WO2021125601A1 - 복사관 장치 및 그 제조 방법 - Google Patents

복사관 장치 및 그 제조 방법 Download PDF

Info

Publication number
WO2021125601A1
WO2021125601A1 PCT/KR2020/016828 KR2020016828W WO2021125601A1 WO 2021125601 A1 WO2021125601 A1 WO 2021125601A1 KR 2020016828 W KR2020016828 W KR 2020016828W WO 2021125601 A1 WO2021125601 A1 WO 2021125601A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous pattern
pattern
longitudinal direction
unit
continuous
Prior art date
Application number
PCT/KR2020/016828
Other languages
English (en)
French (fr)
Inventor
하원
이목영
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to JP2022536755A priority Critical patent/JP2023507324A/ja
Priority to CN202080087203.2A priority patent/CN114829637A/zh
Priority to EP20903022.0A priority patent/EP4079876A4/en
Priority to US17/785,698 priority patent/US20230046285A1/en
Publication of WO2021125601A1 publication Critical patent/WO2021125601A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/151Radiant burners with radiation intensifying means other than screens or perforated plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D99/0035Heating indirectly through a radiant surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/03009Elongated tube-shaped combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • F27B2009/3638Heaters located above and under the track
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D2099/0045Radiant burner

Definitions

  • the present invention relates to a radiation tube apparatus disposed in a heat treatment facility to perform heat treatment of a heat treatment target material and a method for manufacturing the same.
  • Metal materials processed in various ways such as casting, forging, rolling, and extrusion, are heat treated at a specific temperature to achieve the desired strength and crystal size, or a heat treatment furnace maintained at a specific temperature for surface treatment. will pass
  • Metal materials such as strips and plates may be oxidized with oxygen present in the annealing furnace during heat treatment.
  • heat treatment in an inert atmosphere such as nitrogen or argon or in a vacuum is used.
  • a heating element using electricity is sometimes used as a heat source, but the method using heat generated when burning gas with a burner is suitable for low-cost heat treatment of mass products.
  • a radiant tube equipped with a burner is used.
  • the radiation tube may be manufactured by casting a tube shape using a casting method, or by manufacturing a plate material to form a tube shape and welding a curved tube and a straight tube to each other.
  • the polygon forming the pattern is arranged to share one side with the adjacent polygon, the shape that can be implemented is limited, and the intermittent pattern formation reduces the productivity of the continuous pattern that can be formed per unit time.
  • the surface area emitting radiant heat is reduced as much as the contact area, so the increase in thermal efficiency is also limited and pointed out as a problem.
  • An object of the present invention is to provide a radiation tube device and a method for manufacturing the same, in which a plurality of continuous patterns formed in parallel and spaced apart from other patterns by a predetermined distance are printed on the surface of the radiation tube to increase the radiant heat emission surface area.
  • the radiation tube device includes a tube having an internal conduit, wherein the tube has a first continuous pattern and a second continuous pattern extending side by side spaced apart from each other at a predetermined distance on the surface, and the first continuous pattern and In each of the second continuous patterns, a plurality of unit patterns having a predetermined height from the surface are connected in the longitudinal direction.
  • the tube may include a plurality of straight pipe portions extending in a straight line; And it may include a curved pipe portion coupled to the end of the straight pipe section so that the plurality of straight pipe sections are positioned in parallel.
  • first continuous pattern a plurality of first unit patterns including one side of a hypotenuse and a vertical side of a right-angled triangle are connected in a longitudinal direction to form a zigzag shape
  • second continuous pattern is a second pattern composed of a straight line
  • a plurality of unit patterns may be connected in the longitudinal direction to form a straight line.
  • first continuous pattern a plurality of first unit patterns composed of two sides having a predetermined included angle are connected in a longitudinal direction to form a sawtooth shape, and the second continuous pattern has a length of a second unit pattern composed of straight lines. A plurality of directions may be connected to form a straight line.
  • a plurality of unit patterns including one of the hypotenuse and the vertical side of a right-angled triangle are connected in the longitudinal direction to form a zigzag shape and constitute the second continuous pattern.
  • the center of the unit pattern may be configured by moving in parallel by a predetermined distance in the longitudinal direction from the center of the unit pattern constituting the first continuous pattern.
  • each of the first continuous pattern and the second continuous pattern a plurality of unit patterns composed of two sides having a predetermined included angle are connected in the longitudinal direction to form a sawtooth shape, and the unit pattern constituting the second continuous pattern.
  • the center may be configured by moving in parallel by a predetermined distance in the longitudinal direction from the center of the unit pattern constituting the first continuous pattern.
  • first continuous pattern a plurality of first unit patterns including three sides vertically connected to the inside and one side vertically connected to the outside are connected in the longitudinal direction to form a concave-convex shape
  • second continuous pattern includes: , a plurality of second unit patterns composed of straight lines may be connected in the longitudinal direction to form a straight line.
  • a plurality of unit patterns including three sides vertically connected to the inside and one side vertically connected to the outside are connected in the longitudinal direction to form an uneven shape.
  • first continuous pattern a plurality of first unit patterns including three sides vertically connected to the inside and one side vertically connected to the outside are connected in the longitudinal direction to form a concave-convex shape
  • second continuous pattern includes: , a plurality of second unit patterns having three sides vertically connected to the inside are positioned to enter the convex inside of the first unit pattern at a predetermined interval and are intermittently arranged in the longitudinal direction to be formed.
  • first continuous pattern a plurality of first unit patterns including three sides vertically connected to the inside and one side vertically connected to the outside are connected in the longitudinal direction to form a concave-convex shape
  • second continuous pattern includes: , a second unit pattern composed of a first straight line and a second straight line perpendicularly coupled to the first straight line are positioned to enter the convex inside of the first unit pattern at a predetermined interval and are connected in a plurality of longitudinal directions.
  • a manufacturing method for manufacturing a radiation tube device comprises printing a first continuous pattern and a second continuous pattern extending side by side at a predetermined distance on the surface of a tube having an inner tube through a three-dimensional modeling method. , to manufacture the radiation tube device according to any one of claims 1 to 10.
  • a manufacturing method for manufacturing a radiation tube device is to perform a first continuous pattern and a second continuous pattern extending side by side spaced apart from each other at a predetermined distance on the surface of a tube having an inner tube by CMT (Cold Metal Transfer), By welding by at least one method of Tungsten Inert Gas (TIG) and Metal Inert Gas (MIG), a radiation tube device according to any one of claims 1 to 10 is manufactured.
  • CMT Cold Metal Transfer
  • a radiation tube device capable of improving heat treatment efficiency in an annealing furnace by improving radiation heat efficiency, and a method for manufacturing the same.
  • FIG. 1 is a view for explaining the heat treatment of a strip passing through the inside of the heat treatment facility according to an embodiment.
  • FIG. 2 is a view for explaining an example in which a strip is heat treated by radiant heat emitted from the radiation tube device of FIG. 1 .
  • FIG. 3 is a view showing the radiation tube device of FIG. 1 in detail.
  • FIG. 4 is a view showing an embodiment of a zigzag pattern positioned on the surface of the radiation tube of FIG. 1 .
  • FIG. 5 is an image diagram illustrating the zigzag pattern of FIG. 4 .
  • FIG. 6 is a view showing an embodiment of a sawtooth pattern positioned on the surface of the radiation tube of FIG. 1 .
  • FIG. 7 is a view showing another embodiment of a zigzag pattern positioned on the surface of the radiation tube of FIG. 1 .
  • FIG. 8 is a view showing another embodiment of a sawtooth pattern positioned on the surface of the radiation tube of FIG. 1 .
  • FIG. 9 is a view showing an embodiment of the concave-convex pattern positioned on the surface of the radiation tube of FIG.
  • FIG. 10 is a view showing another embodiment of the concave-convex pattern positioned on the surface of the radiation tube of FIG.
  • FIG. 11 is a view showing another embodiment of the concave-convex pattern positioned on the surface of the radiation tube of FIG. 1 .
  • FIG. 12 is a view showing another embodiment of the concave-convex pattern positioned on the surface of the radiation tube of FIG. 1 .
  • FIG. 1 is a view for explaining the heat treatment of a strip passing through the inside of the heat treatment facility according to an embodiment
  • FIG. 2 is a view for explaining an example in which the strip is heat treated by the radiant heat emitted from the radiation tube device of FIG. 1
  • FIG. 3 is a view showing the radiation tube apparatus of FIG. 1 in detail
  • FIGS. 4 to 12 are views showing various embodiments of a continuous pattern positioned on the surface of the radiation tube of FIG. 1 .
  • the radiation tube apparatus 100 heats a metal material (strip, hereinafter strip) S passing through a heat treatment furnace 1 maintained at a specific temperature for surface treatment.
  • the radiation tube device 100 may be installed in the heat treatment furnace 1, but is not limited thereto, and may be installed in various other heat treatment facilities.
  • a flame generated from a combustion nozzle (not shown) circulates inside the radiation tube apparatus 100 to heat the radiation tube apparatus 100 , and to radiate heat emitted from the heated radiation tube apparatus 100 .
  • the strip (S) is heated indirectly.
  • the combustion nozzle injects and burns gas, liquid, and powder fuel to heat the radiation tube device 100 .
  • the combustion nozzle includes, but is not limited to, a burner, and may include various combustion devices that may be installed in the radiation tube device 100 .
  • the strip (S) is a metal material processed in various ways, such as casting, forging, rolling, extrusion, and may include, for example, a steel plate.
  • the radiation tube device 100 includes a tube 110 having an internal pipe through which heat heated by a flame passes.
  • a flame generated inside radiant heat is emitted to the outside to heat the low-temperature strip S. Then, oxidation of the strip S is prevented.
  • the tube 110 is a plurality of straight pipe parts (111a, 111b: 111) and a plurality of straight pipe parts (111a, 111b: 111) extending in a straight line so that the plurality of straight pipe parts (111a, 111b: 111) are arranged in parallel to each other. It may be formed in a U shape, including the curved pipe portion 113 coupled to the. For example, the tube 110 may be formed in a U shape or a W shape depending on the size and heating temperature of the strip S, but is not limited thereto.
  • the tube 110 includes a plurality of continuous patterns formed on the outer surface. Then, the surface area for emitting radiant heat increases, thereby increasing the radiant heat efficiency. As the height of the continuous pattern increases, the surface area increases, thereby increasing the radiant heat efficiency, but may be set to an optimal height depending on the location where the radiation tube apparatus 100 is installed or the distance from other adjacent devices.
  • the continuous pattern includes a first continuous pattern 300 and a second continuous pattern 400 that are spaced apart from each other by a predetermined interval and extend side by side.
  • the first continuous pattern 300 and the second continuous pattern 400 are independent patterns that do not contact each other and do not share constituent sides, and are spaced apart from each other and extend side by side.
  • Each of the first continuous pattern 300 and the second continuous pattern 400 may be formed by connecting a plurality of unit patterns having a predetermined height from the outer surface of the tube 110 in the longitudinal direction.
  • CMT Cold Metal Transfer
  • MIG Metal Inert Gas
  • FIG. 4 (a) is a view for explaining a first unit pattern 310 composed of one side of a hypotenuse and a vertical side of a right triangle, (b) is a view for explaining a second unit pattern 410 composed of a straight line In (c), a plurality of first continuous patterns 300 and a plurality of second unit patterns 410 are connected in the longitudinal direction in which a plurality of first unit patterns 310 are connected in the longitudinal direction to form a zigzag shape. It is an exemplary view in which a plurality of second continuous patterns 400 forming a straight line are printed.
  • a plurality of first continuous patterns 300 and second continuous patterns 400 shown in FIG. 4C may be formed on the outer surface of the tube 110 .
  • the height of the continuous pattern is 3 mm or more, and the height/thickness ratio of the continuous pattern is 1.0 or more.
  • CMT Cold Metal Transfer
  • the diameter of the welding wire is 0.6 mm or more and 1.5 mm or less
  • the welding current is 70A or more
  • the welding voltage is 8V or more and 12V or less
  • the CTWD Contact Tip To Work Distance
  • the height of the continuous pattern is 3 mm or more
  • the height/thickness ratio of the continuous pattern is 1.0 or more.
  • the first continuous pattern 300 and the second continuous pattern 400 are not limited to the CMT welding method and are formed by various welding methods such as Tungsten Inert Gas (TIG) or Metal Inert Gas (MIG). can be
  • 44 unit pattern pairs are printed on one radiation tube device 100 with a height of 3.34 mm to form the first continuous pattern 300 and the second continuous pattern 400 shown in FIGS. 4 and 5 .
  • the radiant heat emission efficiency is improved by 13,38% compared to the radiant tube device 100 on which nothing is printed.
  • the first continuous pattern 300 and the second continuous pattern 400 of the radiant heat improvement is remarkable.
  • first continuous pattern 300 and the second continuous pattern 400 shown in FIGS. 4 and 5 may be formed in contact with each other. That is, a point adjacent to the second continuous pattern 400 among the first continuous patterns 300 may be formed in a form directly connected to the second continuous pattern 400 . In the pattern formed by partially contacting the first continuous pattern 300 and the second continuous pattern 400, the radiant heat emission efficiency is improved by 12,2% compared to the radiation tube apparatus 100 in which nothing is printed.
  • FIG. 6A is a diagram illustrating a first unit pattern 310 composed of two sides having a predetermined included angle ⁇ °
  • FIG. 6B is a diagram illustrating a second unit pattern 410 composed of a straight line.
  • a plurality of first unit patterns 310 are connected in the longitudinal direction to form a sawtooth shape
  • a plurality of first continuous patterns 300 and second unit patterns 410 are connected in the longitudinal direction.
  • a plurality of second continuous patterns 400 forming a straight line are printed.
  • the predetermined included angle ⁇ ° may be configured as an arbitrary angle belonging to more than 0° and less than 180°, and the same applies in the following description.
  • FIG. 7 (a) is a view for explaining the first unit pattern 310 composed of one side of the hypotenuse and the vertical side of a right triangle, (b) is composed of one side of the hypotenuse and the vertical side of a right triangle, It is a view for explaining the second unit pattern 410 in which the center is moved in parallel by a predetermined distance d in the longitudinal direction from the center of the first unit pattern 310, (c) is the first unit pattern 310 in the longitudinal direction.
  • a plurality of first continuous patterns 300 and second unit patterns 410 are connected in a plurality to form a zigzag shape and a plurality of second continuous patterns 400 are connected in the longitudinal direction to form a zigzag shape.
  • the predetermined distance d may be set shorter than the horizontal distance between the first unit pattern 310 and the second unit pattern 410 , and the same applies in the following description.
  • FIG. 8 is a view for explaining the first unit pattern 310 composed of two sides having a predetermined included angle ( ⁇ °)
  • (b) is a diagram illustrating two sides having a predetermined included angle ( ⁇ °)
  • It is a view for explaining the second unit pattern 410 in which the center is moved in parallel by a predetermined distance d in the longitudinal direction from the center of the first unit pattern 310
  • (c) is the first unit pattern 310 in the longitudinal direction.
  • a plurality of first continuous patterns 300 and second unit patterns 410 are connected in a plurality to form a sawtooth shape and a plurality of second continuous patterns 400 are connected in the longitudinal direction to form a sawtooth shape. It is also an example.
  • FIG. 9 (a) is a view for explaining a first unit pattern 310 composed of three sides vertically connected to the inside and one side vertically connected to the outside, (b) is a second unit pattern composed of a straight line A diagram for explaining the unit pattern 410, (c) is a first continuous pattern 300 and a second unit pattern 410 in which a plurality of first unit patterns 310 are connected in the longitudinal direction to form an uneven shape. It is an exemplary view in which a plurality of second continuous patterns 400 that are connected in the longitudinal direction to form a straight line are printed.
  • 10A and 10B each describe a first unit pattern 310 and a second unit pattern 410 in which one of the four sides constituting the quadrangle extends vertically outward of the other adjacent side.
  • a plurality of first continuous patterns 300 and second unit patterns 410 are connected in the longitudinal direction in which a plurality of first unit patterns 310 are connected in the longitudinal direction to form a concavo-convex shape. It is an exemplary view in which a plurality of second continuous patterns 400 are printed to form a concave-convex shape.
  • FIG. 11 (a) is a view for explaining the first unit pattern 310 consisting of three sides vertically connected to the inside and one side vertically connected to the outside, (b) is a view for explaining the first unit pattern 310 vertically connected to the inside A view for explaining a second unit pattern 410 composed of three sides, (c) is a first continuous pattern 300 in which a plurality of first unit patterns 310 are connected in the longitudinal direction to form an uneven shape; An example of printing a plurality of second continuous patterns 400 formed by intermittently disposing a plurality of second unit patterns 410 positioned to enter the convex inside of the first continuous pattern 300 at a predetermined interval in the longitudinal direction to be. In this case, the second unit pattern 410 may be positioned to enter a predetermined interval within a range not in contact with the convex inner side of the first continuous pattern 300 .
  • FIG. 12 (a) is a view for explaining a first unit pattern 310 composed of three sides vertically connected to the inside and one side vertically connected to the outside, (b) is a first straight line 411 and a second unit pattern 410 composed of a second straight line 413 that is vertically coupled to an arbitrary position of the first straight line 411, (c) is the first unit pattern 310 is A plurality of first continuous patterns 300 connected in the longitudinal direction to form a concavo-convex shape and a plurality of second straight lines 413 are positioned to enter the convex inner side of the first continuous pattern 300 at a predetermined interval, and are connected in a plurality of lengthwise directions. It is an exemplary view in which a plurality of second continuous patterns 400 are printed. In this case, the second straight line 413 of the second unit pattern 410 may be positioned so as to enter a predetermined interval within a range not in contact with the convex inner side of the first continuous pattern 300 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Tunnel Furnaces (AREA)

Abstract

본 발명은 열처리 설비 내 배치되어 스트립의 열처리(heat treatment)를 수행하는 복사관 장치 및 그 제조 방법{Radiant Tube Apparatus and Method of Manufacture thereof}에 관한 것으로, 본 발명의 복사관 장치는, 내부 관로를 갖는 튜브를 포함하고 상기 튜브는, 소정간격 이격되어 나란히 연장되는 제1 연속패턴 및 제2 연속패턴이 표면에 위치하고 상기 제1 연속패턴 및 상기 제2 연속패턴 각각은, 상기 표면으로부터 소정 높이를 갖는 단위패턴이 길이방향으로 복수 개 연결된다.

Description

복사관 장치 및 그 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2019년 12월 17일자 한국 특허 출원 제 10-2019-0169104호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열처리 설비 내 배치되어 열처리 대상재의 열처리(heat treatment)를 수행하는 복사관 장치 및 그 제조 방법에 관한 것이다.
주조, 단조, 압연, 압출 등 다양한 방식으로 가공된 금속 소재는 목적하는 강도와 결정 크기 등을 구현하기 위해 특정 온도에서 열처리되거나, 표면처리를 위해 특정 온도로 유지된 열처리로(heat treatment furnace)를 통과하게 된다.
스트립, 플레이트 등의 금속 소재가 열처리되는 동안 소둔로 내 존재하는 산소로 산화될 수 있는데, 산화물 생성을 억제하기 위해 질소, 아르곤 등 불활성 분위기나 진공 중에서 열처리하는 방법이 사용된다. 불활성 분위기나 진공 중 열처리가 필요한 경우, 전기를 사용하는 발열체가 열원으로 사용되기도 하나, 가스를 버너로 연소시킬 때 발생하는 열을 사용하는 방식이 대량 제품을 저가로 열처리하는데 적합하다. 이때, 가스 연소에 필요한 산소가 없는 불활성 분위기에서는 직접 버너를 연소시킬 수 없으므로, 버너가 장착된 복사관(radiant tube)이 사용된다.
불활성 분위기가 아닌 일반 대기 분위기라 하더라도 화염이 직접적으로 분사될 경우 스트립의 불균일 가열과 변색을 유발할 수 있으므로, 버너로부터 생성된 화염은 복사관 내부를 순환하여 복사관을 가열하고, 가열된 복사관으로부터 방출되는 복사열에 의해 스트립은 간접 가열된다. 복사관은 주조법을 사용하여 튜브형상을 주조하거나, 판재를 조관하여 튜브형상으로 만들고 굴곡진 튜브와 직선형 튜브를 상호 용접하여 제조될 수 있다.
한편, 원심주조법을 이용하여 표면에 음극돌기를 형성시키거나, 복사관 표면에 복수 개의 다각형으로 패턴을 형성하여 복사관의 열효율을 높이려는 시도가 있다.
그러나, 음극돌기의 높이는 복사관 표면 두께를 초과할 수 없으므로 열효율을 향상시키는데 한계가 있다. 또한, 패턴을 형성하는 다각형은 인접하는 다각형과 일 변을 공유하도록 배치되어 구현할 수 있는 형상이 제한되고, 단속적으로 패턴이 형성됨으로써 단위 시간당 형성할 수 있는 연속패턴의 생산성이 감소하였다. 뿐만 아니라 연속패턴을 구성하는 일 패턴이 타 패턴과 접촉하면 접촉 면적만큼 복사열을 방출하는 표면적도 감소하므로 열효율 증가도 제한되어 문제로 지적되었다.
타 패턴과 소정거리 이격되어 평행하게 형성되는 복수의 연속패턴을 복사관 표면에 인쇄하여 복사열 방출 표면적을 증대시킨 복사관 장치 및 그 제조 방법을 제공하고자 한다.
본 발명의 일 특징에 따른 복사관 장치는, 내부 관로를 갖는 튜브를 포함하고 상기 튜브는, 소정간격 이격되어 나란히 연장되는 제1 연속패턴 및 제2 연속패턴이 표면에 위치하고 상기 제1 연속패턴 및 상기 제2 연속패턴 각각은, 상기 표면으로부터 소정 높이를 갖는 단위패턴이 길이방향으로 복수 개 연결되어 있다.
상기 튜브는, 직선 연장되는 복수의 직관부; 및 상기 복수의 직관부가 평행하게 위치하도록 상기 직관부의 종단에 결합하는 곡관부를 포함할 수 있다.
상기 제1 연속패턴은, 직각삼각형의 빗변과 수직 변 중 한 변으로 구성되는 제1 단위패턴이 길이방향으로 복수 개 연결되어 지그재그 모양을 형성하고 상기 제2 연속패턴은, 직선으로 구성되는 제2 단위패턴이 길이방향으로 복수 개 연결되어 일직선을 형성할 수 있다.
상기 제1 연속패턴은, 소정 끼인각을 갖는 두 변으로 구성되는 제1 단위패턴이 길이방향으로 복수 개 연결되어 톱니모양을 형성하고 상기 제2 연속패턴은, 직선으로 구성되는 제2 단위패턴이 길이방향으로 복수 개 연결되어 일직선을 형성할 수 있다.
상기 제1 연속패턴 및 상기 제2 연속패턴 각각은, 직각삼각형의 빗변과 수직 변 중 한 변으로 구성되는 단위패턴이 길이방향으로 복수 개 연결되어 지그재그 모양을 형성하고 상기 제2 연속패턴을 구성하는 상기 단위패턴의 중심은 상기 제1 연속패턴을 구성하는 상기 단위패턴의 중심으로부터 길이방향으로 소정 거리 평행 이동하여 구성될 수 있다.
상기 제1 연속패턴 및 상기 제2 연속패턴 각각은, 소정 끼인각을 갖는 두 변으로 구성되는 단위패턴이 길이방향으로 복수 개 연결되어 톱니모양을 형성하고 상기 제2 연속패턴을 구성하는 상기 단위패턴의 중심은 상기 제1 연속패턴을 구성하는 상기 단위패턴의 중심으로부터 길이방향으로 소정 거리 평행 이동하여 구성될 수 있다.
상기 제1 연속패턴은, 내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 제1 단위패턴이 길이방향으로 복수 개 연결되어 요철모양을 형성하고 상기 제2 연속패턴은, 직선으로 구성되는 제2 단위패턴이 길이방향으로 복수 개 연결되어 일직선을 형성할 수 있다.
상기 제1 연속패턴 및 상기 제2 연속패턴 각각은, 내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 단위패턴이 길이방향으로 복수 개 연결되어 요철모양을 형성할 수 있다.
상기 제1 연속패턴은, 내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 제1 단위패턴이 길이방향으로 복수 개 연결되어 요철모양을 형성하고 상기 제2 연속패턴은, 내측으로 수직하게 연결되는 세 변으로 구성되는 제2 단위패턴이 상기 제1 단위패턴의 볼록한 내측으로 소정 간격 진입하게 위치하여 길이방향으로 복수 개 단속적으로 배치되어 형성될 수 있다.
상기 제1 연속패턴은, 내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 제1 단위패턴이 길이방향으로 복수 개 연결되어 요철모양을 형성하고 상기 제2 연속패턴은, 제1 직선과 상기 제1 직선에 수직하게 결합하는 제 2 직선으로 구성되는 제2 단위패턴이 상기 제1 단위패턴의 볼록한 내측으로 소정 간격 진입하게 위치하여 길이방향으로 복수 개 연결되어 형성될 수 있다.
본 발명의 다른 특징에 따른 복사관 장치를 제조하는 제조방법은, 내부 관로를 갖는 튜브의 표면에 소정간격 이격되어 나란히 연장되는 제1 연속패턴 및 제2 연속 패턴을 3차원 조형방법을 통해 인쇄하여, 제1항 내지 제10항 중 어느 한 항에 따른 복사관 장치를 제조한다.
본 발명의 또 다른 특징에 따른 복사관 장치를 제조하는 제조방법은, 내부 관로를 갖는 튜브의 표면에 소정간격 이격되어 나란히 연장되는 제1 연속패턴 및 제2 연속 패턴을 CMT(Cold Metal Transfer), TIG(Tungsten Inert Gas) 및 MIG(Metal Inert Gas) 중 적어도 하나의 방법으로 용접하여, 제1항 내지 제10항 중 어느 한 항에 따른 복사관 장치를 제조한다.
복사열 효율이 향상되어 소둔로 내 열처리 효율을 높일 수 있는 복사관 장치 및 그 제조 방법을 제공한다.
도 1은 일 실시예에 따라 열처리 설비 내부를 통과하는 스트립의 열처리를 설명하는 도면이다.
도 2는 도 1의 복사관 장치에서 방출되는 복사열에 의해 스트립이 열처리되는 예시를 설명하는 도면이다.
도 3은 도 1의 복사관 장치를 상세하게 보여주는 도면이다.
도 4는 도 1의 복사관 표면에 위치하는 지그재그 패턴의 일 실시예를 보여주는 도면이다.
도 5는 도 4의 지그재그 패턴을 보여주는 이미지 도면이다.
도 6은 도 1의 복사관 표면에 위치하는 톱니모양 패턴의 일 실시예를 보여주는 도면이다.
도 7은 도 1의 복사관 표면에 위치하는 지그재그 패턴의 다른 실시예를 보여주는 도면이다.
도 8은 도 1의 복사관 표면에 위치하는 톱니모양 패턴의 다른 실시예를 보여주는 도면이다.
도 9는 도 1의 복사관 표면에 위치하는 요철모양 패턴의 일 실시예를 보여주는 도면이다.
도 10은 도 1의 복사관 표면에 위치하는 요철모양 패턴의 다른 실시예를 보여주는 도면이다.
도 11은 도 1의 복사관 표면에 위치하는 요철모양 패턴의 또 다른 실시예를 보여주는 도면이다.
도 12는 도 1의 복사관 표면에 위치하는 요철모양 패턴의 또 다른 실시예를 보여주는 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 동일하거나 유사한 구성요소에는 동일, 유사한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및/또는 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 일 실시예에 따라 열처리 설비 내부를 통과하는 스트립의 열처리를 설명하는 도면이고, 도 2는 도 1의 복사관 장치에서 방출되는 복사열에 의해 스트립이 열처리되는 예시를 설명하는 도면이고, 도 3은 도 1의 복사관 장치를 상세하게 보여주는 도면이고, 도 4 내지 도 12는 도 1의 복사관 표면에 위치하는 연속패턴의 다양한 실시예를 보여주는 도면이다.
도 1에 도시된 바와 같이, 복사관 장치(100)는 표면처리를 위해 특정 온도로 유지된 열처리로(heat treatment furnace)(1)를 통과하는 금속 소재(strip, 이하 스트립)(S)의 열처리를 수행한다. 복사관 장치(100)는 열처리로(1)에 설치될 수 있으나 이에 한정되는 것은 아니며, 기타 다양한 열처리 설비에 설치될 수 있다.
도 2를 참고하면, 연소노즐(미도시)로부터 생성된 화염이 복사관 장치(100) 내부를 순환하여 복사관 장치(100)를 가열하고, 가열된 복사관 장치(100)로부터 방출되는 복사열에 의해 스트립(S)은 간접 가열된다. 이때, 연소노즐은 기체, 액체, 분체 연료를 분사하고 연소시켜 복사관 장치(100)를 가열한다. 예를 들어, 연소노즐은 버너(burner)를 포함하나 이에 한정되는 것은 아니며, 복사관 장치(100) 내에 설치될 수 있는 다양한 연소장치를 포함할 수 있다. 스트립(S)은 주조, 단조, 압연, 압출 등 다양한 방식으로 가공된 금속 소재로, 예를 들어 강판을 포함할 수 있다.
도 3을 참고하면, 복사관 장치(100)는 화염에 의해 가열된 열기가 통과하는 내부 관로가 형성된 튜브(110)를 포함한다. 튜브(110)는 내부에서 발생된 화염에 의해 가열되면 외부로 복사열을 방출하여 저온의 스트립(S)을 가열한다. 그러면, 스트립(S)의 산화가 방지된다.
튜브(110)는 직선 연장되는 복수의 직관부(111a, 111b: 111) 및 복수의 직관부(111a, 111b: 111)가 서로 평행하게 배치되도록 복수의 직관부(111a, 111b: 111)의 종단에 결합하는 곡관부(113)를 포함하여 U 형으로 형성될 수 있다. 예를 들어, 튜브(110)는 스트립(S)의 크기 및 가열 온도에 따라 U 형, W 형으로 형성될 수 있으나 이에 한정되는 것은 아니다.
튜브(110)는 외부 표면에 형성되는 복수의 연속패턴을 포함한다. 그러면, 복사열을 방출하는 표면적이 증가하여 복사열 효율이 높아진다. 연속패턴의 높이는 높을수록 표면적이 증가하여 복사열 효율이 높아지나, 복사관 장치(100)가 설치되는 장소나 인접하는 다른 기기들과의 거리 등에 의해 최적 높이로 설정될 수 있다.
도 4 내지 도 12를 참고하면, 연속패턴은 소정 간격 이격되어 나란히 연장되는 제1 연속패턴(300) 및 제2 연속패턴(400)을 포함한다. 구체적으로, 제1 연속패턴(300) 및 제2 연속패턴(400)은 서로 접촉하지 않고 구성하는 변을 공유하지 않는 독립 패턴으로 소정 간격 이격되어 나란히 연장된다.
제1 연속패턴(300) 및 제2 연속패턴(400) 각각은, 튜브(110) 외부 표면으로부터 소정 높이를 갖는 단위패턴이 길이방향으로 복수 개 연결되어 형성될 수 있다. 예를 들어, 연속패턴은 DED(Directed Energy Deposition) 방식과 같은 3차원 조형방법(Additive Manufacturing, 이하 3D 프린팅), CMT(Cold Metal Transfer), TIG(Tungsten Inert Gas), MIG(Metal Inert Gas) 등을 사용한 육성용접(Overlay welding) 방법 등을 통해 인쇄될 수 있다.
도 4의 (a)는 직각삼각형의 빗변과 수직 변 중 한 변으로 구성되는 제1 단위패턴(310)을 설명하는 도면이고, (b)는 직선으로 구성되는 제2 단위패턴(410)을 설명하는 도면이고, (c)는 제1 단위패턴(310)이 길이방향으로 복수 개 연결되어 지그재그 모양을 형성하는 제1 연속패턴(300) 및 제2 단위패턴(410)이 길이방향으로 복수 개 연결되어 일직선을 형성하는 제2 연속패턴(400)이 복수 개 인쇄된 예시도이다.
도 5에 도시된 바와 같이, 튜브(110) 외부 표면에 도 4의 (c)에 도시된 제1 연속패턴(300) 및 제2 연속패턴(400)이 복수 개 형성될 수 있다. 예를 들어, CMT(Cold Metal Transfer) 용접으로 도 5에 도시된 연속패턴을 튜브(110) 외부 표면에 형성할 때, 연속패턴의 높이는 3 mm 이상, 연속패턴의 높이/두께 비율을 1.0 이상 되도록 하여 복사열 방출 효율을 높일 수 있다. 구체적으로, 용접 와이어(wire)의 직경은 0.6 mm 이상 1.5 mm 이하, 용접 전류는 70A 이상, 용접 전압은 8V 이상 12V이하, CTWD(Contact tip To Work Distance)는 10 mm 이상 40 mm 이하, 용접 속도는 0.3 m/min 이상 0.7 m/min 이하의 조건에서 용접함으로써, 연속패턴의 높이는 3 mm 이상, 연속패턴의 높이/두께 비율을 1.0 이상으로 형성할 수 있다. 또한, 제1 연속패턴(300) 및 제2 연속패턴(400)은 CMT 용접 방법에 한정되어 형성되는 것은 아니며, TIG(Tungsten Inert Gas) 또는 MIG(Metal Inert Gas)와 같은 다양한 용접 방법의 의해 형성될 수 있다.
예를 들어, 높이를 3.34mm로 하여 하나의 복사관 장치(100)에 단위패턴 쌍이 44개 인쇄되어 도 4 및 도 5에 도시된 제1 연속패턴(300) 및 제2 연속패턴(400)을 형성하는 경우 아무것도 인쇄되지 않은 복사관 장치(100)와 비교하여 복사열 방출 효율이 13,38% 향상된다. 동일 조건 하에 아무것도 인쇄되지 않은 복사관 장치(100)와 비교하여 허니콤(honeycomb) 패턴의 복사열 방출 효율이 8.6% 향상되는 것과 비교하면, 제1 연속패턴(300) 및 제2 연속패턴(400)의 복사열 향상이 현저하다.
또한, 도 4 및 도 5에 도시된 제1 연속패턴(300) 및 제2 연속패턴(400)이 서로 접촉한 형태로 형성될 수도 있다. 즉, 제1 연속패턴(300) 중 제2 연속 패턴(400)에 인접한 지점이 제2 연속패턴(400)과 직접 연결된 형태로도 형성될 수도 있다. 제1 연속패턴(300)과 제2 연속패턴(400)이 일부 접촉하여 형성된 패턴은 아무 것도 인쇄되지 않은 복사관 장치(100)와 비교하여 복사열 방출 효율이 12,2% 향상된다.
도 6의 (a)는 소정 끼인각(θ°)을 갖는 두 변으로 구성되는 제1 단위패턴(310)을 설명하는 도면이고, (b)는 직선으로 구성되는 제2 단위패턴(410)을 설명하는 도면이고, (c)는 제1 단위패턴(310)이 길이방향으로 복수 개 연결되어 톱니모양을 형성하는 제1 연속패턴(300) 및 제2 단위패턴(410)이 길이방향으로 복수 개 연결되어 일직선을 형성하는 제2 연속패턴(400)이 복수 개 인쇄된 예시도이다. 이때, 소정 끼인각(θ°)은 0°초과 180°미만에 속하는 임의의 각으로 구성될 수 있으며, 이하 설명에서도 동일하게 적용된다.
도 7의 (a)는 직각삼각형의 빗변과 수직 변 중 한 변으로 구성되는 제1 단위패턴(310)을 설명하는 도면이고, (b)는 직각삼각형의 빗변과 수직 변 중 한 변으로 구성되고 중심이 제1 단위패턴(310)의 중심으로부터 길이방향으로 소정 거리(d) 평행 이동한 제2 단위패턴(410)을 설명하는 도면이고, (c)는 제1 단위패턴(310)이 길이방향으로 복수 개 연결되어 지그재그 모양을 형성하는 제1 연속패턴(300) 및 제2 단위패턴(410)이 길이방향으로 복수 개 연결되어 지그재그 모양을 형성하는 제2 연속패턴(400)이 복수 개 인쇄된 예시도이다. 예를 들어, 소정 거리(d)는 제1 단위패턴(310) 및 제2 단위패턴(410)의 수평 간격보다 짧게 설정될 수 있으며, 이하 설명에서도 동일하게 적용된다.
도 8의 (a)는 소정 끼인각(θ°)을 갖는 두 변으로 구성되는 제1 단위패턴(310)을 설명하는 도면이고, (b)는 소정 끼인각(θ°)을 갖는 두 변으로 구성되고 중심이 제1 단위패턴(310)의 중심으로부터 길이방향으로 소정 거리(d) 평행 이동한 제2 단위패턴(410)을 설명하는 도면이고, (c)는 제1 단위패턴(310)이 길이방향으로 복수 개 연결되어 톱니모양을 형성하는 제1 연속패턴(300) 및 제2 단위패턴(410)이 길이방향으로 복수 개 연결되어 톱니모양을 형성하는 제2 연속패턴(400)이 복수 개 인쇄된 예시도이다.
도 9의 (a)는 내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 제1 단위패턴(310)을 설명하는 도면이고, (b)는 직선으로 구성되는 제2 단위패턴(410)을 설명하는 도면이고, (c)는 제1 단위패턴(310)이 길이방향으로 복수 개 연결되어 요철모양을 형성하는 제1 연속패턴(300) 및 제2 단위패턴(410)이 길이방향으로 복수 개 연결되어 일직선을 형성하는 제2 연속패턴(400)이 복수 개 인쇄된 예시도이다.
도 10의 (a) 및 (b) 각각은 사각형을 구성하는 네 변 중 한 변이 인접하는 타 변의 외측으로 수직하게 연장되게 구성되는 제1 단위패턴(310) 및 제2 단위패턴(410)을 설명하는 도면이고, (c)는 제1 단위패턴(310)이 길이방향으로 복수 개 연결되어 요철모양을 형성하는 제1 연속패턴(300) 및 제2 단위패턴(410) 이 길이방향으로 복수 개 연결되어 요철모양을 형성하는 제2 연속패턴(400)이 복수 개 인쇄된 예시도이다.
도 11의 (a)는 내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 제1 단위패턴(310)을 설명하는 도면이고, (b)는 내측으로 수직하게 연결되는 세 변으로 구성되는 제2 단위패턴(410)을 설명하는 도면이고, (c)는 제1 단위패턴(310)이 길이방향으로 복수 개 연결되어 요철모양을 형성하는 제1 연속패턴(300) 및 제1 연속패턴(300)의 볼록한 내측으로 소정 간격 진입하게 위치하는 제2 단위패턴(410)이 길이방향으로 복수 개 단속적으로 배치되어 형성되는 제2 연속패턴(400)이 복수 개 인쇄된 예시도이다. 이때, 제2 단위패턴(410)은 제1 연속패턴(300)의 볼록한 내측과 접촉하지 않는 범위 내에서 소정 간격 진입하게 위치할 수 있다.
도 12의 (a)는 내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 제1 단위패턴(310)을 설명하는 도면이고, (b)는 제1 직선(411)과 제1 직선(411)의 임의의 위치에 수직하게 결합하는 제 2 직선(413)으로 구성되는 제2 단위패턴(410)을 설명하는 도면이고, (c)는 제1 단위패턴(310)이 길이방향으로 복수 개 연결되어 요철모양을 형성하는 제1 연속패턴(300) 및 제1 연속패턴(300)의 볼록한 내측으로 제 2 직선(413)이 소정 간격 진입하게 위치하여 길이방향으로 복수 개 연결되어 형성되는 제2 연속패턴(400)이 복수 개 인쇄된 예시도이다. 이때, 제2 단위패턴(410)의 제 2 직선(413)이 제1 연속패턴(300)의 볼록한 내측과 접촉하지 않는 범위 내에서 소정 간격 진입하게 위치할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였으나, 본 발명의 권리범위가 이에 한정되는 것은 아니며 본 발명이 속하는 분야에서 통상의 지식을 가진 자가 여러 가지로 변형 및 개량한 형태 또한 본 발명의 권리범위에 속한다.

Claims (12)

  1. 내부 관로를 갖는 튜브를 포함하고
    상기 튜브는,
    소정간격 이격되어 나란히 연장되는 제1 연속패턴 및 제2 연속패턴이 표면에 위치하고
    상기 제1 연속패턴 및 상기 제2 연속패턴 각각은,
    상기 표면으로부터 소정 높이를 갖는 단위패턴이 길이방향으로 복수 개 연결되어 있는,
    복사관 장치.
  2. 제1항에 있어서,
    상기 튜브는,
    직선 연장되는 복수의 직관부; 및
    상기 복수의 직관부가 평행하게 위치하도록 상기 직관부의 종단에 결합하는 곡관부를 포함하는,
    복사관 장치.
  3. 제1항에 있어서,
    상기 제1 연속패턴은, 직각삼각형의 빗변과 수직 변 중 한 변으로 구성되는 제1 단위패턴이 길이방향으로 복수 개 연결되어 지그재그 모양을 형성하고
    상기 제2 연속패턴은, 직선으로 구성되는 제2 단위패턴이 길이방향으로 복수 개 연결되어 일직선을 형성하는,
    복사관 장치.
  4. 제1항에 있어서,
    상기 제1 연속패턴은, 소정 끼인각을 갖는 두 변으로 구성되는 제1 단위패턴이 길이방향으로 복수 개 연결되어 톱니모양을 형성하고
    상기 제2 연속패턴은, 직선으로 구성되는 제2 단위패턴이 길이방향으로 복수 개 연결되어 일직선을 형성하는,
    복사관 장치.
  5. 제1항에 있어서,
    상기 제1 연속패턴 및 상기 제2 연속패턴 각각은, 직각삼각형의 빗변과 수직 변 중 한 변으로 구성되는 단위패턴이 길이방향으로 복수 개 연결되어 지그재그 모양을 형성하고
    상기 제2 연속패턴을 구성하는 상기 단위패턴의 중심은 상기 제1 연속패턴을 구성하는 상기 단위패턴의 중심으로부터 길이방향으로 소정 거리 평행 이동하여 구성되는,
    복사관 장치.
  6. 제1항에 있어서,
    상기 제1 연속패턴 및 상기 제2 연속패턴 각각은, 소정 끼인각을 갖는 두 변으로 구성되는 단위패턴이 길이방향으로 복수 개 연결되어 톱니모양을 형성하고
    상기 제2 연속패턴을 구성하는 상기 단위패턴의 중심은 상기 제1 연속패턴을 구성하는 상기 단위패턴의 중심으로부터 길이방향으로 소정 거리 평행 이동하여 구성되는,
    복사관 장치.
  7. 제1항에 있어서,
    상기 제1 연속패턴은, 내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 제1 단위패턴이 길이방향으로 복수 개 연결되어 요철모양을 형성하고
    상기 제2 연속패턴은, 직선으로 구성되는 제2 단위패턴이 길이방향으로 복수 개 연결되어 일직선을 형성하는,
    복사관 장치.
  8. 제1항에 있어서,
    상기 제1 연속패턴 및 상기 제2 연속패턴 각각은,
    내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 단위패턴이 길이방향으로 복수 개 연결되어 요철모양을 형성하는,
    복사관 장치.
  9. 제1항에 있어서,
    상기 제1 연속패턴은, 내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 제1 단위패턴이 길이방향으로 복수 개 연결되어 요철모양을 형성하고
    상기 제2 연속패턴은, 내측으로 수직하게 연결되는 세 변으로 구성되는 제2 단위패턴이 상기 제1 단위패턴의 볼록한 내측으로 소정 간격 진입하게 위치하여 길이방향으로 복수 개 단속적으로 배치되어 형성되는,
    복사관 장치.
  10. 제1항에 있어서,
    상기 제1 연속패턴은, 내측으로 수직하게 연결되는 세 변과 외측으로 수직하게 연결되는 한 변으로 구성되는 제1 단위패턴이 길이방향으로 복수 개 연결되어 요철모양을 형성하고
    상기 제2 연속패턴은, 제1 직선과 상기 제1 직선에 수직하게 결합하는 제 2 직선으로 구성되는 제2 단위패턴이 상기 제1 단위패턴의 볼록한 내측으로 소정 간격 진입하게 위치하여 길이방향으로 복수 개 연결되어 형성되는,
    복사관 장치.
  11. 내부 관로를 갖는 튜브의 표면에 소정간격 이격되어 나란히 연장되는 제1 연속패턴 및 제2 연속 패턴을 3차원 조형방법을 통해 인쇄하여, 제1항 내지 제10항 중 어느 한 항에 따른 복사관 장치를 제조하는,
    제조 방법.
  12. 내부 관로를 갖는 튜브의 표면에 소정간격 이격되어 나란히 연장되는 제1 연속패턴 및 제2 연속 패턴을 CMT(Cold Metal Transfer), TIG(Tungsten Inert Gas) 및 MIG(Metal Inert Gas) 중 적어도 하나의 방법으로 용접하여 제1항 내지 제10항 중 어느 한 항에 따른 복사관 장치를 제조하는,
    제조 방법.
PCT/KR2020/016828 2019-12-17 2020-11-25 복사관 장치 및 그 제조 방법 WO2021125601A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022536755A JP2023507324A (ja) 2019-12-17 2020-11-25 輻射管装置およびその製造方法
CN202080087203.2A CN114829637A (zh) 2019-12-17 2020-11-25 辐射管及其制造方法
EP20903022.0A EP4079876A4 (en) 2019-12-17 2020-11-25 RADIANT TUBE APPARATUS AND METHOD FOR MANUFACTURING SAME
US17/785,698 US20230046285A1 (en) 2019-12-17 2020-11-25 Radiant tube apparatus and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190169104A KR102326326B1 (ko) 2019-12-17 2019-12-17 복사관 장치 및 그 제조 방법
KR10-2019-0169104 2019-12-17

Publications (1)

Publication Number Publication Date
WO2021125601A1 true WO2021125601A1 (ko) 2021-06-24

Family

ID=76478441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016828 WO2021125601A1 (ko) 2019-12-17 2020-11-25 복사관 장치 및 그 제조 방법

Country Status (6)

Country Link
US (1) US20230046285A1 (ko)
EP (1) EP4079876A4 (ko)
JP (1) JP2023507324A (ko)
KR (1) KR102326326B1 (ko)
CN (1) CN114829637A (ko)
WO (1) WO2021125601A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174403A (ja) * 1999-10-28 2002-06-21 Stein Heurtey 加熱装置
KR20020072617A (ko) * 2001-03-12 2002-09-18 가와사키 세이테츠 가부시키가이샤 열 차폐 장치 및 수직 연속 가열냉각 노
KR101620383B1 (ko) * 2015-06-25 2016-05-12 주식회사 세창엔지니어링 방열튜브
KR20170045000A (ko) * 2015-10-16 2017-04-26 주식회사 포스코 복사관 장치
KR20180125518A (ko) * 2016-04-15 2018-11-23 안드리츠 테크날러지 앤드 에셋 매니지먼트 게엠베하 금속 스트립을 열처리하기 위한 노 설비 및 열처리 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2642858A (en) * 1953-06-23 Fuel burning air heating device
JPS4913Y1 (ko) * 1970-03-19 1974-01-05
JPH02259322A (ja) * 1988-12-28 1990-10-22 Toshiba Ceramics Co Ltd ラジアントチューブ
JPH0387321A (ja) * 1989-08-30 1991-04-12 Kawasaki Steel Corp ラジアントチューブ式連続熱処理炉における鋼帯の加熱方法及び装置
JPH07280207A (ja) * 1994-04-14 1995-10-27 Ngk Insulators Ltd ラジアントチューブ
WO2012110852A1 (en) * 2011-02-14 2012-08-23 Bisson Massimiliano Radiant tubolar element for industrial plants and similar
JP2015175507A (ja) * 2014-03-18 2015-10-05 株式会社神戸製鋼所 チタン溶接管、及びチタン溶接管の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174403A (ja) * 1999-10-28 2002-06-21 Stein Heurtey 加熱装置
KR20020072617A (ko) * 2001-03-12 2002-09-18 가와사키 세이테츠 가부시키가이샤 열 차폐 장치 및 수직 연속 가열냉각 노
KR101620383B1 (ko) * 2015-06-25 2016-05-12 주식회사 세창엔지니어링 방열튜브
KR20170045000A (ko) * 2015-10-16 2017-04-26 주식회사 포스코 복사관 장치
KR20180125518A (ko) * 2016-04-15 2018-11-23 안드리츠 테크날러지 앤드 에셋 매니지먼트 게엠베하 금속 스트립을 열처리하기 위한 노 설비 및 열처리 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079876A4 *

Also Published As

Publication number Publication date
US20230046285A1 (en) 2023-02-16
KR20210077445A (ko) 2021-06-25
EP4079876A4 (en) 2024-01-10
KR102326326B1 (ko) 2021-11-12
EP4079876A1 (en) 2022-10-26
CN114829637A (zh) 2022-07-29
JP2023507324A (ja) 2023-02-22

Similar Documents

Publication Publication Date Title
EP1211459B1 (en) Combustion apparatus
CA1170042A (en) Jet impingement/radiant heating apparatus
CN106197010A (zh) 用于再生式燃炉的选择性氧‑燃料增强喷燃器系统和方法
WO2021125601A1 (ko) 복사관 장치 및 그 제조 방법
US4310300A (en) Furnace for porcelain enameling
WO2013007531A1 (en) Device for transferring a metallurgical material
US9488383B2 (en) Hermetically sealed gas heater and continuous heating furnace using hermetically sealed gas heater
EP2546593B1 (en) Device for transferring a metallurgical material
JPS5916197B2 (ja) プラズマ溶解炉
JP3236238B2 (ja) 誘導加熱炉
JP3394500B2 (ja) 非鉄金属溶解炉
EP1325275B1 (en) Arrangement and method for heating gas in a gas duct in connection with continuously operated sintering
JP3939593B2 (ja) バーナ
JP7319219B2 (ja) 連続焼成炉
SU237183A1 (ru) Методическая печь
JPS6236848Y2 (ko)
JPS6215232Y2 (ko)
JPH10185131A (ja) ラジアントチューブ加熱装置と加熱炉
JPS6036586Y2 (ja) 鋼材加熱炉
CA1205628A (en) Furnace for preheating elongated material
JPS6347689Y2 (ko)
JP2008111630A (ja) ハニカム構造体の製造方法
EP0439336A2 (en) Improvements of temperature distribution for kilns
JP2003161429A (ja) 二次燃焼室の構造
JP2001133159A (ja) 蛍光ランプ用の蛍光膜焼成炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020903022

Country of ref document: EP

Effective date: 20220718