WO2021122251A1 - Medizinisches system zur behandlung von stenosen in intrakraniellen gefässen - Google Patents

Medizinisches system zur behandlung von stenosen in intrakraniellen gefässen Download PDF

Info

Publication number
WO2021122251A1
WO2021122251A1 PCT/EP2020/085399 EP2020085399W WO2021122251A1 WO 2021122251 A1 WO2021122251 A1 WO 2021122251A1 EP 2020085399 W EP2020085399 W EP 2020085399W WO 2021122251 A1 WO2021122251 A1 WO 2021122251A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
lattice structure
medical system
dad
balloon
Prior art date
Application number
PCT/EP2020/085399
Other languages
English (en)
French (fr)
Inventor
Michael BÜCHERT
Giorgio Cattaneo
Original Assignee
Acandis Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acandis Gmbh filed Critical Acandis Gmbh
Priority to CN202080088850.5A priority Critical patent/CN114901209A/zh
Priority to EP20837929.7A priority patent/EP4076274A1/de
Priority to US17/786,476 priority patent/US20230132863A1/en
Publication of WO2021122251A1 publication Critical patent/WO2021122251A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/18Materials at least partially X-ray or laser opaque
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0015Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/42Anti-thrombotic agents, anticoagulants, anti-platelet agents
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/06Vascular grafts; stents

Definitions

  • the invention relates to a medical system for treating stenoses in intracranial vessels with a stent and a balloon catheter.
  • WO 2014/177634 A1 describes a highly flexible stent which is suitable for supporting blood vessels and has a compressible and expandable lattice structure, the lattice structure being designed in one piece.
  • the lattice structure comprises closed cells which are each delimited by four lattice elements.
  • the lattice structure has at least one cell ring which comprises between three and six cells.
  • stents with lattice structures which are formed from a single wire are known from the applicant's practice.
  • the wire is intertwined with itself to form a tubular braid.
  • the wire is deflected at the axial ends of the tubular braid so that atraumatic loops are formed.
  • the axial ends can be widened in a funnel shape.
  • the medical stent is particularly suitable for use in intracranial blood vessels.
  • Such blood vessels have a comparatively small cross-sectional diameter and are often very tortuous.
  • the stent is designed to be highly flexible, so that on the one hand it can be compressed to a very small cross-sectional diameter and on the other hand it has a high degree of bending flexibility, which enables it to be fed into small cerebral blood vessels.
  • Stenoses are narrowing of blood vessels that lead to a change in the fluid dynamics of the blood flow. This can result in increased blood pressure, which in particular in the area of the stenosis leads to stress on the vessel walls. In the worst case, this can lead to tissue peeling or rupture.
  • the risk of deficiency is an undersupply due to the reduction in size or the closure of the lumen and due to the detachment of particles, which then float away distally and smaller distal vessels shoot.
  • Stenoses are based on changes in the vascular wall caused by inflammatory processes (atherosclerotic changes).
  • stents to regress a stenosis. These can be brought to the treatment site via a balloon catheter. There the stenosis is widened with the help of the balloon on the balloon catheter. The stent expanded in the area of the stenosis then supports the blood vessel.
  • the disadvantage of using known stents is that the lattice structure of the stent is pressed into the narrowed and often already irritated vessel wall due to the forces generated during the expansion and can thus lead to injuries, which in turn can lead to thrombus formation. Small thrombi can swim away distally and lead to blockages. The atherosclerotic tissue itself is also fragile and can break in contact with the lattice structure and float away. On the other hand, the meshes of the stents are so large that thrombi are not securely retained.
  • the known stents grow into the tissue only with difficulty and thus form an obstacle to the blood flow in the long term, on which thrombi can form.
  • the object of the invention is to provide a medical system for the treatment of stenoses with a balloon catheter and an implant with which a treatment site in intracranial blood vessels can be easily reached and with which the side effects of stenosis therapy are reduced.
  • the invention is based on the idea of specifying a medical system for the treatment of stenoses in intracranial blood vessels with a compressible and self-expanding implant for covering the stenosis, which has a lattice structure which is provided at least in sections with a cover made of electrospun tissue that is irregular has large pores, as well as a balloon catheter for dilating the stenosis and for delivering the implant into the blood vessel.
  • the combination according to the invention of the implant with the electrospun cover and the balloon catheter has particular advantages in the treatment of stenoses in intracranial blood vessels.
  • the self-expanding implant can be arranged in the region of the stenosis, with the self-expanding properties of the implant producing close contact with the vessel wall.
  • the balloon catheter can be used to widen the stenosis before and after inserting the implant. The first expansion takes place with the balloon of the balloon catheter. Micro-injuries occurring in this phase can be shielded from the bloodstream by the cover in the second treatment step.
  • the balloon can generate a relatively high expansion pressure which expands the constricted blood vessel.
  • the self-expandable implant permanently exerts a radial force on the vessel wall and thus ensures that there is no renewed narrowing or stenosis.
  • the electrospun cover ensures on the one hand that the implant bonds well to the vessel wall and, in particular, grows in, since the electrospun cover supports the formation of endothelial cell tissue.
  • the cover initially distributes the force on the vessel a little more homogeneously.
  • the cover ensures that small thrombi that form on the injured vessel wall do not swim further distally.
  • the fine-pored cover offers a good substrate for cell proliferation and thus for the formation of a new endothelial layer.
  • the cover is highly flexible and thin, so that the implant can be compressed well and is very flexible. In this way, the implant can be easily inserted into the often tightly wound and small blood vessels in the intracranial area by means of the balloon catheter.
  • the fine-pored, electrospun cover also has the effect that the radial force of the implant and the expansion force of the balloon are distributed over a relatively large contact area, so that the lattice structure is prevented from "cutting" into the vascular wall tissue (Soft plaque), which often form in the area of stenoses, and vulnerable plaque are often a consequence an arteriosclerotic disease, which is also a major cause of stenosis.
  • Soft plaque vascular wall tissue
  • the accumulation of deposits rich in fat (plaque) ultimately leads to a narrowing, i.e. a stenosis, of the blood vessel.
  • Vulnerable plaque can burst and ultimately trigger thrombosis.
  • vulnerable plaque is stabilized, so that the risk of bursting and thus the risk of thrombosis can be reduced.
  • the cover comprises at least 10 pores over an area of 100,000 ⁇ m 2 , which have a size between 5 ⁇ m 2 to 15 ⁇ m 2 and / or at least 15 ⁇ m 2 .
  • these pores can have a size of at least 30 ⁇ m 2 .
  • the at least 10 pores of the cover can each have an incircle diameter of at least 4 pm, in particular at least 5 pm, in particular at least 6 pm, in particular at least 7 pm, in particular at least 8 pm, in particular at least 9 pm, in particular at least 10 pm, in particular at least 12 pm, in particular at least 15 pm, in particular at least 20 pm.
  • the minimum size of the pores can be adjusted in particular through the duration of the electrospinning process.
  • the electrospun fabric cover is thin and flexible over it, which supports the flexibility of the lattice structure.
  • the cover hardly prevents the lattice structure from being compressed.
  • the implant can therefore be compressed to a considerably smaller cross-sectional diameter and thus guided into particularly small blood vessels via small balloon catheters.
  • the high flexibility of the carrier structure or the lattice structure can be achieved in particular if the lattice structure has a closed cell ring which has at most 12 immediately adjacent cells in the circumferential direction of the lattice structure.
  • the closed cell ring also enables the lattice structure to be withdrawn again into a balloon catheter 60 after a partial release, since, because of the closed structure, no lattice elements protrude that could get caught on the catheter tip.
  • all cell rings of the lattice structure can be closed and a maximum of 12, in particular have a maximum of 10, in particular a maximum of 8, in particular a maximum of 6, cells directly adjacent in the circumferential direction of the lattice structure. It is possible for all cell rings to include at least 3 cells which are directly adjacent to the lattice structure in a circumferential direction.
  • the grid elements and their connectors or crossing points are also limited. Because of the limited number of lattice elements in the circumferential direction, the lattice structure can be compressed to a small cross-sectional diameter in which the lattice elements are preferably in direct contact with one another. In addition, by delimiting the cells in the circumferential direction, increased feedability can also be achieved, so that the lattice structure, in particular also in the compressed state, can be guided through tightly wound vessels by means of the balloon catheter.
  • the lattice elements preferably delimit closed cells of the lattice structure, each closed cell being delimited by four lattice elements.
  • the closed cell can have a diamond-shaped basic structure.
  • the closed cells achieve a high stability of the lattice structure, which is advantageous for the function of the lattice structure as a carrier for the cover. In particular, high stability is achieved in the axial direction, i.e. in the direction of a longitudinal axis of the lattice structure, which improves the delivery of the implant through the balloon catheter. In the radial direction, the lattice structure can have increased flexibility due to the closed cells, which leads to an improved radial force.
  • all geometrical details with regard to the implant relate to the resting state of the implant.
  • the state of rest is the expanded state of the implant in which the implant does not exert any radial forces.
  • the balloon catheter can have at least two channels and a balloon, an inflation channel being fluidly connected to the balloon and a delivery channel extending through the balloon.
  • the supply channel can have a proximal insertion opening and a distal exit opening which releases the implant.
  • the inflation channel is for it provided to fill the balloon with a fluid in order to expand the balloon, or to discharge the fluid from the balloon again in order to compress the balloon.
  • the fluid can be a sodium chloride solution, in particular with a contrast medium for visualization under X-rays.
  • the feed channel is preferably designed as a through channel and enables the implant to be guided to the treatment site. Since the implant is easily compressible because of the thin and flexible cover, the feed channel can be correspondingly small.
  • the special structure of the electrospun cover means that the implant can be pushed through the feed channel with comparatively low frictional resistance. To this extent, it is provided in a preferred variant of the medical system according to the invention that the implant, in the compressed state, can be moved through the feed channel or is arranged in the feed channel.
  • the feed channel can furthermore have a friction-reducing inner coating for a translational movement of the implant in the feed channel.
  • the feed channel has an inner diameter of at most 991 pm (0.039 inch), in particular at most 686 pm (0.027 inch), in particular at most 635 pm (0.025 inch), in particular at most 533 pm (0.021 inch), in particular at most 432 pm (0.017 inch), in particular at most 406 pm (0.016 inch), in particular at most 381 pm (0.015 inch), in particular at most 330 pm (0.013 inch).
  • the balloon catheter can have at least one X-ray marker.
  • the balloon catheter 60 preferably comprises three X-ray markers, a first X-ray marker being arranged in the region of the distal exit opening of the feed channel, a second X-ray marker in the region of a distal balloon end and a third X-ray marker being arranged in the region of a proximal balloon end.
  • the X-ray markers enable a surgeon to record the position of the balloon within a blood vessel under X-ray control and to correct it if necessary.
  • the pores have a size of at most 750 gm 2 , in particular at most 500 gm 2 , in particular at most 300 gm 2 .
  • the cover can be firmly, in particular materially connected, to the lattice structure.
  • the cover is applied directly to the lattice structure.
  • the electrospinning process can take place directly on the lattice structure, so that a connection to the lattice structure is established at the same time as the cover is formed.
  • the cover can be materially connected to the lattice structure.
  • the cover can be connected to the lattice structure by an adhesive connection.
  • the adhesive connection can be established by a flaft mediator.
  • the flaft mediator can, for example, comprise or consist of polyurethane.
  • the fixed connection between the cover and the lattice structure prevents the cover from becoming detached from the lattice structure when the implant is fed through the feed channel of the balloon catheter. At the same time, this facilitates the positioning of the implant under X-ray control, since it is sufficient to attach appropriate implant X-ray markers either to the lattice structure or to the cover. Since the relative position between the cover and the lattice structure is constant, additional implant x-ray markers, which would make a relative displacement between the cover and the lattice structure recognizable, are not required. Overall, the number of implant x-ray markers, for example x-ray marker sleeves, can be reduced, which in turn has a positive effect on the compressibility of the implant.
  • the lattice structure can be sheathed at least partially and / or in sections by a flaft mediator, in particular polyurethane.
  • the Adhesion promoters form the integral connection between the cover and the lattice structure.
  • the grid elements of the grid structure can be encased by an adhesion promoter, in particular polyurethane.
  • the adhesion promoter forms the material connection between the cover and the lattice structure.
  • the adhesion promoter preferably surrounds the entire grid element and in this respect forms a casing for the grid element.
  • the cover is arranged on an outside of the lattice structure.
  • the lattice structure forms a support structure that applies sufficient radial force to fix the cover against a vessel wall.
  • the carrier structure supports the cover arranged on the outside.
  • the cover can also be arranged on an inside of the lattice structure.
  • the cover can be arranged on an inside of the lattice structure.
  • the lattice structure it is possible for the lattice structure to be embedded between two covers which are each formed by an electrospun fabric.
  • the lattice elements of the lattice structure can in this respect be completely encased by the electrospun fabric.
  • the electrospun fabric of a cover on the inside of the lattice structure extends through the cells of the lattice structure and is connected to the electrospun fabric of a cover on the outside of the lattice structure.
  • the grid elements that delimit the cells are encased on all sides by electrospun fabric.
  • the cover is formed from a plastic material, in particular a polyurethane.
  • a plastic material in particular a polyurethane.
  • Such materials have a high elasticity and can be easily produced in fine threads by an electrospinning process.
  • the plastic material makes it possible on the one hand to produce a particularly thin and fine-pored cover.
  • the plastic material already has a high degree of flexibility, so that the implant can be compressed to a high degree.
  • the Shore hardness of the polyurethane is more than 60D, in particular at least 65D, in particular at least 75D. A particularly preferred range is 65D-75D.
  • the layer thickness of the adhesion promoter is preferably between 0.1 gm and 3 gm, in particular between 0.2 gm and 2 gm, in particular between 0.3 gm and 1 gm.
  • the layer thickness of the cover is preferably between 1 gm and 35 gm, in particular between 2 gm and 25 gm, in particular between 3 gm and 15 gm, in particular between 5 gm and 10 gm.
  • the cover is formed from threads arranged in an irregular network-like manner, which have a thread thickness between 0.1 gm and 3 gm, in particular between 0.2 gm and 2 gm, in particular between 0.3 gm and 1.5 gm, in particular between 0.7 gm and 1.3 gm.
  • the cover can have a biocompatible coating.
  • the coating can in particular be anti-inflammatory and / or hyperplasia-inhibiting. It is also possible for the coating to have antithrombogenic and / or endothelialization-promoting properties.
  • the coating can have fibrin and / or heparin. It is preferred if the heparin is covalently bound to fibrin or embedded in fibrin.
  • the heparin contributes, in particular in addition to the mechanically stabilizing effect of the electrospun cover on vulnerable plaques, to lowering the risk of thrombosis.
  • the anti-inflammatory coating especially in the preferably covalently bound combination of fibrin and heparin, also contributes to the regression of vulnerable plaques.
  • a fibrin coating can consist of a fibrin nanostructure (fibrin threads); these fibrin threads form a random web on the surface of the cover and provide an additional surface for an anticoagulant can be tied.
  • the fibrin coating that is formed on the reticulate structure can include an anticoagulant that includes heparin or other possible functional molecules such as fibronectin.
  • the cover of the lattice structure and / or the balloon of the balloon catheter comprises, in particular contains, a pharmaceutically active substance or is coated therewith.
  • the pharmaceutically active substance can be embedded in the material of the cover.
  • the pharmaceutically active substance can be a substance which is released on the vessel wall of the blood vessel. The substance is released from the balloon and then held in place by the cover in the second step.
  • the lattice structure can in principle be designed as a one-piece lattice structure. It is also possible that the lattice structure is formed from interwoven wires. To this extent, it is provided in preferred embodiments that the lattice elements form webs which are integrally coupled to one another by web connectors (one-piece lattice structure). Alternatively, the lattice elements can form wires that are braided with one another (braided lattice structure). While a braided lattice structure is characterized by particularly high flexibility, in particular bending flexibility, a one-piece lattice structure has a comparatively thin wall thickness, so that the lattice structure has less of an influence on the blood flow within a blood vessel.
  • the cover can have an extensibility according to ASTM 412 between 300% and 550%, in particular between 350% and 500%, in particular between 375% and 450%.
  • ASTM 412 the elastic modulus of the cover can be> 15 - 21 MPa (psi) at 50% elongation:> 18 ⁇ 26 MPa (psi) at 300% elongation:> 32 ⁇ 41 MPa (psi) .
  • ASTM D 2240 the Shore hardness of the cover can be between 80A and 85D, in particular between 90A and 80D, in particular between 55D and 75D.
  • the cover can be reset to its original configuration, in particular to its unfolded configuration, after the lattice structure has been compressed and released again.
  • the threads or monofilaments of the fabric can be materially connected to one another at their crossing points in the fabric and prevent mutual slipping. This ensures the initial pore size / porosity determined by the manufacturing process.
  • the cohesive connection is also provided after compression, delivery through the catheter and renewed release of the implant in the vessel and remains in place even when a side branch flows through the tissue.
  • the fabric can be perforated at least in regions by further pores which are formed in the electrospun fabric by processing the fabric, in particular by laser cutting.
  • a targeted and, if desired, area-wise increase in the porosity or enlargement of the pores is achieved after the electrospinning process.
  • laser-cut, defined pores can be formed over the entire circumference or only on part of it.
  • the fabric is preferably perforated to at least 25%, in particular to at least 40%, in particular to at least 50% of the circumference of the lattice structure (10) through the further pores.
  • the area opposite the aneurysm neck can be perforated in a targeted manner.
  • the fabric can be free of further pores to at least 25%, in particular to at least 40%, in particular to at least 50% of the circumference of the lattice structure.
  • part of the fabric is not post-treated or subsequently perforated.
  • the tissue in this area consists only of the pores formed by electrospinning.
  • the area of the tissue that is free of further pores can be arranged in the implanted state in the area of the aneurysm neck. This can be desirable, for example, if the porosity of the electrospun tissue is still advantageous for the treatment of the aneurysm.
  • a combination of areas of unchanged electrospun fabric and subsequently perforated electrospun fabric is possible.
  • the further pores can be formed in both axial directions starting from the axial center of the lattice structure.
  • additional pores can be arranged on the proximal or distal side within the covering or the fabric.
  • the length over which the further pores can be distributed corresponds to at least 25% of the axial length of the cover or the fabric, in particular at least 30%, in particular at least 40%, in particular at least 50% of the axial length of the cover or the fabric.
  • the size of the further pores can be at least 50 pm, in particular at least 100 pm, in particular at least 200 pm, in particular at least 300 pm.
  • the distances between the further pores in relation to the diameter of the further pores can be at least 1 times the distance, in particular at least 1.5 times the distance, in particular at least 2 times the distance, in particular at least 2.5 times the distance. In the case of a 1-fold distance, this corresponds to the diameter of a further pore.
  • the circumferential contour of the cover is marked at least in sections, in particular over its entire circumference, by an X-ray visible means. This can be achieved, for example, by radiopaque wires that are braided into the lattice structure along the contour of the cover. It is also possible to contour the cover by a series of radiopaque sleeves, for example Pt-Ir sleeves or crimped C-sleeves.
  • the position of the covering or the fabric is thus visible under X-rays so that the doctor can safely place the device - even in the correct rotational position.
  • the tissue can have a radiopaque agent.
  • the threads of the fabric can be filled with a radio-opaque material, in particular with at least 10% up to a maximum of 25% radio-opaque material, e.g. barium sulfate BaS04.
  • the basic color of the threads of the fabric can be transparent, if barium sulfate BaS04 is added, these can appear white / yellowish.
  • FIG. 1 a side view of a stent of a medical system according to the invention according to a preferred embodiment
  • Fig. 2 a microscope image of a cover of the
  • Implant of a medical system according to the invention according to a preferred embodiment
  • Fig. 3 a microscope image of a cover of the
  • Implant of a medical system according to the invention according to a further exemplary embodiment
  • FIG. 7 shows a longitudinal section through the balloon catheter of a medical system according to the invention according to a preferred embodiment
  • FIG. 8 shows a cross section through the balloon catheter of a medical system according to the invention according to a further preferred embodiment with coaxially arranged channels;
  • FIG. 9 shows a cross section through the balloon catheter of a medical system according to the invention according to a further preferred exemplary embodiment with channels arranged next to one another;
  • FIG. 10 shows a longitudinal section through the balloon catheter according to FIG. 8.
  • FIG. 11 shows a longitudinal section through the balloon catheter according to FIG. 8, with X-ray markers additionally being provided.
  • the attached figures show an implant in the form of a stent 1 and the balloon catheter 60 of a medical system for treating stenoses in intracranial blood vessels.
  • the stent 1 has, in particular, a lattice structure 10 that is compressible and expandable.
  • the lattice structure 10 can assume a feeding state in which the lattice structure 10 is relatively small Has cross-sectional diameter.
  • the lattice structure 10 is self-expanding, so that the lattice structure 10 automatically expands to a maximum cross-sectional diameter without the influence of external forces.
  • the state in which the lattice structure 10 has the maximum cross-sectional diameter corresponds to the state of rest. In this state, the lattice structure 10 does not exert any radial forces.
  • the lattice structure 10 is preferably formed in one piece.
  • the lattice structure 10 can have a cylindrical shape, at least in sections.
  • the lattice structure 10 is preferably produced from a tubular blank by laser cutting. Individual grid elements or webs 11, 12, 13, 14 of the grid structure 10 are exposed by the laser-cutting processing. The regions removed from the blank form cells 30 of the lattice structure 10.
  • the cells 30 essentially have a diamond-shaped basic shape.
  • the cells 30 are delimited by four webs 11, 12, 13, 14 each.
  • the webs 11, 12, 13, 14 have at least partially a curved, in particular S-shaped, course. Other shapes of the webs 11, 12, 13, 14 are possible.
  • the lattice structure comprises circumferential segments of closed cells, the cells being delimited by at least four webs each, which are coupled to one another at connection points and of which two webs are adjacent in the circumferential direction UR of the lattice structure and coupled to one another at a connection point are differently flexible such that the web with higher flexibility is more deformable than the web with lower flexibility during the transition of the lattice structure from the expanded state to the compressed state, and of which the webs with higher flexibility and the webs with lower flexibility are each arranged diagonally opposite one another are such that two connection points of the cell arranged opposite one another in the longitudinal direction LR of the lattice structure are offset in opposite directions in the circumferential direction UR during the transition of the lattice structure from the expanded state to the compressed state.
  • all cells of a circumferential segment can be designed in the same way are such that the entire lattice structure is twisted at least in sections during the transition from the expanded state to the compressed state.
  • the lattice structure can have webs which are connected to one another in one piece by web connectors and which delimit closed cells of the lattice structure.
  • the web connectors each have a connector axis that extends between two cells that are adjacent in the longitudinal direction of the lattice structure.
  • the web connectors rotate during the transition of the lattice structure from the production state to a compressed state, so that an angle between the connector axis and a longitudinal axis of the lattice structure changes, in particular increases, during the transition of the lattice structure from a fully expanded production state to a partially expanded intermediate state.
  • the lattice structure can be formed in one piece.
  • the webs of the lattice structure can be cut free, for example, by laser-cutting machining of a tubular blank.
  • the cut areas form the cells that are delimited by the bars.
  • This is preferably a lattice structure with a closed cell design.
  • the cells are completely enclosed by bars.
  • the cells can have an essentially diamond-like basic shape.
  • the cells are preferably delimited by four webs each.
  • the web connectors which form part of the lattice structure in one piece, can consequently each couple four webs to one another.
  • the web connectors essentially form intersection points of the webs.
  • the height and width of the individual cells of the lattice structure change.
  • the degree of change in height and width of the cell is influenced by the rotation of the bar connectors.
  • the rotation of the web connectors results in a different, in particular dynamically changing, ratio between cell height and cell width.
  • the web connector rotation enables the lattice structure to be ovalized when it is passed through narrow hollow body organs.
  • the lattice structure which can have a circular cylindrical cross-section at least in sections, can thus assume an oval cross-sectional geometry at least locally when passing through a curved vessel.
  • the cells 30 each have cell tips 31, 32 which define the corner points of the diamond-shaped basic shape.
  • the cell tips 31, 32 are each arranged on web connectors 20 which each connect four webs 11, 12, 13, 14 to one another in one piece.
  • Four webs 11, 12, 13, 14 extend from each web connector 20, each web 11, 12, 13, 14 being assigned to two cells 30.
  • the webs 11, 12, 13, 14 each delimit the cells 30.
  • Fig. 1 shows the lattice structure 10 in the expanded state or in the rest state. It can be clearly seen that the web connectors 20 are essentially each arranged on a common circumferential line. Overall, several cells 30 thus form a cell ring 34 in the circumferential direction of the lattice structure 10. Several cell rings 34 connected to one another in the longitudinal direction form the entire lattice structure 10. In the exemplary embodiment shown, the cell rings 34 each include six cells 30. In this context, it is pointed out that the Lattice structure 10 is preferably formed from interconnected cell rings that have the same cross-sectional diameter.
  • the lattice structure 10 When the lattice structure 10 is released from the balloon catheter 60, the lattice structure 10 automatically expands radially. The lattice structure 10 undergoes several degrees of expansion until the lattice structure 10 reaches the implanted state. In the implanted state, the lattice structure 10 preferably has a cross-sectional diameter that is approximately 10% to 30%, in particular approximately 20%, smaller than the cross-sectional diameter of the lattice structure 10 in the rest state. Thus, in the implanted state, the lattice structure 10 preferably exerts a radial force on the surrounding vessel walls. The implanted state is also referred to as the "intended use configuration".
  • implant x-ray markers 50 are provided in the case of the stent 1.
  • the implant x-ray markers 50 are arranged on cell tips 31, 32 of the cells 30 of the lattice structure 10 on the edge.
  • the implant x-ray markers 50 can be formed as x-ray-visible sleeves, for example made of platinum or gold, which are placed on the cell tips 31, 32 of the edge-side Cells 30 are crimped. It can be seen in FIG. 1 that three implant x-ray markers 50 are arranged at each longitudinal end of the lattice structure 10.
  • the lattice structure 10 according to FIG. 1 can be divided into three sections. Two edge-side sections, which are each formed by two cell rings 34, are connected by a central section which comprises five cell rings 34.
  • the cells 30 of the central section essentially have a diamond-shaped geometry, with all of the webs 11, 12, 13, 14 of the cells 30 of the central section having essentially the same length.
  • the edge-side cell rings 34 each include cells 30, in which two in the circumferential direction immediately adjacent webs 11, 12, 13, 14 are each longer than the axially adjacent webs 11, 12, 13, 14 of the same cell 30.
  • the edge-side Cells 30 essentially have a kite-like basic shape.
  • the medical device according to FIG. 1 further comprises a cover 40 which is arranged on an outside of the lattice structure 10.
  • the cover 40 spans the entire lattice structure 10 and in particular covers the cells 30.
  • the cover 40 is formed from an electrospun fabric and is therefore characterized by a particularly thin wall thickness.
  • the cover 40 is sufficiently stable to follow an expansion of the lattice structure 10.
  • the cover 40 is preferably completely and firmly connected to the lattice structure 10.
  • the cover 40 is preferably glued to the webs 11, 12, 13, 14, for example by means of an adhesion promoter.
  • the cover 40 can extend over the entire lattice structure 10, as is shown in FIG. 1. It is alternatively possible that the cover 40 spans only part of the lattice structure 10. For example, cells 30 on the edge can be uncovered at one axial end or at both axial ends of the lattice structure 10. In this respect, the cover 40 can end before the last or penultimate cell ring 34 of the lattice structure 10.
  • the cover-free cell rings 34 enable good coupling to a transport wire.
  • the area of the stent that has the cover 40 can be identified by further implant x-ray markers. It is also possible for radiopaque material to be embedded in the cover. The design of the cover 40 can be clearly seen in the microscope recordings according to FIGS. 2 and 3.
  • the cover 40 has a plurality of irregularly sized pores 41 which are each delimited by threads 42.
  • the electrospinning process forms a plurality of threads 42 which are irregularly aligned with one another.
  • the pores 41 are formed in the process.
  • FIG. 2 that the pores 41 have a comparatively small pore size, although some pores 41 are sufficiently large to ensure blood permeability.
  • four pores 41 are graphically highlighted in FIG. 2, which have a size of more than 30 ⁇ m 2 .
  • the density of the pores 41 with a size of more than 30 ⁇ m 2 shows that the cover has at least 10 such pores 41 over an area of 100,000 ⁇ m 2.
  • FIG. 3 shows a further exemplary embodiment of a cover 40 in which an overall larger pore size has been set. It can be seen that some pores 41 have a size of more than 30 ⁇ m 2 , although a pore size of 300 ⁇ m 2 is not exceeded.
  • FIGS. 2 and 3 it can be seen in each case that the threads 42 of the cover 40 cross multiple times.
  • a special feature of the electrospinning process is that in the cover 40 there are points at which only, i.e. not more than, two threads 42 cross one another. It can be seen from this that the cover 40 overall has a very thin wall thickness and is therefore highly flexible.
  • the high flexibility of the cover 40 in combination with the high flexibility of the lattice structure 10 means that a stent 1 can be provided which can be introduced into a blood vessel through a very small balloon catheter 60.
  • the balloon catheter 60 can have a size of 6 French, in particular at most 5 French, in particular at most 4 French, in particular at most 3 French, in particular at most 2 French.
  • stents 1 can be combined with balloon catheters 60 which have an inner diameter of at most 991 pm (0.039 inch), in particular at most 686 pm (0.027 inch), in particular at most 635 pm (0.025 inch), in particular at most 533 pm ( 0.021 inch), especially at most 432 ⁇ m (0.017 inch), especially at most 406 mih (0.016 inch), in particular at most 381 mih (0.015 inch), in particular at most 330 mih (0.013 inch).
  • the layer thickness of the cover 40 is at most 6 mih, in particular at most 4 mih, in particular at most 2 mih. At most 4, in particular at most 3, in particular at most 2, threads 42 intersect. Generally, intersection points are provided within the electrospun structure of the cover 40, in which only 2 threads 42 intersect.
  • the lattice structure 10 preferably has a cross-sectional diameter at rest between 2.0 mm and 10 mm, in particular between 2.5 mm and 7 mm, in particular between 2.5 mm and 6 mm, in particular between 4.5 mm and 6 mm, in particular between 3.0 mm and 5 mm, in particular about 3.5 mm or about 4.5 mm.
  • the lattice structure 10 for the treatment of vulnerable plaque or soft plaque in intracranial blood vessels for example the internal carotid artery or intracranial vessels distal therefrom, has a cross-sectional diameter of at most 6 mm, in particular between 2.5 mm and 5.5 mm.
  • the lattice structure 10 can have a cross-sectional diameter of at most 10 mm, in particular between at least 6 mm and at most 10 mm.
  • the braided lattice structure 10 which, in a preferred exemplary embodiment, can form a carrier for a cover 40.
  • the braided lattice structure 10 is formed from a single wire 16 which is braided in a tubular shape. The wire ends are connected to a connecting element 18 within the lattice structure 10.
  • the wire 16 has several sections, which are referred to as grid elements 11, 12, 13, 14. Each section of the wire 16 that runs between two crossing points 19 is used as an independent grid element 11, 12, 13, 14 designated. It can be seen that four grid elements 11, 12, 13, 14 each delimit a mesh or cell 30.
  • the braided lattice structure 10 has widening axial ends, which are referred to as flaring 17.
  • the wire 16 is deflected in each flaring 17 and forms end loops 15.
  • a total of six end loops 15 are provided on each flaring 17.
  • Every second end loop 15 carries an implant X-ray marker 50 in the form of a crimp sleeve.
  • implant x-ray markers 50 there are three implant x-ray markers 50 at each axial end of the lattice structure 10.
  • FIGS. 5 and 6 an exemplary embodiment of the stent 1 is shown in different magnifications of a scanning electron microscope image.
  • the stent comprises a lattice structure 10 according to FIG. 4, which is formed with a cover 40 made of an electrospun fabric.
  • the cover 40 is arranged on an outside of the tubular lattice structure 10.
  • FIG. 5 shows a 500-fold enlargement of a region of the device which comprises a cell tip 32 of the lattice structure 10.
  • Two grid elements or webs 11, 13 of a cell 30 meet in the cell tip 32.
  • the cover 40 covers the webs 11, 12. It can be seen that the cover 40 has a large number of pores 41 of different sizes, i.e. completely free through openings.
  • the 3,500-fold enlargement according to FIG. 6 shows a section of the cover 40 according to FIG. 5 in detail.
  • the course of the individual threads 42 of the electrospun fabric can be clearly seen.
  • the threads 42 delimit pores 41, the pores 41 being irregular. In any case, it can be seen that some pores 41 have a larger passage area than other pores 41.
  • the larger pores 41 allow nutrients to pass through the cover 40.
  • the balloon catheter 60 for feeding the stent 1 into a blood vessel.
  • the balloon catheter 60 comprises two channels 61, 62. It is also possible to have more than two channels 61, 62, for example three, four or more than four channels 61, 62 to be provided.
  • the balloon catheter 60 further comprises a balloon 63 which is arranged in the distal region of the channels 61, 62. As illustrated in FIG. 7, as well as in FIGS. 10 and 11, the balloon 63 is provided in the region of the catheter tip. The balloon 63 is spaced apart from the outlet opening 64 of the feed channel 62, so that a balloon-free section of the feed channel 62 is formed between the outlet opening 64 and the distal balloon end 69.
  • the balloon 63 in particular a proximal end 68 of the balloon 63, is fluidly connected to an inflation channel 61, as can be seen in FIGS. 10 and 11.
  • the balloon 63 and the inflation channel 61 are arranged in alignment in the extended state of the balloon catheter 60.
  • the wall of the inflation channel 61 is elongated and merges into the balloon wall.
  • the transition between the inflation channel 61 and the balloon 63 takes place through a continuous increase in diameter between the inflation channel 61 and the maximum outer circumference of the balloon 63 in the expanded state (see FIGS. 10, 11).
  • the inflation channel 61 and the balloon 63 are formed in one piece. It is also possible to design the balloon 63 and the inflation channel 61 in two parts and to provide an additional connecting piece between the balloon 63 and the inflation channel 61.
  • connection according to FIGS. 10 and 11 is particularly suitable for the coaxial arrangement of the two channels 61, 62 according to FIG.
  • the annular gap 72 formed between the two channels 61, 62 merges into the inner volume of the balloon 63.
  • the connection between the inflation channel 61 and the balloon 63 can be configured differently, for example if the two channels 61, 62 are arranged next to one another, as shown in FIG. 9. In this case, the connection between the balloon 63 and the inflation channel 61 is arranged to the side of the supply channel 62 (not shown).
  • the inflation channel 61 is used to supply the balloon 63 with a fluid or to discharge the fluid from the balloon 63.
  • the fluid can be, for example, a saline solution or sterile water.
  • the fluid can also be gaseous, for example ambient air. In practice, the fluid is often an air / liquid mixture.
  • the balloon catheter 60 comprises a supply channel 62 with an exit opening 64.
  • the exit opening 64 is arranged distally and connects the supply channel
  • the outlet opening 64 and the inner diameter of the feed channel 62 are adapted in such a way that the feed channel 62 exercises a retaining function for the stent 1 arranged in the feed channel 62.
  • the feed channel 62 is sufficiently flexible that the catheter tip can adapt to relatively narrow vessel curvatures.
  • the feed channel 62 extends through the balloon 63.
  • the feed channel 62 and the balloon 63 are arranged coaxially.
  • the assignment of the balloon 63 to the supply channel 62, which is adapted for the supply of the stent 1, has the advantage that the balloon catheter 60 fulfills a double function.
  • the balloon catheter 60 is used to feed the stent 1 through the feed channel 62.
  • the balloon 63 arranged in the region of the catheter tip can be used to perform the required dilation or widening of the vessel without having to change the catheter.
  • the feed channel 62 is generally assigned to the balloon 63, specifically in the region of the catheter tip, so that the balloon catheter 60 can be used both for releasing the stent 1 and for dilating, in particular for pre-dilating the stenosis and / or can be used to expand the implanted stent 1.
  • the symmetrical arrangement of the supply channel 62 and the balloon 63, as shown in FIGS. 7, 10 and 11, has the advantage that a simple radial expansion of both the vessel and the implanted stent 1 is possible, the supply channel 62 from balloon
  • the double function of the balloon catheter 60 is achieved in that the supply channel 62 is connected to a proximally arranged, extracorporeal connection in use, which is adapted for introducing the stent 1 into the supply channel 62.
  • the extracorporeal connection is arranged at the proximal end of the catheter line 70, that is, at a distance from the catheter tip.
  • the extracorporeal connection for the feed channel 62 is thus directly accessible to the user.
  • the connection can be adapted, for example, for loading the stent 1, the stent 1 being moved through the feed channel 62 from the extracorporeal connection to the catheter tip.
  • the extracorporeal connection can be used in connection with a preloaded stent located in the region of the catheter tip, an actuating element being movable through the extracorporeal connection and the feed channel 62, for example a pusher or a guide wire with a slightly larger diameter than the Stent 1, which is advanced up to the preloaded stent 1 and cooperates with this to release.
  • the extracorporeal connection for the supply channel 62 can comprise a loading lock for stents 1, which is known per se.
  • the connection can for example comprise a Luer connector.
  • the feed channel 62 is arranged coaxially in the inflation channel 61.
  • An annular gap 72 is formed between the two channels 61, 62, which acts as a control lumen for the balloon 63.
  • the supply channel 62 which is arranged in the interior of the inflation channel 61, forms the main lumen through which the stent 1 is moved.
  • FIG. 9 An alternative arrangement of the two channels 61, 62 is shown in FIG. 9, the working channel 61 and the supply channel 62 being arranged next to one another, in particular parallel to one another.
  • a catheter line 70 which fixes the arrangement of the two channels 61, 62, is arranged around the two channels 61, 62.
  • the diameter of the feed channel 62 is greater than the diameter of the inflation channel 61.
  • the distal balloon end 69 is connected to the outer circumference 71 of the feed channel 62 in a fluid-tight manner.
  • the proximal end of the balloon 68 is fluidly connected to the inflation channel 61. That closes the
  • the balloon 63 is fluid-tight with the supply channel 62 and, on the other hand, can be inflated or deflated through the inflation channel 61.
  • the inflation channel 61 is connected to a proximally arranged connection which is extracorporeal in use.
  • a multiple connection for example a Y-Luer connector, is possible.
  • the connector or connection for the inflation channel 61 is either permanently or detachably connected or connectable to a pressure device.
  • the pressure device is designed to generate an overpressure for inflating or to generate a negative pressure to deflate the balloon 63.
  • the pressure device can comprise a syringe, for example. Other pressure devices are possible.
  • the feed channel 62 is provided with a friction-reducing inner surface for a translational movement of the stent 1 in the feed channel 62.
  • a friction-reducing inner surface for a translational movement of the stent 1 in the feed channel 62.
  • a material for the inner surface for example, PTFE, FEP or FIDPE or similar friction-reducing surface modifications come into question. Other materials for the coating are also possible.
  • the catheter tip has several X-ray markers 65, 66, 67.
  • a first X-ray marker 65 is arranged in the area of the distal outlet opening 64 and serves to localize the end of the catheter tip.
  • a second X-ray marker 66 is arranged in the region of the distal balloon end 69.
  • a third X-ray marker 67 is arranged in the region of the proximal balloon end 68. The second and third X-ray markers 66, 67 are used to determine the position of the balloon 63.
  • the catheter tip can be designed to be atraumatic and / or flexible.
  • Suitable materials for the balloon catheter 60 are plastics, metals, shape memory materials such as nitinol, and X-ray visible materials.
  • the balloon catheter 60 also enables aspiration through the supply channel 62 during or after the expansion of the stenosis.
  • the feed channel 62 is connected or can be connected to a suction device. This has the advantage that Vascular wall particles detached during expansion can be sucked off through the supply channel 62.
  • the supply channel 62 of the balloon catheter 60 can be used for the administration of contrast medium in order to check whether the stenosis has been opened.
  • the feed channel 62 can be or is connected to a corresponding device for injecting a contrast agent, for example a syringe.
  • the balloon catheter 60 also has the advantage that several stenoses can be expanded and / or several stents 1 can be released by a single balloon catheter 60. Another advantage of the balloon catheter 60 is that the supply channel 62 does not collapse when the balloon 63 is expanded, since it has its own stable channel wall.
  • the combination of the balloon catheter 60 described here with the stent 1 described here, which has an electrospun cover 40, has proven to be particularly advantageous for the treatment of stenoses.
  • the balloon catheter enables good pre-dilatation of the stenosis.
  • good post-dilatation can also be achieved.
  • the stent 1 provides good support for the widened blood vessel and in particular stabilizes vulnerable plaque due to its particularly flexible and tight cover 40.
  • the stent 1 with its cover 40 enables good endothelial cell formation, which further stabilizes the widened blood vessel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Transplantation (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Die Erfindung betrifft ein medizinisches System zur Behandlung von Stenosen in intrakraniellen Blutgefäßen mit - einem komprimierbaren und selbstexpandierbaren Implantat (1) zum Abdecken der Stenose, das eine Gitterstruktur (10) aufweist, welche zumindest abschnittsweise mit einer Abdeckung (40) aus einem elektrogesponnenen Gewebe versehen ist, das unregelmäßig große Poren (41) aufweist, sowie mit - einem Ballonkatheter (60) zum Dilatieren der Stenose und zum Zuführen des Implantats (1) in das Blutgefäß.

Description

Medizinisches System zur Behandlung von Stenosen in intrakraniellen Gefäßen
BESCHREIBUNG
Die Erfindung betrifft ein medizinisches System zur Behandlung von Stenosen in intrakraniellen Gefäßen mit einem Stent und einem Ballonkatheter.
WO 2014/177634 Al beschreibt einen hochflexiblen Stent, der zur Stützung von Blutgefäßen geeignet ist und eine komprimierbare und expandierbare Gitterstruktur aufweist, wobei die Gitterstruktur einstückig ausgebildet ist. Die Gitterstruktur umfasst geschlossene Zellen, die durch jeweils vier Gitterelemente begrenzt sind. Die Gitterstruktur weist wenigstens einen Zellenring auf, der zwischen drei und sechs Zellen umfasst.
Aus der Praxis der Anmelderin sind außerdem Stents mit Gitterstrukturen bekannt, die aus einem einzigen Draht gebildet sind. Der Draht ist mit sich selbst verflochten, um ein röhrchenförmiges Geflecht zu bilden. An den axialen Enden des röhrchenförmigen Geflechts ist der Draht umgelenkt, so dass sich atraumatisch wirkende Schlaufen bilden. Die axialen Enden können trichterförmig ausgeweitet sein.
Der medizinische Stent eignet sich insbesondere für den Einsatz in intrakraniellen Blutgefäßen. Derartige Blutgefäße weisen einen vergleichsweise kleinen Querschnittsdurchmesser auf und sind oft stark gewunden. Der Stent ist dazu hochflexibel gestaltet, so dass er einerseits auf einen sehr kleinen Querschnittsdurchmesser komprimierbar ist und andererseits eine hohe Biegeflexibilität aufweist, die die Zuführung in kleine zerebrale Blutgefäße ermöglicht.
Stenosen sind Verengungen von Blutgefäßen, die zu einer Veränderung der Fluiddynamik des Blutstroms führen. Daraus kann ein erhöhter Blutdruck resultieren, der insbesondere im Bereich der Stenose zu einer Belastung der Gefäßwände führt. Im schlimmsten Fall kann dies zu einer Gewebeablösung oder -ruptur führen. Die Flauptgefahr ist eine Unterversorgung wegen der Verkleinerung bzw. des Verschlusses des Lumens und wegen der Ablösung von Partikeln, welche dann distal wegschwimmen und kleinere distale Gefäße verschießen. Stenosen beruhen auf Veränderungen der Gefäßwand durch entzündliche Prozesse (atherosklerotische Veränderungen).
Zur Rückbildung einer Stenose ist es bekannt, Stents einzusetzen. Diese können über einen Ballonkatheter an den Behandlungsort geführt werden. Dort wird die Stenose mit Hilfe des Ballons am Ballonkatheter ausgeweitet. Der im Bereich der Stenose expandierte Stent stützt dann das Blutgefäß. Nachteil bei der Verwendung von bekannten Stents ist jedoch, dass sich die Gitterstruktur des Stents durch die bei der Aufweitung entstehenden Kräfte in die verengte und oft bereits gereizte Gefäßwand drücken und so zu Verletzungen führen kann, welche wiederrum zur Thrombenbildung führen können. Kleine Thromben können distal wegschwimmen und zu Verschlüsse führen. Auch das atherosklerotische Gewebe selbst ist fragil, kann in Kontakt mit der Gitterstruktur brechen und wegschwimmen. Die Maschen der Stents sind andererseits so groß, dass Thromben nicht sicher zurückgehalten werden.
Außerdem wachsen die bekannten Stents nur schwer in das Gewebe ein und bilden damit langfristig ein Hindernis für den Blutstrom, an welchem sich Thromben bilden können.
Vor diesem Hintergrund ist es Aufgabe der Erfindung, ein medizinisches System zur Behandlung von Stenosen mit einem Ballonkatheter und einem Implantat anzugeben, mit dem ein Behandlungsort in intrakraniellen Blutgefäßen gut erreichbar ist und mit dem die Nebenwirkungen einer Stenosetherapie reduziert sind.
Erfindungsgemäß wird diese Aufgabe durch den Gegenstand des Patentanspruchs 1 gelöst.
So beruht die Erfindung auf dem Gedanken, ein medizinisches System zur Behandlung von Stenosen in intrakraniellen Blutgefäßen mit einem komprimierbaren und selbstexpandierbaren Implantat zum Abdecken der Stenose anzugeben, die eine Gitterstruktur aufweist, welche zumindest abschnittsweise mit einer Abdeckung aus einem elektrogesponnenen Gewebe versehen ist, das unregelmäßig große Poren aufweist, sowie mit einem Ballonkatheter zum Dilatieren der Stenose und zum Zuführen des Implantats in das Blutgefäß. Die erfindungsgemäße Kombination des Implantats mit der elektrogesponnenen Abdeckung und des Ballonkatheters hat besondere Vorteile bei der Behandlung von Stenosen in intrakraniellen Blutgefäßen. Das selbstexpandierbare Implantat kann im Bereich der Stenose angeordnet werden, wobei durch die selbstexpandierbaren Eigenschaften des Implantats ein enger Kontakt zur Gefäßwand hergestellt wird. Mittels des Ballonkatheters ist es möglich, die Stenose vor und nach dem Einsetzen des Implantats aufzuweiten. Die erste Aufweitung erfolgt mit dem Ballon des Ballonkatheters. In dieser Phase auftretende Mikroverletzungen können im zweiten Behandlungsschritt durch die Abdeckung von der Blutbahn abgeschirmt werden.
Insbesondere kann durch den Ballon ein relativ hoher Expansionsdruck erzeugt werden, der das verengte Blutgefäß aufdehnt. Das selbstexpandierbare Implantat übt im implantierten Zustand dauerhaft eine Radialkraft auf die Gefäßwand aus und stellt damit sicher, dass es nicht zu einer erneuten Verengung bzw. Stenose kommt. Dabei sorgt die elektrogesponnene Abdeckung aufgrund ihrer feinen Struktur einerseits dafür, dass sich das Implantat gut mit der Gefäßwand verbindet und insbesondere einwächst, da die elektrogesponnene Abdeckung die Bildung von Endothelzellengewebe unterstützt. Durch die Abdeckung wird zunächst die Kraft auf das Gefäß etwas homogener verteilt. Zudem sorgt die Abdeckung dafür, dass kleine Thromben, die sich an der verletzten Gefäßwand bilden, nicht weiter nach distal schwimmen. Die feinporige Abdeckung bietet ein gutes Substrat für die Zellproliferation und somit für die Neubildung einer neuen Endothelschicht.
Andererseits ist die Abdeckung hochflexibel und dünn, so dass sich das Implantat gut komprimieren lässt und sehr biegeflexibel ist. So kann das Implantat mittels des Ballonkatheters insbesondere in die oft eng gewundenen und kleinen Blutgefäße im intrakraniellen Bereich gut eingeführt werden.
Die feinporige, elektrogesponnene Abdeckung bewirkt außerdem, dass sich die Radialkraft des Implantats sowie die Expansionskraft des Ballons auf eine relativ große Kontaktfläche verteilt, so dass ein „Einschneiden" der Gitterstruktur in das Gefäßwandgewebe vermieden wird. Insoweit stabilisiert die elektrogesponnene Abdeckung insbesondere auch sogenannte vulnerable Plaque (Soft-Plaque), die sich oft im Bereich von Stenosen bilden. Vulnerable Plaque sind oft eine Folge einer arteriosklerotischen Erkrankung, die auch eine der Hauptursachen für Stenosen ist. Meist sorgt die Einlagerung von fettreichen Einlagerungen (Plaque) schließlich zu einer Verengung, also einer Stenose, des Blutgefäßes. Vulnerable Plaque können aufplatzen und schlussendlich Thrombosen auslösen. Mittels der feinporigen, elektrogesponnenen Abdeckung werden vulnerable Plaque hingegen stabilisiert, so dass die Gefahr des Aufplatzens und somit das Thromboserisiko gesenkt werden können.
Besonders bevorzugt ist, es, wenn die Abdeckung auf einer Fläche von 100.000 pm2 mindestens 10 Poren umfasst, die eine Größe zwischen 5 pm2 bis 15 pm2 und/oder von wenigstens 15 pm2 aufweisen. Insbesondere können diese Poren eine Größe von mindestens 30 pm2 aufweisen. Die mindestens 10 Poren der Abdeckung können jeweils einen Inkreisdurchmesser von mindestens 4 pm, insbesondere mindestens 5 pm, insbesondere mindestens 6 pm, insbesondere mindestens 7 pm, insbesondere mindestens 8 pm, insbesondere mindestens 9 pm, insbesondere mindestens 10 pm, insbesondere mindestens 12 pm, insbesondere mindestens 15 pm, insbesondere mindestens 20 pm, aufweisen.
Im Zuge der Herstellung der Abdeckung lässt sich die Mindestgröße der Poren insbesondere durch die Prozessdauer des Elektrospinnens einstellen. Die Abdeckung aus einem elektrogesponnenen Gewebe ist darüber dünn und flexibel, was die Flexibilität der Gitterstruktur unterstützt. Insbesondere hindert die Abdeckung die Gitterstruktur im Unterschied zu vorbekannten Abdeckungen, die aus anderen Textilmaterialien hergestellt sind, kaum an der Komprimierung. Insgesamt lässt sich also das Implantat auf einen erheblich kleineren Querschnittsdurchmesser komprimieren und so über kleine Ballonkatheter in besonders kleine Blutgefäße führen.
Die hohe Flexibilität der Trägerstruktur bzw. der Gitterstruktur kann insbesondere erreicht werden, wenn die Gitterstruktur einen geschlossenen Zellenring aufweist, der höchstens 12 unmittelbar benachbarte Zellen in Umfangsrichtung der Gitterstruktur aufweist. Der geschlossene Zellenring ermöglicht es auch, die Gitterstruktur nach einer Teilfreisetzung wieder in einen Ballonkatheter 60 zurückzuziehen, da wegen der geschlossenen Struktur keine Gitterelemente vorstehen, die sich an der Katheterspitze verhaken können. Insbesondere können alle Zellenringe der Gitterstruktur geschlossen sein und höchstens 12, insbesondere höchstens 10, insbesondere höchstens 8, insbesondere höchstens 6, in Umfangsrichtung der Gitterstruktur unmittelbar benachbarte Zellen aufweisen. Es ist möglich, dass alle Zellenringe mindestens 3 Zellen umfassen, die in einer Umfangsrichtung der Gitterstruktur unmittelbar benachbart sind.
Durch die Begrenzung der Zellen in Umfangsrichtung auf einem Zellenring sind auch die Gitterelemente sowie deren Verbinder bzw. Kreuzungsstellen begrenzt. Wegen der begrenzten Anzahl an Gitterelementen in Umfangsrichtung lässt sich die Gitterstruktur auf einen kleinen Querschnittsdurchmesser komprimieren, in welchem die Gitterelemente vorzugsweise unmittelbar aneinander anliegen. Überdies ist durch die Begrenzung der Zellen in Umfangsrichtung auch eine erhöhte Zuführbarkeit realisierbar, so dass sich die Gitterstruktur, insbesondere auch im komprimierten Zustand, mittels des Ballonkatheters durch eng gewundene Gefäße führen lässt.
Die Gitterelemente begrenzen vorzugsweise geschlossene Zellen der Gitterstruktur, wobei jede geschlossene Zelle durch jeweils vier Gitterelemente begrenzt ist. Die geschlossene Zelle kann eine rautenförmige Grundstruktur aufweisen. Durch die geschlossenen Zellen wird eine hohe Stabilität der Gitterstruktur erreicht, die für die Funktion der Gitterstruktur als Träger für die Abdeckung vorteilhaft ist. Insbesondere wird eine hohe Stabilität in axialer Richtung, d.h. in Richtung einer Längsachse der Gitterstruktur, erreicht, die die Zuführung des Implantats durch den Ballonkatheter verbessert. In radialer Richtung kann die Gitterstruktur aufgrund der geschlossenen Zellen eine erhöhte Flexibilität aufweisen, was zu einer verbesserten Radialkraft führt.
Im Allgemeinen gilt im Rahmen der vorliegenden Anmeldung, dass sich alle geometrischen Angaben im Hinblick auf da Implantat auf den Ruhezustand des Implantats beziehen. Als Ruhezustand wird der expandierte Zustand des Implantats bezeichnet, in dem das Implantat keine radialen Kräfte ausübt.
Der Ballonkatheter kann wenigstens zwei Kanäle und einen Ballon aufweisen, wobei ein Inflationskanal mit dem Ballon fluidverbunden ist und ein Zuführkanal sich durch den Ballon hindurch erstreckt. Der Zuführkanal kann eine proximale Einführöffnung und eine distale Austrittsöffnung die Freisetzung des Implantats aufweisen. Von den wenigstens zwei Kanälen ist der Inflationskanal dafür vorgesehen, den Ballon mit einem Fluid zu füllen, um den Ballon auszuweiten, bzw. das Fluid aus dem Ballon wieder abzuführen, um den Ballon zu komprimieren. Das Fluid kann eine Natrium-Chlorid-Lösung insbesondere mit einem Kontrastmittel zur Visualisierung unter Röntgenstrahlung sein.
Der Zuführkanal ist vorzugsweise als Durchgangskanal ausgebildet und ermöglicht es, das Implantat an den Behandlungsort zu führen. Da das Implantat wegen der dünnen und flexiblen Abdeckung gut komprimierbar ist, kann der Zuführkanal entsprechend klein ausfallen. Zusätzlich bewirkt die besondere Struktur der elektrogesponnenen Abdeckung, dass sich das Implantat mit einem vergleichsweise geringen Reibwiderstand durch den Zuführkanal schieben lässt. Insofern ist in einer bevorzugten Variante des erfindungsgemäßen medizinischen Systems vorgesehen, dass das Implantat im komprimierten Zustand durch den Zuführkanal bewegbar oder im Zuführkanal angeordnet ist.
Um die Zuführung des Implantats weiter zu erleichtern, kann der Zuführkanal ferner eine reibmindernde Innenbeschichtung für eine translatorische Bewegung des Implantats im Zuführkanal aufweisen.
Die Eignung des medizinischen Systems zum Einsatz in intrakraniellen Blutgefäßen wird insbesondere gefördert, wenn der Zuführkanal einen Innendurchmesser von höchstens 991 pm (0,039 inch), insbesondere höchstens 686 pm (0,027 inch), insbesondere höchstens 635 pm (0,025 inch), insbesondere höchstens 533 pm (0,021 inch), insbesondere höchstens 432 pm (0,017 inch), insbesondere höchstens 406 pm (0,016 inch), insbesondere höchstens 381 pm (0,015 inch), insbesondere höchstens 330 pm (0,013 inch), aufweist.
Der Ballonkatheter kann wenigstens einen Röntgenmarker aufweisen. Vorzugsweise umfasst der Ballonkatheter 60 drei Röntgenmarker, wobei ein erster Röntgenmarker im Bereich der distalen Austrittsöffnung des Zuführkanals, ein zweiter Röntgenmarker im Bereich eines distalen Ballonendes und ein dritter Röntgenmarker im Bereich eines proximalen Ballonendes angeordnet ist. Die Röntgenmarker ermöglichen es einem Operateur, die Position des Ballons innerhalb eines Blutgefäßes unter Röntgenkontrolle zu erfassen und ggf. zu korrigieren. Um sicherzustellen, dass die Abdeckung eine gute Anlagerung von Endothelzellen einerseits und eine große Kontaktfläche zur Gefäßwand andererseits ermöglicht, ist es bevorzugt vorgesehen, dass die Poren eine Größe von höchstens 750 gm2, insbesondere höchstens 500 gm2, insbesondere höchstens 300 gm2, aufweisen.
Es hat sich für eine gute Stenosebehandlung und für eine gute Abdeckung der Plaques außerdem als zweckmäßig erwiesen, wenn höchstens 20 % der Fläche der Abdeckung durch Poren gebildet ist, die eine Größe von wenigstens 500 gm2 aufweisen. Alternativ oder zusätzlich können höchstens 50 % der Fläche der Abdeckung durch Poren gebildet sein, die eine Größe von wenigstens 300 gm2 aufweisen.
Die Abdeckung kann mit der Gitterstruktur fest, insbesondere stoffschlüssig verbunden sein. Insbesondere kann vorgesehen sein, dass die Abdeckung unmittelbar auf die Gitterstruktur aufgebracht wird. Beispielsweise kann der Prozess des Elektrospinnens unmittelbar auf der Gitterstruktur erfolgen, so dass bei der Bildung der Abdeckung gleichzeitig eine Verbindung mit der Gitterstruktur hergestellt wird. Die Abdeckung kann mit der Gitterstruktur stoffschlüssig verbunden sein. Beispielsweise kann die Abdeckung mit der Gitterstruktur durch eine Klebeverbindung verbunden sein. Die Klebeverbindung kann durch einen Flaftvermittler hergestellt werden. Der Flaftvermittler kann beispielsweise Polyurethan umfassen oder daraus bestehen.
Die feste Verbindung zwischen der Abdeckung und der Gitterstruktur verhindert ein Ablösen der Abdeckung von der Gitterstruktur beim Zuführen des Implantats durch den Zuführkanal des Ballonkatheters. Gleichzeitig wird dadurch die Positionierung des Implantats unter Röntgenkontrolle erleichtert, da es ausreicht, entweder an der Gitterstruktur oder an der Abdeckung entsprechende Implantat- Röntgenmarker anzubringen. Da die Relativposition zwischen Abdeckung und Gitterstruktur gleichbleibend ist, sind zusätzliche Implantat-Röntgenmarker, die eine Relativverschiebung zwischen Abdeckung und Gitterstruktur erkennbar machen würden, nicht erforderlich. Insgesamt kann so die Anzahl von Implantat- Röntgenmarkern, beispielsweise Röntgenmarkerhülsen, reduziert werden, was sich wiederum positiv auf die Komprimierbarkeit des Implantats auswirkt.
Die Gitterstruktur kann zumindest teilweise und/oder abschnittsweise durch einen Flaftvermittler, insbesondere Polyurethan, ummantelt sein. Insbesondere kann der Haftvermittler die stoffschlüssige Verbindung der Abdeckung mit der Gitterstruktur bilden. Konkret können die Gitterelemente der Gitterstruktur durch einen Haftvermittler, insbesondere Polyurethan, ummantelt sein. In allen Fällen kann vorgesehen sein, dass der Haftvermittler die stoffschlüssige Verbindung zwischen der Abdeckung und der Gitterstruktur bildet. Der Haftvermittler umgibt vorzugsweise das gesamte Gitterelement und bildet insofern eine Ummantelung für das Gitterelement.
In einer bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass die Abdeckung auf einer Außenseite der Gitterstruktur angeordnet ist. Die Gitterstruktur bildet in dieser Konstellation eine Trägerstruktur, die eine ausreichende Radialkraft aufbringt, um die Abdeckung gegen eine Gefäßwand zu fixieren. Die Trägerstruktur stützt insoweit die außen angeordnete Abdeckung. Alternativ kann die Abdeckung auch auf einer Innenseite der Gitterstruktur angeordnet sein.
Alternativ oder zusätzlich kann die Abdeckung auf einer Innenseite der Gitterstruktur angeordnet sein. Insbesondere ist es möglich, dass die Gitterstruktur zwischen zwei Abdeckungen eingebettet ist, die jeweils durch ein elektrogesponnenes Gewebe gebildet sind. Die Gitterelemente der Gitterstruktur können insofern von dem elektrogesponnenen Gewebe vollständig ummantelt sein. Konkret kann vorgesehen sein, dass sich das elektrogesponnene Gewebe einer Abdeckung auf der Innenseite der Gitterstruktur durch die Zellen der Gitterstruktur hindurcherstreckt und mit dem elektrogesponnenen Gewebe einer Abdeckung auf der Außenseite der Gitterstruktur verbunden ist. Die Gitterelemente, die die Zellen begrenzen, sind so auf allen Seiten von elektrogesponnenen Gewebe ummantelt.
Bevorzugt ist vorgesehen, dass die Abdeckung aus einem Kunststoffmaterial, insbesondere einem Polyurethan, gebildet ist. Derartige Materialien besitzen eine hohe Dehnbarkeit und lassen sich gut in feinen Fäden durch ein elektrospinnendes Verfahren hersteilen. Das Kunststoffmaterial ermöglicht es einerseits eine besonders dünne und feinporige Abdeckung herzustellen. Andererseits weist das Kunststoffmaterial in sich bereits eine hohe Flexibilität auf, so dass eine hohe Komprimierbarkeit des Implantats erreicht wird. Bei Verwendung von Polyurethan zur Bildung der Abdeckung hat es sich als besonders vorteilhaft gezeigt, wenn die Shore-Härte des Polyurethans mehr als 60D, insbesondere wenigstens 65D, insbesondere wenigstens 75D, beträgt. Ein besonders bevorzugter Bereich beträgt 65D - 75D.
Bevorzugt ist es, wenn für die Bildung des Haftvermittlers und für die Bildung der Abdeckung das gleiche Material genutzt wird. Die Schichtdicke des Haftvermittlers beträgt vorzugsweise zwischen 0,1 gm und 3 gm, insbesondere zwischen 0,2 gm und 2 gm, insbesondere zwischen 0,3 gm und 1 gm. Die Schichtdicke der Abdeckung beträgt vorzugsweise zwischen 1 gm und 35 gm, insbesondere zwischen 2 gm und 25 gm, insbesondere zwischen 3 gm und 15 gm, insbesondere zwischen 5 gm und 10 gm.
Zur Flexibilität der Abdeckung trägt es auch bei, wenn, wie es bevorzugt vorgesehen ist, die Abdeckung aus unregelmäßig netzartig angeordneten Fäden gebildet ist, die eine Fadendicke zwischen 0,1 gm und 3 gm, insbesondere zwischen 0,2 gm und 2 gm, insbesondere zwischen 0,3 gm und 1,5 gm, insbesondere zwischen 0,7 gm und 1,3 gm, aufweisen.
Die Abdeckung kann eine biokompatible Beschichtung aufweisen. Die Beschichtung kann insbesondere entzündungshemmend und/oder hyperplasiehemmend sein. Es ist auch möglich, dass die Beschichtung antithrombogene und/oder endothelialisierungsfördernde Eigenschaften aufweist. Die Beschichtung kann Fibrin und/oder Heparin aufweisen. Bevorzugt ist es, wenn das Heparin kovalent an Fibrin gebunden oder in Fibrin eingebettet ist.
Das Heparin trägt, insbesondere ergänzend zu der mechanisch stabilisierenden Wirkung der elektrogesponnenen Abdeckung bei vulnerablen Plaques, dazu bei, dass das Thromboserisiko gesenkt wird. Die entzündungshemmende Beschichtung, vor allem in der, vorzugsweise kovalent gebundenen, Kombination von Fibrin und Heparin, trägt außerdem zur Rückbildung von vulnerablen Plaques bei.
Eine Fibrinbeschichtung kann aus einer Fibrin-Nanostruktur (Fibrinfäden) bestehen; diese Fibrinfäden bilden ein zufälliges Netz auf der Oberfläche der Abdeckung und bieten eine zusätzliche Oberfläche, mit der ein Antikoagulans gebunden werden kann. Die Fibrinbeschichtung, die auf der Netzstruktur gebildet wird, kann ein Antikoagulans beinhalten, das Heparin oder andere mögliche funktionelle Moleküle, wie beispielsweise Fibronektin umfasst.
In einer bevorzugten Ausführungsform der Erfindung, umfasst, insbesondere enthält, die Abdeckung der Gitterstruktur und/oder der Ballon des Ballonkatheters eine pharmazeutisch wirksame Substanz oder ist damit beschichtet. Insbesondere kann die pharmazeutisch wirksame Substanz in das Material der Abdeckung eingebettet sein. Im Allgemeinen kann die pharmazeutisch wirksame Substanz eine Substanz sein, die an der Gefäßwand des Blutgefäßes freigesetzt wird. Die Substanz wird von dem Ballon abgegeben und dann im zweiten Schritt von der Abdeckung an der betreffenden Stelle gehalten.
Die Gitterstruktur kann grundsätzlich als einstückige Gitterstruktur ausgebildet sein. Es ist auch möglich, das die Gitterstruktur aus miteinander verflochtenen Drähten gebildet ist. Insoweit ist es in bevorzugten Ausführungsformen vorgesehen, dass die Gitterelemente Stege bilden, die durch Stegverbinder einstückig miteinander gekoppelt sind (einstückige Gitterstruktur). Alternativ können die Gitterelemente Drähte bilden, die miteinander verflochten sind (geflochtene Gitterstruktur). Während eine geflochtene Gitterstruktur sich durch eine besonders hohe Flexibilität, insbesondere Biegeflexibilität, auszeichnet, weist eine einstückige Gitterstruktur eine vergleichsweise dünne Wandstärke auf, so dass die Gitterstruktur den Blutfluss innerhalb eines Blutgefäßes weniger stark beeinflusst.
Die Abdeckung kann eine Dehnbarkeit nach ASTM 412 zwischen 300% und 550%, insbesondere zwischen 350% und 500%, insbesondere zwischen 375% und 450% aufweisen. Das E-Modul der Abdeckung kann nach ASTM 412 bei 50% Dehnung: > 15 - 21 MPa (psi) bei 100% Dehnung: > 18 < 26 MPa (psi) bei 300% Dehnung: > 32 < 41 MPa (psi) betragen. Die Shore-Härte der Abdeckung kann nach ASTM D 2240 zwischen 80A und 85D, insbesondere zwischen 90A und 80D, insbesondere zwischen 55D und 75D betragen.
Zur Verbesserung der Repositionierbarkeit kann die Abdeckung nach Komprimierung und erneuter Freilassung der Gitterstruktur in deren ursprüngliche Konfiguration, insbesondere in deren nicht gefaltete Konfiguration, rückstellbar sein.
Die Fäden bzw. Monofilamente des Gewebes können an deren Überkreuzungspunkten im Gewebe materialschlüssig miteinander verbunden sein und verhindern ein gegenseitiges Verrutschen. Dies sichert die initiale, durch den Herstellungsprozess festgelegte Porengröße / Porosität. Die stoffschlüssige Verbindung ist auch nach Kompression, Zufuhr durch den Katheter und erneuter Freilassung des Implantats im Gefäß gegeben und bleibt auch bei Durchströmung eines Seitenasts durch das Gewebe hindurch nachhaltig bestehen.
Das Gewebe kann zusätzlich zu den durch Elektrospinnen gebildeten Poren zumindest bereichsweise durch weitere Poren perforiert sein, die im elektrogesponnenen Gewebe durch eine Bearbeitung des Gewebes, insbesondere durch Laserschneiden, ausgebildet sind. Dadurch wird eine gezielte und, falls gewünscht, bereichsweise Erhöhung der Porosität bzw. Vergrößerung der Poren nach dem Elektrospinning-Prozess erreicht. Z.B. können lasergeschnittene, definierte Poren auf dem gesamten Umfang oder auch nur auf einem Teil davon ausgebildet werden.
Das Gewebe ist vorzugsweise auf mindestens 25%, insbesondere auf mindestens 40%, insbesondere auf mindestens 50% des Umfangs der Gitterstruktur (10) durch die weiteren Poren perforiert. Somit kann bspw. der Bereich gegenüber dem Aneurysma-Hals gezielt perforiert werden.
Das Gewebe kann auf mindestens 25%, insbesondere auf mindestens 40%, insbesondere auf mindestens 50% des Umfangs der Gitterstruktur frei von weiteren Poren sein. Mit anderen Worten wird ein Teil des Gewebes nicht nachbehandelt bzw. nachträglich perforiert. In diesem Teil des Gewebes werden keine weiteren Poren, zusätzlich zu den durch das Elektrospinnen ausgebildeten Poren in das Gewebe eingebracht. Das Gewebe besteht in diesem Bereich nur aus den durch das Elektrospinnen gebildeten Poren. Der frei von weiteren Poren ausgebildete Bereich des Gewebes kann im implantierten Zustand im Bereich des Aneurysma-Halses angeordnet sein. Dies kann beispielsweise dann gewünscht sein, wenn die Porosität des elektrogesponnenen Gewebes unverändert für die Behandlung des Aneurysmas vorteilhaft ist.
Eine Kombination von Bereichen aus unverändert elektrogesponnenem Gewebe und nachträglich perforiertem elektrogesponnenem Gewebe ist möglich.
Die weiteren Poren können ausgehend von der axialen Mitte der Gitterstruktur in beide axialen Richtungen ausgebildet sein. In einem weiteren Ausführungsbeispiel können zusätzliche Poren proximal- oder distalseitig innerhalb der Bespannung bzw. des Gewebes angeordnet sein.
Die Länge über die die weiteren Poren verteilt angeordnet sein können, entspricht mindestens 25% der axialen Länge der Abdeckung bzw. des Gewebes, insbesondere mindestens 30%, insbesondere mindestens 40%, insbesondere mindestens 50% der axialen Länge der Abdeckung bzw. des Gewebes.
Um die Durchströmung zu fördern, kann die Größe der weiteren Poren mindestens 50pm, insbesondere mindestens lOOpm, insbesondere mindestens 200pm, insbesondere mindestens 300pm betragen. Die Abstände der weiteren Poren zueinander können in Bezug zum Durchmesser der weiteren Poren mindestens den 1-fachen Abstand, insbesondere mindestens 1,5-fachen Abstand, insbesondere mindestens 2-fachen Abstand, insbesondere mindestens 2,5-fachen Abstand betragen. Bei einem 1-fachen Abstand spricht dieser also dem Durchmesser einer weiteren Pore. Bei einer besonders bevorzugten Ausführungsform ist die Umfangskontur der Abdeckung wenigstens abschnittsweise, insbesondere vollumfänglich, durch ein röntgensichtbares Mittel markiert. Dies kann beispielsweise durch röntgendichte Drähte erreicht werden, die in die Gitterstruktur entlang der Kontur der Abdeckung eingeflochten sind. Es ist auch möglich, die Kontur der Abdeckung durch eine Anreihung von röntgendichten Hülsen, beispielsweise Pt-Ir Hülsen oder gecrimpten C-Hülsen zu erreichen.
Die Lage der Bespannung bzw. des Gewebes ist somit unter Röntgenstrahlung so sichtbar, dass der Arzt die Vorrichtung sicher - auch in der richtigen Rotationslage - platzieren kann.
Das Gewebe kann als solches ein röntgensichtbares Mittel aufweisen. Bspw. können die Fäden des Gewebes mit einem röntgenundurchlässigen Material gefüllt sein, insb. mit mindestens 10% bis zu maximal 25% an röntgenundurchlässigen Material, z.B. Bariumsulfat BaS04. Die Grundfarbe der Fäden des Gewebes kann transparent sein, bei Hinzugabe von Bariumsulfat BaS04 können diese weiß/ gelblich erscheinen.
Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Darstellungen näher erläutert. Darin zeigen:
Fig. 1: eine Seitenansicht einesStents eines erfindungsgemäßen medizinischen Systems nach einem bevorzugten Ausführungsbeispiel;
Fig. 2: eine Mikroskopaufnahme einer Abdeckung des
Implantats eines erfindungsgemäßen medizinischen Systems nach einem bevorzugten Ausführungsbeispiel;
Fig. 3: eine Mikroskopaufnahme einer Abdeckung des
Implantats eines erfindungsgemäßen medizinischen Systems nach einem weiteren Ausführungsbeispiel;
Fig. 4: eine perspektivische Darstellung einer Gitterstruktur eines Stents eines erfindungsgemäßen medizinischen Systems nach einem weiteren bevorzugten Ausführungsbeispiel;
Fig. 5: eine Rasterelektronenmikroskopaufnahme einer
Abdeckung des Implantats eines erfindungsgemäßen medizinischen Systems nach einem weiteren Ausführungsbeispiel bei einer 500-fachen Vergrößerung;
Fig. 6 eine Rasterelektronenmikroskopaufnahme der
Abdeckung gemäß Fig. 5 bei einer 3.500-fachen Vergrößerung;
Fig. 7 einen Längsschnitt durch den Ballonkatheter eines erfindungsgemäßen medizinischen Systems nach einem bevorzugten Ausführungsbeispiel;
Fig. 8 einen Querschnitt durch den Ballonkatheter eines erfindungsgemäßen medizinischen Systems nach einem weiteren bevorzugten Ausführungsbeispiel mit koaxial angeordneten Kanälen;
Fig. 9 einen Querschnitt durch den Ballonkatheter eines erfindungsgemäßen medizinischen Systems nach einem weiteren bevorzugten Ausführungsbeispiel mit nebeneinander angeordneten Kanälen;
Fig. 10 einen Längsschnitt durch den Ballonkatheter gemäß Fig. 8; und
Fig. 11 einen Längsschnitt durch den Ballonkatheter gemäß Fig. 8, wobei zusätzlich Röntgenmarker vorgesehen sind.
Die beigefügten Figuren zeigen ein Implantat in Form eines Stents 1 und den Ballonkatheter 60 eines medizinischen Systems zu Behandlung von Stenosen in intrakraniellen Blutgefäßen.
Der Stent 1 weist insbesondere eine Gitterstruktur 10 auf, die komprimierbar und expandierbar ist. Mit anderen Worten kann die Gitterstruktur 10 einen Zuführzustand einnehmen, in dem die Gitterstruktur 10 einen relativ kleinen Querschnittsdurchmesser aufweist. Die Gitterstruktur 10 ist selbstexpandierbar, so dass die Gitterstruktur 10 sich ohne Einfluss äußerer Kräfte selbsttätig auf einen maximalen Querschnittsdurchmesser aufweitet. Der Zustand, in dem die Gitterstruktur 10 den maximalen Querschnittsdurchmesser aufweist, entspricht dem Ruhezustand. In diesem Zustand übt die Gitterstruktur 10 keinerlei Radialkräfte aus.
Vorzugsweise ist die Gitterstruktur 10 einstückig ausgebildet. Insbesondere kann die Gitterstruktur 10 zumindest abschnittsweise zylinderförmig ausgebildet sein. Die Gitterstruktur 10 ist vorzugsweise aus einem rohrförmigen Rohling durch Laserschneiden hergestellt. Dabei werden einzelne Gitterelemente bzw. Stege 11, 12, 13, 14 der Gitterstruktur 10 durch die laserschneidende Bearbeitung freigelegt. Die aus dem Rohling entfernten Bereiche bilden Zellen 30 der Gitterstruktur 10.
Die Zellen 30 weisen im Wesentlichen eine rautenförmige Grundform auf. Insbesondere sind die Zellen 30 durch jeweils vier Stege 11, 12, 13, 14 begrenzt. Die Stege 11, 12, 13, 14 weisen bei dem dargestellten Ausführungsbeispiel zumindest teilweise einen gekrümmten, insbesondere S-förmigen Verlauf auf. Andere Formen der Stege 11, 12, 13, 14 sind möglich.
Bspw. ist es möglich, dass die Gitterstruktur Umfangssegmente aus geschlossenen Zellen umfasst, wobei die Zellen durch jeweils wenigstens vier Stege begrenzt sind, die an Verbindungsstellen miteinander gekoppelt sind und von denen jeweils zwei in Umfangsrichtung UR der Gitterstruktur benachbarte und an einer Verbindungsstelle miteinander gekoppelte Stege unterschiedlich flexibel sind derart, dass der Steg mit höherer Flexibilität beim Übergang der Gitterstruktur vom expandierten Zustand in den komprimierten Zustand stärker verformbar als der Steg mit niedrigerer Flexibilität ist, und von denen die Stege mit höherer Flexibilität und die Stege mit niedrigerer Flexibilität diagonal jeweils gegenüberliegend angeordnet sind derart, dass zwei in Längsrichtung LR der Gitterstruktur gegenüberliegend angeordnete Verbindungsstellen der Zelle beim Übergang der Gitterstruktur vom expandierten Zustand in den komprimierten Zustand in Umfangsrichtung UR gegenläufig zueinander versetzt werden. Insbesondere können alle Zellen eines Umfangssegments gleichartig ausgebildet sind derart, dass die gesamte Gitterstruktur beim Übergang vom expandierten Zustand in den komprimierten Zustand zumindest abschnittsweise tordiert.
Bei einer weiteren Ausführungsform kann die Gitterstruktur Stege aufweisen, die durch Stegverbinder einstückig miteinander verbunden sind und geschlossene Zellen der Gitterstruktur begrenzen. Die Stegverbinder weisen jeweils eine Verbinderachse auf, die sich zwischen zwei in Längsrichtung der Gitterstruktur benachbarten Zellen erstreckt. Die Stegverbinder rotieren beim Übergang der Gitterstruktur vom Herstellzustand in einen komprimierten Zustand, so dass sich ein Winkel zwischen der Verbinderachse und einer Längsachse der Gitterstruktur beim Übergang der Gitterstruktur von einem vollständig expandierten Herstellzustand in einen teilexpandierten Zwischenzustand ändert, insbesondere erhöht. Die Gitterstruktur kann einstückig ausgebildet sein. Die Stege der Gitterstruktur können beispielsweise durch laserschneidende Bearbeitung eines röhrchenförmigen Rohlings freigeschnitten sein. Die freigeschnittenen Bereiche bilden die Zellen, die durch die Stege begrenzt sind. Dabei handelt es sich vorzugsweise um eine Gitterstruktur mit einem Closed-Cell-Design. Die Zellen sind also vollständig von Stegen umschlossen. Insbesondere können die Zellen eine im Wesentlichen rautenartige Grundform aufweisen. Mit anderen Worten sind die Zellen vorzugsweise durch jeweils vier Stege begrenzt.
Die Stegverbinder, die einstückig einen Teil der Gitterstruktur bilden, können folglich jeweils vier Stege miteinander koppeln. Die Stegverbinder bilden im Wesentlichen Kreuzungsstellen der Stege.
Bei der Komprimierung bzw. Expansion der Gitterstruktur ändern sich die Höhe und die Breite der einzelnen Zellen der Gitterstruktur. Durch die Rotation der Stegverbinder wird der Grad der Änderung von Höhe und Breite der Zelle beeinflusst. Insbesondere ergibt sich durch die Rotation der Stegverbinder ein unterschiedliches, insbesondere sich dynamisch änderndes, Verhältnis zwischen Zellenhöhe und Zellenbreite. Dies führt zu einer vergleichsweise hohen Flexibilität der Gitterstruktur, insbesondere in queraxialer Richtung. Insbesondere ermöglicht die Stegverbinderrotation, dass sich die Gitterstruktur beim Hindurchführen durch enge Körperhohlorgane ovalisieren kann. Die Gitterstruktur, die zumindest abschnittsweise einen kreiszylinderförmigen Querschnitt aufweisen kann, kann also bei dem Durchführen durch ein gekrümmtes Gefäß zumindest lokal eine ovale Querschnittsgeometrie einnehmen.
Die Zellen 30 weisen jeweils Zellenspitzen 31, 32 auf, die die Eckpunkte der rautenförmigen Grundform festlegen. Die Zellenspitzen 31, 32 sind jeweils an Stegverbindern 20 angeordnet, die jeweils vier Stege 11, 12, 13, 14 einstückig miteinander verbinden. Von jedem Stegverbinder 20 gehen jeweils vier Stege 11, 12, 13, 14 aus, wobei jeder Steg 11, 12, 13, 14 jeweils zwei Zellen 30 zugeordnet ist. Die Stege 11, 12, 13, 14 begrenzen jeweils die Zellen 30.
Fig. 1 zeigt die Gitterstruktur 10 im expandierten Zustand bzw. im Ruhezustand. Es ist gut erkennbar, dass die Stegverbinder 20 im Wesentlichen jeweils auf einer gemeinsamen Umfangslinie angeordnet sind. Insgesamt bilden also mehrere Zellen 30 in Umfangrichtung der Gitterstruktur 10 einen Zellenring 34. Mehrere in Längsrichtung miteinander verbundene Zellenringe 34 bilden die gesamte Gitterstruktur 10. Die Zellenringe 34 umfassen bei dem dargestellten Ausführungsbeispiel jeweils sechs Zellen 30. In diesem Zusammenhang wird darauf hingewiesen, dass die Gitterstruktur 10 vorzugsweise aus miteinander verbundenen Zellenringen gebildet ist, die denselben Querschnittsdurchmesser aufweisen.
Bei der Entlassung der Gitterstruktur 10 aus dem Ballonkatheter 60 weitet sich die Gitterstruktur 10 selbsttätig radial aus. Dabei durchläuft die Gitterstruktur 10 mehrere Expansionsgrade, bis die Gitterstruktur 10 den implantierten Zustand erreicht. Im implantierten Zustand weist die Gitterstruktur 10 vorzugsweise einen Querschnittsdurchmesser auf, der etwa 10% bis 30%, insbesondere etwa 20%, kleiner als der Querschnittsdurchmesser der Gitterstruktur 10 im Ruhezustand ist. So übt die Gitterstruktur 10 im implantierten Zustand vorzugsweise eine Radialkraft auf umliegende Gefäßwände aus. Der implantierte Zustand wird auch als „intended use configuration" bezeichnet.
Wie in Fig. 1 gut zu sehen ist, sind bei dem Stent 1 Implantat-Röntgenmarker 50 vorgesehen. Die Implantat-Röntgenmarker 50 sind an Zellenspitzen 31, 32 der randseitigen Zellen 30 der Gitterstruktur 10 angeordnet. Konkret können die Implantat-Röntgenmarker 50 als röntgensichtbare Flülsen, beispielsweise aus Platin oder Gold, gebildet sein, die auf die Zellenspitzen 31, 32 der randseitigen Zellen 30 aufgecrimpt sind. Erkennbar ist in Fig. 1, dass an jedem Längsende der Gitterstruktur 10 jeweils drei Implantat-Röntgenmarker 50 angeordnet sind.
Die Gitterstruktur 10 gemäß Fig. 1 ist in drei Abschnitte unterteilbar. Zwei randseitige Abschnitte, die jeweils durch zwei Zellenringe 34 gebildet sind, sind durch einen mittleren Abschnitt verbunden, der fünf Zellenringe 34 umfasst. Die Zellen 30 des mittleren Abschnitts weisen im Wesentlichen eine rautenförmige Geometrie auf, wobei alle Stege 11, 12, 13, 14 der Zellen 30 des mittleren Abschnitts im Wesentlichen die gleiche Länge aufweisen. Die randseitigen Zellenringe 34 umfassen jeweils Zellen 30, bei welchen zwei in Umfangsrichtung unmittelbar benachbarte Stege 11, 12, 13, 14 jeweils länger ausgebildet sind als die in axialer Richtung benachbarten Stege 11, 12, 13, 14 derselben Zelle 30. Insofern bilden die randseitigen Zellen 30 im Wesentlichen eine drachenartige Grundform.
Die medizinische Vorrichtung gemäß Fig. 1 umfasst ferner eine Abdeckung 40, die auf einer Außenseite der Gitterstruktur 10 angeordnet ist. Die Abdeckung 40 überspannt die gesamte Gitterstruktur 10 und überdeckt insbesondere die Zellen 30. Die Abdeckung 40 ist aus einem elektrogesponnenen Gewebe gebildet und zeichnet sich daher durch eine besonders dünne Wandstärke aus. Gleichzeitig ist die Abdeckung 40 ausreichend stabil, um einer Expansion der Gitterstruktur 10 zu folgen. Die Abdeckung 40 ist vorzugsweise vollständig und fest mit der Gitterstruktur 10 verbunden. Konkret ist die Abdeckung 40 vorzugsweise mit den Stegen 11, 12, 13, 14 verklebt, beispielsweise durch einen Haftvermittler.
Die Abdeckung 40 kann sich über die gesamte Gitterstruktur 10 erstrecken, wie dies in Fig. 1 gezeigt ist. Es ist alternativ möglich, dass die Abdeckung 40 nur einen Teil der Gitterstruktur 10 überspannt. Beispielsweise können randseitige Zellen 30 an einem axialen Ende oder an beiden axialen Enden der Gitterstruktur 10 abdeckungsfrei sein. Die Abdeckung 40 kann insofern vor dem letzten oder vorletzten Zellenring 34 der Gitterstruktur 10 enden. Die abdeckungsfreien Zellenringe 34 ermöglichen eine gute Kopplung an einen Transportdraht. Der Bereich des Stents, der die Abdeckung 40 aufweist, kann durch weitere Implantat-Röntgenmarker gekennzeichnet sein. Es ist auch möglich, dass in die Abdeckung röntgensichtbares Material eingebettet ist. Die Gestaltung der Abdeckung 40 ist in den Mikroskopaufnahmen gemäß Fig. 2 und 3 gut erkennbar. Darin ist zu sehen, dass die Abdeckung 40 mehrere unregelmäßig große Poren 41 aufweist, die jeweils durch Fäden 42 begrenzt sind. Durch den Elektrospinnprozess werden mehrere Fäden 42 gebildet, die unregelmäßig zueinander ausgerichtet sind. Dabei bilden sich die Poren 41. Erkennbar ist in Fig. 2 auch, dass die Poren 41 eine vergleichsweise kleine Porengröße aufweisen, wobei einige Poren 41 jedoch ausreichend groß sind, um eine Blutdurchlässigkeit zu gewährleisten. Konkret sind in Fig. 2 vier Poren 41 grafisch hervorgehoben, die eine Größe von mehr als 30 pm2 aufweisen. Die Dichte der Poren 41 mit einer Größe von mehr als 30 pm2 lässt erkennen, dass die Abdeckung auf einer Fläche von 100.000 pm2 wenigstens 10 derartiger Poren 41 aufweist.
Fig. 3 zeigt ein weiteres Ausführungsbeispiel einer Abdeckung 40, bei welcher eine insgesamt größere Porengröße eingestellt wurde. Es ist erkennbar, dass einige Poren 41 mehr als 30 pm2 Größe aufweisen, wobei jedoch eine Porengröße von 300 pm2 nicht überschritten wird.
In den Figuren 2 und 3 ist jeweils erkennbar, dass sich die Fäden 42 der Abdeckung 40 mehrfach kreuzen. Eine Besonderheit des Elektrospinnverfahrens ist es jedoch, dass bei der Abdeckung 40 Stellen vorliegen, an welchen sich ausschließlich, d.h. nicht mehr als, zwei Fäden 42 überkreuzen. Daraus ist ersichtlich, dass die Abdeckung 40 insgesamt eine sehr dünne Wandstärke aufweist und daher hochflexibel ist.
Die hohe Flexibilität der Abdeckung 40 in Kombination mit der hohen Flexibilität der Gitterstruktur 10 führt dazu, dass ein Stent 1 bereitgestellt werden kann, der durch einen sehr kleinen Ballonkatheter 60 in ein Blutgefäß eingeführt werden kann. Insbesondere kann der Ballonkatheter 60 eine Größe von 6 French, insbesondere höchstens 5 French, insbesondere höchstens 4 French, insbesondere höchstens 3 French, insbesondere höchstens 2 French, aufweisen. Konkret können Stents 1 nach den hier beschriebenen Ausführungsbeispielen mit Ballonkathetern 60 kombiniert werden, die einen Innendurchmesser von höchstens 991 pm (0,039 inch), insbesondere höchstens 686 pm (0,027 inch), insbesondere höchstens 635 pm (0,025 inch), insbesondere höchstens 533 pm (0,021 inch), insbesondere höchstens 432 pm (0,017 inch), insbesondere höchstens 406 mih (0,016 inch), insbesondere höchstens 381 mih (0,015 inch), insbesondere höchstens 330 mih (0,013 inch), aufweisen.
Die Schichtdicke der Abdeckung 40 beträgt in besonders bevorzugten Varianten höchstens 6 mih, insbesondere höchstens 4 mih, insbesondere höchstens 2 mih. Dabei überkreuzen sich höchstens 4, insbesondere höchstens 3, insbesondere höchstens 2, Fäden 42. Generell sind innerhalb der elektrogesponnenen Struktur der Abdeckung 40 Kreuzungspunkte vorgesehen, in welchen sich nur 2 Fäden 42 überkreuzen.
Die Gitterstruktur 10 weist vorzugsweise einen Querschnittsdurchmesser im Ruhezustand zwischen 2,0 mm und 10 mm, insbesondere zwischen 2,5 mm und 7 mm, insbesondere zwischen 2,5 mm und 6 mm, insbesondere zwischen 4,5 mm und 6 mm, insbesondere zwischen 3,0 mm und 5 mm, insbesondere ca. 3,5 mm oder ca. 4,5 mm auf. Generell ist es bevorzugt, wenn die Gitterstruktur 10 zur Behandlung von vulnerablen Plaque bzw. Soft-Plaque in intrakraniellen Blutgefäßen, bspw. der inneren Fialsschlagader (arteria carotis interna) oder davon distalen intrakraniellen Gefäßen, im Ruhezustand einen Querschnittsdurchmesser von höchstens 6 mm, insbesondere zwischen 2,5 mm und 5,5 mm, aufweist. Zur Behandlung von vulnerablen Plaque bzw. Soft-Plaque, vorzugsweise auch zur Behandlung von Stenosen, in extrakraniellen Blutgefäßen, insbesondere in extrakraniellen Abschnitten der Fialsschlagader, bspw. der äußeren Fialsschlagader (arteria carotis externa), kann die Gitterstruktur 10 im Ruhezustand einen Querschnittsdurchmesser von höchstens 10 mm, insbesondere zwischen wenigstens 6 mm und höchstens 10 mm, aufweisen.
Fig. 4 zeigt eine geflochtene Gitterstruktur 10, die bei einem bevorzugten Ausführungsbeispiel einen Träger für eine Abdeckung 40 bilden kann. Die geflochtene Gitterstruktur 10 ist aus einem einzigen Draht 16 gebildet, der rohrförmig geflochten ist. Die Drahtenden sind innerhalb der Gitterstruktur 10 mit einem Verbindungselement 18 verbunden.
Der Draht 16 weist mehrere Abschnitte auf, die als Gitterelemente 11, 12, 13, 14 bezeichnet werden. Jeder Abschnitt des Drahts 16, der zwischen zwei Kreuzungsstellen 19 verläuft, wird als eigenständiges Gitterelement 11, 12, 13, 14 bezeichnet. Es ist ersichtlich, das jeweils vier Gitterelemente 11, 12, 13, 14 eine Masche bzw. Zelle 30 begrenzen.
Die geflochtene Gitterstruktur 10 weist sich aufweitende Axialenden auf, die als Flaring 17 bezeichnet werden. In jedem Flaring 17 ist der Draht 16 umgelenkt und bildet Endschlaufen 15. Insgesamt sind bei dem dargestellten Ausführungsbeispiel an jedem Flaring 17 sechs Endschlaufen 15 vorgesehen. Jede zweite Endschlaufe 15 trägt einen Implantat-Röntgenmarker 50 in Form einer Crimphülse. So liegen an jedem axialen Ende der Gitterstruktur 10 jeweils drei Implantat-Röntgenmarker 50 vor.
In den Figuren 5 und 6 ist ein Ausführungsbeispiel des Stents 1 in unterschiedlichen Vergrößerungen einer Rasterelektronenmikroskopaufnahme gezeigt. Der Stent umfasst eine Gitterstruktur 10 gemäß Fig. 4, die mit einer Abdeckung 40 aus einem elektrogesponnenen Gewebe gebildet ist. Die Abdeckung 40 ist auf einer Außenseite der rohrförmigen Gitterstruktur 10 angeordnet.
Fig. 5 stellt eine 500-fache Vergrößerung eines Bereichs der Vorrichtung dar, der eine Zellenspitze 32 der Gitterstruktur 10 umfasst. In der Zellenspitze 32 treffen zwei Gitterelemente bzw. Stege 11, 13 einer Zelle 30 zusammen. Die Abdeckung 40 überdeckt die Stege 11, 12. Es ist erkennbar, dass die Abdeckung 40 eine Vielzahl unterschiedlich großer Poren 41, d.h. vollständig freie Durchgangsöffnungen, aufweist.
Die 3.500-fache Vergrößerung gemäß Fig. 6 zeigt einen Ausschnitt der Abdeckung 40 gemäß Fig. 5 im Detail. Der Verlauf der einzelnen Fäden 42 des elektrogesponnenen Gewebes ist gut erkennbar. Die Fäden 42 begrenzen Poren 41, wobei die Poren 41 unregelmäßig ausgebildet sind. Jedenfalls ist erkennbar, dass einige Poren 41 eine größere Durchgangsfläche aufweisen als andere Poren 41. Die größeren Poren 41 ermöglichen den Durchtritt von Nährstoffen durch die Abdeckung 40.
Fig. 7 zeigt einen Ballonkatheter 60 zum Zuführen des Stents 1 in ein Blutgefäß. Der Ballonkatheter 60 umfasst zwei Kanäle 61, 62. Es ist auch möglich, mehr als zwei Kanäle 61, 62, beispielsweise drei, vier oder mehr als vier Kanäle 61, 62, vorzusehen.
Der Ballonkatheter 60 umfasst ferner einen Ballon 63, der im distalen Bereich der Kanäle 61, 62 angeordnet ist. Wie in Fig. 7, ebenso wie in Fig. 10 und 11 verdeutlicht ist, ist der Ballon 63 im Bereich der Katheterspitze vorgesehen. Der Ballon 63 ist von der Austrittsöffnung 64 des Zuführkanals 62 beabstandet, so dass zwischen der Austrittsöffnung 64 und dem distalen Ballonende 69 ein ballonfreier Abschnitt des Zuführkanals 62 ausgebildet ist. Der Ballon 63, insbesondere ein proximales Ende 68 des Ballons 63 ist mit einem Inflationskanal 61 fluidverbunden, wie in den Fig. 10 und 11 zu erkennen ist. Der Ballon 63 und der Inflationskanal 61 sind im gestreckten Zustand des Ballonkatheters 60 fluchtend angeordnet. Zur Verbindung des Inflationskanals 61 mit dem Ballon 63 ist die Wandung des Inflationskanals 61 verlängert und geht in die Ballonwandung über. Der Übergang zwischen dem Inflationskanal 61 und dem Ballon 63 erfolgt durch eine kontinuierliche Durchmesservergrößerung zwischen dem Inflationskanal 61 und dem maximalen Außenumfang des Ballons 63 im expandierten Zustand (siehe Fig. 10, Fig. 11).
Der Inflationskanal 61 und der Ballon 63 sind einteilig ausgebildet. Es ist auch möglich, den Ballon 63 und den Inflationskanal 61 zweiteilig auszugestalten und zwischen dem Ballon 63 und dem Inflationskanal 61 ein zusätzliches Verbindungsstück vorzusehen.
Die Verbindung gemäß Fig. 10 und 11 ist insbesondere für die koaxiale Anordnung der beiden Kanäle 61, 62 gemäß Fig. 8 geeignet. Dabei geht der zwischen den beiden Kanälen 61, 62 gebildete Ringspalt 72 in das Innenvolumen des Ballons 63 über. Die Verbindung zwischen dem Inflationskanal 61 und dem Ballon 63 kann anders ausgestaltet sein, beispielsweise wenn die beiden Kanäle 61, 62 nebeneinander angeordnet sind, wie in Fig. 9 dargestellt ist. In diesem Fall ist die Verbindung zwischen dem Ballon 63 und dem Inflationskanal 61 seitlich vom Zuführkanal 62 angeordnet (nicht dargestellt).
Der Inflationskanal 61 dient der Versorgung des Ballons 63 mit einem Fluid bzw. zur Abfuhr des Fluids aus dem Ballon 63. Das Fluid kann beispielsweise eine Kochsalzlösung oder steriles Wasser sein. Das Fluid kann auch gasförmig, beispielsweise Umgebungsluft, sein. In der Praxis ist das Fluid häufig ein Luft- /Flüssigkeitsgemisch.
Der Ballonkatheter 60 umfasst einen Zuführkanal 62 mit einer Austrittsöffnung 64. Die Austrittsöffnung 64 ist distal angeordnet und verbindet den Zuführkanal
62 mit der Umgebung, insbesondere mit dem Blutgefäß, in welchem der Stent 1 freigesetzt wird. Die Austrittsöffnung 64 sowie der Innendurchmesser des Zuführkanals 62 sind derart angepasst, dass der Zuführkanal 62 eine Rückhaltefunktion für den im Zuführkanal 62 angeordneten Stent 1 ausübt. Dies bedeutet beispielsweise, dass die Wandung des Zuführkanals 62 so stark ist, dass diese die vom selbstexpandierbaren Stent 1 ausgeübten Radialkräfte aufnehmen kann. Ferner ist der Zuführkanal 62 ausreichend flexibel, so dass sich die Katheterspitze an relativ enge Gefäßkrümmungen anpassen kann.
Wie in den Fig. 7, 10 und 11 zu erkennen ist, erstreckt sich der Zuführkanal 62 durch den Ballon 63. Dies bedeutet, dass der Ballon 63 um den Außenumfang 71 des Zuführkanals 62 herum angeordnet ist. Der Zuführkanal 62 und der Ballon 63 sind koaxial angeordnet.
Die Zuordnung des Ballons 63 zum Zuführkanal 62, der für die Zufuhr des Stents 1 angepasst ist, hat den Vorteil, dass der Ballonkatheter 60 eine Doppelfunktion erfüllt. Zum einen dient der Ballonkatheter 60 der Zufuhr des Stents 1 durch den Zuführkanal 62. Zum anderen kann mittels des im Bereich der Katheterspitze angeordneten Ballons 63 die erforderliche Dilatation bzw. Aufweitung des Gefäßes durchgeführt werden, ohne dass dafür ein Katheterwechsel erforderlich ist. Zur Verwirklichung dieses Prinzips kann es ausreichend sein, dass der Zuführkanal 62 allgemein dem Ballon 63 zugeordnet ist und zwar im Bereich der Katheterspitze, so dass der Ballonkatheter 60 sowohl zum Freisetzen des Stents 1 als auch zum Dilatieren, insbesondere zum Vordilatieren der Stenose und/oder zum Nachweiten des implantierten Stents 1 verwendet werden kann. Die symmetrische Anordnung des Zuführkanals 62 und des Ballons 63, wie in den Fig. 7, 10 und 11 dargestellt ist, hat den Vorteil, dass eine einfache radiale Aufweitung sowohl des Gefäßes als auch des implantierten Stents 1 möglich ist, wobei der Zuführkanal 62 vom Ballon
63 geschützt ist bzw. beim Aufweiten des Ballons 63 nicht mit dem Gefäß bzw. mit dem implantierten Stent 1 in Berührung kommt. Die Doppelfunktion des Ballonkatheters 60 wird dadurch erreicht, dass der Zuführkanal 62 mit einem proximal angeordneten, im Gebrauch extrakorporalen Anschluss verbunden ist, der zum Einfuhren des Stents 1 in den Zuführkanal 62 angepasst ist. Dies bedeutet praktisch, dass der extrakorporale Anschluss am proximalen Ende der Katheterleitung 70, also entfernt von der Katheterspitze, angeordnet ist. Der extrakorporale Anschluss für den Zuführkanal 62 ist somit für den Benutzer direkt zugänglich. Der Anschluss kann beispielsweise zum Laden des Stents 1 angepasst sein, wobei der Stent 1 vom extrakorporalen Anschluss bis zur Katheterspitze durch den Zuführkanal 62 bewegt wird. Alternativ kann der extrakorporale Anschluss im Zusammenhang mit einem vorgeladenen Stent, der sich im Bereich der Katheterspitze befindet, verwendet werden, wobei durch den extrakorporalen Anschluss und den Zuführkanal 62 ein Betätigungselement bewegbar ist, beispielsweise ein Pusher oder ein Führungsdraht mit einem etwas größeren Durchmesser als der Stent 1, das bis zu dem vorgeladenen Stent 1 vorgeschoben wird und mit diesem zum Freisetzen zusammenwirkt. Der extrakorporale Anschluss für den Zuführkanal 62 kann eine an sich bekannte Ladeschleuse für Stents 1 umfassen. Der Anschluss kann beispielsweise einen Luer-Konnektor umfassen.
Wie in Fig. 8 dargestellt ist, ist bei einem Ausführungsbeispiel der Zuführkanal 62 koaxial im Inflationskanal 61 angeordnet. Dabei ist ein Ringspalt 72 zwischen den beiden Kanälen 61, 62 ausgebildet, der als Steuerlumen für den Ballon 63 fungiert. Der Zuführkanal 62, der im Inneren des Inflationskanals 61 angeordnet ist, bildet das Hauptlumen, durch das der Stent 1 bewegt wird.
In Fig. 9 ist eine alternative Anordnung der beiden Kanäle 61, 62 dargestellt, wobei der Arbeitskanal 61 und der Zuführkanal 62 nebeneinander, insbesondere parallel nebeneinander, angeordnet sind. Um die beiden Kanäle 61, 62 herum ist eine Katheterleitung 70 angeordnet, die die Anordnung der beiden Kanäle 61, 62 fixiert. Generell gilt bevorzugt, dass der Durchmesser des Zuführkanals 62 größer als der Durchmesser des Inflationskanals 61 ist.
In den Fig. 10 und 11 ist dargestellt, dass das distale Ballonende 69 mit dem Außenumfang 71 des Zuführkanals 62 fluiddicht verbunden ist. Das proximale Ballonende 68 ist mit dem Inflationskanal 61 fluidverbunden. Damit schließt der Ballon 63 einerseits fluiddicht mit dem Zuführkanal 62 ab und ist andererseits durch den Inflationskanal 61 inflatierbar bzw. deflatierbar.
Der Inflationskanal 61 ist mit einem proximal angeordneten, im Gebrauch extrakorporalen Anschluss verbunden. Im Zusammenhang mit dem extrakorporalen Anschluss für den Zuführkanal 62 ist ein Mehrfachanschluss, beispielsweise ein Y-Luer-Konnektor möglich. Der Konnektor bzw. Anschluss für den Inflationskanal 61 ist entweder fest oder lösbar mit einer Druckeinrichtung verbunden oder verbindbar. Die Druckeinrichtung ist ausgebildet zur Erzeugung eines Überdrucks zum Inflatieren bzw. zur Erzeugung eines Unterdrucks zum Deflatieren des Ballons 63. Die Druckeinrichtung kann beispielsweise eine Spritze umfassen. Andere Druckeinrichtungen sind möglich.
Der Zuführkanal 62 ist mit einer reibmindernden Innenoberfläche für eine translatorische Bewegung des Stents 1 im Zuführkanal 62 versehen. Als Material für die Innenoberfläche kommen beispielsweise PTFE, FEP oder FIDPE oder ähnlich reibmindernde Oberflächenmodifizierungen in Frage. Andere Materialien für die Beschichtung sind ebenfalls möglich.
In Fig. 11 ist dargestellt, dass die Katheterspitze mehrere Röntgenmarker 65, 66, 67 aufweist. Ein erster Röntgenmarker 65 ist im Bereich der distalen Austrittsöffnung 64 angeordnet und dient zur Lokalisation des Endes der Katheterspitze. Ein zweiter Röntgenmarker 66 ist im Bereich des distalen Ballonendes 69 angeordnet. Ein dritter Röntgenmarker 67 ist im Bereich des proximalen Ballonendes 68 angeordnet. Der zweite und dritte Röntgenmarker 66, 67 dienen dazu, die Position des Ballons 63 festzustellen.
Die Katheterspitze kann atraumatisch und/oder flexibel ausgebildet sein. Als Materialien für den Ballonkatheter 60 eignen sich Kunststoffe, Metalle, Formgedächtnismaterialien, wie Nitinol, sowie röntgensichtbare Materialien.
Der Ballonkatheter 60 ermöglicht durch den Zuführkanal 62 ferner die Aspiration während oder nach der Aufweitung der Stenose. Dazu ist der Zuführkanal 62 mit einer Absaugeinrichtung verbunden bzw. verbindbar. Dies hat den Vorteil, dass beim Aufweiten abgelöste Gefäßwandpartikel durch den Zuführkanal 62 abgesaugt werden können.
Ferner ist es möglich, durch den Zuführkanal 62 ein Kontrastmittel zu injizieren. Konkret kann nach dem Dilatieren der Stenose der Zuführkanal 62 des Ballonkatheters 60 zur Kontrastmittelgabe verwendet werden, um zu prüfen, ob die Stenose geöffnet wurde. Dazu ist der Zuführkanal 62 mit einer entsprechenden Einrichtung zur Injektion eines Kontrastmittels, beispielsweise einer Spritze verbindbar oder verbunden.
Der Ballonkatheter 60 hat ferner den Vorteil, dass durch einen einzigen Ballonkatheter 60 mehrere Stenosen aufgedehnt und/oder mehrere Stents 1 freigesetzt werden können. Ein weiterer Vorteil des Ballonkatheters 60 besteht darin, dass der Zuführkanal 62 beim Aufweiten des Ballons 63 nicht kollabiert, da er eine eigene, stabile Kanalwand besitzt.
Die Kombination des hier beschriebenen Ballonkatheters 60 mit dem hier beschriebenen Stent 1, der eine elektrogesponnene Abdeckung 40 aufweist, hat sich als besonders vorteilhaft zur Behandlung von Stenosen erwiesen. Einerseits ist durch den Ballonkatheter eine gute Vordilatation der Stenose möglich. Andererseits kann auch eine gute Postdilatation erreicht werden. Der Stent 1 stützt das aufgeweitete Blutgefäß gut und stabilisiert insbesondere vulnerable Plaque aufgrund seiner besonders flexiblen und dichten Abdeckung 40. Darüber hinaus ermöglicht der Stent 1 mit seiner Abdeckung 40 eine gute Endothelzellenbildung, die das aufgeweitete Blutgefäß weiter stabilisiert.
Bezugszeichenliste
1 Stent
10 Gitterstruktur
11, 12, 13, 70 Steg bzw. Gitterelement
15 Endschlaufe
16 Draht
17 Flaring
18 Verbindungselement 19 Kreuzungsstelle 20 Stegverbinder
30 Zelle
31, 32 Zellenspitze 34 Zellenring 40 Abdeckung
41 Pore
42 Faden 50 Implantat-Röntgenmarker 60 Ballonkatheter 61 Inflationskanal 62 Zuführkanal
63 Ballon
64 distale Austrittsöffnung
65 erster Röntgenmarker 66 zweiter Röntgenmarker
67 dritter Röntgenmarker
68 proximale Ballonende
69 distales Ballonende
70 Katheterleitung 71 Außenumfang
72 Ringspalt

Claims

ANSPRÜCHE
1. Medizinisches System zur Behandlung von Stenosen in intrakraniellen Blutgefäßen mit
- einem komprimierbaren und selbstexpandierbaren Implantat (1) zum Abdecken der Stenose, das eine Gitterstruktur (10) aufweist, welche zumindest abschnittsweise mit einer Abdeckung (40) aus einem elektrogesponnenen Gewebe versehen ist, das unregelmäßig große Poren (41) aufweist, sowie mit
- einem Ballonkatheter (60) zum Dilatieren der Stenose und zum Zuführen des Implantats (1) in das Blutgefäß.
2. Medizinisches System nach Anspruch 1, dad u rch geken nzeich net, dass wobei die Abdeckung (40) auf einer Fläche von 100.000 pm2 mindestens 10 Poren (41) umfasst, die eine Größe zwischen 5 pm2 bis 15 pm2 und/oder von wenigstens 15 pm2 aufweisen.
3. Medizinisches System nach Anspruch 1 oder 2, dad u rch geken nzeich net, dass der Ballonkatheter (60) wenigstens zwei Kanäle (61, 62) und einen Ballon (64) aufweist, wobei ein Inflationskanal (61) mit dem Ballon (63) fluidverbunden ist und ein Zuführkanal (62) sich durch den Ballon (63) hindurch erstreckt, und wobei der Zuführkanal (62) eine proximale Einführöffnung und eine distale Austrittsöffnung (64) für die Freisetzung des Implantats (1) aufweist.
4. Medizinisches System nach Anspruch 2, dad u rch geken nzeich net, dass das Implantat (1) im komprimierten Zustand durch den Zuführkanal (62) bewegbar oder im Zuführkanal (62) angeordnet ist.
5. Medizinisches System nach einem der Ansprüche 2 bis 4, dad u rch geken nzeich net, dass der Ballonkatheter (60) wenigstens drei Röntgenmarker (65, 66, 67) aufweist, wobei ein erster Röntgenmarker (65) im Bereich der distalen Austrittsöffnung (64) des Zuführkanals (62), ein zweiter Röntgenmarker (66) im Bereich eines distalen Ballonendes (68) und ein dritter Röntgenmarker (67) im Bereich eines proximalen Ballonendes (69) angeordnet ist.
6. Medizinisches System nach einem der Ansprüche 3 bis 5, dad u rch geken nzeich net, dass der Zuführkanal (62) eine reibmindernde Innenoberfläche für eine translatorische Bewegung des Implantats (1) im Zuführkanal (62) aufweist.
7. Medizinisches System nach einem der vorhergehenden Ansprüche, dad u rch geken nzeich net, dass die mindestens 10 Poren (41) der Abdeckung (40) jeweils einen Inkreisdurchmesser von mindestens 4 pm, insbesondere mindestens 5 pm, insbesondere mindestens 6 pm, insbesondere mindestens 7 pm, insbesondere mindestens 8 pm, insbesondere mindestens 9 pm, insbesondere mindestens 10 pm, insbesondere mindestens 12 pm, insbesondere mindestens 15 pm, insbesondere mindestens 20 pm, aufweisen.
8. Medizinisches System nach einem der vorhergehenden Ansprüche, dad u rch geken nzeich net, dass die Abdeckung (40) auf einer Fläche von 100.000 pm2 mindestens 15 Poren (41) umfasst, die eine Größe von mindestens 30 pm2, insbesondere mindestens 50 pm2, insbesondere mindestens 70 pm2, insbesondere mindestens 90 pm2, aufweisen.
9. Medizinisches System nach einem der vorhergehenden Ansprüche, dad u rch geken nzeich net, dass die Poren (41) eine Größe von höchstens 750 pm2, insbesondere höchstens 500 pm2, insbesondere höchstens 300 pm2, aufweisen.
10. Medizinisches System nach einem der vorhergehenden Ansprüche, dad u rch geken nzeich net, dass die Abdeckung (40) mit der Gitterstruktur (10) fest, insbesondere stoffschlüssig, verbunden ist.
11. Medizinisches System nach einem der vorhergehenden Ansprüche, dad u rch geken nzeich net, dass die Gitterstruktur (10) zumindest teilweise und/oder abschnittsweise durch einen Haftvermittler, insbesondere Polyurethan, ummantelt ist, insbesondere wobei der Haftvermittler die Stoff schlüssige Verbindung der Abdeckung (40) mit der Gitterstruktur (10) bildet.
12. Medizinisches System nach einem der vorhergehenden Ansprüche, dad u rch geken nzeich net, dass die Abdeckung (40) aus einem Kunststoffmaterial, insbesondere einem Polyurethan, gebildet ist.
13. Medizinisches System nach einem der vorhergehenden Ansprüche, dad u rch geken nzeich net, dass die Abdeckung (40) aus unregelmäßig netzartig angeordneten Fäden (42) gebildet ist, die eine Fadendicke zwischen 0,1 pm und 3 pm, insbesondere zwischen 0,2 pm und 2 pm, insbesondere zwischen 0,3 pm und 1,5 pm, insbesondere zwischen 0,7 pm und 1,3 pm, aufweisen.
14. Medizinisches System nach einem der vorhergehenden Ansprüche, dad u rch geken nzeich net, dass die Abdeckung (40) eine biokompatible, insbesondere entzündungshemmende und/oder hyperplasiehemmende, Beschichtung (45) aufweist.
15. Medizinisches System nach Anspruch 14, dad u rch geken nzeich net, dass die Beschichtung Fibrin und/oder Heparin aufweist.
16. Medizinisches System nach Anspruch 15, dad u rch geken nzeich net, dass das Heparin kovalent an Fibrin gebunden bzw. in Fibrin eingebettet ist.
PCT/EP2020/085399 2019-12-20 2020-12-10 Medizinisches system zur behandlung von stenosen in intrakraniellen gefässen WO2021122251A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080088850.5A CN114901209A (zh) 2019-12-20 2020-12-10 用于治疗颅内血管狭窄的医疗系统
EP20837929.7A EP4076274A1 (de) 2019-12-20 2020-12-10 Medizinisches system zur behandlung von stenosen in intrakraniellen gefässen
US17/786,476 US20230132863A1 (en) 2019-12-20 2020-12-10 Medical system for treating stenosis in intracranial vessels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019135498.6 2019-12-20
DE102019135498.6A DE102019135498B4 (de) 2019-12-20 2019-12-20 Medizinisches System zur Behandlung von Stenosen in intrakraniellen Gefäßen

Publications (1)

Publication Number Publication Date
WO2021122251A1 true WO2021122251A1 (de) 2021-06-24

Family

ID=74130154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/085399 WO2021122251A1 (de) 2019-12-20 2020-12-10 Medizinisches system zur behandlung von stenosen in intrakraniellen gefässen

Country Status (5)

Country Link
US (1) US20230132863A1 (de)
EP (1) EP4076274A1 (de)
CN (1) CN114901209A (de)
DE (1) DE102019135498B4 (de)
WO (1) WO2021122251A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4376775A1 (de) * 2021-07-30 2024-06-05 Acandis GmbH Implantat, insbesondere stent, und herstellungsverfahren
DE102022125942A1 (de) 2022-10-07 2024-04-18 Acandis Gmbh Medizinische Vorrichtung, Set mit einer medizinischen Vorrichtung und Verfahren zur Herstellung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040030377A1 (en) * 2001-10-19 2004-02-12 Alexander Dubson Medicated polymer-coated stent assembly
DE102010006187A1 (de) * 2010-01-29 2011-08-04 Acandis GmbH & Co. KG, 76327 Medizinischer Katheter und medizinisches System mit einem derartigen Katheter
DE202014102615U1 (de) * 2014-06-04 2014-06-30 Acandis Gmbh & Co. Kg Medizinischer Katheter
WO2014177634A1 (de) 2013-05-03 2014-11-06 Acandis Gmbh & Co. Kg Medizinische vorrichtung zur einfuhr in ein körperhohlorgan
WO2019143717A1 (en) * 2018-01-16 2019-07-25 Sintra Medical Llc Stents with increased flexibility
WO2019175341A1 (en) * 2018-03-14 2019-09-19 Ceroflo Limited "a stent, and a method for the treatment of an aneurysm in an intracranial vessel"
DE102018131269A1 (de) * 2018-12-07 2020-06-10 Acandis Gmbh Medizinische Vorrichtung zur Einfuhr in ein Körperhohlorgan und Herstellungsverfahren

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571166A (en) * 1992-03-19 1996-11-05 Medtronic, Inc. Method of making an intraluminal stent
US7270675B2 (en) * 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US7625337B2 (en) * 2003-01-17 2009-12-01 Gore Enterprise Holdings, Inc. Catheter assembly
US8435285B2 (en) * 2003-11-25 2013-05-07 Boston Scientific Scimed, Inc. Composite stent with inner and outer stent elements and method of using the same
WO2006044904A2 (en) * 2004-10-15 2006-04-27 Vanderbilt University Nano- and micro-scale engineering of polymeric scaffolds for vascular tissue engineering
ES2375736T3 (es) * 2006-02-13 2012-03-05 Merlin Md Pte Ltd Dispositivo endovascular con membrana.
EP2088962B1 (de) * 2006-11-22 2017-10-11 Inspiremd Ltd. Optimierter stentmantel
NL2009145C2 (en) * 2012-07-06 2014-01-07 Xeltis B V Implant.
WO2014055514A2 (en) * 2012-10-01 2014-04-10 C.R. Bard, Inc. Balloon catheter having multiple inflation lumens and related methods
DE102013112650B4 (de) * 2013-11-15 2018-03-08 Acandis Gmbh & Co. Kg Ballonkatheter mit einem Katheterschlauch und einem Ballon und Ballonkatheter zum endovaskulären Temperieren von Blut
DE102015117340B4 (de) * 2015-10-12 2019-03-28 Adceris Gmbh & Co. Kg Ballonkatheter zum endovaskulären Temperieren
CN209848115U (zh) * 2018-08-15 2019-12-27 阿坎迪斯有限公司 用于医学治疗颅内狭窄的治疗系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040030377A1 (en) * 2001-10-19 2004-02-12 Alexander Dubson Medicated polymer-coated stent assembly
DE102010006187A1 (de) * 2010-01-29 2011-08-04 Acandis GmbH & Co. KG, 76327 Medizinischer Katheter und medizinisches System mit einem derartigen Katheter
WO2014177634A1 (de) 2013-05-03 2014-11-06 Acandis Gmbh & Co. Kg Medizinische vorrichtung zur einfuhr in ein körperhohlorgan
DE202014102615U1 (de) * 2014-06-04 2014-06-30 Acandis Gmbh & Co. Kg Medizinischer Katheter
WO2019143717A1 (en) * 2018-01-16 2019-07-25 Sintra Medical Llc Stents with increased flexibility
WO2019175341A1 (en) * 2018-03-14 2019-09-19 Ceroflo Limited "a stent, and a method for the treatment of an aneurysm in an intracranial vessel"
DE102018131269A1 (de) * 2018-12-07 2020-06-10 Acandis Gmbh Medizinische Vorrichtung zur Einfuhr in ein Körperhohlorgan und Herstellungsverfahren

Also Published As

Publication number Publication date
CN114901209A (zh) 2022-08-12
DE102019135498B4 (de) 2024-01-04
US20230132863A1 (en) 2023-05-04
DE102019135498A1 (de) 2021-06-24
EP4076274A1 (de) 2022-10-26

Similar Documents

Publication Publication Date Title
DE602004012037T2 (de) Abdeckvorrichtung für einen Aneurysemhals
DE69633824T2 (de) Vorrichtung zur implantierung in einem blutgefäss beziehungsweise in einem hohlen körperlumen
DE69108423T2 (de) Aufblasbarer Dilatator.
DE602004010344T2 (de) Katheter ohne Ballon zum Einsetzen eines Stents
DE60221461T2 (de) Intravaskuläre Stentvorrichtung
DE60106260T2 (de) Medizinische vorrichtung mit geflecht und spule
DE102019121546B4 (de) Medizinisches Set sowie medizinisches System zur Behandlung von Aneurysmen
EP2884946A2 (de) Implantierbare einrichtung zur verwendung im menschlichen und/oder tierischen körper zum ersatz einer organklappe
DE102006056283A1 (de) Okklusionsvorrichtung und Einführvorrichtung für diese sowie System aus Okklusionsvorrichtung und Einführvorrichtung
DE10335649A1 (de) Flechtstent zur Implantation in ein Blutgefäß
WO2009077845A2 (de) Stützimplantat, insbesondere stent, und implantationskatheter für das stützimplantat
EP2416715A1 (de) Vorrichtung zum entfernen von konkrementen aus körpergefässen
WO2020115327A1 (de) Medizinische vorrichtung zur einfuhr in ein körperhohlorgan, medizinisches set und herstellungsverfahren
EP4009920A1 (de) Medizinisches set zur behandlung von aneurysmen, herstellungsverfahren sowie medizinisches system zur behandlung von aneurysmen
WO2021122251A1 (de) Medizinisches system zur behandlung von stenosen in intrakraniellen gefässen
DE102008048416A1 (de) Medizinische Vorrichtung und Verfahren zum Herstellen einer derartigen Vorrichtung
EP3764928A1 (de) Thrombektomievorrichtung
DE102019121562B4 (de) Medizinische Vorrichtung zur Behandlung von Aneurysmen
DE102019135502B4 (de) Medizinisches Set, medizinisches System und Abdeckvorrichtung zur Behandlung von Aneurysmen
EP3694449A1 (de) Expandierbares gefaessimplantat
WO2006117214A1 (de) Vorrichtung zur vermeidung von inkontinenz, insbesondere harninkontinenz
DE102022111350A1 (de) Ballonkatheter-Stentstruktur-Kombination
DE102015121531B4 (de) Medizinisches System zur Behandlung von Aneurysmen
DE102021132725A1 (de) Implantat zur Behandlung von Aneurysmen im Bereich von Bifurkationen
DE102019121559A1 (de) Medizinische Vorrichtung zur Einfuhr in ein Körperhohlorgan sowie Verfahren zur Herstellung einer medizinischen Vorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020837929

Country of ref document: EP

Effective date: 20220720