the produced organoid was dismantled (chopping), cultured and propagated, and differentiated into oligodendrocytes therefrom.
  • the present invention was completed by developing a new human pluripotent stem cell-derived oligodendrocyte (hPSC-Oligodendrocyte) differentiation method for inducing
  • Another object of the present invention is to provide a cell therapy agent comprising the differentiated oligodendrocytes obtained by the above method as an active ingredient.
  • Another object of the present invention is to provide a drug screening method using the differentiated oligodendrocytes obtained by the above method.
  • the final differentiated oligodendrocytes can be differentiated in large quantities by disassembling the 3D organoids prepared from the human pluripotent stem cells presented above, separating and culturing oligodendrocyte progenitor cells from the organoids, and proliferating them, so that a large amount of oligodendrocytes can be differentiated. cells can be obtained at once.
  • the differentiation method of the present invention can be easily reproduced because it can easily induce differentiation according to cell lines or without batch-to-batch variation.
  • oligodendrocytes it is possible to produce oligodendrocytes faster than the methods developed so far, and it is possible to freeze and store oligodendrocyte progenitor cells as a stock at the stage where they can be grown and cultured in the middle.
  • oligodendrocyte progenitor cells can be obtained immediately and can be used immediately after differentiation into oligodendrocytes for 2-3 weeks, reducing the differentiation time into all hPSC-oligodendrocytes to 6-8 weeks. can In other existing reports, the total differentiation time is about 10 to 20 weeks, so relatively fast differentiation is possible (Non-Patent Documents 1 to 4).
  • MSA ex vivo multiple system atrophy
  • FIG. 1 schematically shows the differentiation protocol of oligodendrocytes using 3D organoids according to an embodiment of the present invention.
  • NKX2.2, Olig2, NG2, O4, PDGFRa, SOX10, etc. is a graph showing the expression of NKX2.2, Olig2, NG2, O4, PDGFRa, SOX10, etc. as mRNA markers of oligodendrocyte progenitor cells through qPCR of patterned organoids.
  • FIG. 4 shows the expression of marker OLIG2 in oligodendrocyte progenitor cells in cryosections of organoids confirmed by immunocytochemistry.
  • 5 is a graph showing the number of cells proliferated after converting an organoid into a 2D culture environment through a physical dismantling process (chopping).
  • oligodendrocyte progenitor cells retaining their differentiation ability into oligodendrocytes until passage 5 confirmed that the oligodendrocyte progenitor cells were capable of being grown by using the marker OLIG2.
  • Figure 8 shows the confirmation with oligodendrocyte progenitor cell maintenance markers OLIG2, A2B5, and PDGFRa.
  • FIG. 9 shows that normal differentiation into oligodendrocytes after differentiation into oligodendrocytes and myelination of neurons was confirmed with NF, a neuronal bundle marker, and MBP, a mature oligodendrocyte marker.
  • Figure 10 is confirmed by the mature oligodendrocyte marker MBP.
  • lentivirus pEF1 ⁇ - ⁇ -syn-GFP
  • alpha-synclein which can cause synucleiopathy
  • FIG. 12 shows that alpha-synklein expressed in oligodendrocyte progenitor cells was transduced with a lentivirus (pEF1 ⁇ - ⁇ -syn-GFP) overexpressing alpha-synklein compared to the monomeric form of alpha-synklein. It was confirmed that it is a pathological protein that is not cut by PK (proteinase K) (O8, O11, O12 compared to 100ug M).
  • PK proteinase K
  • the present invention relates to a differentiation method for securing a large amount of finally differentiated oligodendrocytes by patterning and disassembling 3D organoids prepared from human pluripotent stem cells, culturing oligodendrocyte progenitors, and inducing differentiation.
  • pluripotent stem cell refers to a stem cell capable of induced differentiation into any type of cell constituting the body, and the pluripotent stem cell includes an embryonic stem cell (ESC). ) and induced pluripotent stem cells (Ipsc).
  • ESC embryonic stem cell
  • Ipsc induced pluripotent stem cells
  • organoid is a 'mini-like organ' made to have minimal functions using stem cells, and is characterized in that it is made into a three-dimensional structure and can create an environment similar to an actual body organ in a laboratory.
  • organoid refers to a cell having a 3D three-dimensional structure, and refers to a model similar to organs such as nerves and intestines manufactured through an artificial culture process that is not collected or acquired from animals.
  • the origin of the cells constituting it is not limited.
  • the organoid may have an environment that is allowed to interact with the surrounding environment in the process of cell growth. Unlike 2D culture, 3D cell culture allows cells to grow in all directions in vitro. Accordingly, the 3D organoid in the present invention can be an excellent model for observing the development of therapeutic agents for diseases and the like by almost completely mimicking the organs that actually interact in vivo.
  • Organoids can generally be prepared by culturing human pluripotent stem cells. Specifically, it is possible to differentiate from induced pluripotent stem cells derived from Parkinson's disease into neuroectodermal spheres in the form of neuroectodermal spheres.
  • the term "differentiation” refers to a phenomenon in which cells divide and proliferate, and the structure or function of cells is specialized while the entire individual grows. In other words, it refers to the process by which cells, tissues, etc. of living organisms change into a suitable form and function to perform their respective roles.
  • pluripotent stem cells transform into ectoderm (cerebral cortex, midbrain, hypothalamus, etc.), mesoderm (yolk sac) etc.) and endoderm cells, as well as the process in which hematopoietic stem cells change into red blood cells, white blood cells, platelets, etc., that is, the expression of specific differentiation traits by progenitor cells, can all be included in differentiation.
  • a ventral neural tube organoid that can sufficiently contain oligodendrocyte progenitor cells is patterned and manufactured (target cell enriched), that is, each target cell is contained as much as possible, and Compared to the cell group induced two-dimensionally by differentiation induced by securing organoids, dismantling the organoid tissue and culturing the stem cells or progenitor cells, they are more similar to cells isolated from the actual brain, and their properties are well maintained. and it is possible to secure differentiation into a cell group with secured viability.
  • patterning refers to organoids such that, when preparing an organoid, the cell group of the fate body having the characteristics of the origin tissue of the cell to be finally extracted from among the brain detailed tissues is contained as a plurality of cell groups (target cell enriched) It means making a node.
  • patterning markers include NKX2.2, SOX10, OLIG2, A2B5, PDGFRa, O4, MBP, and the like, depending on the stage of development.
  • the term "chopping” means to physically cut and disperse the 3D organoids fabricated before subculture into several pieces (eg, using a needle, etc.).
  • It includes a method of disassembling 3D organoids produced from human pluripotent stem cells, including a method for securing a large amount of oligodendrocyte progenitor cells and finally differentiate them.
  • the term "large amount” used in the present invention refers to the production of 3D organoids (25 to 30 pieces) when introduced from the beginning of a culture dish of pluripotent stem cells used for the first time, and dismantling these organoids to obtain viable cells. It means an amount that has been secured and increased approximately 100 to 130 times based on the 5 passages. In particular, it includes not only simple quantitative proliferation, but also maintenance of characteristics.
  • oligodendrocyte progenitor cells are formed in the germinal zone (Ventricular germinal zone) of the embryonic neural tube, migrate to another area, and differentiate into oligodendrocytes in the arrived nerve area ( Differentiation) after forming a myelincho for the surrounding axons.
  • oligodendrocytes refers to oligodendrocytes made from oligodendrocyte precursor cells.
  • the branch protruding from the oligodendrocyte forms a myelin sheath that surrounds the axon of the surrounding nerve cell, and one oligodendrocyte sometimes wraps around 50 different axons. It is closely related to nerve cells and, like other glial cells, plays a role in supporting neurons.
  • the present invention also includes a cell therapy agent comprising oligodendrocytes obtained by the above method.
  • Cell therapy product refers to cells and tissues manufactured through isolation, culture, and special masturbation from a subject, and is a drug used for treatment, diagnosis, and prevention purposes (US FDA regulations).
  • US FDA regulations In order to restore the function of cells or tissues, living self , refers to a drug used for the purpose of treatment, diagnosis, and prevention through a series of actions such as proliferating, selecting allogeneic or xenogeneic cells in vitro, or changing the biological properties of cells in other ways.
  • Cell therapy products are largely classified into somatic cell therapy and stem cell therapy according to the degree of cell differentiation.
  • a "subject” is a vertebrate, preferably a mammal, which is the subject of treatment, observation or experiment, for example, cattle, pigs, horses, goats, dogs, cats, rats, mice, rabbits, guinea pigs, It may be human, etc.
  • treatment refers to any action that suppresses, alleviates, or advantageously changes the clinical situation related to a disease. Treatment can also mean increased survival compared to the expected survival rate if not receiving treatment. Treatment includes simultaneously prophylactic means in addition to therapeutic means.
  • the cell therapy agent of the present invention exhibits a therapeutic effect on inflammatory diseases of the nervous system caused by oligodendrocytes.
  • the nervous system inflammatory disease caused by the oligodendrocyte disease is, for example, multiple system atrophy (MSA), multiple sclerosis, cerebral palsy, spinal cord injury, stroke , Lewy body dementia and alpha-synucleopathy selected from the group consisting of may include, but is not limited to.
  • MSA multiple system atrophy
  • multiple sclerosis cerebral palsy
  • spinal cord injury stroke
  • stroke stroke
  • alpha-synucleopathy selected from the group consisting of may include, but is not limited to.
  • the oligodendrocytes obtained by the method of the present invention can be applied as a cell therapeutic agent, and can be formulated by further including a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier refers to a carrier or diluent that does not significantly stimulate the organism and does not inhibit the biological activity and properties of the administered component.
  • the pharmaceutically acceptable carrier that can be included as a cell therapeutic agent is used without limitation as long as it is known in the art, such as a buffer, preservative, analgesic agent, solubilizer, isotonic agent, stabilizer, base, excipient, lubricant, etc.
  • the cell therapeutic agent of the present invention may be prepared in the form of various formulations according to commonly used techniques.
  • the cell therapy agent of the present invention can be administered through any route as long as it can induce movement to the diseased site. In some cases, it may be possible to consider loading the stem cells into a vehicle equipped with a means for directing the lesion. Therefore, the cell therapy agent of the present invention is administered topically (including buccal, sublingual, dermal and intraocular administration), parenteral (including subcutaneous, intradermal, intramuscular, instillation, intravenous, intraarterial, intraarticular and intracerebrospinal fluid) or transdermal It can be administered through several routes including administration, and is preferably administered directly to the site of disease.
  • the cells may be administered to an individual by suspending the drug in a suitable diluent, and the diluent is used to protect and maintain the cells, and to facilitate use when injected into a target tissue.
  • the diluent may include physiological saline, a phosphate buffer solution, a buffer solution such as HBSS, and cerebrospinal fluid.
  • the pharmaceutical composition may be administered by any device to allow the active agent to migrate to the target cell.
  • a preferred mode of administration and formulation are injections.
  • Injections include aqueous solutions such as physiological saline, Ringel's solution, Hank's solution or sterilized aqueous solution, vegetable oils such as olive oil, higher fatty acid esters such as ethyl oleic acid, and non-aqueous solvents such as ethanol, benzyl alcohol, propylene glycol, polyethylene glycol or glycerin
  • a non-penetrating agent known in the art suitable for a barrier to pass through may be used, and ascorbic acid, sodium hydrogen sulfite, BHA, tocopherol, EDTA as a stabilizer for preventing deterioration
  • It may further include a pharmaceutical carrier such as an emulsifier, a buffer for pH control, a preservative for inhibiting the growth of microorganisms such as phenylmercuric nitrate, thimerosal, benzalkonium chloride, phenol, cresol, and benzyl alcohol.
  • the present invention also provides a drug screening method using the oligodendrocytes obtained by the above method.
  • Important features of the oligodendrocytes secured by the present invention include the possibility of securing the production of a large amount of cells, the maintenance of their characteristics even during cryopreservation, the possibility of maintaining the same cell group for a long period of time, and their differentiation more similar to those of living cells.
  • This property is particularly suitable for simultaneous screening of multiple drugs, which requires a large amount of cells in the same state and the key to obtaining the same cells for a long period of time for repeated analysis thereof. It is very suitable for screening cells as a cell population with the same characteristics in which key markers are maintained can be used continuously from the beginning to the end of the screening operation.
  • the drug is a drug for treating a nervous system inflammatory disease caused by oligodendrocyte disease, and exhibits a therapeutic effect on the oligodendrocyte disease disease.
  • the nervous system inflammatory disease caused by the oligodendrocyte disease is, for example, multiple system atrophy (MSA), multiple sclerosis, cerebral palsy, spinal cord injury, stroke, Lewy body dementia and various degenerative nervous systems including alpha-synucleopathy. diseases may include, but are not limited to.
  • Example 1 Differentiation of human induced pluripotent stem cells into mDA (midbrain dopamine) neurons using midbrain organoids
  • hESCs and hiPSCs were cultured based on the hESC research guidelines approved by the institutional review board (IRB) of Hanyang University (Seoul, Korea). The hESCs and hiPSCs used in this experiment are shown in Table 1 below.
  • mTESR-1 medium Stemcell Technologies Inc., Vancouver, BC, Canada
  • Matrigel TM or vitronectin Human; Gibco) Fisher Scientific, Waltham, MA
  • Gibco A31804 0.5 ug/cm 2
  • Thermo Fisher Scientific, Waltham, MA medium change was performed daily.
  • the undifferentiated stem cells were maintained in differentiation capacity by daily medium replacement, and subcultured using Acutase (Stemcell Technologies Inc.) every 4 to 5 days.
  • a ventral 3D organoid was first fabricated, cut into small pieces, and proliferated in large quantities in a culture dish in a state of oligodendrocyte progenitor cells.
  • the cells were released into the culture medium on Day 0 of Table 2 below so that there were 10,000 cells in 150 ul. After that, the Day0 culture solution in which the cells were released was dispensed in 150ul (10,000 cells/well) each in a low binding 96well plate. Then, on the day when the composition of the culture medium was changed, the culture medium was replaced according to the date, and when the composition of the culture medium was the same, the culture medium was replaced every other day. The culture medium was replaced by 150ul according to the composition of Tables 2 and 3.
  • the organoids were transferred to a low binding 6 well plate by 8 pieces/wel.
  • the tip When transferring, insert the tip into a 1000ul pipette, cut the tip of the tip with sterile scissors, grab the organoid with that part, and transfer it to a low binding 6well plate.
  • the culture medium was replaced by 3 ml per well on the day when the composition of the culture medium was changed, or every other day.
  • the culture medium was cultured with the D36 ⁇ culture medium in Table 2, and mitogen (bFGF 20ng/ml, PDGF-AA 10ng/ml, EGF 20ng/ml) was added as a growth medium.
  • mitogen bFGF 20ng/ml, PDGF-AA 10ng/ml, EGF 20ng/ml
  • This process is a step that can be obtained by proliferating and culturing a large amount of oligodendrocyte progenitor cells, and it is a step where the cells can be stored frozen as stock. After that, when induction was desired through the differentiation process, it was replaced with the Differentiation culture medium in Table 2.
  • Immunocytochemical analysis is an analysis method that visualizes the target protein by attaching a primary antibody to the target protein and then attaching a secondary antibody to which fluorescence is attached to the antibody.
  • the number of visible proteins is determined by the type of fluorescence of the secondary antibody. In this study, two or three types of fluorescence were used.
  • Samples are fixed with a fixative solution (4% Paraformaldehyde/PBS) for 20 minutes, and then rinsed 3 times with PBS for 5 minutes each. After blocking for 40 minutes using a blocking buffer (1% BSA/PBS, 0.1% Triton X100), the primary antibody was dissolved in the same buffer and attached to the sample for 24 hours. After rinsing the sample 3 times with 0.1% BSA/PBS, dissolve the secondary antibody in the same buffer and attach it for 1 hour. After that, the sample was rinsed 3 times with 0.1% BSA/PBS, rinsed once with D.W., and mounted on a cover slide with a mounting solution (Vectashield, Vector Lab).
  • a fixative solution 4% Paraformaldehyde/PBS
  • organoid fragment immunocytochemical analysis the following procedure was performed. After fixing the organoids in the fixative for more than 30 minutes, they were rinsed 3 times with PBS for 10 minutes each, and then incubated in 30% sucrose solution for 24 hours to dehydrate. After the dehydrated sample was frozen in an OCT (Optimal Cutting Temperature Compound) compound, it was cut to a thickness of 10 to 12 ⁇ m with a microtome, and the above blocking process was performed.
  • OCT Optimal Cutting Temperature Compound
  • the OTC compound was poured into a mold made of foil, and the organoids submerged in the sucrose solution were transferred to a mold made of foil using a 1000ul tip cut slightly in front and a pipette. After keeping it in the deep freezer for more than 3 hours, the foil was peeled off while keeping the temperature cold. Then, the OCT compound was sprayed on the chuck enough to cover the surface, and the frozen cylindrical organoid was placed on the chuck and attached. When the two sticks, the OCT compound was sprayed once again, and after freezing in the deep freezer for 3 hours or more, cryostat was performed. The thickness of the cryostat was 12 ⁇ 18mm.
  • RNA of the sample to be analyzed was extracted using Trizol, and after RNA extraction was completed, cDNA was synthesized and RT-PCR was performed.
  • RNA extraction was completed, cDNA was synthesized and RT-PCR was performed.
  • the RNA extraction method is as follows.
  • the cDNA synthesis method is as follows.
  • RNA was used for cDNA synthesis.
  • Fisrt-strand cDNA synthesis was performed using a random primer (Invitrogen), followed by reaction with a PCR machine at 75° C. for 15 minutes. After incubation on ice for 2 minutes, First-strand buffer (Invitrogen), DTT (Invitrogen), and RNasin (Promega) were added and reacted at 25° C. for 15 minutes, 42° C. for 50 minutes, and 70° C. for 15 minutes.
  • First-strand buffer Invitrogen
  • DTT Invitrogen
  • RNasin Promega
  • a total of 20ul of the prepared cDNA was diluted 10-fold and used for RT-PCR.
  • SYBR green master mix Bio-rad
  • cDNA was reacted with 2ul each.
  • organoids physically cut with a 30G needle were 2D plated on a 60mm dish coated with Poly-l-ornithine and fibronectin in a circle with a diameter of 4cm in the middle.
  • planar culture of 4 X 10 6 cells in a 60 mm culture dish coated with PLO/FN or Poly-l-ornithine and fibronectin using AccutaseTM did.
  • the culture medium was cultured with the D36 ⁇ culture medium in Table 2, and mitogen (bFGF 20ng/ml, PDGF-AA 10ng/ml, EGF 20ng/ml) was added as a growth medium.
  • mitogen bFGF 20ng/ml, PDGF-AA 10ng/ml, EGF 20ng/ml
  • oligodendrocyte progenitor cells When cells are obtained in a 60 mm culture dish through mass proliferation of oligodendrocyte progenitor cells, these cells can be removed and stored frozen.
  • the cells are subcultured and cultured in D36 ⁇ culture medium with mitogen added in Table 2 for at least one week. After that, cells are removed using AccutaseTM and the number of cells is determined by counting. Cells of 6 X 10 6 per vial were dissolved in 1 ml of a cryopreservation solution of 10% DMSO and 90% D36- culture medium, and then placed in a cryotube and stored frozen.
  • a lenti virus expressing a-syn-GFP was added to the culture medium at D36 ⁇ at 100X, and the cells were treated overnight. And the next day, the culture medium was replaced with the original D36- culture medium.
  • the oligodendrocyte progenitor cells were transduced with lentivirus (pEF1 ⁇ - ⁇ -syn-GFP), and then cultured with D36 ⁇ culture medium for 5 days. After that, differentiation was carried out for 7 days with the culture medium of Differentiation Day 0-14. On the 7th day, cells were washed with PBS and then treated with 150ul of Ripa buffer. After processing the cells, they were incubated on ice for about 5 minutes. After that, sonication was shortened for about 5 seconds, protein was quantified, and the amount of protein was adjusted to 10 ug, and the amount of monomer was adjusted to 300 ng. Proteinase K was treated with 0.12U, 0.6U, and 3U, respectively. And shaking was performed at 37°C for 1 hour. After incubation, 5X sample buffer was added, incubated in a heat block at 95°C for 10 minutes, and samples were loaded on 15mm, 15% SDS gel and western blot was performed.
  • lentivirus lent
  • PFF was treated at a concentration of 1 ug/ml in the culture medium and incubated overnight.
  • PFF was fluorinated using alexa fluor 488 microscale protein labeling kit. The intensity was measured using a fluorescence microscope at intervals of a day or two from D0, and the number of cells uptaken by PFF was counted.
  • Each cell was differentiated in a 12-well plate for 8 days and then treated with PFF at a concentration of 2 ug/ml overnight. From D0 before PFF treatment to the cells, after PFF treatment, 25ul of the culture medium was rolled up every D1, D3, and D11, stored in a deep freezer, melted during the experiment, treated with 5X sample buffer, and loaded onto SDS gel. Cell samples are also skimmed using 50ul of 1% triton x-100, 1% protease inhibitor cocktail in PBS on the same day.
  • the cell sample was rolled up, incubated on ice for 15 minutes, it could be stored in a deep freezer, and thawed again during the experiment and returned to a 4 °C, 16,000xg centrifuge for 10 minutes.
  • the supernatant is transferred to a separate 1.5ml tube in soluble form and quantified by BCA assay.
  • the remaining pellet was sonicated with 25ul of 1X sample buffer in insoluble form. Based on the quantified protein concentration of the soluble form, 10 ug of the soluble form protein was mixed with 5X sample buffer and loaded on the SDS gel, and 10 ug of the insoluble form was loaded on the gel based on the soluble form protein amount, and western blot was performed.
  • ventral patterning organoid (ventral neural tube), which was specifically generated in a way that can contain a large number of Oligodendrocyte progenitor cells (OPCs), was carried out by measuring the size through an optical microscope. Confirmation of normal culture of organoids can be confirmed by size. On average, it is cultured with a size of 1.6mm to 1.8mm, and organoids outside this range are judged not to be cultured normally.
  • OPCs Oligodendrocyte progenitor cells
  • mRNA expression level of oligodendrocyte progenitor cells in the organoid was confirmed by qPCR.
  • NKX2.2, SOX10, OLIG2, A2B5, PDGFRa, O4 was prepared so that the organoid was prepared to contain a target cell enriched cell group with the characteristics of the cell origin tissue. , it was confirmed that the expression of MBP, etc. is increased.
  • NKX2.2 a marker of oligodendrocyte progenitor cells
  • OLIG2 was 20 times higher than that of human embryonic stem cells, H9.
  • oligodendrocyte progenitor markers were identified through immunostaining after cryosection of organoids cultured in a pattern for 21 days. Simply spray OCT compound to cover the surface of the chuck that was cryogenically frozen in the deep freezer for 3 days, and then attach the frozen organoid to the chuck. When the two sticks, the OCT compound was sprayed once again, and after freezing in the deep freezer for 3 hours or more, cryostat was performed. The thickness of the cryostat was 12 ⁇ 18mm. The marker was analyzed by fluorescence immunoassay.
  • the left diagram of FIG. 4 confirms that the oligodendrocyte progenitor cell marker OLIG2 in the organoid of the present invention is expressed much more than the cortex organoid (right diagram), which is a negative control group.
  • the culture medium was cultured with the D36 ⁇ culture medium in Table 2, and mitogen (bFGF 20ng/ml, PDGF-AA 10ng/ml, EGF 20ng/ml) was added as a growth medium. Each step was counted during passage.
  • oligodendrocyte progenitor cells were differentiated after thawing compared to before cryopreservation (left), their differentiation ability was maintained, indicating that they were differentiated into oligodendrocytes expressing the marker MBP. Confirmed.
  • the culture medium is cultured with the D36 ⁇ culture medium in Table 2, and mitogen (bFGF 20ng/ml, PDGF- AA 10ng/ml, EGF 20ng/ml) is used as a growth medium, and this process can be obtained by proliferating and culturing a large amount of oligodendrocyte progenitor cells, and the cells can be stored frozen as stock.
  • mitogen bFGF 20ng/ml, PDGF- AA 10ng/ml, EGF 20ng/ml
  • oligodendrocyte progenitor cells can be frozen and stored as stock, so the cells can be used immediately from this stage if necessary.
  • This protocol can save at least 36 days, the time it takes to generate oligodendrocyte progenitor cells from human embryonic stem cells.
  • OLIG2 a marker that continues to express from oligodendrocyte progenitors to fully differentiated mature oligodendrocytes, continues to be expressed even after the organoid is converted to a 2D culture environment It was confirmed by immunofluorescence analysis that the expression of OLIG2 was kept constant [Fig. 7].
  • A2B5 an initial marker of oligodendrocytes
  • A2B5 an initial marker of oligodendrocytes
  • the marker of PDGFRa a marker of oligodendrocyte progenitor cells, was confirmed at Day 36 ⁇ in the initial stage of the differentiation process by changing the culture, proliferation, or differentiation 0-14 medium [FIG. 8].
  • oligodendrocyte progenitor cells After differentiation of oligodendrocyte progenitor cells, normal differentiation into oligodendrocytes, performing the function of myelination of neurons, was confirmed with NF, a neuronal bundle marker, and MBP, a mature oligodendrocyte marker.
  • the culture medium was cultured in the D36-proliferation medium shown in Table 2 above, and the expression of mature oligodendrocytes induced by the subsequent differentiation process was confirmed. For differentiation, it was replaced with the Differentiation culture medium in Table 2.
  • the expression of O4 an important marker of immature oligodendrocytes was confirmed after culturing for 14 days with a culture medium from 0 to 14 days of differentiation at a desired time in the oligodendrocyte proliferative stage [Fig. 10]. After differentiation from 15 to the day of differentiation for 2 weeks, the immature oligodendrocytes were completely differentiated into mature oligodendrocytes, and MBP, an important marker of mature oligodendrocytes, was confirmed by fluorescence staining.
  • Non-Patent Documents 1 to 4 the average ratio of mature oligodendrocytes, the final differentiated cells, was 23% or more compared to the total cells, and 42% or more compared to the OLIG2+ cells. It was confirmed that this is a very high ratio compared to the prior art (Non-Patent Documents 1 to 4).
  • a GFP marker that a lentivirus (pEF1 ⁇ - ⁇ -syn-GFP) overexpressing alpha-synclein, which can induce synucleiopathy, was well introduced into oligodendrocyte progenitor cells.
  • Cells were plated in 2D and subcultured once a week when the cells were filled to 80-90%. Mitogen was added as a growth medium, and virus was introduced into a large amount of proliferated oligodendrocyte progenitor cells as in the experimental method, and synuclein expression was analyzed by fluorescence analysis.
  • each cell was differentiated in a 12-well plate for 8 days, and then treated with PFF at a concentration of 2ug/ml overnight. After collecting the protein of the cells for analysis, 5X sample buffer was treated and loaded on the SDS gel.
  • a-synuclein monomer (M) and proteinase K were treated respectively to see the difference in PK digestion.
  • the monomer and aggregates of oligodendrocytes (O8, O11, O12) were not cleaved by the enzyme.
  • concentration of PK increases, it can be seen that the aggregate is cut and becomes a monomer, and in the group with the highest concentration, the monomer is cut into a smaller size, but the oligodendrocytes are not cut into a smaller size.
  • Oligodendrocyte progenitor cells differentiated for 2 weeks with a culture medium from 0 to 14 days of differentiation are sorted by MACS to increase purity, and then other types of cells (N-neuron, A-stellar cell, O-rare) dendritic cells) and differentiated for about 7 days each.
  • Alexa488-attached PFF was mixed with the culture medium at a concentration of 1 ug/well, treated for one day, and the culture medium was replaced with a normal culture medium the next day.
  • astrocytes not only uptake the most PFF but also phagocytose PFF over time. However, it was confirmed that oligodendrocytes uptake PFF but not phagocytosis. If oligodendrocytes uptake PFF, a-synuclein is aggregated in oligodendrocytes only by PFF treatment, so a-synuclein in oligodendrocytes Experiments for the study of conditions in which synuclein is aggregated become possible.
  • each cell type was differentiated for 8 days, and then PFF was treated at a concentration of 2ug/ml in the culture medium. After that, to confirm a-syn aggregation by PFF, cell function was maintained, western blot samples were collected by date, and the culture medium was also removed by date, and differences were confirmed by western blot.
  • oligodendrocytes did not uptake much PFF compared to other cell types in the media data (FIG. 14).
  • the amount of a-synuclein in the cell was similar to that of other cells. Therefore, although phagocytosis is not active, the oligomerization of a-syn in the cell is good, indicating that the seed activity of oligodendrocytes is better than that of neurons or astrocytes.
  • Non-Patent Documents 1 to 4 there is a proliferative stage of oligodendrocyte progenitor cells, so proliferation is possible.
  • subculture at this stage can be performed and the oligodendrocyte progenitor cells can be stored as stock. Therefore, when necessary, the stored oligodendrocyte progenitor cells can be used immediately, saving time.
  • oligodendrocyte progenitor cells are up to 15 weeks faster than the prior art.
  • O4 a marker of immature oligodendrocytes, is expressed rapidly for 4 to 13 weeks. Oligodendrocytes are cells that usually take a very long time to differentiate, and thus the culture medium can be saved as much as the shortened time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Reproductive Health (AREA)
  • Immunology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 인간 만능 줄기세포로부터 제작된 3D 오가노이드를 패턴화하고 해체하여 희소돌기아교전구세포를 배양하고 분화를 유도하여 최종 분화된 희소돌기아교세포를 다량 확보하는 방법에 관한 것으로, 다량 확보된 희소돌기아교세포는 기존 분화방법에 의해 분화된 세포에 비해 재현성, 안정성, 기능성 면에서 동등 또는 우수하면서 분화 시간은 현저히 단축시킴으로써 세포치료제나 치료 약물 스크리닝에 매우 유용하리라 기대된다.

Description

인간 만능 줄기세포로부터 제작된 3D 오가노이드를 해체하여 희소돌기아교세포를 다량 확보하는 분화방법
본 발명은 인간 만능 줄기세포로부터 제작된 3D 오가노이드를 분리 해체하여 희소돌기아교세포 전구체를 다량 확보여 희소돌기아교세포를 다량으로 분화하는 방법에 관한 것이다.
희소돌기아교세포에 병증이 나타나는 신경계 염증성 질환으로는 다발성 경화증, 다계통위축증(MSA) 등이 있다. 대표적으로 다계통위축증은 확실한 치료 약제가 없고 또한 급속한 임상경과를 보이는 질환으로, 타입에 따라 병변 부위가 다르며 명확하여 줄기세포 이식치료에 적합한 질환이다. 이러한 희소돌기아교세포 병증 질환의 세포 치료를 위해서는 줄기세포로부터 인간 희소돌기아교세포로 분화시키는 기술이 필요하며, 인간 배아줄기세포(hESC)나 인간 만능줄기세포(hiPSC)로부터 희소돌기아교세포로 분화시키는 프로토콜이 개발되어 왔다. 그러나 현재까지 개발된 분화법에는 적은 수율과 효율적인 분화법 부재로 바로 임상 적용하여 사용하는데 어려움이 있다.
또한, 희소돌기아교세포 병증 질환들을 연구하기 위해 랫트나 마우스 등을 이용하여 생체 내 연구가 진행이 되고 있지만 이러한 동물 모델은 실제 인간의 뇌 환경과는 차이가 있고, 유전적 발현에도 차이가 있기 때문에 인간의 질병을 타겟으로 하는 연구에는 적합하다고 볼 수 없다.
인간 만능 줄기세포로부터 희소돌기아교세포 (Oligodendrocyte)로 분화법이 개발되어 왔으나, 다음과 같은 문제점이 제시되었다.
1) 인간 만능 줄기세포로부터 희소돌기아교세포 분화로 얻을 수 있는 희소돌기아교세포의 수율이 적다. 즉, 지금까지 개발된 방법에서는 중간에 증식이 가능한 단계 없이 바로 희소돌기아교세포로 분화를 유도하게 되어 있어 한 번의 분화를 통해 얻을 수 있는 희소돌기아교세포의 양에 한계가 있었다.
2) 인간 만능 줄기세포로부터 희소돌기아교세포로 분화되는데 오랜 기간이 걸린다. 현재까지 개발된 분화방법들은 줄기세포에서 희소돌기아교세포까지 최종 분화시키는데 걸리는 시간이 최소 95일부터 200일 이상까지 걸린다. 또한, 증식이 가능한 단계가 없이 바로 희소돌기아교세포까지 분화시키는 프로토콜이기 때문에 희소돌기아교전구세포를 stock으로 freezing시켜 필요 시에 바로 사용할 수 있는 단계가 없다.
3) 실제 인간 세포를 이용한 다계통위축증 질병 모델이 존재하지 않는다. 지금까지 인간 만능 줄기세포로 분화시킨 희소돌기아교세포를 이용한 생체 외 다계통위축증(MSA) 병증 모델은 존재하지 않는다. 따라서 동물 세포 환경이 아닌 인간 세포 환경에서의 다계통위축증의 병증에 대해 연구하기가 어렵다.
[선행기술문헌]
[비특허문헌]
(비특허문헌 1) Differentiation of human oligodendrocytes from pluripotent stem cells, Nature Protocols. 2009;4(11):1614-22.
(비특허문헌 2) Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination, Cell Stem Cell Volume 12, Issue 2 Pages 139-264 (7 February 2013)
(비특허문헌 3) Efficient Generation of Myelinating Oligodendrocytes from Primary Progressive Multiple Sclerosis Patients by Induced Pluripotent Stem Cells, Stem Cell Reports, VOLUME 3, ISSUE 2, P250-259, AUGUST 12, 2014
(비특허문헌 4) Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures, Nature neuroscience, 2019 Mar;22(3):484-491.
이에, 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 연구 노력한 결과, 3차원 배양에서 추출된 세포가 기존 2차원 배양된 세포보다 기능적으로 우수할 것이라는 가정 하에 희소돌기아교세포 전구체 (Oligodendrocyte progenitor cells; OPCs)를 다수 함유할 수 있는 방식으로 특정 패터닝을 발생시킨, 복부 패터닝 오가노이드(ventral patterning organoid)를 제작하고, 제작된 오가노이드를 해체(chopping), 배양 증식하여, 이로부터 희소돌기아교세포로 분화를 유도하는 새로운 인간 만능 줄기세포 유래 희소돌기아교세포(hPSC-Oligodendrocyte) 분화방법을 개발함으로써 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 인간 만능 줄기세포로부터 제작된 3D 오가노이드를 패턴화하고 해체하여 희소돌기아교전구세포를 배양하고 분화를 유도하여 최종 분화된 희소돌기아교세포를 다량 확보하는 분화방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 방법으로 얻은 분화된 희소돌기아교세포를 유효성분으로 포함하는 세포치료제를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 방법으로 얻은 분화된 희소돌기아교세포를 이용한 약물 스크리닝 방법을 제공하는 것이다.
본 발명에서는 앞에서 제시한 인간 만능 줄기세포로부터 제작된 3D 오가노이드를 해체하여 오가노이드로부터 희소돌기아교전구세포를 분리 배양하여 증식시킴으로써 최종 분화된 희소돌기아교세포를 다량으로 분화시킬 수 있으므로, 다량의 세포를 한번에 확보할 수 있다. 일례로, 본 발명의 분화방법은 세포주에 따른, 또는 batch-to-batch variation 없이 손쉽게 분화를 유도할 수 있어 쉽게 재현이 가능하다. 또한, 지금까지 개발된 방법 대비 보다 빨리 희소돌기아교세포의 생산이 가능할 뿐만 아니라, 중간에 증식 배양할 수 있는 단계에서 희소돌기아교전구세포를 stock으로 freezing시켜 보관이 가능하다. 또한, 필요 시에 바로 희소돌기아교전구세포를 얻을 수 있고 바로 희소돌기아교세포로 2~3주 정도 분화시켜 사용이 가능하여, 전체 hPSC-희소돌기아교세포로 분화시간으로는 6~8주로 줄일 수 있다. 기존의 다른 보고들은 전체 분화시간이 10~20주가량 걸리므로 상대적으로 빠른 분화가 가능하다 (비특허문헌 1~4). 특히, 최초로 인간 만능줄기세포로 분화시킨 희소돌기아교세포를 이용한 생체 외 다계통위축증(MSA) 병증 모델의 구축이 가능하기 때문에 실제 인간 세포 환경에서의 다계통위축증의 병증에 대해 연구가 가능하다.
도 1은 본 발명의 일 실시예에 따른 3D 오가노이드를 이용한 희소돌기아교세포의 분화 프로토콜을 간략히 나타낸 것이다.
도 2는 두 배치(batch)에서 복부 패터닝 오가노이드(ventral patterning organoid)의 제작을 광학현미경으로 확인한 사진이다.
도 3은 패턴화된 오가노이드의 qPCR을 통해 희소돌기아교전구세포의 mRNA 마커로서, NKX2.2, Olig2, NG2, O4, PDGFRa, SOX10 등 발현을 나타낸 그래프이다.
도 4는 오르가노이드 냉동절편에서의 희소돌기아교전구세포의 마커 OLIG2 발현을 면역세포화학법으로 확인한 것이다.
도 5는 오가노이드를 물리적인 해체 과정(chopping)을 거쳐 2D 배양 환경으로 전환 후 세포가 증식되는 수치를 나타낸 그래프이다.
도 6은 냉동 보존하기 전 (좌) 대비 해동 후(우)에 희소돌기아교전구세포를 분화 유도 시 그 분화능력이 유지되어 마커인 MBP가 발현되는 희소돌기아교세포로 분화됨을 확인한 것이다.
도 7은 5계대까지 희소돌기아교세포로의 분화능이 유지되는 희소돌기아교전구세포로 중식이 가능함을 마커인 OLIG2로 확인한 것이다.
도 8은 희소돌기아교전구세포 유지 마커인 OLIG2, A2B5, PDGFRa로 확인한 것이다.
도 9는 희소돌기아교전구세포 분화 이후 희소돌기아교세포로 정상 분화하여, 신경세포의 수초화(myelination) 기능을 수행함을 신경세포다발 마커인 NF와 성숙한 희소돌기아교세포 마커인 MBP로 확인한 것이다.
도 10은 성숙한 희소돌기아교세포 마커인 MBP로 확인한 것이다.
도 11은 희소돌기아교전구세포에 시누클리오병증(synucleiopathy)을 유발할 수 있는 알파-신클레인(synclein)을 과발현하는 렌티바이러스(pEF1α-α-syn-GFP)가 잘 도입됨을 GFP 마커로 확인한 것이다.
도 12는 희소돌기아교전구세포에 알파-신클레인을 과발현하는 렌티바이러스(pEF1α-α-syn-GFP)를 형질도입시킨 후 그 세포에서 발현되는 알파-신클레인은 단량체 형태의 알파-신클레인 대비 PK(proteinase K)에 의해 잘리지 않는 병증 단백질임을 확인(100ug M 대비 O8, O11, O12)한 것이다.
도 13은 각 neuron, astrocyte 대비 희소돌기아교세포에 세포의 종류마다 알파-신클레인 PFF(pre-formed fibrils)를 날짜 별로 uptake하는 양상을 나타낸 것이다.
도 14는 희소돌기아교세포의 PFF uptake와 희소돌기아교세포 내의 a-syn 응집(aggregation)되는 정도를 웨스턴 블랏(western blot)으로 확인한 결과이다.
이하, 본 발명을 보다 상세히 설명한다.
본 발명은 인간 만능 줄기세포로부터 제작된 3D 오가노이드를 패턴화하고 해체하여 희소돌기아교전구세포를 배양하고 분화를 유도하여 최종 분화된 희소돌기아교세포를 다량 확보하는 분화방법에 관한 것이다.
본 명세서에 기재된 "만능 줄기세포(pluripotent stem cell, PSC)"는 몸을 구성하는 어떠한 형태의 세포로도 유도 분화가 가능한 줄기세포를 의미하며, 만능 줄기세포에는 배아줄기세포(embryonic stem cell, ESC)와 유도 만능 줄기세포 (induced pluripotent stem cell, Ipsc, 역분화 줄기세포)가 포함된다.
본 명세서에 기재된 "오가노이드 (organoid)"는 줄기세포를 이용해 최소 기능을 할 수 있도록 만든 '미니 유사 장기'로서, 3차원 구조로 만들어져 실험실에서도 실제 신체 기관과 비슷한 환경을 만들 수 있는 것이 특징이다. 즉, "오가노이드 (organoid)"는 3D 입체구조를 가지는 세포를 의미하며, 동물 등에서 수집, 취득하지 않은 인공적인 배양 과정을 통하여 제조한 신경, 장 등의 장기와 유사한 모델을 의미한다. 이를 구성하는 세포의 유래는 제한되지 않는다. 상기 오가노이드 (organoid)는 세포의 성장 과정에서 주변 환경과 상호 작용하도록 허용되는 환경을 가질 수 있다. 2D 배양과는 달리, 3D 세포 배양은 체외에서 세포가 모든 방향으로 성장할 수 있다. 이에 따라 본 발명에서 3D 오가노이드는 실제로 생체 내에서 상호 작용을 하고 있는 장기를 거의 완벽히 모사하여, 질병의 치료제 개발 및 등을 관찰할 수 있는 훌륭한 모델이 될 수 있다.
오가노이드는(organoid)는 일반적으로 인간 만능줄기세포를 배양하여 제조할 수 있다. 구체적으로, 파킨슨병 유래의 유도만능 줄기세포로부터 신경외배엽 구체 (neuroectodermal sphere) 형태의 신경외배엽 구체로 분화 가능하다.
본 발명에서 용어, "분화"는 세포가 분열하여 증식하며 전체 개체가 성장하는 동안에 세포의 구조나 기능이 특수화되는 현상을 의미한다. 즉, 생물의 세포, 조직 등이 각각에게 주어지는 역할을 수행하기 위해 적합한 형태 및 기능으로 변하는 과정을 말하며, 예를 들어, 만능 줄기세포가 외배엽(대뇌 피질, 중뇌, 시상하부 등), 중배엽(난황낭 등) 및 내배엽 세포로 변하는 과정뿐 아니라 조혈모세포가 적혈구, 백혈구, 혈소판 등으로 변하는 과정, 즉 전구세포가 특정 분화형질을 발현하게 되는 것도 모두 분화에 포함될 수 있다.
기존의 인간 만능 줄기세포로부터 바로 분화 유도하여 해당 세포로 분화시키는 경우 세포주 또는 실험실(실험 환경)에 따라 재현성에 문제가 있으며, 안정적인 유지인자 발현이 되지 않으며, 일례로 희소돌기아교세포의 경우에는 실제의 생체 내에서도 다른 신경계의 세포들 중에서 가장 발생 시기가 늦고, 현재까지 적절한 대량 분화법이 개발되지 않아, 한번의 분화를 통해 얻을 수 있는 최종 세포의 양에 한계가 있다. 본 발명의 일 실시예와 같이 희소돌기아교전구세포를 충분히 포함될 수 있는 배쪽 신경관 오가노이드 (ventral neural tube organoid) 를 패턴화하여 제작하고 (target cell enriched), 즉 각 타겟으로 하는 세포를 최대한 함유하고 있는 오가노이드 확보, 이 오가노이드 조직을 해체하여 해당 줄기세포 또는 전구세포를 배양함으로써 이차원적으로 분화 유도된 세포군에 대비하여, 실제의 뇌로부터 분리된 세포와 보다 비슷하고, 그 특성이 잘 유지되고 있으며, 생존력이 확보된 세포군으로의 분화 확보가 가능하다.
본 발명에서, 용어 "패턴화"는 오르가노이드 제작 시에, 뇌 세부 조직들 중 최종적으로 뽑아내고자 하는 세포의 오리진 조직의 특성을 지니는 운명체의 세포군을 다수의 세포군으로 함유되도록 (target cell enriched) 오르가노이드를 제작함을 의미한다. 또한, 패턴화 마커는 발생 단계에 따라, NKX2.2, SOX10, OLIG2, A2B5, PDGFRa, O4, MBP 등이 있다.
본 발명에서, 용어 "해체(chopping)"는 계대 배양 전 제작된 3D 오가노이드를 물리적으로 (예, 니들을 이용 등) 여러 조각으로 잘라 나누어 흩어지게 함을 의미한다.
따라서, 본 발명의 일 구현예에 따르면,
1) 인간 만능 줄기세포를 증식 배양하여 3D 오가노이드를 제작하는 단계;
2) 제작된 3D 오가노이드를 패턴화하고 해체하는 단계; 및
3) 상기 해제된 오가노이드로부터 뽑아낸 세포들 내 희소돌기아교전구세포를 배양하여 증식시키고 다량 분화 유도하여 최종 분화된 희소돌기아교세포를 다량 확보하는 단계
를 포함하는 인간 만능줄기세포로부터 제작된 3D 오가노이드를 해체하여 희소돌기아교전구세포를 다량 확보하고 이를 최종 분화하는 방법을 포함한다.
본 발명에 사용된 용어 "다량"은 처음 사용한 만능줄기세포 1개의 배양접시(dish)의 시작으로부터 도입하였을 때 (25~30개)의 3D 오가노이드 제작하고, 이 오가노이드들을 해체하여 생존 세포를 확보하고, 이를 5번의 계대배양을 기준으로 대략 약 100~130배로 증가된 양을 의미한다. 특히, 단순한 양적인 증식뿐만 아니라, 특성의 유지까지도 포함한다.
본 명세서에 기재된 "희소돌기아교전구세포"는 배아 신경관(Embryonic neural tube)의 배엽대(Ventricular germinal zone)에서 형성되어 다른 지역으로 이주(migration)하며, 도착한 신경 영역에서 희소돌기아교세포로 분화(Differentiation)한 뒤에 주변의 축삭돌기에 대해 미엘린초를 형성한다.
본 명세서에 기재된 "희소돌기아교세포"는 희소돌기아교세포는 희소돌기아교전구세포(Oligodendrocyte precursor cell)로부터 만들어진다. 희소돌기아교세포에서 뻗어 나온 가지는 주변의 신경세포 축삭돌기를 감싸는 미엘린초를 형성하며, 하나의 희소돌기아교세포가 50여 개의 서로 다른 축삭돌기를 감싸기도 한다. 신경세포와 밀접한 연관이 있고, 다른 신경교세포와 마찬가지로 뉴런을 지지하는 역할을 한다.
본 발명은 또한, 상기 방법으로 확보된 희소돌기아교세포를 포함하는 세포치료제를 포함한다.
"세포치료제"는 대상체로부터 분리, 배양 및 특수한 저작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품(미국 FDA규정)으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종세포를 체외에서 증식, 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 지칭한다. 세포치료제는 세포의 분화 정도에 따라 크게 체세포치료제, 줄기세포치료제로 분류된다.
본 명세서에 있어서, "대상체"는 치료, 관찰 또는 실험의 대상인 척추동물, 바람직하게는 포유동물, 예를 들어, 소, 돼지, 말, 염소, 개, 고양이, 쥐, 생쥐, 토끼, 기니아 피그, 인간 등일 수 있다.
본 발명에서 “치료”란 질환과 관련된 임상적 상황을 억제하거나 완화하거나 이롭게 변경하는 모든 행위를 의미한다. 또한 치료는 치료를 받지 않은 경우 예상되는 생존율과 비교하여 증가된 생존을 의미할 수 있다. 치료는 치료적 수단 이외에 예방적 수단을 동시에 포함한다.
본 발명의 세포치료제는 희소돌기아교세포 병증에 의한 신경계 염증성 질환에 대한 치료 효과를 나타낸다.
상기 희소돌기아교세포 병증에 의한 신경계 염증성 질환은 예를 들어 다계통위축증(multiple system atrophy, MSA), 다발성 경화증, 뇌성마비, 척수 손상, 뇌졸중, 루이체치매 및 알파시누클린 병증으로 이루어진 군에서 선택된 것을 포함할 수 있으나, 이에 제한되지 않는다.
본 발명의 방법으로 확보된 희소돌기아교세포는 세포 치료제로 적용될 수 있으며, 약학적으로 허용가능한 담체를 추가로 포함하여 제제화될 수 있다. 본 발명에서 용어, "약학적으로 허용가능한 담체"란 생물체를 상당히 자극하지 않고 투여 성분의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 본 발명에 있어서, 세포 치료제로서 포함할 수 있는 약학적으로 허용 가능한 담체는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제, 기제, 부형제, 윤활제 등 당업계에 공지된 것이라면 제한 없이 사용할 수 있다. 본 발명의 세포 치료제는 각종 제형의 형태로 통용되는 기법에 따라 제조될 수 있다. 본 발명의 세포치료제는 질병 부위로 이동을 유도할 수 있다면 어떠한 경로를 통해서든지 투여 가능하다. 경우에 따라서는 줄기세포를 병변으로 향하게 하는 수단을 구비한 비히클에 로딩하는 방안을 고려할 수도 있다. 따라서 본 발명의 세포치료제는 국소 (협측, 설하, 피부 및 안내 투여를 포함), 비경구 (피하, 피내, 근육내, 점적, 정맥 내, 동맥 내, 관절 내 및 뇌척수액 내를 포함) 또는 경피성 투여를 포함한 여러 경로를 통해 투여할 수 있으며, 바람직하게는 발병부위에 직접 투여한다. 일 양태로서 세포는 적합한 희석제에 약 현탁시켜 개체에 투여할 수 있는데, 이 희석제는 세포를 보호 및 유지하고, 목적하는 조직에 주입 시 사용에 용이하도록 하는 용도로 사용된다. 상기 희석제로는 생리식염수, 인산완충용액, HBSS 등의 완충용액, 뇌척수액 등이 있을 수 있다. 또한, 제약 조성물은 활성 물질이 표적 세포로 이동할 수 있도록 임의의 장치에 의해 투여될 수 있다. 바람직한 투여방식 및 제제는 주사제이다. 주사제는 생리식염액, 링겔액, Hank 용액 또는 멸균된 수용액 등의 수성용제, 올리브 오일 등의 식물유, 에틸올레인산 등의 고급 지방산 에스테르 및 에탄올, 벤질알코올, 프로필렌글리콜, 폴리에틸렌글리콜 또는 글리세린 등의 비수성용제 등을 이용하여 제조할 수 있고, 점막 투과를 위해, 통과할 배리어에 적합한 당업계에 공지된 비침투성제가 사용될 수 있으며, 변질방지를 위한 안정화제로 아스코르빈산, 아황산수소나트륨, BHA, 토코페롤, EDTA 등과, 유화제, pH 조절을 위한 완충제, 질산페닐수은, 치메로살, 염화벤잘코늄, 페놀, 크레솔, 벤질알코올 등의 미생물 발육을 저지하기 위한 보존제 등의 약학적 담체를 추가적으로 포함할 수 있다.
본 발명은 또한, 상기 방법으로 확보된 희소돌기아교세포를 이용한 약물 스크리닝 방법을 제공한다.
본 발명으로 확보된 희소돌기아교세포의 중요한 특징으로 다량의 세포 생산 확보 가능성과 냉동보존 시에도 그 특성의 유지로 장기간 같은 성격의 세포군 유지 가능성, 생체 유래 세포와 보다 흡사하게 분화됨에 있다. 이러한 특성은 특히나, 동일한 상태의 다량의 세포를 요구하고 이의 반복 분석을 위해서는 장기간의 동일한 세포의 확보가 관건인, 다종의 약물의 동시 스크리닝 시에 적합하다. 주요 마커가 유지되는 동일한 성격의 세포군이 스크리닝 작업 시작 시점에서부터 끝나는 시점까지 계속 사용 가능함으로 스크리닝 세포에 매우 적합하다.
상기 약물은 희소돌기아교세포 병증에 의한 신경계 염증성 질환을 치료하는 약물로서, 상기 희소돌기아교세포 병증 질환에 대한 치료 효과를 나타낸다.
상기 희소돌기아교세포 병증에 의한 신경계 염증성 질환은 예를 들어 다계통위축증(multiple system atrophy, MSA), 다발성 경화증, 뇌성마비, 척수 손상, 뇌졸중, 루이체치매 및 알파시누클린 병증을 포함하는 다양한 퇴행성 신경계 질환이 포함될 수 있으나, 이에 제한되지 않는다.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.
이하, 본 출원을 실시예를 통해 상세히 설명한다. 하기 실시예는 본 출원을 예시하는 것일 뿐 본 출원의 범위가 하기 실시예에 한정되는 것은 아니다.
[실시예]
실시예 1: 인간 유도만능 줄기세포로부터 중뇌 오가노이드를 이용하여 mDA(중뇌 도파민) 신경세포로의 분화
[실험방법]
인간 배아줄기세포 또는 인간 유도만능 줄기세포의 배양
한양대학교(서울, 대한민국)의 IRB(institutional review board)에 의해 승인된 hESC 리서치 가이드라인을 기초로 hESCs 및 hiPSCs를 배양하였다. 본 실험에서 사용된 hESCs 및 hiPSCs는 하기 표 1에 나타내었다.
Figure PCTKR2020018575-appb-img-000001
미분화 hESC/iPSC의 증식 및 유지를 위해, 피더층 없이 37℃ 설정된 CO 2 인큐베이터에서, mTESR-1 배지 (Stemcell Technologies Inc., Vancouver, BC, Canada)를 이용하여 Matrigel TM 상에서 혹은 vitronectin (Human; Gibco Fisher Scientific, Waltham, MA) (Gibco A31804; 0.5 ug/cm 2)-코팅된 6cm 디쉬(Thermo Fisher Scientific, Waltham, MA) 상에서 배양하였고, 배지 교체는 매일 수행하였다. 미분화된 줄기세포들은 매일 배지 교체로 분화능이 유지되었으며 4~5일마다 Acutase (Stemcell Technologies Inc.)를 이용하여 계대배양되었다.
3D 오가노이드제작법을 활용한 희소돌기아교전구세포의 제작
간단하게, 복부(ventral) 3D 오가노이드를 먼저 제작하고, 이를 잘게 잘라서 배양접시에서 희소돌기아교전구세포 상태로 대량 증식시키는 시스템을 사용하였다.
정상 배양하는 인간배아줄기세포(hESC)나 인간 만능줄기세포(hiPSC)를 Accutase TM를 이용하여 떼어내고 카운팅한 뒤, 150ul에 10,000개의 세포가 되도록 하기 표 2의 Day0 배양액에 세포를 풀어주었다. 그 후 세포를 풀어준 Day0 배양액을 150ul(10,000개 세포/well)씩 Low binding 96well plate에 분주하였다. 이후 배양액의 조성이 바뀌는 날에 배양액을 날짜에 맞게 교체해 주고 배양액 조성이 같을 시 격일로 배양액을 교체하였다. 배양액은 표 2, 3의 조성대로 150ul씩 교체하였다. Day7이 되면 오가노이드들을 Low binding 6well plate에 8개/wel씩 옮겨주었다. 옮겨줄 때는 1000ul 파이펫에 팁을 끼운 후 팁의 끝을 멸균된 가위로 잘라주고 그 부분으로 오가노이드를 잡아서 Low binding 6well plate에 옮겨주었다. 그 후 Low binding 6well plate를 Orbitary shaker (80~100 rpm)에 돌려주면서 배양액 조성이 바뀌는 날, 또는 격일로 well당 3ml씩 배양액을 교체하였다. Day36일에는 오가노이드들을 30G needle 로 물리적으로 잘라준(chopping) 후 Poly-l-ornithine과 fibronectin으로 코팅을 한 60mm dish를 가장자리 부분을 석션해주고 가운데 부분에 지름이 4cm 정도 되는 원으로 세포를 2D plating 해주었다. 첫 번째 plating 이후에는 계대 배양을 위하여 일주일에 한 번씩 80~90% 정도 세포가 충만되었을 때, Accutase TM를 이용하여 PLO/FN 혹은 Poly-l-ornithine과 fibronectin 코팅된 60mm 배양접시에 4 X 10 6의 세포를 평면 배양하였다. 배양 배지는 표 2에 있는 D36~ 배양액으로 배양을 하며, 마이토젠 (bFGF 20ng/ml, PDGF-AA 10ng/ml, EGF 20ng/ml)를 첨가한 것을 증식 배지로 사용하였다. 이 과정이 다량의 희소돌기아교전구세포를 증식 배양하여 얻을 수 있는 단계이며 세포를 stock으로 냉동 보관이 가능한 단계이다. 이후 분화 과정으로 유도를 원할 시 표 2의 Differentiation 배양액으로 교체해 주었다.
Day 0 A media(recipe below) + SB431542(10μM, Tocris, Bristol, UK) + Noggin(200ng/ml, Peprotech, Rocky Hill, NJ) + Y27632(Sigma, #Y0503, 20μM)
Day 1~2 A media(recipe below) + SB431542(10μM, Tocris, Bristol, UK) + Noggin(200ng/ml, Peprotech, Rocky Hill, NJ) + Sonic hedgehog(100ng/ml, SHH, Peprotech) + purmorphamine(1μM, Calbiochem, MilliporeSigma, Burlington, MA)
Day 3~4 A media(recipe below) + SB431542 (10μM, Tocris, Bristol, UK) + Noggin(200ng/ml, Peprotech, Rocky Hill, NJ) + Sonic hedgehog(100ng/ml, SHH, Peprotech) + purmorphamine(1μM, Calbiochem, MilliporeSigma, Burlington, MA) + Retinoic acid(0.1μM, Sigma-Aldrich, #R2625)
Day 5~11 A media(recipe below) + Noggin(200ng/ml, Peprotech, Rocky Hill, NJ) + Sonic hedgehog(100ng/ml, SHH, Peprotech) + purmorphamine(1μM, Calbiochem, MilliporeSigma, Burlington, MA) + Retinoic acid(0.1μM, Sigma-Aldrich, #R2625)
Day 12~16 A media(recipe below)+ Sonic hedgehog(100ng/ml, SHH, Peprotech) + purmorphamine(1μM, Calbiochem, MilliporeSigma, Burlington, MA) + Retinoic acid(0.1μM, Sigma-Aldrich, #R2625)
Day 17 A media(recipe below)+ Sonic hedgehog(100ng/ml, SHH, Peprotech) + purmorphamine(1μM, Calbiochem, MilliporeSigma, Burlington, MA) + bFGF(20ng/ml, R&D Systems) + EGF(10ng/ml, R&D Systems)
Day 18~35 B media(recipe below) + bFGF(20ng/ml, R&D Systems) + EGF(10ng/ml, R&D Systems)
Day 36~ B media(recipe below) + bFGF(20ng/ml, R&D Systems) + PDGF-AA(10ng/ml, R&D Systems, #221-AA) + EGF(10ng/ml, R&D Systems)
Differentiation day 0~14 N2 media + T3(60ng/ml, Sigma-Aldrich, #T0281) + db-cAMP(1μM, Sigma-Aldrich, #D0627) + Biotin(100ng/ml, Sigma-Aldrich, #B4639) + PDGF-AA(10ng/ml, R&D Systems, #221-AA) + IGF-1(10ug/ml, peprotech, #110-11) + NT3(10ug/ml, peprotech, #450-03) + Ascorbic Acid (200μM, Sigma,St. Louis, MO) + insulin (Gibco, #12585014, 0.31㎕/ml)
Differentiation day 15~ N2 media + T3(60ng/ml, Sigma-Aldrich, #T0281) + cAMP(1μM, Sigma-Aldrich, #D0627) + Biotin(100ng/ml, Sigma-Aldrich, #B4639) + IGF-1(10ug/ml, peprotech, #110-11) + NT3(10ug/ml, peprotech, #450-03) + Ascorbic Acid (200μM, Sigma,St. Louis, MO) + insulin (Gibco, #12585014, 0.31㎕/ml)
Figure PCTKR2020018575-appb-img-000002
면역 세포 화학 분석
면역세포화학분석법은 표적단백질에 대한 1차 항체를 부착한 뒤 해당 항체에 대한 형광이 부착된 2차 항체를 부착하여 표적단백질을 가시화하는 분석 방법이다. 2차 항체의 형광 종류에 따라 가시화할 수 있는 단백질의 수가 정해진다. 본 연구에서는 2가지 혹은 3가지의 형광을 사용하였다.
샘플을 고정액(4% Paraformaldehyde/PBS)으로 20분 간 고정시킨 뒤, PBS로 5분씩 3번 헹군다. Blocking buffer(1% BSA/PBS, 0.1% Triton X100)를 이용해 40분 blocking을 진행한 뒤 1차 항체를 동일한 버퍼에 녹여 샘플에 24시간 부착하였다. 0.1% BSA/PBS로 샘플을 3번 헹군 뒤 2차 항체를 동일한 버퍼에 녹여 1시간 부착한다. 이후 0.1% BSA/PBS로 샘플을 3번 헹군 뒤 D.W.로 1번 헹구고 Mounting solution(Vectashield, Vector Lab)으로 커버 슬라이드에 마운팅 하였다.
오가노이드 절편 면역세포화학분석법의 경우 다음과 같이 진행하였다. 오가노이드를 고정액에 30분 이상 고정시킨 뒤, PBS로 10분씩 3번 헹군 후 30% sucrose 용액에 24시간 배양하여 탈수시켰다. 탈수가 끝난 샘플을 OCT(Optimal Cutting Temperature Compound) 컴파운드에 얼린 뒤 microtome으로 10~12μm 두께로 절단하여 위의 blocking 과정부터 진행하였다.
오가노이드의 냉동 절편(cryosection)
앞을 살짝 자른 1000ul tip을 파이펫에 끼우고 이걸로 배양접시에 담겨있는 오가노이드를 잡아서 4% PFA가 1ml 담겨있는 15ml tube에 옮겼다. 상온에서 15분간 고정시킨 후 4% PFA는 버리고 PBS로 3ml씩 15분간 3번을 반복하여 워싱해주었다. 그 후 washing한 용액은 다 버리고 sucrose용액을 3ml 넣어주고 3일정도 냉장 보관을 하며 오가노이드를 가라앉혔다. 3일 후 오가노이드가 가라앉은 것을 확인하고 호일로 윗면이 뚫린 원통형의 틀을 만들어 주었다. 그리고 OTC compound를 호일로 만든 틀에 부어주고 sucrose용액에 가라앉아 있는 오가노이드를 앞을 살짝 자른 1000ul tip과 파이펫을 이용해 호일로 만든 틀에 옮겨주었다. 딥프리저에 3시간 이상 보관한 후 차갑게 온도를 유지한 상태에서 호일을 벗겨주었다. 그리고 chuck에 OCT compound를 표면을 덮을 정도로 뿌려주고 호일을 벗긴 원통형으로 얼은 오가노이드를 chuck에 올려주어 붙였다. 두 개가 붙으면 다시 한번 OCT compound를 전체적으로 뿌려주고 다시 딥프리저에 3시간 이상 얼리고 난 뒤 cryostat을 진행하였다. Cryostat의 두께는 12~18mm로 진행하였다.
qPCR
분석하고자 하는 샘플의 RNA를 Trizol 을 이용해 추출한 뒤, RNA extraction 완료 후 cDNA를 합성하여 RT-PCR을 진행하였다. 샘플 간 존재하는 RNA의 상대적인 양을 비교할 수 있는 실험법으로, 본 연구에서는 여러 샘플 간 비교를 통해 특정 샘플의 마커단백질 발현을 확인하는데 사용하였다.
RNA 추출 방법은 다음과 같다.
Trizol 1ml 에 5분동안 세포를 녹이고, 200ul의 클로로포름을 추가하여 흔들어서 섞어준 후 2~3분 동안 방치하였다. 4℃에서 12000 Xg, 15분동안 원심분리하였다. 원심분리 후 상층의 투명한 부분을 따서 (400~500ul) 새로운 튜브에 옮겨주고 거기에 500ul 의 이소프로판올을 넣어준 후 섞어주었다. 10분동안 인큐베이션 후 4℃에서 12000 Xg, 10분동안 원심분리하였다. 
튜브 바닥에 작게 남아있는 RNA 덩어리를 제외하고 상층액을 제거한 후 1ml 의 75% 에탄올 용액을 넣어 덩어리와 섞어준다. 4℃에서 7500 Xg, 5분동안 원심분리하였다. 상층액을 제거한 후 RNA 덩어리만 남긴 후 뚜껑을 열어 자연건조시켰다. RNase-free water 로 건조된 RNA을 녹인 후 농도를 측정하였다. 
cDNA 합성 방법은 다음과 같다.
2ug의 RNA를 cDNA 합성에 사용하였다. Random primer (Invitrogen)를 이용하여 fisrt-strand cDNA 합성을 진행하고, 75℃에서 15분간 PCR 기계로 반응시켰다. 이후 얼음에서 2분간 인큐베이션 후 First-strand buffer (Invitrogen), DTT (Invitrogen), RNasin (Promega)를 추가하여 25℃에서 15분, 42℃에서 50분, 70℃에서 15분 반응시켰다.
만들어진 cDNA 는 총 20ul 이며 이를 10배 희석하여 RT-PCR 에 사용하였다. 반응에는 SYBR green master mix (Bio-rad)를 사용하였고, cDNA는 2ul씩 반응시켰다.
3D 오가노이드 유래 희소돌기아교전구세포의 대량 증식
희소돌기아교전구세포의 대량 증식은 Day36일에 30G needle 로 물리적으로 잘라준(chopping) 오가노이드들을 Poly-l-ornithine과 fibronectin으로 코팅을 한 60mm dish에 가운데 지름 4cm 정도 원의 넓이로 2D plating 해주고, 첫 번째 plating 이후에는 계대 배양을 위하여 일주일에 한 번씩 세포가 충만되었을 때, AccutaseTM를 이용하여 PLO/FN 혹은 Poly-l-ornithine과 fibronectin 코팅된 60mm 배양접시에 4 X 10 6의 세포를 평면 배양하였다. 배양 배지는 표 2에 있는 D36~ 배양액으로 배양을 하며, 마이토젠 (bFGF 20ng/ml, PDGF-AA 10ng/ml, EGF 20ng/ml)를 첨가한 것을 증식 배지로 사용하였다. 이 과정이 다량의 희소돌기아교전구세포를 증식 배양하여 얻을 수 있는 단계이다.
3D 오가노이드 유래 희소돌기아교전구세포의 냉동 보관
희소돌기아교전구세포의 대량 증식을 통해 60mm 배양접시에 세포를 얻게 되면 이 세포를 떼어내서 냉동보관을 할 수 있다. 냉동 보관 방법은 세포를 계대배양 하고 일주일 이상 표 2에 있는 마이토젠이 첨가 된 D36~ 배양액으로 배양을 한다. 그 후 AccutaseTM를 이용하여 세포를 떼어내고 counting을 통해 세포 수를 결정한다. 한 vial 당 6 X 10 6의 세포를 조성이 10% DMSO, 90% D36~ 배양액의 냉동보관 용액 1ml에 풀어준 후 cryotube에 넣어 냉동 보관하였다.
렌티바이러스(pEF1α-α-syn-GFP) 형질도입
a-syn-GFP를 발현하는 lenti virus를 100X로 D36~ 배양액에 첨가해 주고 세포에 처리하여 overnight 해주었다. 그리고 다음날 배양액을 원래의 D36~ 배양액으로 교체해주었다.
synuclein monomer와 희소돌기아교전구세포의 a-synclein aggregate의 차이 비교
희소돌기 아교전구세포에 렌티바이러스(pEF1α-α-syn-GFP) 형질도입을 시켜준 뒤 5일간 D36~ 배양액을 넣고 배양하였다. 그 후 Differentiation day 0~14 배양액으로 7일동안 분화를 시켰다. 7일째에는 세포를 PBS로 워싱한 후 Ripa buffer 150ul를 세포에 처리하였다. 세포에 처리해준 뒤 ice에 5분정도 인큐베이션하였다. 그 후 sonication을 5초정도 짧게 시켜주고 단백질 정량을 한 뒤 단백질 양을 10ug으로 맞춰주고 monomer의 양은 300ng으로 맞추었다. Proteinase K를 각각 0.12U, 0.6U, 3U을 처리하였다. 그리고 shaking을 37℃에서 1시간 동안 해주었다. Incubation 후 5X sample buffer를 넣어준 후 95℃ heat block에서 10분 incubation 한 후 15mm, 15% SDS gel에 sample을 loading 하여 western blot을 수행하였다.
세포 간 α-syn uptake 분석
각 세포를 종류별로 7일 동안 분화를 시킨 후 PFF를 배양액에 1ug/ml 농도로 처리하여 overnight하였다. PFF는 alexa fluor 488 microscale protein labeling kit를 이용하여 형광을 붙여주었다. D0일부터 하루 이틀을 간격으로 형광현미경을 이용해 intensity를 측정하고 PFF를 uptake한 세포의 개수를 카운팅하였다.
병리학적 α-syn 응집체 검출
각각의 세포를 12well plate에서 8일 분화시킨 후 PFF를 2ug/ml의 농도로 overnight 처리하였다. 세포에 PFF를 처리하기 전인 D0부터 PFF 처리 후 D1, D3, D11마다 배양액을 25ul를 걷어주고 딥프리져에 보관해 두다가 실험 시 녹여서 5X sample buffer를 처리하여 SDS gel에 로딩하였다. 세포 샘플도 같은 날짜별로 50ul의 1% triton x-100, 1% protease inhibitor cocktail in PBS 용액을 이용해 걷어준다. 세포 샘플은 걷어준 후 ice에 15분 incubation시킨 후 딥프리져에 보관이 가능하고 실험 시 다시 녹여서 4 ℃, 16,000xg centrifuge를 10분간 돌려주었다. supernatant은 soluble form으로 따로 1.5ml tube에 옮겨주고 BCA assay를 통해 정량을 한다. 남은 pellet은 insoluble form으로 1X sample buffer를 25ul 넣어주고 sonication하였다. 정량한 soluble form의 단백질 농도를 기준으로 soluble form 단백질 10ug를 5X sample buffer과 섞어서 SDS gel에 loading해주고, insoluble form도 soluble form 단백질 양을 기준으로 10ug의 단백질을 gel에 loading해주고 western blot을 수행하였다.
[실험 결과]
인간 만능줄기세포로부터 복부 패터닝 오가노이드(ventral patterning organoid) 제작 확인
희소돌기아교세포 전구체 (Oligodendrocyte progenitor cells; OPCs)를 다수 함유할 수 있는 방식으로 특정 발생시킨, 복부 패터닝 오가노이드 (ventral neural tube)를 제작 확인은 광학현미경을 통한 크기 측정을 통하여 실시하였다. 오가노이드의 정상적 배양 확인은 크기를 통해 확인할 수 있다. 평균적으로 1.6mm~1.8mm의 크기로 배양이 되고 이 범위를 벗어난 오가노이드는 정상적으로 배양되지 않았다고 판단한다.
도 2에 나타낸 바와 같이, 사이즈 1.6mm~1.8mm의 크기로 성장한 정상적으로 복부 패터닝 오가노이드가 제작되었음을 확인할 수 있다.
패턴화된 오가노이드의 qPCR을 통해 희소돌기아교전구세포의 mRNA 발현 확인
오가노이드 내의 희소돌기아교전구세포의 mRNA 발현 수준을 qPCR을 통해 확인하였다. 세포의 오리진 조직의 특성을 지니는 운명체의 세포군을 다수의 세포군으로 함유되도록 (target cell enriched) 오르가노이드를 제작되었음을, 패턴화 마커 발생 단계에 따라, NKX2.2, SOX10, OLIG2, A2B5, PDGFRa, O4, MBP 등의 발현이 증가됨을 확인하였다.
도 3에 나타낸 바와 같이, 인간 배아 줄기세포, H9과 비교하였을 때 희소돌기아교전구세포의 마커인 NKX2.2는 150배, OLIG2는 20배 높게 발현이 되었다.
희소돌기아교세포 전구체 (Oligodendrocyte progenitor cells; OPCs)를 다수 함유할 수 있는 방식으로 특정 발생시킨, ventral patterning organoid 염색 사진
21일 동안 패턴 배양한 오가노이드를 냉동절편(cryosection) 후 immunostaining을 통해 대표적인 희소돌기아교전구세포 마커 (Oligodendrocyte progenitor marker)를 확인하였다. 간단히 3일동안 딥프리져에서 초저온 냉동한 chuck에 OCT compound를 표면을 덮을 정도로 뿌려주고 냉동한 오가노이드를 chuck에 올려주어 붙였다. 두 개가 붙으면 다시 한번 OCT compound를 전체적으로 뿌려주고 다시 딥프리저에 3시간 이상 얼리고 난 뒤 cryostat을 진행하였다. Cryostat의 두께는 12~18mm로 진행하였다. 이를 형광면역분석법으로 그 마커를 분석하였다.
도 4의 좌측 도면은 본 발명의 오가노이드에서의 희소돌기아교전구세포 마커인 OLIG2이 음성대조군인 cortex organoid(우측 도면)에 비해 OLIG2가 훨씬 많이 발현되는 것을 확인하였다.
희소돌기아교세포의 다량 확보
오가노이드 물리적인 해체 과정을 거쳐 2D 배양 환경으로 전환 후 세포가 증식되는 수치와 희소돌기아교전구세포, 희소돌기아교세포의 마커를 확인하였다.
Day36일된 오가노이드들을 30G needle로 물리적으로 잘라준(chopping) 후 Poly-l-ornithine과 fibronectin으로 코팅을 한 60mm dish를 가장자리 부분을 석션해주고 가운데 부분에 지름이 4cm정도 되는 원으로 세포를 2D plating 하고, 첫 번째 plating 이후에는 계대 배양을 위하여 일주일에 한 번씩 80~90% 정도 세포가 충만되었을 때, Accutase TM를 이용하여 PLO/FN 혹은 Poly-l-ornithine과 fibronectin 코팅된 60mm 배양접시에 4 X 10 6의 세포를 평면 배양하였다. 배양 배지는 표 2에 있는 D36~ 배양액으로 배양을 하며, 마이토젠 (bFGF 20ng/ml, PDGF-AA 10ng/ml, EGF 20ng/ml)를 첨가한 것을 증식 배지로 사용하였다. 계대하면서 단계마다 계수하였다.
오가노이드를 30G needle로 물리적으로 해체 (chopping) 분해 후 6mm PLO/FN 코팅 dish에 2차원 2D 배양 환경으로 전환 후 계대배양을 통해 증식하는 PDL(population doubling level)과 accumulated PDL의 수치를 구했고, 희소돌기아교전구세포 단계에서 증식이 불가능한 다른 프로토콜에 비해 본 프로토콜은 첫 번째 plating이후로 5번의 계대 배양을 기준으로 했을 때 120배 정도 세포를 증식시킬 수 있다는 것을 확인하였다[도 5].
(오르가노이드 25~30개를 해체(chopping)하면, 죽은 세포 말고 살아있는 세포만을 기준으로 약 4X10^6 개의 세포 확보가 가능하며 이를 60mm dish에 깔고, 여기서부터 시작해서 5계대배양하면 120배가량 세포수가 늘어나 약 4.8X10^8개의 세포수에 이르게 된다. 보통 세포의 냉동 vial을 만들 때, 6X10^6개의 세포를 1 vial에 넣으므로, 5계대까지 확보된 세포들을 가지고 80vial의 세포 stock을 만들 수 있다.)
희소돌기아교전구세포 냉동 보관 후 희소돌기아교세포 분화 확인
도 6에 나타낸 바와 같이, 희소돌기아교전구세포 냉동보존하기 전 (좌) 대비 해동 후에 희소돌기아교전구세포를 분화 유도 시 그 분화능력이 유지되어 마커인 MBP 가 발현되는 희소돌기아교세포로 분화됨을 확인하였다. 세포를 2D plating 해주고, 계대 배양을 위하여 일주일에 한 번씩 80~90% 정도 세포가 충만되었을 때, 배양 배지는 표 2에 있는 D36~ 배양액으로 배양을 하며, 마이토젠 (bFGF 20ng/ml, PDGF-AA 10ng/ml, EGF 20ng/ml) 를 첨가한 것을 증식 배지로 사용하며, 이 과정이 다량의 희소돌기아교전구세포를 증식 배양하여 얻을 수 있는 단계이며 세포를 stock으로 냉동 보관이 가능한 단계이다. 증식 배양 단계에서는 희소돌기아교전구세포를 freezing하여 stock으로 보관 가능하기 때문에 필요 시 이 단계부터 바로 세포를 사용할 수 있다. 본 프로토콜로 사람 배아줄기세포로부터 희소돌기아교전구세포를 만드는데 까지 걸리는 시간인 최소 36일 정도를 절약할 수 있다.
희소돌기아교세포로의 분화능이 유지되는 희소돌기아교전구세포로 증식이 가능함을 마커인 OLIG2로 확인
오가노이드를 2D culture 환경으로 전환한 후에도 희소돌기아교전구세포부터 완전히 분화된 성숙 희소돌기아교세포까지 계속 발현하는 마커인 OLIG2가 계속적으로 발현하며, 보통 5~6번의 계대배양과 분화과정을 거쳐도 OLIG2의 발현이 일정하게 유지됨을 면역형광분석법으로 확인하였다[도 7].
희소돌기아교전구세포 유지 마커 발현 확인
희소돌기아교전구세포를 Day 36~ 배양 증식시키는 과정에서 희소돌기아교전구세포의 초기 마커인 A2B5가 주로 발현됨을 면역형광분석법으로 확인하였다. 세포를 2D plating 해주고, 계대 배양을 위하여 일주일에 한 번씩 80~90% 정도 세포가 충만되었을 때, 배양 배지는 상기 표 2에 있는 D36~ 배양액으로 배양을 하며, 마이토젠을 첨가한 것을 증식 배지로 사용하며, 이 과정이 다량의 희소돌기아교전구세포를 증식 배양하였다.
또한 Day 36~ 배양, 증식시키는 과정 또는 분화 0~14 배지를 교체하여 분화시키는 과정 초기단계에서 희소돌기아교전구세포의 마커인 PDGFRa의 마커를 확인하였다[도 8].
희소돌기아교세포 분화 확인
희소돌기아교전구세포 분화 이후 희소돌기아교세포로 정상 분화하여, 신경세포의 수초화 (myelination) 기능을 수행함을 신경세포다발 마커인 NF 와 성숙한 희소돌기아교세포 마커인 MBP로 확인하였다. 배양 배지는 상기 표 2에 있는 D36~ 증식 배양액으로 배양을 하며, 이후 분화 과정으로 유도 성숙한 희소돌기아교세포 발현을 확인하였다. 분화를 위해서는 표 2의 Differentiation 배양액으로 교체하였다.
도 9에서 분화된 성숙희소돌기아교세포가 신경세포의 수상돌기를 감싸고 있는 모습을 확인하였다. 이것으로 수초화 하는 완전한 기능을 하는 분화된 성숙 희소돌기아교세포로 분화되었다는 사실을 확인할 수 있다.
또한, 희소돌기아교전구세포 증식단계에서 원하는 시점에 분화일 0~14배양액으로 14일 정도 배양시킨 후 미성숙희소돌기아교세포의 중요 마커인 O4의 발현을 확인하였다[도 10]. 그 후 분화일 15~배양으로 2주 정도 더 분화시킨 후 미성숙희소돌기아교세포를 완전하게 성숙 희소돌기아교세포로 분화시켰고, 성숙희소돌기아교세포의 중요한 마커인 MBP를 형광염색으로 확인하였다. 이때 최종 분화된 세포인 성숙희소돌기아교세포의 평균적인 비율이 전체 세포 대비 23% 이상 나왔고, OLIG2+ 세포 대비 42% 이상 나온 것을 확인하였다. 이는 종래 기술(비특허문헌 1~4)에 비해 매우 높은 비율임을 확인하였다.
생성된 희소돌기세포를 이용한 질병 모델링 가능성 확인
도 11에서는 희소돌기아교전구세포에 synucleiopathy를 유발할 수 있는 alpha-synclein을 과발현 하는 lentivirus(pEF1α-α-syn-GFP)가 잘 도입됨을 GFP 마커로 확인하였다. 세포를 2D plating 해주고, 일주일에 한 번씩 80~90% 정도 세포가 충만되었을 때, 계대 배양하였다. 마이토젠을 첨가한 것을 증식 배지로 사용하며, 증식된 다량의 희소돌기아교전구세포에 실험방법과 같이 바이러스를 도입시키고 시누클린 발현 여부를 형광분석법으로 분석하였다.
희소돌기아교전구세포에 a-synclein을 과발현하는 렌티바이러스(pEF1α-α-syn-GFP)를 형질도입시킨 후 각각의 차이를 비교하였다.
최종 분화된 희소돌기아교세포에서 a-syn이 잘 과발현되는 것을 확인하였다. 따라서 희소돌기아교세포에 a-synuclein이 aggregation되어 생기는 질병(MSA) 등을 연구할 수 있는 세포임을 확인했고 또한 이 질병을 연구를 위한 가능성을 확인하였다.
희소돌기아교세포에 렌티바이러스(pEF1α-α-syn-GFP)를 형질도입시킨 후, a-synclein aggregate의 차이를 synuclein monomer와 대비하여 확인하였다 (도 12).
이를 활용해 향후에 희소돌기아교세포에 특이적으로 synucleiopathy가 유발되는 MSA 같은 질병 모델링이 가능성을 확인하였다. 시누클린 응집 모델을 위해 각각의 세포를 12well plate에서 8일 분화시킨 후 PFF를 2ug/ml의 농도로 overnight처리 한다. 분석을 위해 세포의 단백질을 수거한 후, 5X sample buffer를 처리하여 SDS gel에 로딩하였다.
희소돌기아교세포에 a-synuclein을 과발현하는 렌티바이러스(pEF1α-α-syn)로 a-synuclein 과발현을 시킨 후 a-synuclein monomer(M)와 각각 proteinase K를 처리하여 PK digestion의 차이를 보았다.
PK concentration이 0인 그륩에서는 monomer와 희소돌기아교세포들(O8, O11, O12)의 aggregate가 효소에 의해 잘리지 않았다. 하지만 PK의 농도가 높아질수록 aggregate가 잘려서 monomer가 되는 것을 볼 수가 있고, 농도가 가장 높은 그륩에서는 monomer가 더 작은 크기로 잘려있지만 희소돌기아교세포는 더 작은 크기로 잘리지 않은 것을 볼 수 있다.
각 N(neuron), A(astrocyte) 대비 OPC(O, oligodendrocyte)에 세포의 종류마다 a-synuclein pre-formed fibrils(PFF)를 날짜 별로 uptake하는 양상을 관찰하는 실험을 진행하였다.
희소돌기아교전구세포에서 분화일 0~14배양액으로 2주정도 분화를 시킨 희소돌기아교세포를 MACS로 sorting해 purity를 높여준 후 다른 종류의 세포(N-신경세포, A-성상세포, O-희소돌기아교세포)와 각각 7일 정도 분화시켰다. 그 후 알렉사488을 붙인 PFF를 1ug/well 농도로 배양액에 섞어 주어 하루 동안 처리를 해주고 다음날 배양액을 정상 배양액으로 교체해 주고 나서 날짜별로 세포와 세포에 발현된 형광 사진을 찍어 비교해 보았다.
도 13에 나타낸 바와 같이, 성상세포가 가장 PFF를 많이 uptake할 뿐만 아니라 시간에 따라 PFF를 phagocytosis한다. 그러나 희소돌기아교세포는 PFF를 uptake는 하지만 phagocytosis하는 능력은 없는 것을 확인했고, 희소돌기아교세포가 PFF를 uptake한다면 PFF처리만으로 희소돌기아교세포 내에 a-synuclein이 aggregation되므로 희소돌기아교세포 내에 a-synuclein이 aggregation되는 병증연구를 위한 실험이 가능하게 된다. 배지의 phagocutosis 능력을 확인하키 위해, 세포에 PFF를 처리하기 전인 D0부터 PFF 처리 후 D1, D3, D11마다 배양액을 25ul를 걷어주고 딥프리져에 보관해 두다가 실험 시 녹여서 5X sample buffer를 처리하여 SDS gel에 로딩하였다.
희소돌기아교세포의 PFF uptake와 희소돌기아교세포 내의 a-syn aggregation되는 정도를 확인하기 위해 각 세포 종류별로 8일 동안 분화를 시킨 후 PFF를 배양액에 2ug/ml 농도로 처리하였다. 그 후 PFF에 의한 a-syn aggregation확인을 위해 cell의 function을 유지해주며 날짜별로 western blot sample을 걷어주고 배양액 또한 날짜 별로 걷어주고 western blot을 통해 차이 확인하였다.
그 결과, 희소돌기아교세포는 media data에서 다른 cell type에 비해 PFF를 많이 uptake하지 못하였다는 것을 확인할 수 있었다(도 14). 하지만 PFF uptake양에 비해 세포 내에 a-synuclein의 양은 다른 세포와 비슷하다는 것을 확인하였다. 따라서 phagocytosis는 활발하지 않지만 세포 내에 a-syn의 oligomerization이 잘 된다는 것으로 희소돌기아교세포의 seed activity가 신경세포나 성상세포보다 더 좋다는 것을 알 수 있었다.
따라서 적은 양의 PFF로도 희소돌기아교세포 내의 a-synclein의 병증 유발이 쉽게 가능하다는 것을 확인했고 이를 이용해 희소돌기세포 내의 a-synclein 병증 연구가 가능할 것이라는 것을 확인하였다.
[결론]
종래기술(비특허문헌 1~4)과 달리 희소돌기아교전구세포의 증식 단계가 있어 증식이 가능하며, 특히 초반에는 증식력이 매우 강하여 다량의 세포를 확보할 수 있다. 또한 이 단계에서 계대 배양을 하며 희소돌기아교전구세포를 stock으로 저장을 할 수 있다. 따라서 필요 시 저장했던 희소돌기아교전구세포를 바로 사용할 수 있어서 시간 절약이 가능하다.
또한, 희소돌기아교전구세포에서 발현하는 PDGFRa의 발현이 종래기술 보다 최대 15주 이상 빠르다. 또한 미성숙희소돌기아교세포의 마커인 O4의 발현이 4~13주 정도 빠르게 발현된다. 희소돌기아교세포는 보통 분화까지 걸리는 매우 오랜 시간이 걸리는 세포로 단축되는 시간만큼 배양액을 절약할 수 있다.

Claims (7)

  1. 인간 만능 줄기세포를 배양하여 복부(ventral) 오가노이드를 제작하고, 제작된 오가노이드를 패턴화하고 해체하여 다량의 희소돌기아교전구세포를 확보하고, 이를 배양하여 희소돌기아교세포로 분화시키는 단계;
    를 포함하는 다량 확보된 희소돌기아교세포의 분화 방법.
  2. 제 1 항의 방법으로 분화된 희소돌기아교세포를 포함하는 세포치료제.
  3. 제 2 항에 있어서,
    상기 세포치료제는 희소돌기아교세포 병증으로 인한 신경계 염증성 질환을 치료하는, 세포치료제.
  4. 제 3 항에 있어서,
    상기 희소돌기아교세포 병증으로 인한 신경계 염증성 질환은 다계통위축증(multiple system atrophy, MSA), 다발성 경화증, 뇌성마비, 척수 손상, 뇌졸중, 루이체치매 및 알파시누클린 병증으로 이루어진 군에서 선택된 하나인, 세포치료제.
  5. 제 1 항의 방법으로 얻은 희소돌기아교세포를 이용한 약물 스크리닝 방법.
  6. 제 5 항에 있어서,
    상기 약물은 희소돌기아교세포 병증으로 인한 신경계 염증성 질환을 치료하는, 약물 스크리닝 방법.
  7. 제 6 항에 있어서,
    상기 희소돌기아교세포 병증으로 인한 신경계 염증성 질환은 다계통위축증(multiple system atrophy, MSA), 다발성 경화증, 뇌성마비, 척수 손상, 뇌졸중, 루이체치매 및 알파시누클린 병증으로 이루어진 군에서 선택된 하나인, 약물 스크리닝 방법.
PCT/KR2020/018575 2019-12-17 2020-12-17 인간 만능 줄기세포로부터 제작된 3d 오가노이드를 해체하여 희소돌기아교세포를 다량 확보하는 분화방법 WO2021125844A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022535117A JP2023511003A (ja) 2019-12-17 2020-12-17 ヒト多能性幹細胞から調製された3dオルガノイドを分解することにより大量のオリゴデンドロサイトを確保するための分化方法
EP20900822.6A EP4079843A4 (en) 2019-12-17 2020-12-17 DIFFERENTIATION METHOD FOR PROVIDING A LARGE QUANTITY OF OLIGODENDROCYTES BY DISASSEMBLY OF 3D ORGANOIDS GENERATED FROM HUMAN PLURIPOTENT STEM CELLS
US17/787,248 US20230021826A1 (en) 2019-12-17 2020-12-17 Differentiation method for procuring large amount of oligodendrocytes by disassembling 3d organoids generated from human pluripotent stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190168517 2019-12-17
KR10-2019-0168517 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021125844A1 true WO2021125844A1 (ko) 2021-06-24

Family

ID=76477836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018575 WO2021125844A1 (ko) 2019-12-17 2020-12-17 인간 만능 줄기세포로부터 제작된 3d 오가노이드를 해체하여 희소돌기아교세포를 다량 확보하는 분화방법

Country Status (5)

Country Link
US (1) US20230021826A1 (ko)
EP (1) EP4079843A4 (ko)
JP (1) JP2023511003A (ko)
KR (1) KR102650805B1 (ko)
WO (1) WO2021125844A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230049017A1 (en) * 2020-01-13 2023-02-16 Corestem Co., Ltd Differentiation method for procuring large amount of cells by chopping 3d organoids prepared from human pluripotent stem cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090035372A (ko) * 2007-10-05 2009-04-09 고려대학교 산학협력단 인간 배아줄기세포로부터 척수신경계 희소돌기 아교세포생산을 위한 삼단계 분화기법
KR20170037929A (ko) * 2014-03-07 2017-04-05 울산과학기술원 체세포로부터 희소돌기아교 전구세포로의 직접교차분화 유도용 조성물 및 이의 이용
US20180298333A1 (en) * 2017-04-13 2018-10-18 The Board Of Trustees Of The Leland Stanford Junior University Personalized 3d neural culture system for generating human oligodendrocytes and studying myelination in vitro

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050101014A1 (en) * 2002-07-11 2005-05-12 Keirstead Hans S. Oligodendrocytes derived from human embryonic stem cells for remyelination and treatment of spinal cord injury
US10450546B2 (en) * 2013-02-06 2019-10-22 University Of Rochester Induced pluripotent cell-derived oligodendrocyte progenitor cells for the treatment of myelin disorders
WO2014185358A1 (ja) * 2013-05-14 2014-11-20 国立大学法人京都大学 効率的な心筋細胞の誘導方法
US11136548B2 (en) * 2015-06-24 2021-10-05 Whitehead Institute For Biomedical Research Culture medium for generating microglia from pluripotent stem cells and related methods
JP2021521790A (ja) * 2018-04-17 2021-08-30 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University ヒト皮質スフェロイドでのミエリン形成オリゴデンドロサイトの誘導

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090035372A (ko) * 2007-10-05 2009-04-09 고려대학교 산학협력단 인간 배아줄기세포로부터 척수신경계 희소돌기 아교세포생산을 위한 삼단계 분화기법
KR20170037929A (ko) * 2014-03-07 2017-04-05 울산과학기술원 체세포로부터 희소돌기아교 전구세포로의 직접교차분화 유도용 조성물 및 이의 이용
US20180298333A1 (en) * 2017-04-13 2018-10-18 The Board Of Trustees Of The Leland Stanford Junior University Personalized 3d neural culture system for generating human oligodendrocytes and studying myelination in vitro

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures", NATURE NEUROSCIENCE, vol. 22, no. 3, March 2019 (2019-03-01), pages 484 - 491
"Differentiation of human oligodendrocytes from pluripotent stem cells", NATURE PROTOCOLS, vol. 4, no. 11, 2009, pages 1614 - 22
"Efficient Generation of Myelinating Oligodendrocytes from Primary Progressive Multiple Sclerosis Patients by Induced Pluripotent Stem Cells", STEM CELL REPORTS, vol. 3, 12 August 2014 (2014-08-12), pages 250 - 259
"Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination", CELL STEM CELL, vol. 12, no. 2, 7 February 2013 (2013-02-07), pages 139 - 264
KIM HYOSUNG, XU RANJIE, PADMASHRI RAGUNATHAN, DUNAEVSKY ANNA, LIU YING, DREYFUS CHERYL F., JIANG PENG: "Pluripotent Stem Cell-Derived Cerebral Organoids Reveal Human Oligodendrogenesis with Dorsal and Ventral Origins", STEM CELL REPORTS, CELL PRESS, UNITED STATES, vol. 12, no. 5, 1 May 2019 (2019-05-01), United States, pages 890 - 905, XP055824385, ISSN: 2213-6711, DOI: 10.1016/j.stemcr.2019.04.011 *
MAGDALENA RENNER, MADELINE A LANCASTER, SHAN BIAN, HEEJIN CHOI, TAEYUN KU, ANGELA PEER, KWANGHUN CHUNG, JUERGEN A KNOBLICH: "Self‐organized developmental patterning and differentiation in cerebral organoids", THE EMBO JOURNAL, vol. 36, no. 10, 15 May 2017 (2017-05-15), pages 1316 - 1329, XP055555179, ISSN: 1460-2075, DOI: 10.15252/embj.201694700 *
See also references of EP4079843A4

Also Published As

Publication number Publication date
KR102650805B1 (ko) 2024-03-25
KR20210077647A (ko) 2021-06-25
EP4079843A1 (en) 2022-10-26
US20230021826A1 (en) 2023-01-26
EP4079843A4 (en) 2023-05-31
JP2023511003A (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
JP7225163B2 (ja) 移植用中脳ドーパミン(da)ニューロン
US6833269B2 (en) Making neural cells for human therapy or drug screening from human embryonic stem cells
AU755657B2 (en) Lineage-restricted neuronal precursors
Jeon et al. Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases
KR102468360B1 (ko) 삼차원 뇌 오가노이드 유래 신경 줄기세포 및 그의 용도
WO2015016420A1 (ko) 직접 리프로그래밍을 통한 유도 도파민성 전구세포 제조방법
CN109219441A (zh) 表达间充质和神经元标志物的牙髓干细胞及其组合物治疗神经疾病的用途
WO2020235944A1 (ko) 장관 오가노이드의 제조 방법 및 이의 용도
EP3149155B1 (en) Methods of inducing myelination and maturation of oligodendrocytes
WO2013085303A1 (ko) 개과동물 양막-유래 다분화능 줄기세포
WO2021125844A1 (ko) 인간 만능 줄기세포로부터 제작된 3d 오가노이드를 해체하여 희소돌기아교세포를 다량 확보하는 분화방법
WO2012047037A2 (ko) 배아줄기세포 유래 심근세포 및 이를 유효성분으로 포함하는 세포치료제
WO2012008733A2 (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
WO2011159075A2 (ko) 2차원 배양을 이용한 성체줄기세포의 신경전구세포로의 분화방법 및 신경전구세포를 이용한 신경손상 질환 치료용 약학 조성물
WO2011126177A1 (ko) 인간 줄기세포의 활성을 증가시키는 방법
WO2021125839A1 (ko) 인간 만능 줄기세포로부터 3d 오가노이드를 이용하여 미세교세포를 다량 확보하는 미세교세포의 분화방법
Kuwahara et al. In vitro organogenesis of gut‐like structures from mouse embryonic stem cells
WO2018155913A1 (ko) 저분자 화합물을 이용한 골격근육세포 분화 방법
WO2017014513A1 (ko) Nt세포의 보관방법 및 뱅킹 시스템
WO2021002554A1 (ko) Cp1p 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 줄기세포 증식 촉진용 조성물
WO2019190175A9 (ko) 편도 유래 중간엽 줄기세포로부터 운동신경세포의 분화방법
WO2019117454A1 (ko) 세포 소기관 스트레스 조절 인자를 이용하는 고효율 세포전환용 배지 첨가제
WO2017176054A1 (ko) 줄기세포 배양용 배지조성물 및 그를 이용한 줄기세포 배양방법
WO2021145467A1 (ko) 인간 만능 줄기세포로부터 제작된 3d 오가노이드를 해체하여 세포를 다량 확보하는 분화방법
WO2024014721A1 (ko) 줄기세포 유래 엑소좀을 포함하는 항암 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535117

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020900822

Country of ref document: EP

Effective date: 20220718