WO2021120742A1 - 一种铂金属配合物及其在有机电致发光器件中的应用 - Google Patents

一种铂金属配合物及其在有机电致发光器件中的应用 Download PDF

Info

Publication number
WO2021120742A1
WO2021120742A1 PCT/CN2020/116338 CN2020116338W WO2021120742A1 WO 2021120742 A1 WO2021120742 A1 WO 2021120742A1 CN 2020116338 W CN2020116338 W CN 2020116338W WO 2021120742 A1 WO2021120742 A1 WO 2021120742A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
metal complex
layer
platinum metal
substituted
Prior art date
Application number
PCT/CN2020/116338
Other languages
English (en)
French (fr)
Inventor
李慧杨
戴雷
蔡丽菲
Original Assignee
广东阿格蕾雅光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东阿格蕾雅光电材料有限公司 filed Critical 广东阿格蕾雅光电材料有限公司
Priority to KR1020227013154A priority Critical patent/KR20220065851A/ko
Priority to DE112020004783.0T priority patent/DE112020004783T5/de
Priority to US17/776,942 priority patent/US20230024427A1/en
Priority to JP2022531551A priority patent/JP7402979B2/ja
Publication of WO2021120742A1 publication Critical patent/WO2021120742A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/135OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising mobile ions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of organic electroluminescent materials, in particular to a platinum metal complex and its application as a luminescent material in organic electroluminescent devices.
  • Organic optoelectronic devices include but are not limited to the following categories: organic electroluminescent devices (OLEDs), organic thin film transistors (OTFTs), organic photovoltaic devices (OPVs), light-emitting electrochemical cells (LCEs) and chemical sensors.
  • OLEDs organic electroluminescent devices
  • OFTs organic thin film transistors
  • OCVs organic photovoltaic devices
  • LCEs light-emitting electrochemical cells
  • OLEDs As a kind of lighting and display technology with huge application prospects, have received extensive attention from academia and industry. OLEDs devices have the characteristics of self-luminescence, wide viewing angle, short response time and flexible devices, and become a strong competitor of next-generation display and lighting technology. However, OLEDs still have problems such as low efficiency and short life span, which need to be further studied.
  • OLEDs can include one light-emitting layer or multiple light-emitting layers to achieve the required spectrum.
  • green, yellow and red phosphorescent materials have been commercialized.
  • Commercial OLEDs usually use blue fluorescence and yellow, or green and red phosphorescence to achieve full-color display.
  • the rapid decrease in efficiency of phosphorescent OLEDs at high brightness is still a problem to be solved.
  • Luminescent materials with higher efficiency and longer service life are urgently needed in the industry.
  • Metal complexes have been used as luminescent materials in the industry, but their performance, such as luminous efficiency and service life, still need to be further improved. In addition, when the material is in the aggregate state, it is easy to cause luminescence quenching, which is also a problem to be solved.
  • the present invention provides a platinum metal complex light-emitting material, which is applied to an organic electroluminescent device and exhibits good photoelectric performance and device life.
  • the present invention also provides an electroluminescent device, which contains the metal complex of the present invention.
  • the platinum metal complex is a compound with the structure of formula (I):
  • R 1 to R 32 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl groups having 1-20 carbon atoms, substituted or unsubstituted cycloalkyl groups having 3-20 ring carbon atoms , Substituted or unsubstituted alkoxy groups with 1-20 carbon atoms, substituted or unsubstituted aryl groups with 6-30 carbon atoms, substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms , Or cyano; Ar 1 and Ar 2 are each independently selected from aromatic groups with 6-14 carbon atoms or heteroaromatic groups with 3-12 carbon atoms, and the heteroatoms in the heteroaromatic groups are selected from O, One or more of S and N, the substitution is deuterium, halogen, and C1-8 alkyl.
  • R 1 to R 32 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1 to 6 carbon atoms, substituted or unsubstituted having 3 -6 cycloalkyl ring carbon atoms, substituted or unsubstituted aryl group having 6-12 carbon atoms, substituted or unsubstituted heteroaryl group having 3-6 carbon atoms; Ar 1 and Ar 2 respectively Independently selected from phenyl and pyridine.
  • R 1 to R 32 are each independently selected from: hydrogen, deuterium, substituted or unsubstituted alkyl groups having 1-4 carbon atoms, substituted or unsubstituted alkyl groups having 3-6 Cycloalkyl, phenyl, tolyl, or pyridyl with three ring carbon atoms; Ar 1 and Ar 2 are the same.
  • R 1 to R 32 are each independently selected from: hydrogen, methyl, isopropyl or tert-butyl.
  • R 1 to R 32 in R 1 to R 3, R 12 to R17, R 26 to R30 are hydrogen, the other groups are hydrogen, methyl, isopropyl or tert-butyl, Ar 1 and Ar 2 are phenyl groups.
  • platinum metal complexes according to the present invention are listed below, but not limited to the listed structures:
  • the precursor of the above-mentioned metal complex that is, the ligand, has the following structural formula:
  • the present invention also provides an application of the above-mentioned platinum metal complex in organic optoelectronic devices.
  • the optoelectronic devices include, but are not limited to, organic electroluminescent devices (OLEDs), organic thin film transistors (OTFTs), and organic photovoltaic devices (OPVs). ), light-emitting electrochemical cells (LCEs) and chemical sensors, preferably OLEDs.
  • OLEDs organic electroluminescent device containing the above-mentioned platinum metal complex, which is used as a light-emitting material in a light-emitting device.
  • the organic electroluminescent device of the present invention includes a cathode, an anode, and an organic layer.
  • the organic layer is a hole injection layer, a hole transport layer, a light-emitting layer, a hole blocking layer, an electron injection layer, and an electron transport layer.
  • One or more layers, these organic layers need not be present in every layer.
  • At least one of the hole injection layer, hole transport layer, hole blocking layer, light emitting layer and/or electron transport layer contains the compound described in formula (I).
  • the layer where the compound of structural formula (1) is located is a light-emitting layer or an electron transport layer.
  • the total thickness of the organic layer of the device of the present invention is 1-1000 nm, preferably 1-500 nm, and more preferably 5-300 nm.
  • the organic layer can be formed into a thin film by evaporation or a solution method.
  • the beneficial technical effects of the present invention are mainly: (1)
  • the platinum metal complex of the present invention is applied to OLED devices, and has good luminous efficiency and device service life; (2) When traditional light-emitting molecules are in the aggregate state, due to the intermolecular The strong interaction leads to a decrease in the luminescence quantum yield.
  • the platinum metal complex of the present invention has a strong three-dimensional configuration and has the property of aggregation-induced luminescence enhancement in the aggregate state, which is beneficial to improve the luminous efficiency of the device.
  • FIG. 1 is a structural diagram of the organic electroluminescent device of the present invention
  • 10 represents the glass substrate
  • 20 represents the anode
  • 30 represents the hole injection layer
  • 40 represents the hole transport layer
  • 50 represents the light-emitting layer
  • 60 the electron transport layer
  • 70 represents the electron injection layer
  • 80 represents the cathode.
  • the present invention does not require the synthesis method of the material.
  • the following examples are specifically cited, but are not limited thereto.
  • the raw materials used in the following synthesis are all commercially available products.
  • compound 1a (4.9g, 10.0mmol) (synthesized by reference J. Mater.Chem., 2014, 2, 2028) was dissolved in tetrahydrofuran (50mL), cooled to -78°C, and n-butyl was added dropwise Lithium BuLi (2.0M, 11mL), after stirring for 30 minutes, compound 1b (4.2g, 25.0mmol) (reference J.Am.Chem.Soc, 2008, 130, 9942 synthesis) in tetrahydrofuran solution (10mL) was added dropwise To the above solution, after stirring for 30 minutes, warm to room temperature, and continue to stir for 1 hour.
  • the electroluminescent device is prepared by using the complex luminescent material of the present invention, and the device structure is shown in Fig. 1.
  • the transparent conductive ITO glass substrate 10 (with anode 20 on it) is washed sequentially with detergent solution, deionized water, ethanol, acetone, and deionized water, and then treated with oxygen plasma for 30 seconds.
  • HATCN with a thickness of 10 nm was vapor-deposited as the hole injection layer 30 on the ITO.
  • the compound HT was vapor-deposited to form a hole transport layer 40 having a thickness of 40 nm.
  • the light-emitting layer 50 is composed of complex 1 (20%) and CBP (80%) mixed doping.
  • AlQ 3 was vapor-deposited as the electron transport layer 60 to a thickness of 40 nm on the light-emitting layer.
  • Example 3 Using complex 22 instead of complex 1, the method described in Example 3 was used to prepare an electroluminescent device.
  • Example 3 Using Ir(PPy) 3 instead of complex 1, the method described in Example 3 was used to prepare an electroluminescent device.
  • the efficiency of the organic electroluminescent device prepared by the compound of the present invention is better than that of the comparative example.
  • the present invention The platinum metal complex materials used in organic electroluminescent devices have lower driving voltage and higher luminous efficiency.
  • the device lifetime has also been improved to a certain extent, which is more in line with the requirements of the display industry for luminescent materials, and has a good industrialization prospect.
  • the quantum yield of the platinum metal complex of the present invention in the aggregate state is higher than that in the solution. It can be seen that the platinum metal complex of the present invention also has the properties of aggregation-induced luminescence enhancement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Pyridine Compounds (AREA)

Abstract

本发明涉及一种铂金属配合物及其在有机电致发光器件中的应用。铂金属配合物为具有化学式(I)结构的化合物,该化合物应用的有机电致发光器件,具有较低的驱动电压,较高的发光效率,且使用寿命也有一定程度的提升,有潜力应用于有机电致发光器件领域。本发明还提供了一种有机电致光电器件,包括阴极、阳极和有机层,所述有机层为空穴注入层、空穴传输层、发光层、空穴阻挡层、电子传输层、电子注入层中的一层或多层,有机层中至少有一层含有结构式(I)中的化合物。

Description

一种铂金属配合物及其在有机电致发光器件中的应用 技术领域
本发明涉及有机电致发光材料领域,具体涉及一种铂金属配合物及其作为发光材料在有机电致发光器件中的应用。
背景技术
有机光电子器件,包括但不限于以下几类:有机电致发光器件(OLEDs),有机薄膜晶体管(OTFTs),有机光伏器件(OPVs),发光电化学池(LCEs)和化学传感器。
近年来,OLEDs作为一种有巨大应用前景的照明、显示技术,受到了学术界与产业界的广泛关注。OLEDs器件具有自发光、广视角、反应时间短及可制备柔性器件等特性,成为下一代显示、照明技术的有力竞争者。但目前OLEDs仍然存在效率低、寿命短等问题,有待人们进一步研究。
早期的荧光OLEDs通常只能利用单重态发光,器件中所产生的三重态激子无法有效利用而通过非辐射的方式回到基态,限制了OLEDs的推广使用。1998年,香港大学支志明等人首次报道了电致磷光现象。同年,Thompson等人使用过渡金属配合物作为发光材料制备了磷光OLEDs。磷光OLEDs能够高效地利用单线态和三线态激子发光,理论上可以实现100%的内量子效率,在很大程度上促进了OLEDs的商业化进程。OLEDs发光颜色的调控可以通过发光材料的结构设计来实现。OLEDs可以包括一个发光层或者多个发光层以实现所需要的光谱。目前,绿色、黄色和红色磷光材料已经实现了商业化。商业化的OLEDs显示器,通常采用蓝色荧光和黄色,或绿色和红色磷光搭配来实现全彩显示。磷光OLEDs在高亮度下效率快速降低仍然是一个需要解决的问题。具有更高效率和更长使用寿命的发光材料是目前产业界迫切需要的。
金属配合物作为发光材料已经在产业上实现了应用,但其性能方面,如发光效率、使用寿命仍须进一步提升。此外,材料在聚集态时易导致发光淬灭也是要解决的问题。
发明内容
针对现有技术存在的上述问题,本发明提供了一种铂金属配合物发光材料,该材料应用于有机电致发光器件体现了良好的光电性能和器件寿命。本发明还提供了一种电致发光器件,该器件包含了本发明的金属配合物。
铂金属配合物,为具有式(I)结构的化合物:
Figure PCTCN2020116338-appb-000001
其中:
R 1至R 32各自独立地选自:氢、氘、卤素、取代或未取代的具有1-20个碳原子的烷基、取代或未取代的具有3-20个环碳原子的环烷基、取代或未取代的具有1-20个碳原子的烷氧基、取代或未取代的具有6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基、或者氰基;Ar 1和Ar 2分别独立地选自6-14个碳原子的芳香基团或者3-12碳原子的杂芳香基团,所述杂芳香基团中杂原子选自O、S、N中的一种或几种,所述取代为被氘、卤素,C1-8烷基取代。
优选地,通式(I)中,R 1至R 32分别独立地选自:氢、氘、卤素、取代或未取代的具有1-6个碳原子的烷基、取代或未取代的具有3-6个环碳原子的环烷基、取代或未取代的具有6-12个碳原子的芳基、取代或未取代的具有3-6个碳原子的杂芳基;Ar 1和Ar 2分别独立地选自苯基和吡啶。
优选地,通式(I)中,R 1至R 32分别独立地选自:氢、氘、取代或未取代的具有1-4个碳原子的烷基、取代或未取代的具有3-6个环碳原子的环烷基、苯基、甲苯基或吡啶基;Ar 1和Ar 2相同。
进一步优选,通式(I)中,R 1至R 32分别独立地选自:氢、甲基、异丙基或叔丁基。
进一步优选,通式(I)中R 1至R 32中R 1至R 3、R 12R17、R 26R30为氢,其它基团为氢、甲基、异丙基或叔丁基,Ar 1和Ar 2为苯基。
以下列出按照本发明的铂金属配合物例子,但不限于所列举的结构:
Figure PCTCN2020116338-appb-000002
Figure PCTCN2020116338-appb-000003
Figure PCTCN2020116338-appb-000004
上述金属配合物的前体,即配体,其结构式如下:
Figure PCTCN2020116338-appb-000005
本发明还提供一种上述铂金属配合物在有机光电子器件中的应用,所述光电子器件包括,但不限于,有机电致发光器件(OLEDs),有机薄膜晶体管(OTFTs),有机光伏器件(OPVs),发光电化学池(LCEs)和化学传感器,优选为OLEDs。
一种包含上述铂金属配合物的有机电致发光器件(OLEDs),该配合物作为发光器件中的发光材料。
本发明中的有机电致发光器件,包括阴极、阳极和有机层,所述有机层为空穴注入层、空穴传输层、发光层、空穴阻挡层、电子注入层、电子传输层中的一层或多层,这些有机层不必每层都存在。
所述空穴注入层、空穴传输层、空穴阻挡层、发光层和/或电子传输层中至少有一层含有式(I)所述的化合物。
优选地,结构式(1)所述的化合物所在层为发光层或电子传输层。
本发明的器件有机层的总厚度为1-1000nm,优选1-500nm,更优选5-300nm。
所述有机层可以通过蒸渡或溶液法形成薄膜。
本发明有益的技术效果主要在于:(1)本发明中的铂金属配合物应用于OLED器件中,具有良好的发光效率和器件使用寿命;(2)传统发光分子在聚集态时,由于分子间相互作用较强,导致发光量子产率降低,本发明中的铂金属配合物具有较强的三维空间构型,在聚集态时,具有聚集诱导发光增强的性质,有利于提高器件的发光效率。
附图说明
图1为本发明的有机电致发光器件结构图,
其中10代表为玻璃基板,20代表为阳极,30代表为空穴注入层,40代表为空穴传输层,50代表发光层,60电子传输层,70代表电子注入层,80代表阴极。
具体实施方式
本发明对材料的合成方法不作要求,为了更详细叙述本发明,特举以下例子,但是不限于此。下述合成中所用到的原料均为市售产品。
实施例1
配合物1的合成
Figure PCTCN2020116338-appb-000006
中间体1c的合成
氮气保护下,将化合物1a(4.9g,10.0mmol)(参考文献J.Mater.Chem.,2014,2,2028合成)溶于四氢呋喃(50mL),冷却至-78℃,逐滴加入正丁基锂BuLi(2.0M,11mL),搅拌30分钟后,将化合物1b(4.2g,25.0mmol)(参考文献J.Am.Chem.Soc,2008,130,9942合成)的四氢呋喃溶液(10mL)滴加至上述溶液,搅拌30分钟后,升至室温,继续搅拌1小时。将上述反应液加入稀盐酸溶液中(1M,100mL),搅拌30分钟。混合物经二氯甲烷萃取三次,合并有机相。有机相经无水硫酸钠干燥后,旋除溶剂得浅黄色固体,剩余物经柱层析分离得浅黄色油状物(2.8g,产率51%)。ESI-MS(m/z):543.2(M+1)。
化合物1d的合成:
氮气保护下,将2-溴联苯(2.3g,10.0mmol)溶于四氢呋喃(30mL),冷却至-78℃,逐滴加入正丁基锂BuLi(2.0M,11mL),搅拌30分钟后,将化合物1c(2.6g,4.8mmol)的四氢呋喃溶液(10mL)滴加至上述溶液。搅拌30分钟后,升至室温,继续搅拌1小时。将上述反应液加入水中,经二氯甲烷萃取三次,合并有机相。有机相经无水硫酸钠干燥后,旋除溶剂得浅黄色固体。将上述固体溶于醋酸(50mL)中,加入浓硫酸(4mL),氮气保护下回流过夜。冷至室温后,将上述反应液加入水中,经二氯甲烷萃取三次,合并有机相。有机相经无水硫酸钠干燥后,旋除溶剂,剩余物经柱层析分离得浅黄色固体(2.8g,产率71%)。ESI-MS(m/z):815.3(M+1)。
配合物1的合成
将化合物1d(2.5g,3.1mmol)、氯亚铂酸钾(1.5g,3.6mmol)和250mL乙酸加入烧瓶中, 氮气保护下,回流搅拌48小时。冷至室温后,将上述反应液加入水中,过滤得粗产物,重结晶得黄色固体(2.5g,产率80%)。ESI-MS(m/z):1008.3(M+1)。
实施例2
配合物22的合成
Figure PCTCN2020116338-appb-000007
中间体22b的合成
使用化合物22a(参考文献Dyes Pigm.,2015,121,7合成)替换2-溴联苯,参考化合物1d的制备方法合成中间体22b,得浅黄色固体2.9g,产率69%。ESI-MS(m/z):1039.6(M+1)。
配合物22的合成
使用化合物22b替换1d,参考配合物1的制备方法合成配合物22,得黄色固体2.1g,产率73%。ESI-MS(m/z):1232.5(M+1)。
实施例3
使用本发明的配合物发光材料制备电致发光器件,器件结构见图1。
首先,将透明导电ITO玻璃基板10(上面带有阳极20)依次经:洗涤剂溶液和去离子水,乙醇,丙酮,去离子水洗净,再用氧等离子处理30秒。
然后,在ITO上蒸镀10nm厚的HATCN作为空穴注入层30。
然后,蒸镀化合物HT,形成40nm厚的空穴传输层40。
然后,在空穴传输层上蒸镀20nm厚的发光层50,发光层由配合物1(20%)与CBP(80%)混合掺杂组成。
然后,在发光层上蒸镀40nm厚的AlQ 3作为电子传输层60。
最后,蒸镀1nm LiF为电子注入层70和100nm Al作为器件阴极80。
实施例4
使用配合物22替换配合物1,采用实施例3中所描述的方法制备电致发光器件。
比较例
使用Ir(PPy) 3替换配合物1,采用实施例3中所描述的方法制备电致发光器件。
器件中HATCN、HT、AlQ 3、Ir(PPy) 3及CBP结构式如下:
Figure PCTCN2020116338-appb-000008
实施例3、4及比较例中的有机电致发光器件在10mA/cm 2电流密度下的器件性能列于表1:
表1
Figure PCTCN2020116338-appb-000009
由表1数据可以看出,相同条件下,应用本发明中的化合物制备的有机电致发光器件的效率均优于比较例,相比于常见的配合物发光材料Ir(PPy) 3,本发明的铂金属配合物材料应用于有机电致发光器件,具有更低的驱动电压和更高的发光效率。此外,器件寿命也有一定程度的改善,更符合显示产业对于发光材料的要求,具有良好的产业化前景。
实施例5
铂配合物1和22在聚集态和溶液中的发光量子产率比值(Ф ab)列于表2:
表2
Figure PCTCN2020116338-appb-000010
通过表2的数据可以发现,本发明的铂金属配合物在聚集态的量子产率高于在溶液中的量子产率。可见,本发明的铂金属配合物还具有聚集诱导发光增强的性质。
上述多种实施方案仅作为示例,不用于限制本发明范围。在不偏离本发明精神的前提下,本发明中的多种材料和结构可以用其它材料和结构替代。应当理解,本领域的技术人员无需创造性的劳动就可以根据本发明的思路做出许多修改和变化。因此,技术人员在现有技术基础上通过分析、推理或者部分研究可以得到的技术方案,均应在权利要求书所限制的保护范围内。

Claims (12)

  1. 一种铂金属配合物,为具有式(I)结构的化合物:
    Figure PCTCN2020116338-appb-100001
    其中:
    R 1至R 32各自独立地选自:氢、氘、卤素、取代或未取代的具有1-20个碳原子的烷基、取代或未取代的具有3-20个环碳原子的环烷基、取代或未取代的具有1-20个碳原子的烷氧基、取代或未取代的具有6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基、或者氰基;Ar 1和Ar 2分别独立地选自6-14个碳原子的芳香基团或者3-12碳原子的杂芳香基团,所述杂芳香基团中杂原子选自O、S、N中的一种或几种,所述取代为被氘、卤素,C1-8烷基取代。
  2. 根据权利要求1所述的铂金属配合物,其中,R 1至R 32分别独立地选自:氢、氘、卤素、取代或未取代的具有1-6个碳原子的烷基、取代或未取代的具有3-6个环碳原子的环烷基、取代或未取代的具有6-12个碳原子的芳基、取代或未取代的具有3-6个碳原子的杂芳基;Ar 1和Ar 2分别独立地选自苯基和吡啶。
  3. 根据权利要求2所述的铂金属配合物,其中R 1至R 32分别独立地选自:氢、氘、取代或未取代的具有1-4个碳原子的烷基、取代或未取代的具有3-6个环碳原子的环烷基、苯基、甲苯基或吡啶基;Ar 1和Ar 2相同。
  4. 根据权利要求3所述的铂金属配合物,其中R 1至R32分别独立地选自:氢、甲基、异丙基或叔丁基。
  5. 根据权利要求4所述的铂金属配合物,其中R 1至R32中R1至R3、R12至R17、R26至R30为氢,其它基团为氢、甲基、异丙基或叔丁基,Ar 1和Ar 2为苯基。
  6. 根据权利要求1所述的铂金属配合物,为下列化合物之一:
    Figure PCTCN2020116338-appb-100002
    Figure PCTCN2020116338-appb-100003
  7. 根据权利要求6所述的铂金属配合物,具有以下结构之一:
    Figure PCTCN2020116338-appb-100004
  8. 根据权利要求1-7任一所述的铂金属配合物的前体,即配体,其结构式如下:
    Figure PCTCN2020116338-appb-100005
  9. 权利要求1-7任一所述的铂金属配合物在有机电致发光器件,有机薄膜晶体管,有机光伏器件,发光电化学池和化学传感器中的应用。
  10. 有机电致发光器件,包括阴极、阳极和有机层,所述有机层为空穴注入层、空穴传输层、发光层、空穴阻挡层、电子注入层、电子传输层中的一层或多层,所述有机层中含有权利要求1-7任一所述的铂金属配合物。
  11. 根据权利要求10所述的有机电致发光器件,权利要求1-7任一所述的铂金属配合物所在层为发光层。
  12. 根据权利要求10所述的有机电致发光器件,所述有机层的总厚度为1-1000nm,所述有机层通过蒸渡或溶液法形成薄膜。
PCT/CN2020/116338 2019-12-16 2020-09-19 一种铂金属配合物及其在有机电致发光器件中的应用 WO2021120742A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227013154A KR20220065851A (ko) 2019-12-16 2020-09-19 백금 금속 착물 및 유기 전계 발광 소자에서 이의 응용
DE112020004783.0T DE112020004783T5 (de) 2019-12-16 2020-09-19 Platinmetallkoordinationsverbindung und deren Anwendung in organischen Elektrolumineszenzvorrichtungen
US17/776,942 US20230024427A1 (en) 2019-12-16 2020-09-19 Platinum metal complex and use thereof in organic electroluminescent device
JP2022531551A JP7402979B2 (ja) 2019-12-16 2020-09-19 白金金属錯体及び有機エレクトロルミネセンスデバイスにおけるその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911295834.9 2019-12-16
CN201911295834.9A CN112979710B (zh) 2019-12-16 2019-12-16 一种铂金属配合物及其在有机电致发光器件中的应用

Publications (1)

Publication Number Publication Date
WO2021120742A1 true WO2021120742A1 (zh) 2021-06-24

Family

ID=76343436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116338 WO2021120742A1 (zh) 2019-12-16 2020-09-19 一种铂金属配合物及其在有机电致发光器件中的应用

Country Status (7)

Country Link
US (1) US20230024427A1 (zh)
JP (1) JP7402979B2 (zh)
KR (1) KR20220065851A (zh)
CN (1) CN112979710B (zh)
DE (1) DE112020004783T5 (zh)
TW (1) TWI745109B (zh)
WO (1) WO2021120742A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041397A (zh) * 2021-12-22 2023-05-02 广东阿格蕾雅光电材料有限公司 双核铂配合物发光材料及其应用
CN116396335A (zh) * 2022-04-25 2023-07-07 广东阿格蕾雅光电材料有限公司 基于四芳基乙烯骨架结构的四齿型铂配合物发光材料及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795428A (zh) * 2014-04-03 2017-05-31 港大科桥有限公司 用于oled应用的铂(ii)发射体
US10033003B2 (en) * 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
EP3366690A1 (en) * 2017-02-24 2018-08-29 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic composition including the organometallic compound
WO2019144845A1 (en) * 2018-01-25 2019-08-01 The University Of Hong Kong Spiro-containing platinum (ii) emitters with tunable emission energies and syntheses thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134461A1 (en) * 2004-12-17 2006-06-22 Shouquan Huo Organometallic materials and electroluminescent devices
ATE512206T1 (de) * 2007-03-28 2011-06-15 Fujifilm Corp Organische elektrolumineszenzvorrichtung
US9461254B2 (en) * 2012-01-03 2016-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US9865825B2 (en) 2014-11-10 2018-01-09 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795428A (zh) * 2014-04-03 2017-05-31 港大科桥有限公司 用于oled应用的铂(ii)发射体
US10033003B2 (en) * 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
EP3366690A1 (en) * 2017-02-24 2018-08-29 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic composition including the organometallic compound
WO2019144845A1 (en) * 2018-01-25 2019-08-01 The University Of Hong Kong Spiro-containing platinum (ii) emitters with tunable emission energies and syntheses thereof

Also Published As

Publication number Publication date
US20230024427A1 (en) 2023-01-26
CN112979710B (zh) 2022-02-15
CN112979710A (zh) 2021-06-18
KR20220065851A (ko) 2022-05-20
DE112020004783T5 (de) 2022-06-15
TW202124404A (zh) 2021-07-01
JP2023503664A (ja) 2023-01-31
JP7402979B2 (ja) 2023-12-21
TWI745109B (zh) 2021-11-01

Similar Documents

Publication Publication Date Title
KR102584939B1 (ko) 불소치환을 함유하는 금속 착물
TWI510597B (zh) Organic electronic materials and organic electroluminescent devices
TWI534123B (zh) 用於電子裝置之化合物類
WO2019154159A1 (zh) 一种金属铱配合物和包含该金属铱配合物的有机电致发光器件
WO2021120741A1 (zh) 一种金属配合物及其应用
TWI570984B (zh) Organic electronic materials
WO2015067155A1 (zh) 有机电致发光材料和有机电致发光器件
TW201309675A (zh) 用於有機電激發光裝置之化合物及使用該化合物之有機電激發光裝置
WO2019056932A1 (zh) 咪唑衍生物、包含该咪唑衍生物的材料和有机电致发光器件
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
WO2021120742A1 (zh) 一种铂金属配合物及其在有机电致发光器件中的应用
KR20100137983A (ko) 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한 유기전자소자
KR101799033B1 (ko) 적색 인광 호스트 물질 및 이를 이용한 유기전계발광소자
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2023071719A1 (zh) 铂配合物发光材料及其应用
WO2023202471A1 (zh) 含螺环结构的四齿型铂配合物发光材料及其应用
WO2023116587A1 (zh) 双核铂配合物发光材料及其应用
WO2023207622A1 (zh) 基于四芳基乙烯骨架结构的四齿型铂配合物发光材料及其应用
KR101794132B1 (ko) 적색 인광 호스트 물질 및 이를 이용한 유기전계발광소자
WO2020211124A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2019128343A1 (zh) 一种电致发光材料及其在光电器件中的应用
WO2018120973A1 (zh) 应用于有机发光二极管的主体材料
WO2018120972A1 (zh) 有机发光二极管器件
CN109851613A (zh) 一种新型化合物及采用该化合物的有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227013154

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022531551

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20901518

Country of ref document: EP

Kind code of ref document: A1