WO2021121167A1 - 利用含有氧空位的金属氧化物电化学海水提铀的方法 - Google Patents

利用含有氧空位的金属氧化物电化学海水提铀的方法 Download PDF

Info

Publication number
WO2021121167A1
WO2021121167A1 PCT/CN2020/135832 CN2020135832W WO2021121167A1 WO 2021121167 A1 WO2021121167 A1 WO 2021121167A1 CN 2020135832 W CN2020135832 W CN 2020135832W WO 2021121167 A1 WO2021121167 A1 WO 2021121167A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
solution
electrode
oxygen vacancies
hour
Prior art date
Application number
PCT/CN2020/135832
Other languages
English (en)
French (fr)
Inventor
竹文坤
何嵘
李怡
段涛
雷佳
陈涛
杨帆
Original Assignee
西南科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南科技大学 filed Critical 西南科技大学
Priority to US17/433,613 priority Critical patent/US11384444B2/en
Publication of WO2021121167A1 publication Critical patent/WO2021121167A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/01Oxides; Hydroxides
    • C01G43/025Uranium dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the invention relates to a method for extracting uranium from seawater, in particular to a method for extracting uranium from electrochemical seawater using metal oxides containing oxygen vacancies.
  • Uranium is a raw material for nuclear power, and there are very few uranium reserves in natural ore. At present, the world's exploitable uranium resources are limited. The world's total ocean water is about 1.37 ⁇ 10 12 m 3 , and the total reserves of uranium in the seawater reach 4.29 billion tons, which is nearly 1,000 times the land reserves. With the development of nuclear power and low-carbon economy, the demand for uranium resources has become increasingly urgent. Based on the scarcity of uranium and the limited uranium mineral resources, it is of great significance to extract uranium from seawater as a supplement or substitute for traditional ore-type uranium resources.
  • the current methods of extracting uranium mainly include chemical precipitation, ion exchange, membrane separation, and adsorption.
  • the chemical precipitation method has simple equipment, low cost and high efficiency, but the polymer produced by the reaction needs to be further concentrated, dehydrated and solidified; the ion exchange method has high extraction efficiency and good purification effect, but it is expensive, poor selectivity, and limited exchange capacity; membrane
  • the separation method has simple operation, low energy consumption and strong adaptability, but it has high requirements for the water quality of raw water and often needs to be combined with other water treatment technologies; while the adsorption method requires large processing capacity and strong adsorbent selectivity for adsorbents , Strong corrosion resistance, high mechanical strength and other characteristics, and the existing adsorption materials in practical applications also have the defects of low adsorption efficiency, high production cost, difficulty in recycling and reuse.
  • Compounds with oxygen vacancies can capture oxygen ions, while uranium in seawater is uranyl ions, which are uranium-oxygen complexes, such as UO 2 2+ .
  • Oxygen vacancies capture oxygen, which can achieve the effect of indirect capture of uranium.
  • Compounds are easier to capture uranyl ions.
  • the compound with oxygen vacancies is coated on carbon paper as the working electrode, platinum wire is used as the counter electrode, calomel electrode is used as the reference electrode, and the uranium in the seawater is fixed on the electrode by electrifying the electrode. On the working electrode, the extraction of uranium in seawater is realized.
  • An object of the present invention is to solve at least the above-mentioned problems and/or disadvantages and to provide at least the advantages described later.
  • a method for extracting uranium from electrochemical seawater using metal oxides containing oxygen vacancies includes the following steps:
  • Step 1 Prepare an indium nitrate isopropanol solution with a concentration of 0.024 ⁇ 0.028mol/L; add glycerin to the indium nitrate isopropanol solution, stir for 0.5-1 hour, and ultrasonic for 0.5-1 hour to obtain a mixed solution;
  • Step 2 Transfer the mixed solution to a polytetrafluoroethylene high-temperature and high-pressure reactor, heat up to 160 ⁇ 200°C, keep it for 1 ⁇ 3 hours, cool to room temperature naturally, separate the solid and liquid, and wash the solid with deionized water and ethanol. , And then dried in a vacuum drying oven at 60-80°C for 10-14 hours to obtain spherical indium hydroxide solid;
  • Step 3 Dissolve the spherical indium hydroxide solid in deionized water, sonicate it for 0.5-1 hour, then transfer the sonicated solution to a polytetrafluoroethylene high-temperature and high-pressure reactor, heat up to 40 ⁇ 60°C, and keep it warm for 1 ⁇ 3 After hours, it is naturally cooled to room temperature, washed with ethanol, and then dried in an oven at 60-80°C for 10-14 hours to obtain flake indium hydroxide solid;
  • Step 4 Heating the flake indium hydroxide solid to 350-450°C in an atmosphere with a hydrogen content of less than 5%, and calcining for 1 to 3 hours to obtain a calcined In 2 O 3-x sample with oxygen vacancies;
  • Step 5 Add the In 2 O 3-x sample to ethanol and sonicate for 0.5 to 1 hour, then add the membrane solution, and continue to sonicate for 0.5 to 1 hour; spread the ultrasonic solution evenly on the carbon paper, and let the carbon paper be natural After drying, clamp the dried carbon paper with a gold electrode and use it as the working electrode in the three-electrode system.
  • the counter electrode in the three-electrode system is a platinum wire and the reference electrode is a calomel electrode;
  • Step 6 Add simulated seawater to the electrolytic cell, place the three-electrode system in the simulated seawater of the electrolytic cell, stir the simulated seawater for electrolysis to extract uranium from seawater, set the electrolytic cell voltage to -0.3 ⁇ -0.5V, and electrolyze for 10 ⁇ 100min , In the process of electrolysis, every 1 ⁇ 2min when the power is turned on, the power will be cut off for 30 ⁇ 60s.
  • the method for preparing the indium nitrate isopropanol solution is: dissolving In(NO 3 ) 3 ⁇ 4.5H 2 O in isopropanol, stirring for 0.5 to 1 hour, and ultrasonicating for 0.5 to 1 hour to obtain nitric acid Indium isopropanol solution; the mass ratio of In(NO 3 ) 3 ⁇ 4.5H 2 O to glycerol is 3:80-120;
  • the mass-volume ratio of the spherical indium hydroxide solid to the deionized water is 1 g:120-160 mL.
  • the mass-volume ratio of the In 2 O 3-x sample to ethanol is 1 mg:0.2-0.6 mL; the mass-volume ratio of the In 2 O 3-x sample to the membrane solution is 1 mg: 10uL.
  • the membrane solution is a nafion membrane solution.
  • the method for preparing the simulated seawater is: dissolving uranyl nitrate and sodium chloride in deionized water and ultrasonicating for 0.5 to 1 hour to obtain simulated seawater; the concentration of U 6+ in the simulated seawater is 50 to 150 ug /L, the concentration of sodium chloride is 0.1 to 1 mol/L.
  • the sixth step after the electrolysis is completed, place the three-electrode system in an electrolytic cell containing 0.1-1 mol/L sodium chloride solution and stir for electrolysis; set the electrolytic cell voltage to +0.3 ⁇ +0.5V , Power on for 1 to 3 minutes, power off for 0.5 to 1 minute, repeat the power on and power off process 15 to 30 times; let U 4+ on the working electrode be oxidized in a sodium chloride solution with a concentration of 0.1 to 1 mol/L U 6+ .
  • the ultrasonic power used in step 1, step 3, and step 5 is 600 to 1200 W, and the frequency is 28 to 40 KHz.
  • the rate of temperature rise is 3-6°C/min; in the third step, the rate of temperature rise is 3-6°C/min; in the fourth step, the rate of temperature rise is 8 ⁇ 12°C/min.
  • the process of the second step is replaced by: adding the mixed solution to a high-pressure reactor, injecting high-pressure carbon dioxide into the reactor, and stirring and reacting at a temperature of 150-180°C and a pressure of 18-28 MPa for 1 to 1.5 hours, After being naturally cooled to room temperature, the pressure is relieved, the solid is separated, the solid is washed with deionized water and ethanol, and then dried in a vacuum drying oven at 60-80° C. for 10-14 hours to obtain a spherical indium hydroxide solid.
  • compounds with oxygen vacancies can capture oxygen ions, while uranium in seawater is uranyl ions, which are uranium-oxygen complexes, such as UO 2 2+ .
  • Oxygen vacancies capture oxygen, which can achieve indirect capture of uranium. The effect of this makes it easier for oxygen vacancy compounds to capture uranyl ions.
  • the vacancies of compounds with oxygen vacancies capture oxygen, it is equivalent to grabbing a UO 2 2+ , and we have to negatively charge it to reduce it to UO 2 crystals. It can be fixed. Once reduced UO 2 crystals appear, the subsequent reduction process is similar to the crystal crystallization process. The longer it grows and the larger it is, the extraction of uranium in seawater is realized.
  • the present invention includes at least the following beneficial effects: the present invention prepares the metal oxide In 2 O 3-x containing oxygen vacancies, mixes the oxide with the film solution and uniformly coats it on the carbon paper, and waits for the carbon paper to dry naturally. Afterwards, the dried carbon paper was clamped with gold electrodes and used as the working electrode in the three-electrode system.
  • the three-electrode system was used to electrolyze uranium-containing simulated seawater to achieve the extraction of uranium. The extraction method is simple and easy to implement.
  • Fig. 1 is an XRD pattern of In 2 O 3-x samples with oxygen vacancies and pure In 2 O 3 prepared in Examples 1 and 4 of the present invention
  • Example 2 is an HRTEM image of an In 2 O 3-x sample with oxygen vacancies prepared in Example 1 of the present invention
  • Example 3 is a TEM image of an In 2 O 3-x sample with oxygen vacancies prepared in Example 1 of the present invention
  • a method for extracting uranium from electrochemical seawater using metal oxides containing oxygen vacancies including the following steps:
  • Step 1 Dissolve 3g In(NO 3 ) 3 ⁇ 4.5H 2 O in 300 mL of isopropanol, stir for 0.5 hours, and ultrasonic for 1 hour to obtain indium nitrate isopropanol solution; add 100g to indium nitrate isopropanol solution Glycerol, stirring for 0.5 hours, sonicating for 0.5 hours to obtain a mixed solution; the ultrasonic power is 800W, and the frequency is 35KHz;
  • Step 2 Transfer the mixed solution to a polytetrafluoroethylene high-temperature and high-pressure reactor, heat up to 180°C at a rate of 5°C/min, keep it for 1 hour, and cool to room temperature naturally, separate the solid and liquid, and use deionized water for the solids. Wash with ethanol, and then dry in a vacuum drying oven at 60°C for 12 hours to obtain spherical indium hydroxide solid;
  • Step 3 Dissolve 0.2g of spherical indium hydroxide solid in 30mL of deionized water, sonicate for 0.5 hours, then transfer the sonicated solution to a polytetrafluoroethylene high-temperature and high-pressure reactor, and heat up to 50°C at 5°C/min. Keep it warm for 1 hour, cool to room temperature naturally, wash with ethanol, and then dry in an oven at 60°C for 12 hours to obtain flake indium hydroxide solid; the ultrasonic power is 800W, and the frequency is 35KHz;
  • Step 4 The flake indium hydroxide solid is heated to 400°C at 10°C/min under an atmosphere with a hydrogen content of 5% or less, and calcined for 2 hours to obtain a calcined In 2 O 3-x sample with oxygen vacancies ; ( X in In 2 O 3-x represents oxygen vacancy content);
  • Step 5 Add 50mg In 2 O 3-x sample to 20mL ethanol and sonicate for 1 hour, then add 500uL nafion membrane solution and continue sonication for 1 hour; spread the ultrasonic solution evenly on the 1x2cm carbon paper and wait for the carbon paper After natural drying, the dried carbon paper is clamped with a gold electrode and used as the working electrode in the three-electrode system, and the counter electrode in the three-electrode system is a platinum wire, and the reference electrode is a calomel electrode; The power is 800W and the frequency is 35KHz;
  • Step 6 Add 166.38ug of uranyl nitrate and 29.2g of sodium chloride to 1L of deionized water, and sonicate to obtain simulated seawater with a U 6+ concentration of 100 ug/L and a sodium chloride concentration of 0.5 mol/L; the ultrasound
  • the power is 800W, the frequency is 35KHz; the simulated seawater is added to the electrolytic cell, the three-electrode system is placed in the simulated seawater of the electrolytic cell, and the simulated seawater is stirred for electrolysis.
  • the electrolytic cell voltage is set to -4V, and the electrolysis is 10min.
  • the power is cut off for 30 seconds every 1 minute; the extraction of uranium in simulated seawater is completed; the U 6+ concentration after uranium extraction in simulated seawater is tested by ICP-MS to be 10ug/L;
  • Step 7 After the electrolysis is completed, place the three-electrode system in an electrolytic cell containing 0.5mol/L sodium chloride solution and stir for electrolysis; set the electrolytic cell voltage to +0.4V, power on for 2 minutes, power off for 0.5 minutes, and repeat The power-on and power-off processes are 20 times; U 4+ on the working electrode is oxidized to U 6+ in a sodium chloride solution with a concentration of 0.5 mol/L; ICP-MS is used to test a 0.5 mol/L sodium chloride solution The concentration of U 6+ in is 87ug/L.
  • a method for extracting uranium from electrochemical seawater using metal oxides containing oxygen vacancies including the following steps:
  • Step 1 Dissolve 3g of In(NO 3 ) 3 ⁇ 4.5H 2 O in 300 mL of isopropanol, stir for 1 hour, and ultrasound for 0.5 hours to obtain an indium nitrate isopropanol solution; add 100g to the indium nitrate isopropanol solution Glycerol, stirring for 1 hour, sonicating for 0.5 hour to obtain a mixed solution; the ultrasonic power is 800W, and the frequency is 40KHz;
  • Step 2 Transfer the mixed solution to a polytetrafluoroethylene high-temperature and high-pressure reactor, heat up to 185°C at a rate of 5°C/min, keep it for 2 hours, and cool to room temperature naturally, separate the solid and liquid, and use deionized water for the solids. Wash with ethanol, and then dry in a vacuum drying oven at 60°C for 12 hours to obtain spherical indium hydroxide solid;
  • Step 3 Dissolve 1g of spherical indium hydroxide solid in 150mL deionized water, sonicate for 1 hour, then transfer the sonicated solution to a polytetrafluoroethylene high-temperature and high-pressure reactor, heat up to 60°C at 5°C/min, and keep it warm. 2 hours, naturally cooled to room temperature, washed with ethanol, and then dried in an oven at 60°C for 12 hours to obtain flake indium hydroxide solid; the ultrasonic power is 800W, and the frequency is 40KHz;
  • Step 4 The flake indium hydroxide solid is heated to 385°C at 10°C/min under an atmosphere with a hydrogen content of 5% or less, and calcined for 3 hours to obtain a calcined In 2 O 3-x sample with oxygen vacancies ;
  • Step 5 Add 50mg In 2 O 3-x sample to 20mL ethanol and sonicate for 1 hour, then add 500uL nafion membrane solution and continue sonication for 1 hour; spread the ultrasonic solution evenly on the 1x2cm carbon paper and wait for the carbon paper After natural drying, the dried carbon paper is clamped with a gold electrode and used as the working electrode in the three-electrode system, and the counter electrode in the three-electrode system is a platinum wire, and the reference electrode is a calomel electrode; The power is 800W and the frequency is 40KHz;
  • Step 6 Add 166.38ug of uranyl nitrate and 29.2g of sodium chloride to 1L of deionized water, and sonicate to obtain simulated seawater with a U 6+ concentration of 100 ug/L and a sodium chloride concentration of 0.5 mol/L; the ultrasound
  • the power is 800W, the frequency is 35KHz;
  • the simulated seawater is added to the electrolytic cell, the three-electrode system is placed in the simulated seawater of the electrolytic cell, and the simulated seawater is stirred for electrolysis.
  • the electrolytic cell voltage is set to -5V, and the electrolysis is 10min.
  • the power is turned off for 30 seconds every 1 minute when the power is turned on; the extraction of uranium in the simulated seawater is completed; through the process of power on, power off, and stirring, the concentration of U 6+ near the working electrode can be increased, and the extraction efficiency can be improved; ICP is adopted -MS test simulated the U 6+ concentration after extracting uranium from seawater is 9ug/L;
  • Step 7 After the electrolysis is completed, place the three-electrode system in an electrolytic cell containing 0.5 mol/L sodium chloride solution and stir for electrolysis; set the electrolytic cell voltage to +0.5V, power on for 2 minutes, power off for 0.5 minutes, and repeat The power-on and power-off process is 20 times; U 4+ on the working electrode is oxidized to U 6+ in a sodium chloride solution with a concentration of 0.8 mol/L; ICP-MS is used to test a 0.5 mol/L sodium chloride solution The concentration of U 6+ in is 87ug/L.
  • a method for extracting uranium from electrochemical seawater using metal oxides containing oxygen vacancies including the following steps:
  • Step 1 Dissolve 3g In(NO 3 ) 3 ⁇ 4.5H 2 O in 300 mL of isopropanol, stir for 1 hour, and ultrasonic for 1 hour to obtain indium nitrate isopropanol solution; add 100g to indium nitrate isopropanol solution Glycerol, stirring for 1 hour, sonicating for 1 hour to obtain a mixed solution; the ultrasonic power is 800W, and the frequency is 40KHz;
  • Step 2 Transfer the mixed solution to a polytetrafluoroethylene high-temperature and high-pressure reactor, heat up to 200°C at a rate of 5°C/min, keep it for 1 hour, and cool to room temperature naturally, separate the solid and liquid, and use deionized water for the solids. Wash with ethanol, and then dry in a vacuum drying oven at 60°C for 12 hours to obtain spherical indium hydroxide solid;
  • Step 3 Dissolve 1g of spherical indium hydroxide solid in 150mL deionized water, sonicate for 1 hour, then transfer the sonicated solution to a polytetrafluoroethylene high-temperature and high-pressure reactor, heat up to 60°C at 5°C/min, and keep it warm. 2 hours, naturally cooled to room temperature, washed with ethanol, and then dried in an oven at 60°C for 12 hours to obtain flake indium hydroxide solid; the ultrasonic power is 800W, and the frequency is 40KHz;
  • Step 4 The flake indium hydroxide solid is heated to 400°C at 10°C/min under an atmosphere with a hydrogen content of 5% or less, and calcined for 2 hours to obtain a calcined In 2 O 3-x sample with oxygen vacancies ;
  • Step 5 Add 50mg In 2 O 3-x sample to 20mL ethanol and sonicate for 1 hour, then add 500uL nafion membrane solution and continue sonication for 1 hour; spread the ultrasonic solution evenly on the 1x2cm carbon paper and wait for the carbon paper After natural drying, the dried carbon paper is clamped with a gold electrode and used as the working electrode in the three-electrode system, and the counter electrode in the three-electrode system is a platinum wire, and the reference electrode is a calomel electrode; The power is 800W and the frequency is 40KHz;
  • Step 6 Add 166.38ug of uranyl nitrate and 29.2g of sodium chloride to 1L of deionized water, and sonicate to obtain simulated seawater with a U 6+ concentration of 100 ug/L and a sodium chloride concentration of 0.5 mol/L; the ultrasound
  • the power is 800W, the frequency is 35KHz; the simulated seawater is added to the electrolytic cell, the three-electrode system is placed in the simulated seawater of the electrolytic cell, and the simulated seawater is stirred for electrolysis.
  • the electrolytic cell voltage is set to -3V, and the electrolysis is 10min.
  • the power is cut off for 30 seconds every 1 minute; the extraction of uranium in simulated seawater is completed; the U 6+ concentration after uranium extraction in simulated seawater is tested by ICP-MS to be 8ug/L;
  • Step 7 After electrolysis is completed, place the three-electrode system in an electrolytic cell containing 0.5 mol/L sodium chloride solution and stir for electrolysis; set the electrolytic cell voltage to +0.3V, power on for 2 minutes, power off for 0.5 minutes, and repeat The power-on and power-off process is 20 times; the U 4+ on the working electrode is oxidized to U 6+ in a sodium chloride solution with a concentration of 0.5 mol/L. The concentration of U 6+ in the 0.5mol/L sodium chloride solution tested by ICP-MS was 88ug/L.
  • a method for extracting uranium from electrochemical seawater using metal oxides containing oxygen vacancies including the following steps:
  • Step 1 Dissolve 3g In(NO 3 ) 3 ⁇ 4.5H 2 O in 300 mL of isopropanol, stir for 0.5 hours, and ultrasonic for 1 hour to obtain indium nitrate isopropanol solution; add 100g to indium nitrate isopropanol solution Glycerol, stirring for 0.5 hours, sonicating for 0.5 hours to obtain a mixed solution; the ultrasonic power is 800W, and the frequency is 35KHz;
  • Step 2 Add the mixed solution to the high-pressure reactor, inject high-pressure carbon dioxide into the reactor, stir and react for 1 hour at a temperature of 180°C and a pressure of 20 MPa, cool to room temperature and release the pressure, separate the solid and liquid, and use the solid separately Wash with ionized water and ethanol, and then dry in a vacuum drying cabinet at 60°C for 12 hours to obtain spherical indium hydroxide solids.
  • the reaction is carried out in the supercritical carbon dioxide reaction system, and the reaction is more uniform under the action of supercritical carbon dioxide. Increase the oxygen vacancy content of the In 2 O 3-x sample prepared subsequently;
  • Step 3 Dissolve 0.2g of spherical indium hydroxide solid in 30mL of deionized water, sonicate for 0.5 hours, then transfer the sonicated solution to a polytetrafluoroethylene high temperature and high pressure reactor, and heat up to 50°C at 5°C/min. Insulate for 1 hour, cool to room temperature naturally, wash with ethanol, and then dry in an oven at 60°C for 12 hours to obtain flake indium hydroxide solid;
  • Step 4 The flake indium hydroxide solid is heated to 400°C at 10°C/min under an atmosphere with a hydrogen content of less than 5%, and calcined for 2 hours to obtain a calcined In 2 O 3-x sample with oxygen vacancies ;
  • Step 5 Add 50mg In 2 O 3-x sample to 20mL ethanol and sonicate for 1 hour, then add 500uL nafion membrane solution and continue sonication for 1 hour; spread the ultrasonic solution evenly on the 1x2cm carbon paper and wait for the carbon paper After natural drying, the dried carbon paper is clamped with a gold electrode and used as the working electrode in the three-electrode system, and the counter electrode in the three-electrode system is a platinum wire, and the reference electrode is a calomel electrode; The power is 800W and the frequency is 35KHz;
  • Step 6 Add 166.38ug of uranyl nitrate and 29.2g of sodium chloride to 1L of deionized water, and sonicate to obtain simulated seawater with a U 6+ concentration of 100 ug/L and a sodium chloride concentration of 0.5 mol/L; the ultrasound
  • the power is 800W, the frequency is 35KHz; the simulated seawater is added to the electrolytic cell, the three-electrode system is placed in the simulated seawater of the electrolytic cell, and the simulated seawater is stirred for electrolysis.
  • the electrolytic cell voltage is set to -4V, and the electrolysis is 10min.
  • the power is turned off for 30 seconds every 1 minute; the extraction of uranium in simulated seawater is completed; the U 6+ concentration after uranium extraction in simulated seawater is tested by ICP-MS to be 6ug/L;
  • Step 7 After the electrolysis is completed, place the three-electrode system in an electrolytic cell containing 0.5mol/L sodium chloride solution and stir for electrolysis; set the electrolytic cell voltage to +0.4V, power on for 2 minutes, power off for 0.5 minutes, and repeat The power-on and power-off processes are 20 times; the U 4+ on the working electrode is oxidized to U 6+ in a sodium chloride solution with a concentration of 0.3-0.8 mol/L. The concentration of U 6+ in the 0.5mol/L sodium chloride solution is 90ug/L by ICP-MS.
  • Figure 1 the In 2 O 3-x samples with oxygen vacancies prepared in Example 1 and Example 4 are consistent with the crystal phase of pure In 2 O 3 and are cubic crystal phases;
  • Figure 2 is Example 1 The prepared In 2 O 3-x sample with oxygen vacancies can also be characterized as a cubic crystal phase;
  • Figure 3 is the TEM image of the In 2 O 3-x sample with oxygen vacancies prepared in Example 1. It can be seen that In The 2 O 3-x sample has a sheet-like appearance;
  • Figure 4 is the ESR spectrum of the In 2 O 3-x sample with oxygen vacancies and pure In 2 O 3 prepared in Examples 1 and 4 of the present invention; it shows around 3400Gs The signal of is due to the capture of electrons by oxygen vacancies.
  • Figure 5 shows the In 2 with oxygen vacancies prepared in Examples 1 and 4 of the present invention PL spectra of O 3-x sample and pure In 2 O 3 ; the PL emission peak at 435nm is mainly due to the recombination of oxygen vacancies caused by the capture of electrons by photo-generated holes.
  • the stronger the signal the better the prepared In 2 O
  • the oxygen vacancy content of the 3-x sample is higher;
  • Figure 6 is the XPS spectra (O1s) of the In 2 O 3-x sample with oxygen vacancies and pure In 2 O 3 prepared in Examples 1 to 4 of the present invention, O1s core Two peaks can also be clearly identified in the layer spectrum.
  • the In-O-In bond at 529.8 is the In-O-In bond, and the other at 531.4eV is the oxygen atom near the oxygen vacancy.
  • a method for extracting uranium from electrochemical seawater using metal oxides containing oxygen vacancies including the following steps:
  • Step 1 Dissolve 3g of In(NO 3 ) 3 ⁇ 4.5H 2 O in 300 mL of isopropanol, stir for 1 hour, and ultrasound for 0.5 hours to obtain an indium nitrate isopropanol solution; add 100g to the indium nitrate isopropanol solution Glycerol, stirring for 1 hour, sonicating for 0.5 hour to obtain a mixed solution; the ultrasonic power is 800W, and the frequency is 40KHz;
  • Step 2 Add the mixed solution to the high-pressure reactor, inject high-pressure carbon dioxide into the reactor, stir and react for 2 hours at a temperature of 185°C and a pressure of 22MPa, cool to room temperature and release the pressure, separate the solid and liquid, and use the solid separately Wash with ionized water and ethanol, and then dry in a vacuum drying oven at 60°C for 12 hours to obtain spherical indium hydroxide solid;
  • Step 3 Dissolve 1g of spherical indium hydroxide solid in 150mL deionized water, sonicate for 1 hour, then transfer the sonicated solution to a polytetrafluoroethylene high-temperature and high-pressure reactor, heat up to 60°C at 5°C/min, and keep it warm. 2 hours, naturally cool to room temperature, wash with ethanol, and then dry in an oven at 60°C for 12 hours to obtain flake indium hydroxide solid;
  • Step 4 The flake indium hydroxide solid is heated to 385°C at 10°C/min under an atmosphere with a hydrogen content of 5% or less, and calcined for 3 hours to obtain a calcined In 2 O 3-x sample with oxygen vacancies ;
  • Step 5 Add 50mg In 2 O 3-x sample to 20mL ethanol and sonicate for 1 hour, then add 500uL nafion membrane solution and continue sonication for 1 hour; spread the ultrasonic solution evenly on the 1x2cm carbon paper and wait for the carbon paper After natural drying, the dried carbon paper is clamped with a gold electrode and used as the working electrode in the three-electrode system, and the counter electrode in the three-electrode system is a platinum wire, and the reference electrode is a calomel electrode; The power is 800W and the frequency is 40KHz;
  • Step 6 Add 166.38ug of uranyl nitrate and 29.2g of sodium chloride to 1L of deionized water, and sonicate to obtain simulated seawater with a U 6+ concentration of 100 ug/L and a sodium chloride concentration of 0.5 mol/L; the ultrasound
  • the power is 800W, the frequency is 35KHz; the simulated seawater is added to the electrolytic cell, the three-electrode system is placed in the simulated seawater of the electrolytic cell, and the simulated seawater is stirred for electrolysis.
  • the electrolytic cell voltage is set to -5V, and the electrolysis is 10min.
  • the power is cut off for 30 seconds every 1 minute; the extraction of uranium in simulated seawater is completed; the U 6+ concentration after uranium extraction in simulated seawater is tested by ICP-MS to be 5ug/L;
  • Step 7 After the electrolysis is completed, place the three-electrode system in an electrolytic cell containing 0.5 mol/L sodium chloride solution and stir for electrolysis; set the electrolytic cell voltage to +0.5V, power on for 2 minutes, power off for 0.5 minutes, and repeat The power-on and power-off processes are 20 times; the U 4+ on the working electrode is oxidized to U 6+ in a sodium chloride solution with a concentration of 0.5 mol/L. The concentration of U 6+ in the 0.5mol/L sodium chloride solution tested by ICP-MS was 91ug/L.
  • a method for extracting uranium from electrochemical seawater using metal oxides containing oxygen vacancies including the following steps:
  • Step 1 Dissolve 3g In(NO 3 ) 3 ⁇ 4.5H 2 O in 300 mL of isopropanol, stir for 1 hour, and ultrasonic for 1 hour to obtain indium nitrate isopropanol solution; add 100g to indium nitrate isopropanol solution Glycerol, stirring for 1 hour, sonicating for 1 hour to obtain a mixed solution; the ultrasonic power is 800W, and the frequency is 40KHz;
  • Step 2 Add the mixed solution to the high-pressure reactor, inject high-pressure carbon dioxide into the reactor, stir and react for 1 hour at a temperature of 200°C and a pressure of 25MPa, cool to room temperature and release the pressure, separate the solid and liquid, and use the solid separately Wash with ionized water and ethanol, and then dry in a vacuum drying oven at 60°C for 12 hours to obtain spherical indium hydroxide solid;
  • Step 3 Dissolve 1g of spherical indium hydroxide solid in 150mL deionized water, sonicate for 1 hour, then transfer the sonicated solution to a polytetrafluoroethylene high-temperature and high-pressure reactor, heat up to 60°C at 5°C/min, and keep it warm. 2 hours, naturally cool to room temperature, wash with ethanol, and then dry in an oven at 60°C for 12 hours to obtain flake indium hydroxide solid;
  • Step 4 The flake indium hydroxide solid is heated to 400°C at 10°C/min under an atmosphere with a hydrogen content of 5% or less, and calcined for 2 hours to obtain a calcined In 2 O 3-x sample with oxygen vacancies ;
  • Step 5 Add 50mg In 2 O 3-x sample to 20mL ethanol and sonicate for 1 hour, then add 500uL nafion membrane solution and continue sonication for 1 hour; spread the ultrasonic solution evenly on the 1x2cm carbon paper and wait for the carbon paper After natural drying, the dried carbon paper is clamped with a gold electrode and used as the working electrode in the three-electrode system, and the counter electrode in the three-electrode system is a platinum wire, and the reference electrode is a calomel electrode; The power is 800W and the frequency is 40KHz;
  • Step 6 Add 166.38ug of uranyl nitrate and 29.2g of sodium chloride to 1L of deionized water, and sonicate to obtain simulated seawater with a U 6+ concentration of 100 ug/L and a sodium chloride concentration of 0.5 mol/L; the ultrasound
  • the power is 800W, the frequency is 35KHz; the simulated seawater is added to the electrolytic cell, the three-electrode system is placed in the simulated seawater of the electrolytic cell, and the simulated seawater is stirred for electrolysis.
  • the electrolytic cell voltage is set to -3V, and the electrolysis is 10min.
  • the power is cut off for 30 seconds every 1 minute; the extraction of uranium in simulated seawater is completed; the U 6+ concentration after uranium extraction in simulated seawater is tested by ICP-MS to be 5ug/L;
  • Step 7 After electrolysis is completed, place the three-electrode system in an electrolytic cell containing 0.5 mol/L sodium chloride solution and stir for electrolysis; set the electrolytic cell voltage to +0.3V, power on for 2 minutes, power off for 0.5 minutes, and repeat The power-on and power-off process is 20 times; the U 4+ on the working electrode is oxidized to U 6+ in a sodium chloride solution with a concentration of 0.5 mol/L. The concentration of U 6+ in the 0.5mol/L sodium chloride solution tested by ICP-MS was 92ug/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种利用含有氧空位的金属氧化物电化学海水提铀的方法,包括:在硝酸铟异丙醇溶液中加入丙三醇,然后转移到高温高压反应釜中反应,得到球形氢氧化铟固体;将球形氢氧化铟固体溶于去离子水中,然后转移到高温高压反应釜中反应,即得到片状氢氧化铟固体;将片状氢氧化铟固体煅烧得到煅烧后的具有氧空位的In 2O 3-x;将In 2O 3-x加入乙醇,然后再加入膜溶液;将溶液均匀的涂在碳纸上,自然干燥后,用金电极夹住干燥后的碳纸,并被用作三电极体系中的工作电极,且三电极体系中的对电极为铂丝,参比电极为甘汞电极;将模拟海水加入电解池中,将三电极体系放置在电解池的模拟海水中,搅拌模拟海水进行电解,实现铀的提取。

Description

利用含有氧空位的金属氧化物电化学海水提铀的方法 技术领域
本发明涉及一种海水提铀的方法,具体涉及一种利用含有氧空位的金属氧化物电化学海水提铀的方法。
背景技术
铀是核电原料,天然矿石中的铀矿储量很少。目前,全球可开发性矿石铀资源有限,世界海洋总水量约为1.37×10 12m 3,海水中铀元素总储备量达42.9亿吨,是陆地储量的近1000倍。随着核电以及低碳经济的发展,铀资源的需求日益迫切,基于铀的稀缺性以及铀矿产资源的有限性,从海水中提取铀作为传统矿石类铀资源的补充或替代,具有重要意义。
目前提取的铀方法主要有化学沉淀法、离子交换法、膜分离法和吸附法等。化学沉淀法设备简单、费用低、效率高,但反应所产生的聚合物需进一步浓缩、脱水和固化;离子交换法提取效率高,净化效果好,但价格昂贵,选择性差,交换容量有限;膜分离法操作简单、能耗低、适应性强,但对原水的水质要求较高,常需与其他水处理技术联用;而吸附法对于吸附剂要求需要有处理量大、吸附剂选择性强、耐腐性强、机械强度大等特性,并且现有的吸附材料在实际应用中还存在吸附效率低、生产成本高、回收再利用困难等缺陷。
具有氧空位的化合物能够对氧离子进行捕捉,而海水里面铀是铀酰离子,就是铀氧络合物,比如UO 2 2+,氧空位是捕捉氧,可以达到间接捕捉铀的效果使氧空位化合物更容易捕捉铀酰离子。同时采用电化学电解方法,将具有氧空位的化合物涂在碳纸上作为工作电极,并采用铂丝为对电极,甘汞电极为参比电极,通过给电极通电,将海水中的铀固定在工作电极上,实现对海水中的铀的提取。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。
为了实现根据本发明的这些目的和其它优点,提供了一种利用含有氧空位的金属氧化物电化学海水提铀的方法,包括以下步骤:
步骤一、配制浓度为0.024~0.028mol/L的硝酸铟异丙醇溶液;在硝酸铟异丙醇溶液中加入丙三醇,搅拌0.5~1小时,超声0.5~1小时,得到混合溶液;
步骤二、将混合溶液转移到聚四氟乙烯高温高压反应釜中,升温至160~200℃,保温1~3小时,自然冷却至室温后,固液分离,固体分别用去离子水和乙醇洗涤,然后在真空干燥箱中60~80℃干燥10~14小时,得到球形氢氧化铟固体;
步骤三、将球形氢氧化铟固体溶于去离子水中,超声0.5~1小时,然后将超声后的溶液转移到聚四氟乙烯高温高压反应釜中,升温至40~60℃,保温1~3小时,自然冷却至室温,用乙醇洗涤,然后在烘箱中60~80℃干燥10~14小时,即得到片状氢氧化铟固体;
步骤四、将片状氢氧化铟固体在氢气含量为5%以下的气氛下,升温至350~450℃,煅烧1~3小时,得到煅烧后的具有氧空位的In 2O 3-x样品;
步骤五、将In 2O 3-x样品加入乙醇中超声0.5~1小时,然后再加入膜溶液,继续超声0.5~1小时;将超声后的溶液均匀的涂在碳纸上,待碳纸自然干燥后,用金电极夹住干燥后的碳纸,并被用作三电极体系中的工作电极,且三电极体系中的对电极为铂丝,参比电极为甘汞电极;
步骤六、将模拟海水加入电解池中,将三电极体系放置在电解池的模拟海水中,搅拌模拟海水进行电解实现海水提铀,设置电解池电压为-0.3~-0.5V,电解10~100min,在电解的过程中,每通电1~2min,断电30~60s。
优选的是,所述硝酸铟异丙醇溶液的配制方法为:将In(NO 3) 3·4.5H 2O溶于异丙醇中,搅拌0.5~1小时,超声0.5~1小时,得到硝酸铟异丙醇溶液;所述In(NO 3) 3·4.5H 2O与丙三醇的质量比为3:80~120;
优选的是,所述步骤三中,球形氢氧化铟固体与去离子水中的质量体积比为1g:120~160mL。
优选的是,所述步骤五中,In 2O 3-x样品与乙醇的质量体积比为 1mg:0.2~0.6mL;所述In 2O 3-x样品与膜溶液的质量体积比为1mg:10uL。
优选的是,所述步骤五中,膜溶液为nafion膜溶液。
优选的是,所述模拟海水制备方法为:将硝酸铀酰和氯化钠溶于去离子水中,超声0.5~1小时,得到模拟海水;所述模拟海水中U 6+的浓度为50~150ug/L、氯化钠浓度为0.1~1mol/L。
优选的是,所述步骤六中,电解完成后,将三电极体系放置在含有0.1~1mol/L氯化钠溶液的电解池中,搅拌进行电解;设置电解池电压为+0.3~+0.5V,通电1~3分钟,断电0.5~1分钟,重复该通电、断电过程15~30次;让工作电极上的U 4+在浓度为0.1~1mol/L的氯化钠溶液中氧化成为U 6+
优选的是,所述步骤一、步骤三、步骤五中采用的超声的功率为600~1200W,频率为28~40KHz。
优选的是,所述步骤二中,升温的速率为3~6℃/min;所述步骤三中,升温的速率为3~6℃/min;所述步骤四中,升温的速率为8~12℃/min。
优选的是,所述步骤二的过程替换为:将混合溶液加入到高压反应器中,向反应器内注入高压二氧化碳,在温度150~180℃、压力18~28MPa下搅拌反应1~1.5小时,自然冷却至室温后泄压,固液分离,固体分别用去离子水和乙醇洗涤,然后在真空干燥箱中60~80℃干燥10~14小时,得到球形氢氧化铟固体。
在本发明中,具有氧空位的化合物能够对氧离子进行捕捉,而海水里面铀是铀酰离子,就是铀氧络合物,比如UO 2 2+,氧空位是捕捉氧,可以达到间接捕捉铀的效果,使氧空位化合物更容易捕捉铀酰离子,具有氧空位的化合物的空位捕捉到氧后,相当于抓了一个UO 2 2+,我们得给它通负电让它还原成UO 2晶体,才能固定下来,一旦有还原的UO 2晶体出现,后面的还原过程就类似于晶体结晶过程,在上面越长越大,实现海水中铀的提取。
本发明至少包括以下有益效果:本发明通过制备含有氧空位的金属氧化物In 2O 3-x,并将该氧化物与膜溶液进行混合后均匀的涂在碳纸上,待碳纸自然干燥后,用金电极夹住干燥后的碳纸,并被用作三电极体系中的工作电极,采用该三电极体系对含铀模拟海水进行电解,实现对铀的提取,该提取方法简单易行,且将电解后的三电极体系放置在含有氯化钠溶液的电解池中,反 向设置电压进行电解,可以将工作电极上的U 4+在氯化钠溶液中氧化成为U 6+;实现铀的回收。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明:
图1为本发明实施例1和4制备的具有氧空位的In 2O 3-x样品和纯In 2O 3的XRD图;
图2为本发明实施例1制备的具有氧空位的In 2O 3-x样品的HRTEM图;
图3为本发明实施例1制备的具有氧空位的In 2O 3-x样品的TEM图;
图4为本发明实施例1和4制备的具有氧空位的In 2O 3-x样品和纯In 2O 3的ESR谱图;
图5为本发明实施例1和4制备的具有氧空位的In 2O 3-x样品和纯In 2O 3的PL谱图;
图6为本发明实施例1和4制备的具有氧空位的In 2O 3-x样品和纯In 2O 3的XPS谱图(O1s)。
具体实施方式:
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
实施例1:
一种利用含有氧空位的金属氧化物电化学海水提铀的方法,包括以下步骤:
步骤一、将3g In(NO 3) 3·4.5H 2O溶于300mL异丙醇中,搅拌0.5小时,超声1小时,得到硝酸铟异丙醇溶液;在硝酸铟异丙醇溶液中加入100g丙三醇,搅拌0.5小时,超声0.5小时,得到混合溶液;所述超声的功率为800W,频率为35KHz;
步骤二、将混合溶液转移到聚四氟乙烯高温高压反应釜中,以5℃/min的速度升温至180℃,保温1小时,自然冷却至室温后,固液分离,固体分别用去离子水和乙醇洗涤,然后在真空干燥箱中60℃干燥12小时,得到球形氢氧化铟固体;
步骤三、将0.2g球形氢氧化铟固体溶于30mL去离子水中,超声0.5小时,然后将超声后的溶液转移到聚四氟乙烯高温高压反应釜中,以5℃/min升温至50℃,保温1小时,自然冷却至室温,用乙醇洗涤,然后在烘箱中60℃干燥12小时,即得到片状氢氧化铟固体;所述超声的功率为800W,频率为35KHz;
步骤四、将片状氢氧化铟固体在氢气含量为5%以下的气氛下,以10℃/min升温至400℃,煅烧2小时,得到煅烧后的具有氧空位的In 2O 3-x样品;(In 2O 3-x中的X代表氧空位含量);
步骤五、将50mg In 2O 3-x样品加入20mL乙醇中超声1小时,然后再加入500uL nafion膜溶液,继续超声1小时;将超声后的溶液均匀的涂在1x2cm碳纸上,待碳纸自然干燥后,用金电极夹住干燥后的碳纸,并被用作三电极体系中的工作电极,且三电极体系中的对电极为铂丝,参比电极为甘汞电极;所述超声的功率为800W,频率为35KHz;
步骤六、将166.38ug硝酸铀酰和29.2g氯化钠加入1L去离子水,超声,得到U 6+的浓度为100ug/L、氯化钠浓度为0.5mol/L的模拟海水;所述超声的功率为800W,频率为35KHz;将模拟海水加入电解池中,将三电极体系放置在电解池的模拟海水中,搅拌模拟海水进行电解,设置电解池电压为-4V,电解10min,在电解的过程中,每通电1min,断电30s;完成对模拟海水中铀的提取;采用ICP-MS测试模拟海水提铀后的U 6+浓度为10ug/L;
步骤七、电解完成后,将三电极体系放置在含有0.5mol/L氯化钠溶液的电解池中,搅拌进行电解;设置电解池电压为+0.4V,通电2分钟,断电0.5分钟,重复该通电、断电过程20次;让工作电极上的U 4+在浓度为0.5mol/L的氯化钠溶液中氧化成为U 6+;采用ICP-MS测试0.5mol/L的氯化钠溶液中的U 6+浓度为87ug/L。
实施例2:
一种利用含有氧空位的金属氧化物电化学海水提铀的方法,包括以下步骤:
步骤一、将3g In(NO 3) 3·4.5H 2O溶于300mL异丙醇中,搅拌1小时,超声0.5小时,得到硝酸铟异丙醇溶液;在硝酸铟异丙醇溶液中加入100g丙三醇,搅拌1小时,超声0.5小时,得到混合溶液;所述超声的功率为800W,频率为40KHz;
步骤二、将混合溶液转移到聚四氟乙烯高温高压反应釜中,以5℃/min的速度升温至185℃,保温2小时,自然冷却至室温后,固液分离,固体分别用去离子水和乙醇洗涤,然后在真空干燥箱中60℃干燥12小时,得到球形氢氧化铟固体;
步骤三、将1g球形氢氧化铟固体溶于150mL去离子水中,超声1小时,然后将超声后的溶液转移到聚四氟乙烯高温高压反应釜中,以5℃/min升温至60℃,保温2小时,自然冷却至室温,用乙醇洗涤,然后在烘箱中60℃干燥12小时,即得到片状氢氧化铟固体;所述超声的功率为800W,频率为40KHz;
步骤四、将片状氢氧化铟固体在氢气含量为5%以下的气氛下,以10℃/min升温至385℃,煅烧3小时,得到煅烧后的具有氧空位的In 2O 3-x样品;
步骤五、将50mg In 2O 3-x样品加入20mL乙醇中超声1小时,然后再加入500uL nafion膜溶液,继续超声1小时;将超声后的溶液均匀的涂在1x2cm碳纸上,待碳纸自然干燥后,用金电极夹住干燥后的碳纸,并被用作三电极体系中的工作电极,且三电极体系中的对电极为铂丝,参比电极为甘汞电极;所述超声的功率为800W,频率为40KHz;
步骤六、将166.38ug硝酸铀酰和29.2g氯化钠加入1L去离子水,超声,得到U 6+的浓度为100ug/L、氯化钠浓度为0.5mol/L的模拟海水;所述超声的功率为800W,频率为35KHz;将模拟海水加入电解池中,将三电极体系放置在电解池的模拟海水中,搅拌模拟海水进行电解,设置电解池电压为-5V,电解10min,在电解的过程中,每通电1min,断电30s;完成对模拟海水中铀的提取;通过通电、断电,以及搅拌的过程,可以提高U 6+在工作电极附近的浓度,提高提取的效率;采用ICP-MS测试模拟海水提铀后的U 6+浓度为 9ug/L;
步骤七、电解完成后,将三电极体系放置在含有0.5mol/L氯化钠溶液的电解池中,搅拌进行电解;设置电解池电压为+0.5V,通电2分钟,断电0.5分钟,重复该通电、断电过程20次;让工作电极上的U 4+在浓度为0.8mol/L的氯化钠溶液中氧化成为U 6+;采用ICP-MS测试0.5mol/L的氯化钠溶液中的U 6+浓度为87ug/L。
实施例3:
一种利用含有氧空位的金属氧化物电化学海水提铀的方法,包括以下步骤:
步骤一、将3g In(NO 3) 3·4.5H 2O溶于300mL异丙醇中,搅拌1小时,超声1小时,得到硝酸铟异丙醇溶液;在硝酸铟异丙醇溶液中加入100g丙三醇,搅拌1小时,超声1小时,得到混合溶液;所述超声的功率为800W,频率为40KHz;
步骤二、将混合溶液转移到聚四氟乙烯高温高压反应釜中,以5℃/min的速度升温至200℃,保温1小时,自然冷却至室温后,固液分离,固体分别用去离子水和乙醇洗涤,然后在真空干燥箱中60℃干燥12小时,得到球形氢氧化铟固体;
步骤三、将1g球形氢氧化铟固体溶于150mL去离子水中,超声1小时,然后将超声后的溶液转移到聚四氟乙烯高温高压反应釜中,以5℃/min升温至60℃,保温2小时,自然冷却至室温,用乙醇洗涤,然后在烘箱中60℃干燥12小时,即得到片状氢氧化铟固体;所述超声的功率为800W,频率为40KHz;
步骤四、将片状氢氧化铟固体在氢气含量为5%以下的气氛下,以10℃/min升温至400℃,煅烧2小时,得到煅烧后的具有氧空位的In 2O 3-x样品;
步骤五、将50mg In 2O 3-x样品加入20mL乙醇中超声1小时,然后再加入500uL nafion膜溶液,继续超声1小时;将超声后的溶液均匀的涂在1x2cm碳纸上,待碳纸自然干燥后,用金电极夹住干燥后的碳纸,并被用作三电极体系中的工作电极,且三电极体系中的对电极为铂丝,参比电极为甘汞电极;所述超声的功率为800W,频率为40KHz;
步骤六、将166.38ug硝酸铀酰和29.2g氯化钠加入1L去离子水,超声,得到U 6+的浓度为100ug/L、氯化钠浓度为0.5mol/L的模拟海水;所述超声的功率为800W,频率为35KHz;将模拟海水加入电解池中,将三电极体系放置在电解池的模拟海水中,搅拌模拟海水进行电解,设置电解池电压为-3V,电解10min,在电解的过程中,每通电1min,断电30s;完成对模拟海水中铀的提取;采用ICP-MS测试模拟海水提铀后的U 6+浓度为8ug/L;
步骤七、电解完成后,将三电极体系放置在含有0.5mol/L氯化钠溶液的电解池中,搅拌进行电解;设置电解池电压为+0.3V,通电2分钟,断电0.5分钟,重复该通电、断电过程20次;让工作电极上的U 4+在浓度为0.5mol/L的氯化钠溶液中氧化成为U 6+。采用ICP-MS测试0.5mol/L的氯化钠溶液中的U 6+浓度为88ug/L。
实施例4:
一种利用含有氧空位的金属氧化物电化学海水提铀的方法,包括以下步骤:
步骤一、将3g In(NO 3) 3·4.5H 2O溶于300mL异丙醇中,搅拌0.5小时,超声1小时,得到硝酸铟异丙醇溶液;在硝酸铟异丙醇溶液中加入100g丙三醇,搅拌0.5小时,超声0.5小时,得到混合溶液;所述超声的功率为800W,频率为35KHz;
步骤二、将混合溶液加入到高压反应器中,向反应器内注入高压二氧化碳,在温度180℃、压力20MPa下搅拌反应1小时,自然冷却至室温后泄压,固液分离,固体分别用去离子水和乙醇洗涤,然后在真空干燥箱中60℃干燥12小时,得到球形氢氧化铟固体;在超临界二氧化碳反应体系中进行反应,在超临界二氧化碳的作用下,使反应更加均匀,并进一步增加了后续制备的In 2O 3-x样品的氧空位含量;
步骤三、将0.2g球形氢氧化铟固体溶于30mL去离子水中,超声0.5小时,然后将超声后的溶液转移到聚四氟乙烯高温高压反应釜中,以5℃/min升温至50℃,保温1小时,自然冷却至室温,用乙醇洗涤,然后在烘箱中60℃干燥12小时,即得到片状氢氧化铟固体;
步骤四、将片状氢氧化铟固体在氢气含量为5%以下的气氛下,以10℃ /min升温至400℃,煅烧2小时,得到煅烧后的具有氧空位的In 2O 3-x样品;
步骤五、将50mg In 2O 3-x样品加入20mL乙醇中超声1小时,然后再加入500uL nafion膜溶液,继续超声1小时;将超声后的溶液均匀的涂在1x2cm碳纸上,待碳纸自然干燥后,用金电极夹住干燥后的碳纸,并被用作三电极体系中的工作电极,且三电极体系中的对电极为铂丝,参比电极为甘汞电极;所述超声的功率为800W,频率为35KHz;
步骤六、将166.38ug硝酸铀酰和29.2g氯化钠加入1L去离子水,超声,得到U 6+的浓度为100ug/L、氯化钠浓度为0.5mol/L的模拟海水;所述超声的功率为800W,频率为35KHz;将模拟海水加入电解池中,将三电极体系放置在电解池的模拟海水中,搅拌模拟海水进行电解,设置电解池电压为-4V,电解10min,在电解的过程中,每通电1min,断电30s;完成对模拟海水中铀的提取;采用ICP-MS测试模拟海水提铀后的U 6+浓度为6ug/L;
步骤七、电解完成后,将三电极体系放置在含有0.5mol/L氯化钠溶液的电解池中,搅拌进行电解;设置电解池电压为+0.4V,通电2分钟,断电0.5分钟,重复该通电、断电过程20次;让工作电极上的U 4+在浓度为0.3~0.8mol/L的氯化钠溶液中氧化成为U 6+。采用ICP-MS测试0.5mol/L的氯化钠溶液中的U 6+浓度为90ug/L。
从图1中可以看出,实施例1和实施例4制备的具有氧空位的In 2O 3-x样品与纯In 2O 3的晶相一致,为立方晶相;图2为实施例1制备的具有氧空位的In 2O 3-x样品,也可以表征其为立方晶相;图3为实施例1制备的具有氧空位的In 2O 3-x样品的TEM图,可以看出In 2O 3-x样品为片状相貌;图4为本发明实施例1和4制备的具有氧空位的In 2O 3-x样品和纯In 2O 3的ESR谱图;在3400Gs左右表现出的信号是由于氧空位对电子的捕获,信号越强,说明制备的In 2O 3-x样品的氧空位含量越高;图5为本发明实施例1和4制备的具有氧空位的In 2O 3-x样品和纯In 2O 3的PL谱图;在435nm处的PL发射峰主要归因于光生空穴对电子的捕获导致氧空位的复合,信号越强,说明制备的In 2O 3-x样品的氧空位含量越高;图6为本发明实施例1~4制备的具有氧空位的In 2O 3-x样品和纯In 2O 3的XPS谱图(O1s),O1s核心层光谱中也可以清楚地识别出两个峰,位于529.8是属于In-O-In键,而另一个位于531.4eV的则是氧空 位附近的氧原子,这部分峰面积越大,说明氧空位旁边的氧原子就越多,说明氧空位越多。
实施例5:
一种利用含有氧空位的金属氧化物电化学海水提铀的方法,包括以下步骤:
步骤一、将3g In(NO 3) 3·4.5H 2O溶于300mL异丙醇中,搅拌1小时,超声0.5小时,得到硝酸铟异丙醇溶液;在硝酸铟异丙醇溶液中加入100g丙三醇,搅拌1小时,超声0.5小时,得到混合溶液;所述超声的功率为800W,频率为40KHz;
步骤二、将混合溶液加入到高压反应器中,向反应器内注入高压二氧化碳,在温度185℃、压力22MPa下搅拌反应2小时,自然冷却至室温后泄压,固液分离,固体分别用去离子水和乙醇洗涤,然后在真空干燥箱中60℃干燥12小时,得到球形氢氧化铟固体;
步骤三、将1g球形氢氧化铟固体溶于150mL去离子水中,超声1小时,然后将超声后的溶液转移到聚四氟乙烯高温高压反应釜中,以5℃/min升温至60℃,保温2小时,自然冷却至室温,用乙醇洗涤,然后在烘箱中60℃干燥12小时,即得到片状氢氧化铟固体;
步骤四、将片状氢氧化铟固体在氢气含量为5%以下的气氛下,以10℃/min升温至385℃,煅烧3小时,得到煅烧后的具有氧空位的In 2O 3-x样品;
步骤五、将50mg In 2O 3-x样品加入20mL乙醇中超声1小时,然后再加入500uL nafion膜溶液,继续超声1小时;将超声后的溶液均匀的涂在1x2cm碳纸上,待碳纸自然干燥后,用金电极夹住干燥后的碳纸,并被用作三电极体系中的工作电极,且三电极体系中的对电极为铂丝,参比电极为甘汞电极;所述超声的功率为800W,频率为40KHz;
步骤六、将166.38ug硝酸铀酰和29.2g氯化钠加入1L去离子水,超声,得到U 6+的浓度为100ug/L、氯化钠浓度为0.5mol/L的模拟海水;所述超声的功率为800W,频率为35KHz;将模拟海水加入电解池中,将三电极体系放置在电解池的模拟海水中,搅拌模拟海水进行电解,设置电解池电压为-5V,电解10min,在电解的过程中,每通电1min,断电30s;完成对模拟海水中 铀的提取;采用ICP-MS测试模拟海水提铀后的U 6+浓度为5ug/L;
步骤七、电解完成后,将三电极体系放置在含有0.5mol/L氯化钠溶液的电解池中,搅拌进行电解;设置电解池电压为+0.5V,通电2分钟,断电0.5分钟,重复该通电、断电过程20次;让工作电极上的U 4+在浓度为0.5mol/L的氯化钠溶液中氧化成为U 6+。采用ICP-MS测试0.5mol/L的氯化钠溶液中的U 6+浓度为91ug/L。
实施例6:
一种利用含有氧空位的金属氧化物电化学海水提铀的方法,包括以下步骤:
步骤一、将3g In(NO 3) 3·4.5H 2O溶于300mL异丙醇中,搅拌1小时,超声1小时,得到硝酸铟异丙醇溶液;在硝酸铟异丙醇溶液中加入100g丙三醇,搅拌1小时,超声1小时,得到混合溶液;所述超声的功率为800W,频率为40KHz;
步骤二、将混合溶液加入到高压反应器中,向反应器内注入高压二氧化碳,在温度200℃、压力25MPa下搅拌反应1小时,自然冷却至室温后泄压,固液分离,固体分别用去离子水和乙醇洗涤,然后在真空干燥箱中60℃干燥12小时,得到球形氢氧化铟固体;
步骤三、将1g球形氢氧化铟固体溶于150mL去离子水中,超声1小时,然后将超声后的溶液转移到聚四氟乙烯高温高压反应釜中,以5℃/min升温至60℃,保温2小时,自然冷却至室温,用乙醇洗涤,然后在烘箱中60℃干燥12小时,即得到片状氢氧化铟固体;
步骤四、将片状氢氧化铟固体在氢气含量为5%以下的气氛下,以10℃/min升温至400℃,煅烧2小时,得到煅烧后的具有氧空位的In 2O 3-x样品;
步骤五、将50mg In 2O 3-x样品加入20mL乙醇中超声1小时,然后再加入500uL nafion膜溶液,继续超声1小时;将超声后的溶液均匀的涂在1x2cm碳纸上,待碳纸自然干燥后,用金电极夹住干燥后的碳纸,并被用作三电极体系中的工作电极,且三电极体系中的对电极为铂丝,参比电极为甘汞电极;所述超声的功率为800W,频率为40KHz;
步骤六、将166.38ug硝酸铀酰和29.2g氯化钠加入1L去离子水,超声, 得到U 6+的浓度为100ug/L、氯化钠浓度为0.5mol/L的模拟海水;所述超声的功率为800W,频率为35KHz;将模拟海水加入电解池中,将三电极体系放置在电解池的模拟海水中,搅拌模拟海水进行电解,设置电解池电压为-3V,电解10min,在电解的过程中,每通电1min,断电30s;完成对模拟海水中铀的提取;采用ICP-MS测试模拟海水提铀后的U 6+浓度为5ug/L;
步骤七、电解完成后,将三电极体系放置在含有0.5mol/L氯化钠溶液的电解池中,搅拌进行电解;设置电解池电压为+0.3V,通电2分钟,断电0.5分钟,重复该通电、断电过程20次;让工作电极上的U 4+在浓度为0.5mol/L的氯化钠溶液中氧化成为U 6+。采用ICP-MS测试0.5mol/L的氯化钠溶液中的U 6+浓度为92ug/L。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (10)

  1. 一种利用含有氧空位的金属氧化物电化学海水提铀的方法,其特征在于,包括以下步骤:
    步骤一、配制浓度为0.024~0.028mol/L的硝酸铟异丙醇溶液;在硝酸铟异丙醇溶液中加入丙三醇,搅拌0.5~1小时,超声0.5~1小时,得到混合溶液;
    步骤二、将混合溶液转移到聚四氟乙烯高温高压反应釜中,升温至160~200℃,保温1~3小时,自然冷却至室温后,固液分离,固体分别用去离子水和乙醇洗涤,然后在真空干燥箱中60~80℃干燥10~14小时,得到球形氢氧化铟固体;
    步骤三、将球形氢氧化铟固体溶于去离子水中,超声0.5~1小时,然后将超声后的溶液转移到聚四氟乙烯高温高压反应釜中,升温至40~60℃,保温1~3小时,自然冷却至室温,用乙醇洗涤,然后在烘箱中60~80℃干燥10~14小时,即得到片状氢氧化铟固体;
    步骤四、将片状氢氧化铟固体在氢气含量为5%以下的气氛下,升温至350~450℃,煅烧1~3小时,得到煅烧后的具有氧空位的In 2O 3-x样品;
    步骤五、将In 2O 3-x样品加入乙醇中超声0.5~1小时,然后再加入膜溶液,继续超声0.5~1小时;将超声后的溶液均匀的涂在碳纸上,待碳纸自然干燥后,用金电极夹住干燥后的碳纸,并被用作三电极体系中的工作电极,且三电极体系中的对电极为铂丝,参比电极为甘汞电极;
    步骤六、将模拟海水加入电解池中,将三电极体系放置在电解池的模拟海水中,搅拌模拟海水进行电解实现海水提铀,设置电解池电压为-0.3~-0.5V,电解10~100min,在电解的过程中,每通电1~2min,断电30~60s。
  2. 如权利要求1所述的利用含有氧空位的金属氧化物电化学海水提铀的方法,其特征在于,所述硝酸铟异丙醇溶液的配制方法为:将In(NO 3) 3·4.5H 2O溶于异丙醇中,搅拌0.5~1小时,超声0.5~1小时,得到硝酸铟异丙醇溶液;所述In(NO 3) 3·4.5H 2O与丙三醇的质量比为3:80~120;
  3. 如权利要求1所述的利用含有氧空位的金属氧化物电化学海水提铀的方法,其特征在于,所述步骤三中,球形氢氧化铟固体与去离子水中的质量 体积比为1g:120~160mL。
  4. 如权利要求1所述的利用含有氧空位的金属氧化物电化学海水提铀的方法,其特征在于,所述步骤五中,In 2O 3-x样品与乙醇的质量体积比为1mg:0.2~0.6mL;所述In 2O 3-x样品与膜溶液的质量体积比为1mg:10uL。
  5. 如权利要求1所述的利用含有氧空位的金属氧化物电化学海水提铀的方法,其特征在于,所述步骤五中,膜溶液为nafion膜溶液。
  6. 如权利要求1所述的利用含有氧空位的金属氧化物电化学海水提铀的方法,其特征在于,所述模拟海水制备方法为:将硝酸铀酰和氯化钠溶于去离子水中,超声0.5~1小时,得到模拟海水;所述模拟海水中U 6+的浓度为50~150ug/L、氯化钠浓度为0.1~1mol/L。
  7. 如权利要求1所述的利用含有氧空位的金属氧化物电化学海水提铀的方法,其特征在于,所述步骤六中,电解完成后,将三电极体系放置在含有0.3~0.8mol/L氯化钠溶液的电解池中,搅拌进行电解;设置电解池电压为+0.3~+0.5V,通电1~3分钟,断电0.5~1分钟,重复该通电、断电过程15~30次;让工作电极上的U 4+在浓度为0.1~1mol/L的氯化钠溶液中氧化成为U 6+
  8. 如权利要求1所述的利用含有氧空位的金属氧化物电化学海水提铀的方法,其特征在于,所述步骤一、步骤三、步骤五中采用的超声的功率为600~1200W,频率为28~40KHz。
  9. 如权利要求1所述的利用含有氧空位的金属氧化物电化学海水提铀的方法,其特征在于,所述步骤二中,升温的速率为3~6℃/min;所述步骤三中,升温的速率为3~6℃/min;所述步骤四中,升温的速率为8~12℃/min。
  10. 如权利要求1所述的利用含有氧空位的金属氧化物电化学海水提铀的方法,其特征在于,所述步骤二的过程替换为:将混合溶液加入到高压反应器中,向反应器内注入高压二氧化碳,在温度150~180℃、压力18~28MPa下搅拌反应1~1.5小时,自然冷却至室温后泄压,固液分离,固体分别用去离子水和乙醇洗涤,然后在真空干燥箱中60~80℃干燥10~14小时,得到球形氢氧化铟固体。
PCT/CN2020/135832 2019-12-19 2020-12-11 利用含有氧空位的金属氧化物电化学海水提铀的方法 WO2021121167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/433,613 US11384444B2 (en) 2019-12-19 2020-12-11 Method for electrochemical extraction of uranium from seawater using oxygen vacancy (OV)-containing metal oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911317936.6A CN110952107B (zh) 2019-12-19 2019-12-19 利用含有氧空位的金属氧化物电化学海水提铀的方法
CN201911317936.6 2019-12-19

Publications (1)

Publication Number Publication Date
WO2021121167A1 true WO2021121167A1 (zh) 2021-06-24

Family

ID=69982861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135832 WO2021121167A1 (zh) 2019-12-19 2020-12-11 利用含有氧空位的金属氧化物电化学海水提铀的方法

Country Status (3)

Country Link
US (1) US11384444B2 (zh)
CN (1) CN110952107B (zh)
WO (1) WO2021121167A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952107B (zh) 2019-12-19 2020-10-30 西南科技大学 利用含有氧空位的金属氧化物电化学海水提铀的方法
CN112919545B (zh) * 2021-01-25 2022-07-08 西南科技大学 处理放射性废水的富含氧空位的氧化钨纳米片的制备方法
CN114395764B (zh) * 2021-12-16 2023-08-04 西南科技大学 一种硫边界缺陷二硫化钼在电化学海水提铀中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124503A (en) * 1979-03-17 1980-09-25 Kinzoku Kogyo Jigyodan Recovery of desorbing agent from uranium desorbed sea water
CN109867333A (zh) * 2019-04-01 2019-06-11 中国科学院生态环境研究中心 利用钛基二氧化钛纳米管阵列电极高效去除和回收水中铀的方法
CN109942076A (zh) * 2019-04-01 2019-06-28 中国科学院生态环境研究中心 利用微生物燃料电池去除-回收水中铀并同步产电的方法
CN109999779A (zh) * 2019-03-12 2019-07-12 江苏大学 一种In2O3光催化剂及制备方法和用途
CN110952107A (zh) * 2019-12-19 2020-04-03 西南科技大学 利用含有氧空位的金属氧化物电化学海水提铀的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2559337C2 (de) * 1975-12-31 1981-10-01 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Gegenstromextraktionskolonne zur Flüssig-Flüssig-Extraktion
JP3479690B2 (ja) * 2001-04-24 2003-12-15 大阪大学長 磁気分離方法及び磁気分離装置
CN101357324B (zh) * 2008-09-18 2010-04-21 福州大学 一种偕胺肟化球形木质素螯合吸附树脂及其制备工艺
CN101654278B (zh) * 2009-08-28 2011-08-17 清华大学 一种氢氧化铟纳米块的合成方法
CN102534644B (zh) * 2012-02-20 2014-06-04 中国原子能科学研究院 动态膜电解制备四价铀的装置及方法
CN103436849B (zh) * 2013-08-20 2016-03-23 广州新视界光电科技有限公司 一种氧化物薄膜的溅射方法
CN105280261B (zh) * 2015-10-01 2017-06-09 南华大学 一种用于含铀废水处理的电还原沉淀铀的方法
CN106098130B (zh) * 2016-06-16 2017-10-03 西南科技大学 一种电还原处理低浓度含铀废水制取铀氧化物的方法
KR20190025553A (ko) * 2016-06-30 2019-03-11 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 물로부터의 금속 이온 추출/제거를 위한 전기화학적 증착
CN107140682B (zh) * 2017-06-12 2019-03-01 吉林大学 一种形貌可控的氧化铟粉体及其低温水热合成方法
CN108906102A (zh) * 2018-06-11 2018-11-30 中国科学院地质与地球物理研究所兰州油气资源研究中心 一种在可见光下利用光催化技术进行铀提取的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124503A (en) * 1979-03-17 1980-09-25 Kinzoku Kogyo Jigyodan Recovery of desorbing agent from uranium desorbed sea water
CN109999779A (zh) * 2019-03-12 2019-07-12 江苏大学 一种In2O3光催化剂及制备方法和用途
CN109867333A (zh) * 2019-04-01 2019-06-11 中国科学院生态环境研究中心 利用钛基二氧化钛纳米管阵列电极高效去除和回收水中铀的方法
CN109942076A (zh) * 2019-04-01 2019-06-28 中国科学院生态环境研究中心 利用微生物燃料电池去除-回收水中铀并同步产电的方法
CN110952107A (zh) * 2019-12-19 2020-04-03 西南科技大学 利用含有氧空位的金属氧化物电化学海水提铀的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHONG LIU;PO-CHUN HSU;JIN XIE;JIE ZHAO;TONG WU;HAOTIAN WANG;WEI LIU;JINSONG ZHANG;STEVEN CHU;YI CUI: "A half-wave rectified alternating current electrochemical method for uranium extraction from seawater", NATURE ENERGY, vol. 2, 17007, 17 February 2017 (2017-02-17), pages 1 - 8, XP055451830, DOI: 10.1038/nenergy.2017.7 *

Also Published As

Publication number Publication date
US20220090271A1 (en) 2022-03-24
CN110952107B (zh) 2020-10-30
CN110952107A (zh) 2020-04-03
US11384444B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2021121167A1 (zh) 利用含有氧空位的金属氧化物电化学海水提铀的方法
CN111463475B (zh) 一种选择性回收废旧动力锂电池正极材料的方法
CN105280897B (zh) 一种锂离子电池负极材料C/ZnO/Cu复合材料的制备方法
CN108123186B (zh) 一种从锂离子电池负极中回收石墨制备电芬顿阴极的方法
CN111547697B (zh) 一种废旧磷酸铁锂材料的修复方法
CN112323089B (zh) 一种全固相熔融盐合成掺杂碳纳米片催化剂的方法及其产品和应用
WO2021121213A1 (zh) 利用风力发电-海水提铀的耦合装置进行提铀的方法
CN110624540A (zh) 新型钌基自支撑电催化材料及其制备方法和在电催化氮气还原产氨中的应用
CN114614133A (zh) 一种槟榔渣和废旧正极材料的联合处理方法
CN111477986B (zh) 一种电解硫酸钠废液制备三元锂离子电池前驱体的方法
CN106129373A (zh) 一种空心球Fe2O3/rGO锂离子电池负极材料的制备方法
CN109449410B (zh) 一种氮、硫共掺杂二硫化钨钠离子电池负极材料的制备方法
CN111005031B (zh) 一种掺杂改性电解二氧化锰及其制备方法和应用
CN110902676A (zh) 一种膨胀石墨的制备方法
CN113793924B (zh) 一种利用超临界CO2流体介质制备Si/Fe/Fe3O4/C复合材料的方法
CN115090226B (zh) 一种钴铝掺杂二硫化钼的还原氧化石墨烯气凝胶及其制备方法和在海水提铀中的应用
CN105671591A (zh) 一种熔盐电解直接制备Sm2Fe17合金方法
CN109759013B (zh) 一种纤维素基提锂材料及其制备方法
CN117285077A (zh) 隧道型二氧化锰及其制备方法和应用
Zulfikar et al. Application of Sol-gel Method and Co-Precipitation in the Material Synthesis Process of Magnetite Fe3O4 Nanoparticles
Wang et al. A Supramolecular Organic Framework‐Mediated Electrochemical Strategy Achieves Highly Selective and Continuous Uranium Extraction
CN118458707A (zh) 一种富含双缺陷的硒化钴的制备方法及其在电催化氧还原制过氧化氢中的应用
CN117720111A (zh) 一种改性硅藻材料及其制备方法和应用
CN116742031A (zh) 一种燃料电池膜电极组件的回收方法
CN117385404A (zh) 一种负载原位重构铜-碳复合催化剂的电极及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901262

Country of ref document: EP

Kind code of ref document: A1