WO2021118289A1 - 수처리 엘리먼트용 핫멜트 접착제 조성물, 접착 필름 및 이를 포함하는 수처리 엘리먼트 - Google Patents

수처리 엘리먼트용 핫멜트 접착제 조성물, 접착 필름 및 이를 포함하는 수처리 엘리먼트 Download PDF

Info

Publication number
WO2021118289A1
WO2021118289A1 PCT/KR2020/018148 KR2020018148W WO2021118289A1 WO 2021118289 A1 WO2021118289 A1 WO 2021118289A1 KR 2020018148 W KR2020018148 W KR 2020018148W WO 2021118289 A1 WO2021118289 A1 WO 2021118289A1
Authority
WO
WIPO (PCT)
Prior art keywords
water treatment
less
treatment element
mgkoh
adhesive composition
Prior art date
Application number
PCT/KR2020/018148
Other languages
English (en)
French (fr)
Inventor
강호성
황세정
이필
김광환
박태영
안상범
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190164854A external-priority patent/KR20210073983A/ko
Priority claimed from KR1020190164850A external-priority patent/KR20210073981A/ko
Priority claimed from KR1020190164867A external-priority patent/KR20210073989A/ko
Priority claimed from KR1020190164847A external-priority patent/KR20210073978A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080057395.2A priority Critical patent/CN114269877B/zh
Priority to US17/635,853 priority patent/US20220298384A1/en
Publication of WO2021118289A1 publication Critical patent/WO2021118289A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer

Definitions

  • the present specification relates to a water treatment element hot melt adhesive composition, an adhesive film, and a water treatment element comprising the same.
  • water purification technology which is a technology for securing alternative water resources
  • water shortages due to global warming are deepening around the world. Therefore, it is expected that the water treatment process using the reverse osmosis membrane, which is the core technology of the next-generation water supply business using alternative water resources such as seawater desalination and water reuse, will lead the water industry market.
  • the reverse osmosis membrane permeated water by the reverse osmosis membrane becomes pure water or water close to infinitely pure water, and is used in various fields such as sterile water for medical use, purified water for population dialysis, or water for manufacturing semiconductors in the electronics industry.
  • the separation membrane is widely applied to the field of gas separation including hydrogen and oxygen.
  • the present specification provides a hot-melt adhesive composition for a water treatment element, an adhesive film, and a water treatment element comprising the same.
  • An exemplary embodiment of the present specification is a polymer resin; And it provides a hot-melt adhesive composition for a water treatment element comprising a magnetic composite.
  • An exemplary embodiment of the present specification provides an adhesive film comprising the hot-melt adhesive composition for the water treatment element described above.
  • One embodiment of the present specification provides a water treatment element comprising the above-described adhesive film.
  • FIG. 1 is a plan view of a separator leaf including an adhesive film composed of a hot-melt adhesive composition for a water treatment element.
  • FIG. 2 is a perspective view of a separator leaf including an adhesive film composed of a hot-melt adhesive composition for a water treatment element.
  • Figure 3 shows a schematic diagram of the stacking of the components constituting the water treatment element according to the present specification.
  • An exemplary embodiment of the present specification is a polymer resin; And it provides a hot-melt adhesive composition for a water treatment element comprising a magnetic composite.
  • a general water treatment element is manufactured in the form of a spiral wound, and in general, by sealing the water treatment separation membrane using a liquid polyurethane adhesive composition, the mixing of raw water and produced water is distinguished.
  • a liquid polyurethane adhesive composition there are limitations as described below. Since the bonding area is large, in the process of cutting off some unnecessary bonding area, the separator may be lost, such as the effective area being reduced.
  • the liquid adhesive composition is not fixed immediately upon application, it is difficult to control the thickness and area.
  • a defect rate of the water treatment element such as leakage occurring during the rolling process may be increased.
  • there is a disadvantage that the curing time of the liquid adhesive composition is long.
  • the hot melt adhesive composition for a water treatment element is a solid type, and in the form of a film, by including a magnetic composite that can be applied by induction, when applied to a water treatment element, increase the productivity of the water treatment element, reduce the defect rate, and workability can improve
  • the hot-melt adhesive composition for water treatment elements according to the present specification is a solid type, it is easy to control the adhesion area and thickness, so that the operation at the time of rolling the water treatment element is easy.
  • the hot melt adhesive composition for a water treatment element according to the present specification has an advantage in that the degree of change in physical properties due to external environments such as humidity and temperature is small, and thus, chemical resistance and water resistance are excellent.
  • the curing time is short and the process is simplified, thereby improving workability in manufacturing the water treatment element.
  • the hot-melt adhesive composition for a water treatment element according to the present specification does not include a magnetic composite, when it is used for manufacturing a water treatment element, there is no induction function by the magnetic composite, so selective heating is impossible.
  • the hot melt adhesive composition for a water treatment element according to the present specification includes a magnetic composite, selective heating is possible, so that it can be attached without damaging the water treatment separation membrane when manufacturing the water treatment element.
  • the hot-melt adhesive composition for the water treatment element may be cured at a temperature of 150° C., a pressure of 70 kg/cm 2 and a pressure of 30 seconds, and the hot-melt adhesive composition for the water treatment element is 150° C. At a temperature and a pressure of 70 kg/cm 2 , it can be cured within 30 seconds. Furthermore, the hot-melt adhesive composition for the water treatment element may be cured at a temperature of 110 to 150° C., a pressure of 60 to 70 kg/cm 2 and a condition of 20 to 30 seconds.
  • the polymer resin may be prepared by including polyurethane, polyester, polyamide or polyether, but is not limited thereto.
  • the weight average molecular weight of the polyurethane may be 30,000 g/mol to 1,000,000 g/mol, but is not limited thereto.
  • the weight average molecular weight may be measured using gel permeation chromatography (GPC).
  • the content of the polyurethane is 90 to 99.9 parts by weight based on 100 parts by weight of the hot melt adhesive composition, and the content of the magnetic composite is 0.1 to 10 parts by weight.
  • the content of the polyurethane is 90 to 99 parts by weight, 91 to 99 parts by weight, 92 to 99 parts by weight, 93 to 99 parts by weight, 94 to 99 parts by weight, 90 to 98 parts by weight, 90 to 97 parts by weight, 90 to 96 parts by weight, or 94 to 96 parts by weight.
  • the content of the magnetic composite is 1 to 10 parts by weight, 1 to 9 parts by weight, 1 to 8 parts by weight, 1 to 7 parts by weight, 1 to 6 parts by weight, 2 to 10 parts by weight, 3 to 10 parts by weight, 4 to 10 parts by weight, or 4 to 6 parts by weight.
  • the magnetic composite refers to a material that includes magnetic particles and generates heat by application of an alternating magnetic field from the outside.
  • the magnetic composite includes magnetic particles, an induction heating method is applied.
  • the magnetic particles can generate heat through application of an electromagnetic field, that is, induction heating, the chemical composition thereof is not particularly limited.
  • the magnetic particles may include a compound represented by Formula 1 below:
  • M is a metal or metal oxide
  • X includes Fe, Mn, Co, Ni or Zn,
  • M in Formula 1 is Fe, Mn, Mg, Ca, Zn, Cu, Co, Sr, Si, Ni, Ba, Cs, K, Ra, Rb, Be, Li, Y, B or their It may be an oxide.
  • X a O b is Fe 2 O 3
  • c may be +3 and d may be -2.
  • XaOb when XaOb is Fe 3 O 4 , it may be expressed as FeOFe 2 O 3 , so c may be +2 and +3, respectively, and d may be -2.
  • the structure of the compound of the magnetic particles is not particularly limited as long as it satisfies Chemical Formula 1, and may be , for example, FeOFe 2 O 3 .
  • the magnetic particles may consist of the compound of Formula 1, or may include a compound in which the compound of Formula 1 is doped with an inorganic material.
  • the inorganic material may include monovalent to trivalent cationic metals or oxides thereof, and two or more cationic metals may be used.
  • the magnetic particles or the magnetic particle cluster may be iron oxide.
  • the magnetic particles may have an individual particle diameter of 15 nm to 40 nm.
  • the individual particle diameter means an individual particle diameter of each particle.
  • the magnetic particles may form a magnetic particle cluster.
  • the magnetic particle cluster means secondary particles that are agglomerates formed by agglomeration of magnetic particles, which are primary particles.
  • the magnetic particles which are primary particles constituting the magnetic particle cluster, may have individual particle diameters of 15 nm to 40 nm.
  • the particle size of the primary particles constituting the magnetic particle cluster may be confirmed by the crystal size, and the particle size of the primary particles constituting the magnetic particle cluster may be represented by the crystal size in the magnetic particle cluster.
  • the crystal size of the magnetic particle cluster or the crystal size of the magnetic composite may be 15 nm to 40 nm.
  • the magnetic particle which is the primary particle
  • the magnetic particle cluster is a secondary particle formed by agglomeration of the primary particles
  • the crystal characteristic in the magnetic particle cluster is the crystal characteristic of the primary particle. It has a variety of crystal properties under the influence of Therefore, the result of analyzing the crystal characteristics of the finally manufactured magnetic particle cluster or magnetic composite is the characteristic of the magnetic particle, which is the primary particle.
  • a surface treatment agent may be present around the magnetic particle cluster. That is, the magnetic composite of the present specification includes magnetic particles and a surface treatment agent provided on a surface thereof, and preferably includes a magnetic particle cluster and a surface treatment agent provided on a surface thereof.
  • the size of the crystals of the magnetic particles, which are primary particles included in the magnetic composite can be adjusted, and the average particle diameter of the magnetic particles, which are the primary particles, is controlled to have heat-generating properties. can be adjusted.
  • the magnetic composite includes magnetic particles having a crystal size of 15 nm to 40 nm, and the crystal size is preferably 20 nm to 35 nm.
  • the calorific value of the magnetic composite may be improved.
  • the crystal size of the magnetic particles may be measured using X-ray diffraction analysis (XRD). Specifically, a 2 ⁇ section of 10 ⁇ to 90 ⁇ is measured using Bruker's XRD-07-D8_Endeavor equipment. Calculate the size ( ⁇ ) of the crystal using the 60.824 ⁇ to 64.957 ⁇ section including the 62.57 ⁇ peak.
  • the Scherrer equation ( ⁇ (K ⁇ )/( ⁇ cos( ⁇ ))) built into the DIFFRAC.SUITE EVA program can be used, and the K value can be obtained by setting it to 0.94.
  • the average particle diameter of the magnetic particle cluster is 20 nm to 300 nm.
  • the average particle diameter of the magnetic particle cluster is 60 nm to 200 nm, more preferably 80 nm to 120 nm.
  • the average particle diameter of the magnetic particle cluster may be measured using a scanning electron microscope (SEM) by preparing a specimen.
  • SEM scanning electron microscope
  • the specimen may be manufactured by performing platinum (Pt) coating on the magnetic particle cluster.
  • the platinum (Pt) coating may use the CRESSINGTON SPUTTER COATER 108 model, and a specimen may be prepared by coating for 60 seconds to 90 seconds in an auto mode.
  • the scanning electron microscope (SEM) may be JEOL's FESEM and JSM7610F equipment. Through a scanning electron microscope (SEM) photograph of the specimen, it is possible to determine whether or not nanoclusters of the magnetic particles are formed and obtain an average particle diameter.
  • the magnetic composite includes a surface treatment agent.
  • the surface treatment agent refers to a material that can be treated to the surface of magnetic particles to give new properties that are not inherent, and among them, it is specially designed to impart dispersion properties to magnetic particles so that they can be evenly dispersed in the product to which the magnetic particles are to be applied.
  • the surface treatment agent may be referred to as a dispersant. Even if it is a surface treatment agent that imparts dispersion properties to magnetic particles, other surface properties can be imparted together with the dispersion properties.
  • the surface treatment agent may be a precursor of the magnetic particle, a compound having a functional group capable of binding to the surface of the magnetic particle or the magnetic particle cluster by a strong bonding force.
  • a compound having a phosphoric acid group, a carboxyl group, a sulfonic acid group, an amino group and/or a cyano group can be applied.
  • the magnetic particles, precursors of magnetic particles, or magnetic particle clusters may be surface-treated with a material having the above functional group, that is, a surface treatment agent.
  • an acrylic copolymer containing, an aromatic acid-based surface treatment agent, a block copolymer containing an acidic functional group or an amino group, and the like can be applied.
  • R 1 to R 3 are each independently an alkyl group, an arylalkyl group, an alkoxy group, or an arylalkoxy group.
  • alkyl group or an alkoxy group having 6 to 24 carbon atoms may be exemplified as the alkyl group or alkoxy group that may be included in Formulas A to C.
  • the number of carbon atoms of the alkyl group or the alkoxy group is 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, 15 or more, 16 or more in another example.
  • 17 or more, 18 or more, 19 or more, 20 or more, 21 or more, 22 or more, or 23 or more, or 23 or less, 22 or less, 21 or less, 20 or less, 19 or more Below, 18 or less, 17 or less, 16 or less, 15 or less, 14 or less, 13 or less, 12 or less, 11 or less, 10 or less, 9 or less, 8 or less, or 7 or less may be
  • the alkyl group or alkoxy group that may be included in Formulas A to C may be substituted with an aryl group having 6 to 13 carbon atoms, for example, a benzyl group or a phenyl group may be applied.
  • the surface treatment agent includes (a) a phosphoric acid ester salt of an optionally fatty acid-modified or alkoxylated (especially ethoxylated) polyamine, a phosphoric acid ester salt of an epoxide-polyamine adduct, an acrylic containing an amino group phosphoric acid ester salts of oligomers or polymers containing amino groups, such as phosphoric acid ester salts of acrylate or methacrylate copolymers or phosphoric acid ester salts of acrylate-polyamine adducts; (b) monoesters or diesters of phosphates with alkyl, aryl, aralkyl, or alkylaryl alkoxylates, such as nonylphenol ethoxylates, isotridecyl alcohol ethoxylates, butanol-started alkylene oxide polyethers monoesters of phosphoric acid, such as monoesters or diesters of phosphoric acid with
  • lactone polyesters such as caprolactone polyesters or caprolactone/valerolactone mixed polyesters) or diesters;
  • acidic dicarboxy monoesters with alkyl, aryl, aralkyl, or alkylaryl alkoxylates (especially those of succinic, maleic or phthalic acids) such as nonylphenol ethoxylates, isotridecyl alcohol ethoxylates , or butanol-initiated alkylene oxide polyethers) and the like);
  • polyurethane-polyamine adducts (e) polyalkoxylated monoamines or diamines (such as ethoxylated oleylamines or alkoxylated ethylenediamines) or (f) reaction products of monoamines, diamines, polyamines, amino alcohols with unsaturated fatty acids and unsaturated 1,2-diamines Carboxylic acids and their anhydrides and their salts and reaction products with alcohol
  • Such surface treatment agents are known as commercially available products, for example, BYK-220 S, BYK-P 9908, BYK-9076, BYK-9077, BYK-P 104, BYK-P 104 S, BYK-P 105, BYK-W 9010, BYK-W 920, BYK-W 935, BYK-W 940, BYK-W 960, BYK-W 965, BYK-W 966, BYK-W 975, BYK-W 980, BYK-W 990, BYK-W 995, BYK-W 996, BYKUMEN, BYKJET 9131, LACTIMON, ANTI-TERRA-202, ANTI-TERRA-203, ANTI-TERRA-204, ANTI-TERRA-205, ANTI-TERRA-206, ANTI -TERRA-207, ANTI-TERRA-U 100, ANTI-TERRA
  • an acid value within the range of 10 mgKOH/g to 400 mgKOH/g, or an amine value within the range of 5 mgKOH/g to 400 mgKOH/g may be used.
  • the acid value of the surface treatment agent is about 20 mgKOH/g or more, 30 mgKOH/g or more, 40 mgKOH/g or more, 50 mgKOH/g or more, 60 mgKOH/g or more, 70 mgKOH/g or more, 80 mgKOH/g or more, or 90 mgKOH/g or more.
  • the amine value of the surface treatment agent is about 10 mgKOH/g or more, about 15 mgKOH/g or more, about 20 mgKOH/g or more, 30 mgKOH/g or more, 40 mgKOH/g or more, 50 mgKOH/g or more, 60 mgKOH/g or more, 70 mgKOH /g or more, 80 mgKOH/g or more, or 90 mgKOH/g or more, or about 390 mgKOH/g or less, 380 mgKOH/g or less, 370 mgKOH/g or less, 360 mgKOH/g or less, 350 mgKOH/g or less, 340 mgKOH/g or less, 330 mgKOH/g or less g or less, 320 mgKOH/g or less, 310 mgKOH/g or less, 300 mgKOH/g or less, 290 mgKOH/g or less, 280 mgKOH/g or less, 270 mgKOH/g or less, 260 mgKOH/g or less, 250 mgK
  • amine value is a value obtained by titrating an amino group (-NH 2 , -NHR or -NR 2 ) included in the surface treatment agent with KOH and dividing it by the KOH consumption (a value expressed in mg of the amount of KOH titrated per 1 g of the surface treatment agent) ) means
  • acid value refers to a value obtained by titrating the acid group (-COOH) of the surface treatment agent with KOH and dividing it by the KOH consumption (a value expressed in mg of the amount of KOH titrated per 1 g of the surface treatment agent).
  • the surface treatment agent forming a bond with the magnetic particles or magnetic particle cluster is a compound having a weight average molecular weight (Mw) of about 20,000 g/mol or less.
  • Mw weight average molecular weight
  • the term "weight average molecular weight” is a standard polystyrene conversion value measured by Gel Permeation Chromatograph (GPC), and may simply be referred to as molecular weight unless otherwise specified.
  • the unit of the molecular weight may be g/mol.
  • the weight average molecular weight of the surface treatment agent is about 19,000 or less, 18,000 or less, 17,000 or less, 16,000 or less, 15,000 or less, 14,000 or less, 13,000 or less, 12,000 or less, 11,000 or less, 10,000 or less, 9,000 or less, 8,000 or less, 7,000 or less , 6,000 or less, 5,000 or less, 4,000 or less, 3,000 or less, 2,000 or less, or 1,000 or less, or 100 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, or 1,000 or more. It may be more than
  • the magnetic composite may be formed by introducing the functional group into the surface treatment agent by a chemical method and then interacting with the magnetic particles or the magnetic particle cluster.
  • the proportion of the surface treatment agent in the magnetic composite is not particularly limited, and may be added to an extent capable of producing a magnetic composite capable of satisfying the above-described conditions, for example, the average particle diameter of the magnetic particle cluster.
  • the surface treating agent is included in a ratio within the range of 0.01 parts by weight to 30 parts by weight based on 100 parts by weight of the magnetic particles, or the surface treating agent is in the range of 0.01 parts by weight to 30 parts by weight based on 100 parts by weight of the magnetic particle precursor. may be included as a percentage. Under this ratio, a magnetic composite having a desired exothermic property can be obtained.
  • the unit "part by weight” means the ratio of the weight between each component.
  • the ratio may be 0.1 parts by weight or more, 1 part by weight or more, 2 parts by weight or more, 3 parts by weight or more, or 4 parts by weight or more, and 27 parts by weight or less, 25 parts by weight or less, 23 parts by weight or less, 21 It may be less than or equal to 20 parts by weight or less than or equal to 20 parts by weight.
  • a method of surface-treating the magnetic particles with the surface treatment agent to obtain the magnetic composite is not particularly limited.
  • an interaction between the magnetic particles and the surface treatment agent is induced by mixing the magnetic particles and the surface treatment agent under an appropriate environment such as the presence of a solvent, and between the magnetic particles and the surface treatment agent or between the surface treatment agent can form a bond.
  • Such a surface treatment agent may be present on the surface of the magnetic particles, specifically around the magnetic particles.
  • the present specification provides a method for producing a hot-melt adhesive composition for a water treatment element comprising the step of preparing a composition comprising a magnetic composite and a polymer resin.
  • the present specification includes the steps of heating a reaction solution containing a magnetic particle precursor and a solvent to a first temperature to form magnetic particles;
  • It provides a method for producing a hot-melt adhesive composition for a water treatment element comprising the step of preparing a composition comprising the magnetic composite and the polymer resin.
  • the magnetic particle precursor refers to a material capable of forming magnetic particles by post-treatment, and the magnetic particles are formed through hydrolysis, dehydration, reduction and phase transition of the precursor. It can be applied without limitation if it is a compound that can For example, when the magnetic particles are FeOFe 2 O 3 , the precursor of the magnetic particles is FeCl 3 . 6H 2 O(Iron (III) chloride hexahydrate), FeCl 3 , Fe(NO 3 ) 3 , Fe(CO) 5 , Fe(NO 3 ) 2 , Fe(SO 4 ) 3 or Fe(AcAc) 3 ⁇ iron ( III) acetylacetonate ⁇ , but is not limited thereto.
  • the precursor of the magnetic particles is FeCl 3 . 6H 2 O(Iron (III) chloride hexahydrate), FeCl 3 , Fe(NO 3 ) 3 , Fe(CO) 5 , Fe(NO 3 ) 2 , Fe(SO 4 ) 3 or Fe(Ac
  • the concentration of the magnetic particle precursor in the reaction solution, may be 0.025 M to 0.125 M, preferably 0.05 M to 0.1 M.
  • concentration range is satisfied, there is an advantage in that magnetic particles having a desired size control and uniform particle distribution can be synthesized.
  • the reaction solution may further include a base.
  • the concentration of the base may be 0.4 M to 4 M, preferably 0.5 M to 2 M.
  • the molar ratio of the magnetic particle precursor and the base may be 1:5 to 1:20, specifically 1:9 to 1:10, preferably It is 1:9.5. In this case, there is an advantage in that a desired particle size can be obtained.
  • the base is, for example, a strong basic compound such as sodium oxide and potassium hydroxide; and weakly basic compounds such as sodium carbonate, sodium hydrogen carbonate, cesium carbonate, calcium carbonate, aqueous ammonia or sodium acetate, but is not limited thereto.
  • a strong basic compound such as sodium oxide and potassium hydroxide
  • weakly basic compounds such as sodium carbonate, sodium hydrogen carbonate, cesium carbonate, calcium carbonate, aqueous ammonia or sodium acetate, but is not limited thereto.
  • the content of the solvent is 50% by weight or more, 55% by weight or more, 60% by weight or more, 65% by weight or more, 70% by weight or more, 75% by weight or more, 80 wt% or more, 85 wt% or more, or 90 wt% or more, and may be about 100 wt% or less, 99 wt% or less, 98 wt% or less, 97 wt% or less, 96 wt% or less, or 95 wt% or less.
  • the ratio of the solvent is large and the crystals of nanoparticles are generated, and then it is prevented from forming a large agglomeration.
  • the solvent in the reaction solution, includes water, and may further include a polar solvent.
  • the solvent preferably includes water and a polar solvent.
  • the polar solvent serves as a reducing agent and dissolves the salt.
  • the polar solvent acts as an appropriate reducing agent to induce hydrolysis and condensation reactions of the magnetic particle precursor, and as a result, the magnetic particle precursor forms an amorphous solid. will form Then, if the heating is continued, the amorphous solid causes a phase change and becomes crystalline.
  • the content of the water when the solvent includes water and a polar solvent, based on the weight of the polar solvent, the content of the water may be 1% by volume to 20% by volume, and , Preferably it may be 5% by volume to 11% by volume.
  • the salt can be dissociated without inhibiting the reducing power of the polar solvent.
  • the polar solvent may mean a solvent having a dielectric constant at a specific temperature, for example, 25° C. in the range of about 75 to 85.
  • the polar solvent is a low molecular weight polyol such as ethylene glycol, glycerin, butanediol and trimethylol propane; and high molecular weight polyols such as polyethylene glycol and methoxy polyethylene glycol, but is not limited thereto.
  • the low molecular weight polyol may mean a monomolecular polyol
  • the high molecular weight polyol may mean a polyol having a molecular weight (weight average molecular weight) of 2,000 g/mol.
  • the polar solvent may include a polyol, and may include at least one of a low molecular weight polyol and a high molecular weight polyol, and specifically, any one selected from polyols or a mixture of two or more have.
  • the first temperature is a temperature capable of forming crystals of magnetic particles, and may be 50°C to 90°C, preferably 70°C. There is an advantage that crystals constituting the magnetic particles can be properly formed at the above temperature.
  • the time for heating to the first temperature after preparing the reaction solution at room temperature is about 20 to 60 minutes, and the temperature increase rate at this time may be about 2.5° C./min. In this case, it is possible to generate and grow crystal grains of a desired size.
  • the room temperature means a natural temperature without heating or cooling, and is about 20 ⁇ 5°C.
  • the second temperature is a temperature at which the formed magnetic particles can be aggregated, a temperature higher than the first temperature, and may be 170°C to 210°C.
  • the second temperature may be 175 °C or higher, 180 °C or higher, 185 °C or higher, or 190 °C or higher, and 205 °C or lower, 200 °C or lower, 195 °C or lower, or 190 °C or lower.
  • This step is a process in which the magnetic particles of crystal size are reduced and agglomerated, which affects the size of the final particles. If treated at too high a temperature, they grow into micro-sized crystals, and at low temperatures, the spherical particle shape is small. , it grows in many forms with atypical distributions.
  • the heating time from the first temperature to the second temperature is from about 40 minutes to 120 minutes, and the temperature increase rate at this time may be about 1°C/min.
  • the time increases the dehydration/reduction reaction of the crystals proceeds further, and the crystals grow by adhering to each other, or if the time is insufficient, the shape and size distribution of the particles becomes non-uniform.
  • the method of manufacturing the hot-melt adhesive composition for a water treatment element may further include cooling the solution containing the magnetic particle cluster to a third temperature before adding a surface treatment agent to the solution containing the magnetic particle cluster.
  • the third temperature may be 50 °C to 90 °C.
  • the interaction between the magnetic particles and the surface treatment agent may proceed smoothly within the above temperature range.
  • the third temperature may be 55 °C or higher, 60 °C or higher, 65 °C or higher, or 70 °C or higher, and 85 °C or lower, 80 °C or lower, 75 °C or lower, or 70 °C or lower.
  • the cooling time from the second temperature to the third temperature is about 2 hours, and the cooling rate at this time may be about 1°C/min. In this case, there is an advantage that the distribution of particles is most uniform.
  • the magnetic particles may be additionally surface-treated.
  • the above-mentioned surface treatment agent may be referred to as a primary surface treatment agent, and the surface treatment agent applied for additional surface treatment may be referred to as a secondary surface treatment agent.
  • the magnetic composite may further include the surface treatment agent (primary surface treatment agent) or a secondary surface treatment agent forming a bond with the magnetic particles. That is, when the magnetic composite further includes a secondary surface treatment agent, the secondary surface treatment agent may be introduced on the surface of the magnetic particles and/or the surface of the primary surface treatment agent treated on the surface of the magnetic particles. .
  • a polymer compound may be used as the secondary surface treatment agent.
  • a polymer compound having a weight average molecular weight in the range of about 1,000 to 500,000 may be applied as the secondary surface treatment agent.
  • its molecular weight (Mw) in another example is about 1500 or more, 2000 or more, 2500 or more, 3000 or more, 3500 or more, 4000 or more, 4500 or more, 5000 or more, 5500 or more, 6000 or more.
  • a polyurethane-based surface treatment agent As a high molecular compound that can be used as a secondary surface treatment agent, a polyurethane-based surface treatment agent, a polyurea-based surface treatment agent, a poly (urethane-urea)-based surface treatment agent, and/or a polyester-based (specifically branched polyester-based) surface treatment can be the best.
  • a compound containing a functional group that interacts with the primary surface treatment agent and/or the magnetic particles may be applied to the above-mentioned high molecular compound, or if it does not contain the functional group, such a functional group
  • a secondary surface treatment can also be performed by introducing and applying to a specific polymer compound.
  • a compound having a functional group that interacts with the primary surface treatment agent and/or magnetic particles may be applied, and these functional groups include the aforementioned phosphoric acid group, carboxyl group, sulfonic acid group, amino group and/or cyano group. No group, etc., secondary or tertiary amine group or amino group, urea bond, etc. may be exemplified, but the present invention is not limited thereto.
  • a polymer including a urea unit and/or a urethane unit may be applied as the secondary surface treatment agent.
  • the urea unit may be represented by the following formula (D), and the urea unit may be represented by the following formula (D or E):
  • R 4 to R 7 are each independently a hydrogen atom or an alkyl group, and L 1 and L 2 are each independently an aliphatic, alicyclic or aromatic divalent residue.
  • R 8 and R 9 are each independently a hydrogen atom or an alkyl group, and L 3 and L 4 are each independently an aliphatic, alicyclic or aromatic divalent residue.
  • the unit of formula D is a so-called urea unit, and may be a reaction product of a polyamine and a diisocyanate compound.
  • L 1 may be a structure derived from a diisocyanate compound participating in the reaction
  • L 2 may be a structure derived from a polyamine participating in the reaction.
  • the "derived structure” may be a structure excluding an isocyanate group from the diisocyanate compound in the case of L 1 , and in the case of L 2 , a structure of a portion excluding an amine group (-NH 2 ) from the polyamine compound.
  • the unit of formula E is a so-called urethane unit, and may be a reaction product of a polyol and a diisocyanate compound.
  • L 3 may be a structure derived from a diisocyanate compound participating in the reaction
  • L 4 may be a structure derived from a polyol participating in the reaction.
  • "derived structure” may be a structure in which an isocyanate group is excluded from the diisocyanate compound in the case of L 3
  • L 4 may be a structure of a portion excluding a hydroxyl group (-OH) in the polyol.
  • diisocyanate compound capable of forming the structures of Formulas D and E examples include tolylene diisocyanate, xylene (xylene) diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isoborone diisocyanate, and tetramethylxylene.
  • Diisocyanate or naphthalene diisocyanate may be exemplified, but is not limited thereto.
  • the polyamine capable of forming the structure of Formula D includes an alkylenediamine having an alkylene unit having 1 to 20, 1 to 16, 1 to 12, 1 to 8, or 1 to 4 carbon atoms, such as ethylenediamine or propylenediamine. This may be exemplified, but not limited thereto.
  • alkylene glycol having an alkylene unit having 1 to 20, 1 to 16, 1 to 12, 1 to 8, or 1 to 4 carbon atoms, such as ethylene glycol or propylene glycol. This may be exemplified, but not limited thereto.
  • polyurethane and/or polyurea or poly(urethane-urea) prepared by appropriately combining the above known monomers may be applied as the secondary surface treatment agent. If necessary, it may be applied after introducing a functional group required for the polyurethane and/or polyurea or poly(urethane-urea), etc. by a known chemical method.
  • the secondary surface treatment agent a compound having an appropriate acid value and/or amine value or not having an appropriate acid value and/or amine value may be applied depending on the type of compound mixed with the magnetic complex.
  • the secondary surface treatment agent may have an acid value in the range of 10 mgKOH/g to 400 mgKOH/g, or an amine value in the range of 5 mgKOH/g to 400 mgKOH/g.
  • the acid value of the secondary surface treatment agent is about 20 mgKOH/g or more, 30 mgKOH/g or more, 40 mgKOH/g or more, 50 mgKOH/g or more, 60 mgKOH/g or more, 70 mgKOH/g or more, 80 mgKOH/g or more, or 90 mgKOH /g or more, or about 390 mgKOH/g or less, 380 mgKOH/g or less, 370 mgKOH/g or less, 360 mgKOH/g or less, 350 mgKOH/g or less, 340 mgKOH/g or less, 330 mgKOH/g or less, 320 mgKOH/g or less, 310 mgKOH/g or less , 300mgKOH/g or less, 290mgKOH/g or less, 280mgKOH/g or less, 270mgKOH/g or less, 260mgKOH/g or less, 250mgKOH/g or less, 240mgKOH/g or less,
  • the amine value of the secondary surface treatment agent is about 10 mgKOH/g or more, about 15 mgKOH/g or more, about 20 mgKOH/g or more, 30 mgKOH/g or more, 40 mgKOH/g or more, 50 mgKOH/g or more, 60 mgKOH/g or more , 70 mgKOH/g or more, 80 mgKOH/g or more, or 90 mgKOH/g or more, or about 390 mgKOH/g or less, 380 mgKOH/g or less, 370 mgKOH/g or less, 360 mgKOH/g or less, 350 mgKOH/g or less, 340 mgKOH/g or less, 330 mgKOH/g or less, 320 mgKOH/g or less, 310 mgKOH/g or less, 300 mgKOH/g or less, 290 mgKOH/g or less, 280 mgKOH/g or less, 270 mgKOH/g or less, 260 mgKOH/g or less, 250 mgKOH/g
  • branched polyester surface treatment agent known as a so-called branched polyester-based dispersant may also be applied.
  • the secondary surface treatment agent may be included in the magnetic composite in an amount of 0.01 parts by weight to 30 parts by weight based on 100 parts by weight of the magnetic particles. It is also possible to form a magnetic composite having a desired performance under such a ratio. In another example, the ratio is about 0.5 parts by weight or more, 1 part by weight or more, 1.5 parts by weight or more, 2 parts by weight or more, 2.5 parts by weight or more, 3 parts by weight or more, 3.5 parts by weight or more, 4 parts by weight or more, 4.5 parts by weight or more. or more, or 5 parts by weight or more, or about 25 parts by weight or less, 20 parts by weight or less, 15 parts by weight or less, about 13 parts by weight or less, about 12 parts by weight or less, or 10 parts by weight or less.
  • a calorific value (SAR) of the magnetic composite may be 70 W/g to 120 W/g.
  • the calorific value may be 70 W/g to 110 W/g.
  • the magnetic composite When the magnetic composite satisfies the range of the above-described calorific value, it may satisfy the high heat property of the hot melt adhesive composition for a water treatment element according to the present specification.
  • the calorific value (SAR) may be calculated using Equation 1 below.
  • ⁇ T The temperature difference between the initial temperature and after 60 s.
  • the calorific value is affected by the volume of the mixed solution of the magnetic composite, it can be calculated by fixing the volume of the mixed solution to 0.35 ml and measuring the increased average temperature.
  • a thermocouple may be used to measure the average temperature.
  • the exothermic temperature of the magnetic composite may be 343 K to 370 K.
  • the exothermic temperature may be 345 K to 360 K.
  • melt flow index (MFI, Melt flow index) of the hot melt adhesive composition for the water treatment element is 5 g/10 min to 50 g/10 min at 177° C., 2.16 kg.
  • melt flow index of the water treatment element hot melt adhesive composition is within the above range, it is possible to maintain a constant viscosity to properly maintain an effective area when assembling the water treatment element.
  • the hot melt adhesive composition for the water treatment element has an adhesive strength of 800 gf/mm to 2,500 gf/mm.
  • the adhesive force was measured based on the adhesion force 800-2500 g peel-off test (ASTM D1876).
  • ASTM D1876 the adhesion force 800-2500 g peel-off test
  • the adhesive force should be measured while being attached and peeled off the separator.
  • the adhesive strength is too good, and the separator is torn.
  • the range of adhesive force described above is a measurement when the adhesive is torn together with the separator in the corresponding method. Therefore, in general, it was not possible to accurately measure the adhesive force by a method of measuring the adhesive force for an adhesive for a water treatment element, which means that it has a significantly higher adhesive force than the conventional adhesive for a water treatment element.
  • the adhesive force satisfies the above range, the operation at the time of rolling the water treatment element is easy, and the productivity of the water treatment element can be improved.
  • An exemplary embodiment of the present specification provides a water treatment element comprising an adhesive film comprising a hot melt adhesive composition for the water treatment element.
  • the water treatment element may be applied without limitation to components used in the art, except for including an adhesive film including the hot-melt adhesive composition for the water treatment element described above.
  • the adhesive film may be provided on a pair of side seals facing each other of the separator leaf.
  • the adhesive film may be provided on an end seal perpendicular to a pair of side seals facing each other of the separator leaf.
  • vertical does not mean only the meaning defined in geometry, for example, 'a state where two straight lines, semi-straight lines, and line segments meet at right angles', but a pair of opposing edge portions ( It means the edge part not attached to the central pipe, not the side seal).
  • the thickness of the adhesive film is 100 ⁇ m to 1,200 ⁇ m.
  • the thickness of the adhesive film is 200 ⁇ m to 400 ⁇ m.
  • the improvement effect is excellent in the side seal part of the water treatment element.
  • the overall thickness of the separator may be reduced due to the reduction in the thickness of the adhesive film, the metal particle ratio may be reduced, and the efficiency in manufacturing the water treatment element may be improved.
  • the trimming process which is a side seal processing process, can be omitted, and raw and subsidiary materials can be reduced.
  • the thickness of the adhesive film is 401 ⁇ m to 800 ⁇ m.
  • the improvement effect is excellent in the end seal portion of the water treatment element.
  • the water treatment element end seal part is sealed with the adhesive film according to the present specification, since it can be made thin while maintaining a constant width of the adhesive part, the effect of increasing the effective film area is excellent, and the thickness is also higher than that of liquid glue It can be thin to increase the efficiency of the water treatment element.
  • the thickness of the adhesive film means a length indicated by T in FIG. 2 .
  • the width of the adhesive film is 5 mm to 100 mm.
  • the width of the adhesive film is 15 mm to 25 mm.
  • the width of the adhesive film satisfies the above range, the operation at the time of rolling the water treatment element is easy, and the productivity of the water treatment element can be improved.
  • the width of the adhesive film means a length indicated by W in FIG. 2 .
  • the water treatment element may include a separator leaf and a channel material, and when the ends of the separator leaf and the channel material are adhered, the hot-melt adhesive composition for the water treatment element described above. It can be adhered using a film.
  • the end may mean a pair of opposing side seals of the separator leaf or a pair of opposing side seals of the separator leaf.
  • the water treatment element includes one or more separation membrane leaves, and the adhesive film is provided on a pair of side seals facing each other of the separation membrane leaf.
  • the water treatment element includes one or more separator leaves
  • the adhesive film is an edge portion perpendicular to a pair of side seals facing each other of the separator leaf (end seal) is provided in
  • the adhesive film may be adhered by heating and melting using induction.
  • heating and melting the adhesive film by using the induction may use a non-contact induction heating method by applying a magnetic field of 200 A to 500 A for 1 to 10 minutes.
  • a non-contact induction heating method can be used by applying a magnetic field of 375 A for 1 minute.
  • the separation membrane leaf is a component included in the water treatment element, and may be composed of one separation membrane or may be composed of two separation membranes.
  • a supply-side surface of the separation membrane may be folded with a supply-side channel member therebetween.
  • the separation membrane leaf is composed of two separation membranes, the supply-side surfaces of the separation membrane may be arranged to face each other, and a supply-side channel member may be positioned between the separation membranes.
  • the separation membrane leaf may be composed of a single separation membrane.
  • the channel member may mean a supply-side channel member or a permeate-side channel member.
  • the supply-side channel member may be a spacer, and the transmission-side channel member may be a tricot.
  • the channel member serves as a channel for creating a space through which the raw water introduced through the supply passage or the product water introduced through the permeation passage can flow.
  • the shape and type of the channel member are not particularly limited, and a channel member used in the art may be applied.
  • the materials of the supply-side channel member and the permeate-side channel member are not particularly limited, and may be the same material or different materials.
  • the supply-side flow path material may be expressed as a spacer or a feed spacer, and one separation membrane and the other separation membrane may receive water (raw water) containing foreign substances from the outside. It can play a role of maintaining a constant interval between the .
  • the permeation-side channel member may be expressed as a tricot, and means a space or passage inside one separation membrane folded in half to accommodate the product water filtered by the separation membrane. do.
  • the tricot has a structure made of fabric or knitted fabric, and may have a porous surface structure to create a space through which production water can flow.
  • the water treatment element may further include a central tube in addition to the separation membrane leaf and the channel member. Specifically, a folded portion or a sealed portion of the separation membrane leaf may be disposed to face the central tube, so that a plurality of separation membrane leaves and a channel member may be wound. When wound in this way, the water treatment element is manufactured in the form of a spiral wound.
  • the central pipe serves as a passage through which filtered production water (purified water) is introduced and discharged.
  • the shape of the central tube is not particularly limited, but is preferably located at the center of the water treatment element. In addition, one side of the central pipe may be opened so that the produced water can be discharged.
  • the central pipe may include a plurality of pores, and when water treatment is performed by the water treatment element, the produced water flows into the inside of the central pipe through the plurality of pores of the central pipe. , the introduced production water is discharged through one open side of the central pipe.
  • the material of the central tube is not particularly limited, and a general material known in this field may be used.
  • the water treatment element may further include wrapping (wrapping) so that the wound shape is maintained.
  • the wrapped water treatment elements may be connected in series or parallel to be accommodated in a pressure vessel, and may be used as a separation membrane module.
  • the separation membrane module may be used for water treatment, and when used for water treatment, the raw water may be seawater, but is not limited thereto.
  • the separation membrane included in the separation membrane leaf may refer to a water treatment separation membrane or a gas separation membrane.
  • the water treatment separation membrane may be used as a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane or a reverse osmosis membrane, and preferably a reverse osmosis membrane.
  • the separation membrane may be a water treatment separation membrane.
  • the separation membrane may be a reverse osmosis membrane.
  • the separation membrane may be a gas separation membrane.
  • the separator includes a porous layer; and a polyamide active layer provided on the porous support.
  • the polyamide active layer may be formed by contacting an organic solution containing an acyl halide compound on the aqueous solution layer containing the amine compound.
  • a coating layer of a polymer material formed on a nonwoven fabric may be used.
  • the polymer material include polysulfone, polyethersulfone, polycarbonate, polyethylene oxide, polyimide, polyetherimide, polyetheretherketone, polypropylene, polymethylpentene, polymethylchloride and polyvinylidene fluoride. Ride and the like may be used, but is not necessarily limited thereto.
  • polysulfone may be used as the polymer material.
  • the coating layer may be a polysulfone layer.
  • Polyethylene terephthalate may be used as the material of the nonwoven fabric, but is not limited thereto.
  • the thickness of the nonwoven fabric may be 50 ⁇ m to 150 ⁇ m, but is not limited thereto. Preferably, the thickness may be 80 ⁇ m to 120 ⁇ m. When the thickness of the nonwoven fabric satisfies the above range, the durability of the separator including the porous support including the nonwoven fabric may be maintained.
  • the thickness of the coating layer may be 20 ⁇ m to 100 ⁇ m, but is not limited thereto. Preferably, the thickness may be 40 ⁇ m to 80 ⁇ m. When the thickness of the coating layer satisfies the above range, the durability of the separator including the porous support including the coating layer may be maintained.
  • the coating layer may be made of a polymer solution containing the polysulfone.
  • Polysulfone-containing polymer solution based on the total weight of the polysulfone-containing polymer solution, 80 wt% to 90 wt% solvent dimethylformamide 10 wt% to 20 wt% polysulfone solids, It may be a homogeneous liquid obtained after dissolving at 80° C. to 85° C. for 12 hours, but the weight range is not limited thereto.
  • the durability of the separator including the porous layer including the coating layer may be maintained.
  • the coating layer may be formed by a method of casting.
  • the casting refers to a solution casting method, and specifically, it may refer to a method of dissolving the polymer material in a solvent and then dissolving the polymer material in a solvent, developing it on a smooth surface without adhesiveness, and then replacing the solvent.
  • the method of substituting the solvent may use a nonsolvent induced phase separation method.
  • a non-solvent-induced phase separation method a polymer is dissolved in a solvent to make a homogeneous solution, molded into a predetermined shape, and then immersed in a non-solvent.
  • the polyamide active layer may be formed by reacting the amine compound with the acyl halide compound when the amine compound and the acyl halide compound are in contact to generate polyamide through interfacial polymerization, and adsorbing to the above-described porous layer.
  • the contacting may be performed through a method such as dipping, spraying or coating. Interfacial polymerization conditions known in the art may be used without limitation.
  • an aqueous solution layer including an amine compound may be formed on the porous layer.
  • a method of forming an aqueous solution layer including an amine compound on the porous layer is not particularly limited, and any method capable of forming an aqueous solution layer on the porous support may be used without limitation.
  • the method of forming the aqueous solution layer containing the amine compound on the porous layer may include spraying, application, immersion, dripping, coating, and the like.
  • the aqueous solution layer may be additionally subjected to a step of removing the aqueous solution containing the excess amine compound, if necessary.
  • the aqueous solution layer formed on the porous layer may be non-uniformly distributed when the aqueous solution present on the porous layer is too large.
  • a non-uniform polyamide active layer is formed by subsequent interfacial polymerization. can be Therefore, it is preferable to remove the excess aqueous solution after forming the aqueous solution layer on the porous layer.
  • the excess aqueous solution removal is not particularly limited, but, for example, may be performed using a sponge, an air knife, nitrogen gas blowing, natural drying, or a compression roll.
  • the type of the amine compound is not limited as long as it is an amine compound used for manufacturing the separator.
  • m-phenylenediamine, p-phenylenediamine, 1,3,6 -Benzenetriamine, 4-chloro-1,3-phenylenediamine, 6-chloro-1,3-phenylenediamine, 3-chloro-1,4-phenylenediamine or a mixture thereof is preferable.
  • the solvent of the aqueous solution containing the amine compound may be water, and further includes acetone, dimethyl sulfoxide (DMSO), 1-methyl-2-pyrrolidinone (NMP) or hexamethylphosphoramide (HMPA). can do.
  • DMSO dimethyl sulfoxide
  • NMP 1-methyl-2-pyrrolidinone
  • HMPA hexamethylphosphoramide
  • the content of the amine compound may be 1 wt% or more and 10 wt% or less based on the total weight of the composition. When the above content is satisfied, the salt removal rate and flow rate desired in the present invention can be secured.
  • the polyamide active layer may be prepared by coating an aqueous solution containing an amine compound on the porous layer and then interfacial polymerization by contacting an organic solution containing an acyl halide compound.
  • the acyl halide compound is not limited as long as it can be used for polymerization of polyamide, but as a specific example, an aromatic compound having 2 to 3 carboxylic acid halides, trimesoyl chloride, isophthaloyl chloride, and terephthaloyl One or a mixture of two or more selected from the group of compounds consisting of chloride may be preferably used.
  • the content of the acyl halide compound may be 0.01 wt% or more and 0.5 wt% or less based on the total weight of the composition. When the above content is satisfied, an excellent salt removal rate and flow rate can be secured.
  • organic solvent included in the organic solution containing the acyl halide compound examples include an aliphatic hydrocarbon solvent, for example, a hydrophobic liquid that is immiscible with freons and water such as hexane, cyclohexane, heptane, and alkane having 5 to 12 carbon atoms,
  • alkanes having 5 to 12 carbon atoms and mixtures thereof may be used, such as IsoPar (Exxon), ISOL-C (SK Chem), ISOL-G (Exxon), but is not limited thereto.
  • the content of the organic solvent may be 95 wt% to 99.99 wt% based on the total weight of the organic solution including the acyl halide compound, but is not limited thereto. When the above content is satisfied, an excellent salt removal rate and flow rate can be secured.
  • the thickness of the polyamide active layer may be 10 nm to 1,000 nm, but is not limited thereto.
  • the thickness may be preferably 300 nm to 500 nm.
  • FIG. 1 is a plan view of a separator leaf (M) including an adhesive film composed of a hot-melt adhesive composition for a water treatment element according to the present specification
  • FIG. 2 is a perspective view.
  • the adhesive films 10 and 20 are heated and melted using induction. Since the hot-melt adhesive composition for a water treatment element according to the present specification is a solid type, it is easy to control the adhesion area and thickness, and thus has the advantage of easy rolling operation.
  • the curing time is short and the process is simplified, so that workability can be improved when manufacturing the water treatment element.
  • the effective area may be reduced and some separation membranes may be lost.
  • the liquid adhesive composition since the liquid adhesive composition is not fixed immediately upon application, it is difficult to control the thickness and area.
  • the defect rate of the water treatment separation membrane element such as the occurrence of leakage during the rolling process may be increased.
  • the curing time of the liquid adhesive composition is long.
  • the hot melt adhesive composition for a water treatment element according to the present specification can compensate for the disadvantages of the liquid polyurethane adhesive composition described above.
  • the adhesive film may be provided on a pair of side seals 10 facing each other of the separator leaf.
  • the adhesive film may be provided on an end seal 20 perpendicular to a pair of side seals facing each other of the separator leaf.
  • FIG. 3 shows a schematic diagram of the stacking of the components constituting the water treatment element according to the present specification.
  • the water treatment element of the present specification may be manufactured by alternately arranging a plurality of separation membrane leaves 2 and a plurality of channel members.
  • the channel member may be a supply-side channel member 1-2 or a permeation-side channel member 1-1.
  • the adhesive film may be provided between each of the arranged plurality of separation membrane leaves 2 and the plurality of channel members to constitute a water treatment element.
  • the hot-melt adhesive composition for the water treatment element was in the form of a film having a size of 20 mm in width ⁇ 1,000 mm in length.
  • the prepared hot melt adhesive composition for water treatment elements was placed on the side seal and end seal of the separator as shown in FIG. 1 , and then wound to prepare a spiral wound type water treatment element.
  • the wound spiral wound type water treatment element was placed in a magnetic field coil, and a magnetic field was applied at 375 A for 1 minute to proceed with adhesion through a non-contact induction heating method.
  • the thickness of applying the hot-melt adhesive composition for the water treatment element to the water treatment element was 300 ⁇ m, and the width was 20 mm.
  • the thickness and width of applying the hot melt adhesive composition for the water treatment element to the water treatment element in Example 1 is the same as in Example 1 except that the ones described in Table 1 are applied, and only the side seal of FIG. 1 is located.
  • the adhesive film of Example 2 and a water treatment element including the same were prepared.
  • Example 1 except that the thickness and width of applying the hot melt adhesive composition for the water treatment element to the water treatment element, the time described in Table 2 below, and the time described in Table 2 were applied, and placed only on the end seal of FIG. 1
  • Adhesive films of Examples 3 and 4 and a water treatment element including the same were prepared by the same manufacturing method and conditions.
  • a water treatment element was manufactured in the same manner as in Example 1, except that a liquid polyurethane adhesive (H.B. Fuller, UR3519) was used instead of the hot melt adhesive composition for the water treatment element in Example 1.
  • a liquid polyurethane adhesive H.B. Fuller, UR3519
  • Example 1 X Based on Autopsy and salt removal rate Example 2 X Based on Autopsy and salt removal rate
  • Example 3 and Comparative Example 1 it was determined whether there is a leak in the element by removing air through a vacuum pump from the central pipe (production water) side of the water treatment element that has been wound and measuring how much vacuum is maintained. Specifically, while sucking air with a vacuum pump, the initial vacuum pressure was measured to see how much vacuum was held for 30 seconds based on 1,000 mbar. Then, while stopping the suction of air with the vacuum pump, the vacuum end pressure was measured how much the vacuum was released for 30 seconds. By calculating the difference between the vacuum initial pressure and the vacuum end pressure, it was confirmed to what extent the vacuum degree was maintained. The results are shown in Table 6 below.
  • a raw material was prepared by mixing a magnetic particle precursor (Iron (III) chloride hexahydrate), an aqueous solvent (distilled water) and a base (sodium acetate) with a polar solvent (ethylene glycol). Concentrations of the magnetic particle precursor and the base in the raw material were mixed to be 0.1 M and 1.09 M, respectively, and the aqueous solvent was mixed so as to be 10.67% by volume relative to the volume of the polar solvent. In this case, 160 mL of an aqueous solvent (distilled water) and 1500 mL of a polar solvent (ethylene glycol) were used.
  • the concentrations of the magnetic particle precursor and the base in the raw material are mixed to be 0.05 M and 0.76 M, respectively, and the aqueous solvent is mixed so as to be 5.26% by volume relative to the volume of the polar solvent, and the ( 4) Except for mixing the surface treatment agent with the raw material cooled in the process in an amount of about 19.4 parts by weight based on 100 parts by weight of the magnetic particle precursor applied to the raw material
  • a magnetic composite was prepared in the same manner as in Experimental Example 1.
  • the concentrations of the magnetic particle precursor and the base in the raw material are mixed to be 0.05 M and 0.76 M, respectively, and the aqueous solvent is mixed so as to be 5.26% by volume relative to the volume of the polar solvent, and the ( 4) Experimental Example 1, except that the surface treatment agent (polyacrylic acid having a weight average molecular weight of 15,000, Sigma Aldrich Co.) was mixed with the raw material cooled in the process in an amount of about 19.4 parts by weight based on 100 parts by weight of the magnetic particle precursor applied to the raw material A magnetic composite was prepared in the same manner.
  • the surface treatment agent polyacrylic acid having a weight average molecular weight of 15,000, Sigma Aldrich Co.
  • the concentrations of the magnetic particle precursor and the base in the raw material are mixed to be 0.05 M and 0.76 M, respectively, and the aqueous solvent is mixed so as to be 5.26% by volume relative to the volume of the polar solvent, and the ( 4) Experimental Example 1, except that the surface treatment agent (CS20A product of CRODA, known as a phosphoric acid-based monomolecular dispersant) was mixed with the raw material cooled in the process in an amount of about 16.67 parts by weight based on 100 parts by weight of the magnetic particle precursor applied to the raw material A magnetic composite was prepared in the same manner.
  • the surface treatment agent CS20A product of CRODA, known as a phosphoric acid-based monomolecular dispersant
  • the concentrations of the magnetic particle precursor and the base in the raw material are mixed to be 0.05 M and 0.76 M, respectively, and the aqueous solvent is mixed so as to be 5.26% by volume relative to the volume of the polar solvent, and the ( 4) Experimental example except that the surface treatment agent (Disper-111 product of BYK, known as a phosphoric acid-based copolymer dispersant) was mixed with the raw material cooled in the process in an amount of about 16.67 parts by weight based on 100 parts by weight of the magnetic particle precursor applied to the raw material A magnetic composite was prepared in the same manner as in 1.
  • a magnetic particle precursor (Iron (III) chloride hexahydrate), an aqueous solvent (distilled water), a base (sodium acetate) and a surface treatment agent (polyacrylic acid with a weight average molecular weight of 5,100, Sigma Aldrich) were mixed with a polar solvent (ethylene glycol) and mixed to prepare a raw material.
  • concentrations of the magnetic particle precursor and the base in the raw material are respectively 0.05 M and 0.76 M, and the aqueous solvent is mixed so as to be 5.26 vol% based on the volume of the polar solvent, and the surface treatment agent is the magnetic particle precursor. It was mixed in a ratio of about 19.44 parts by weight based on 100 parts by weight.
  • step (2) The crystals generated in the step (2) are clustered by heating until the temperature of the raw material that has undergone the step (2) is approximately 190°C (for a time of 120 minutes at a temperature increase rate of about 1°C/min) got angry
  • step (3) The raw material subjected to step (3) was cooled until the temperature reached approximately 70° C. (for 2 hours at a temperature reduction rate of about 1° C./min).
  • the concentrations of the magnetic particle precursor and the base in the raw material are mixed to be 0.09 M and 1.43 M, respectively, and the aqueous solvent is mixed so as to be 10.53% by volume relative to the volume of the polar solvent, and the surface A magnetic composite was prepared in the same manner as in Experimental Example 6, except that the treating agent was mixed in a ratio of about 9.72 parts by weight based on 100 parts by weight of the magnetic particle precursor.
  • the concentrations of the magnetic particle precursor and the base in the raw material are mixed to be 0.05 M and 0.76 M, respectively, and the aqueous solvent is mixed so as to be 5.26% by volume relative to the volume of the polar solvent, and the surface A magnetic composite was prepared in the same manner as in Experimental Example 6, except that the treatment agent (polyacrylic acid having a weight average molecular weight of 15,000, Sigma Aldrich) was mixed in a ratio of about 19.44 parts by weight to 100 parts by weight of the magnetic particle precursor.
  • the treatment agent polyacrylic acid having a weight average molecular weight of 15,000, Sigma Aldrich
  • CRODA's CS20A product known as a phosphoric acid-based monomolecular dispersant
  • the concentrations of the magnetic particle precursor and the base in the raw material are mixed to be 0.09 M and 1.43 M, respectively.
  • the aqueous solvent is mixed so as to be 10.53 volume % based on the volume of the polar solvent, and the surface treatment agent is mixed in a ratio of about 8.33 parts by weight based on 100 parts by weight of the magnetic particle precursor in the same manner as in Experimental Example 6 to prepare a magnetic composite.
  • BYK's Disper-111 product known as a phosphoric acid-based copolymer dispersant
  • concentrations of the magnetic particle precursor and the base in the raw material are 0.05 M and 0.76 M, respectively.
  • the aqueous solvent is mixed so as to be 5.26% by volume relative to the volume of the polar solvent, and the surface treatment agent is mixed in a ratio of about 16.67 parts by weight based on 100 parts by weight of the magnetic particle precursor.
  • a magnetic composite was prepared in the same manner.
  • the hot-melt adhesive composition for the water treatment element was in the form of a film having a size of 20 mm in width ⁇ 1,000 mm in length.
  • the prepared hot melt adhesive composition for water treatment elements was placed on the side seal and end seal of the separator as shown in FIG. 1 , and then wound to prepare a spiral wound type water treatment element.
  • the wound spiral wound type water treatment element was placed in a magnetic field coil, and a magnetic field was applied at 375 A and a rotation speed of 60 rpm for 10 minutes to perform adhesion through a non-contact induction heating method.
  • the thickness of applying the hot-melt adhesive composition for the water treatment element to the water treatment element was 300 ⁇ m, and the width was 20 mm.
  • Equation 3 the result value within the 2 ⁇ range of 60.824° to 64.957° showing a peak at 62.57° is substituted into Equation 3 below to measure the size of the crystal did. This is shown in Table 8 below.
  • is the crystal size
  • K is the Scherrer constant, which is 0.94 with respect to the maximum half width of a spherical crystal having cubic symmetry
  • the wavelength of X-ray ⁇ is the maximum half maximum width of the diffraction peak
  • is the Bragg diffraction angle.
  • SEM scanning electron microscope, JEOL's FESEM, JSM7610F equipment
  • the crystal size of the magnetic particles satisfies the range of 15 nm to 40 nm, but in Experimental Examples 6 to 10, it can be confirmed that the crystal size of the magnetic particles is less than 15 nm.
  • the magnetic particles in the magnetic body of Experimental Examples 1 to 5 had a smoother surface compared to the magnetic material of Experimental Examples 6 to 10, and the magnetic particles in the magnetic body of Examples had clustered crystals, and each magnetic particle was surface treated with a surface treatment agent. has been In the magnetic particles of the magnetic material of Experimental Examples 6 to 10 at which the input time of the surface treatment agent is different, the surface treatment agent is introduced to the surface of the crystal, and thus has a relatively small crystal size compared to Experimental Examples 1 to 5.
  • the calorific value (SAR) was calculated using Equation 1 below.
  • ⁇ T The temperature difference between the initial temperature and after 60 s.
  • the calorific value is affected by the volume of the mixed solution of the magnetic composite, the volume of the mixed solution was fixed to 0.35 ml and the average temperature increased by measuring the calorific value was calculated. A thermocouple was used to measure the average temperature. This is shown in Table 8 below.
  • the exothermic temperature was measured by applying an alternating magnetic field to 0.35 mL of a magnetic fluid prepared by dissolving 0.5 g of powder of magnetic particles in 10 g of water under a current of 120.4 A and a frequency of 310 kHz for 60 seconds, which is shown in Table 8 below. did.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 명세서는 수처리 엘리먼트용 핫멜트 접착제 조성물, 접착 필름 및 이를 포함하는 수처리 엘리먼트를 제공한다.

Description

수처리 엘리먼트용 핫멜트 접착제 조성물, 접착 필름 및 이를 포함하는 수처리 엘리먼트
본 명세서는 2019년 12월 11일 한국특허청에 제출된 한국 특허 출원 제10-2019-0164847호, 2019년 12월 11일 한국특허청에 제출된 한국 특허 출원 제10-2019-0164854호, 2019년 12월 11일 한국특허청에 제출된 한국 특허 출원 제10-2019-0164850호, 및 2019년 12월 11일 한국특허청에 제출된 한국 특허 출원 제10-2019-0164867호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 수처리 엘리먼트 핫멜트 접착제 조성물, 접착 필름 및 이를 포함하는 수처리 엘리먼트에 관한 것이다.
분리막 제조 및 공정기술은 고순도, 고기능성 물질의 제조와 지구 환경 보호 등의 사회적 요구에 따라서 간단한 실험실적 규모로부터 산업분야의 대규모 공정에 이르기까지 광범위하게 응용되고 있다.
그 중 전 세계적으로 지구온난화에 따른 물 부족 현상이 심화되고 있는 가운데 대체 수자원 확보기술인 물 정화 기술이 주목을 받고 있다. 따라서, 해수담수화, 물의 재이용 등 대체 수자원을 활용한 차세대 수도사업의 핵심기술인 역삼투막(Reverse osmosis membrane)을 이용한 수처리 공정이 물 산업 시장을 주도할 것으로 예상되고 있다. 이러한 역삼투막에 의한 역삼투막 투과수는 순수한 물 내지 한없이 순수한 물에 가까운 물이 되어 의료용의 무균수나 인구 투석용 정제수, 혹은 전자 산업의 반도체의 제조용 물 등 다양한 분야에서 이용되고 있다.
또한, 분리막은 수소, 산소를 비롯한 가스분리 분야 등에 광범위하게 확대 적용되고 있다.
본 명세서는 수처리 엘리먼트용 핫멜트 접착제 조성물, 접착 필름 및 이를 포함하는 수처리 엘리먼트를 제공한다.
본 명세서의 일 실시상태는 고분자 수지; 및 자성복합체를 포함하는 수처리 엘리먼트용 핫멜트 접착제 조성물을 제공한다.
본 명세서의 일 실시상태는 전술한 수처리 엘리먼트용 핫멜트 접착제 조성물을 포함하는 접착 필름을 제공한다.
본 명세서의 일 실시상태는 전술한 접착 필름을 포함하는 수처리 엘리먼트를 제공한다.
본 명세서의 일 실시상태에 의한 수처리 엘리먼트용 핫멜트 접착제 조성물을 이용하여 수처리 엘리먼트를 제조하는 경우, 유효막 면적을 증가시키고, 수처리 엘리먼트의 생산성을 높이고 불량률을 줄이며, 작업성을 향상시킬 수 있다.
도 1은 수처리 엘리먼트용 핫멜트 접착제 조성물로 구성되는 접착 필름을 포함하는 분리막 리프의 평면도를 도시한 것이다.
도 2는 수처리 엘리먼트용 핫멜트 접착제 조성물로 구성되는 접착 필름을 포함하는 분리막 리프의 사시도를 도시한 것이다.
도 3은 본 명세서에 따른 수처리 엘리먼트를 구성하는 구성요소들의 적층 모식도를 나타낸 것이다.
<부호의 설명>
1-1: 투과측 유로재
1-2: 공급측 유로재
2: 분리막 리프
3: 중심관
10: 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)의 접착 필름
20: 분리막 리프의 서로 대향하는 한 쌍의 가장자리부에 수직하는 가장자리부(end seal)의 접착 필름
M: 분리막 리프
T: 두께
W: 폭
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 명세서의 일 실시상태는 고분자 수지; 및 자성복합체를 포함하는 수처리 엘리먼트용 핫멜트 접착제 조성물을 제공한다.
일반적인 수처리 엘리먼트는 나권형(spiral wound) 형태로 제조되며, 일반적으로 액체형 폴리우레탄 접착제 조성물을 이용하여 수처리 분리막을 밀봉함으로써, 원수와 생산수가 섞이는 것을 구분하고 있다. 상기 액체형 폴리우레탄 접착제 조성물을 이용하는 경우, 후술하는 바와 같은 한계가 있다. 접착 면적이 넓어, 일부 불필요한 접착 면적을 잘라내는 과정에 있어서, 유효 면적이 줄어드는 등의 분리막이 손실될 수 있다. 또한, 액체형 접착제 조성물은 도포시 바로 고정이 되지 않으므로 두께 및 면적의 제어가 힘들다는 단점이 있다. 그리고, 롤링 공정시 리크가 발생하는 등의 수처리 엘리먼트의 불량률이 높아질 수 있다. 또한, 액체형 접착제 조성물의 경화시간이 오래 걸린다는 단점이 있다.
반면, 본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물은 고체형이며, 필름 형태로써, 인덕션의 적용이 가능한 자성복합체를 포함함으로써, 수처리 엘리먼트에 적용하는 경우 수처리 엘리먼트의 생산성을 높이고, 불량률을 줄이며 작업성을 향상시킬 수 있다.
구체적으로, 본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물은 고체형이므로 접착 면적 및 두께의 조절이 용이하여, 수처리 엘리먼트 롤링시의 작업이 용이하다. 또한, 본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물은 습도, 온도 등 외부 환경에 의한 물성 변화 정도가 작아 내화학성 및 내수성이 우수하다는 장점이 있다. 또한, 경화 시간이 짧고, 공정이 단순화되어, 수처리 엘리먼트 제조시 작업성을 향상시킬 수 있다.
본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물이 자성복합체를 포함하지 않는 경우, 이를 수처리 엘리먼트 제조에 사용하는 경우 자성복합체에 의한 인덕션 기능이 없어 선택적인 히팅(heating)이 불가능하다. 반면, 본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물이 자성복합체를 포함함으로써 선택적인 히팅(heating)이 가능하여 수처리 엘리먼트 제조시 수처리 분리막에 손상을 가하지 않고 부착 가능하다.
본 명세서의 일 실시상태에 있어서, 상기 수처리 엘리먼트용 핫멜트 접착제 조성물은 150℃의 온도, 70 kg/cm 2의 압력 및 30초의 조건에서 경화될 수 있으며, 상기 수처리 엘리먼트용 핫멜트 접착제 조성물은 150℃의 온도와 70 kg/cm 2의 압력하에서, 30초 내에 경화될 수 있다. 나아가 상기 수처리 엘리먼트용 핫멜트 접착제 조성물은 110 내지 150℃의 온도, 60 내지 70 kg/cm 2의 압력 및 20 내지 30초의 조건에서 경화될 수 있다.
이하 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서의 일 실시상태에 있어서, 상기 고분자 수지는 폴리우레탄, 폴리에스테르, 폴리아마이드 또는 폴리에테르를 포함시켜 제조할 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 폴리우레탄의 중량평균 분자량은 30,000 g/mol 내지 1,000,000g/mol 일 수 있으나, 이에 한정되는 것은 아니다.
상기 중량평균 분자량은 겔투과크로마토그래피(GPC)를 이용하여 측정할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 핫멜트 접착제 조성물 100 중량부를 기준으로 상기 폴리우레탄의 함량은 90 내지 99.9 중량부이고, 상기 자성복합체의 함량은 0.1 내지 10 중량부이다.
본 명세서의 일 실시상태에 있어서, 상기 핫멜트 접착제 조성물 100 중량부를 기준으로, 상기 폴리우레탄의 함량은 90 내지 99 중량부 , 91 내지 99 중량부, 92 내지 99 중량부, 93 내지 99 중량부, 94 내지 99 중량부, 90 내지 98 중량부, 90 내지 97 중량부, 90 내지 96 중량부 또는 94 내지 96 중량부일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 핫멜트 접착제 조성물 100 중량부를 기준으로, 상기 자성복합체의 함량은 1 내지 10 중량부, 1 내지 9 중량부, 1 내지 8 중량부, 1 내지 7 중량부, 1 내지 6 중량부, 2 내지 10 중량부, 3 내지 10 중량부, 4 내지 10 중량부, 또는 4 내지 6 중량부일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 자성 복합체란 자성 입자를 포함하는 것으로, 외부에서의 교류 자기장의 인가에 의해 열을 발생시키는 물질을 의미한다.
상기 자성복합체는 자성 입자를 포함하기 때문에 유도 가열 방식이 적용된다.
상기 자성 입자는 전자기장의 인가, 즉 유도 가열을 통해 발열할 수 있는 것이라면 이의 화학적 조성은 특별히 제한되지 않는다. 예를 들어, 상기 자성 입자는 하기 화학식 1로 표시되는 화합물을 포함할 수 있다:
[화학식 1]
MX aO b
화학식 1에서, M은 금속 또는 금속 산화물이고, X는 Fe, Mn, Co, Ni 또는 Zn을 포함하며, |a × c| = |b × d|을 만족하고, 상기 c는 X의 양이온 전하이고, 상기 d는 산소의 음이온 전하이다. 일 예시에서, 상기 화학식 1의 M은 Fe, Mn, Mg, Ca, Zn, Cu, Co, Sr, Si, Ni, Ba, Cs, K, Ra, Rb, Be, Li, Y, B 또는 이들의 산화물일 수 있다. 예를 들어, X aO b가 Fe 2O 3인 경우 c는 +3이고, d는 -2일 수 있다. 또한, 예를 들어, XaOb가 Fe 3O 4인 경우, 이는 FeOFe 2O 3로 표현될 수 있으므로, c는 각각 +2 및 +3이고, d는 -2일 수 있다. 상기 자성 입자가 갖는 화합물의 구조는 상기 화학식 1을 만족하는 한 특별히 제한되지 않고, 예를 들어, FeOFe 2O 3일 수 있다.
상기 자성 입자는 상기 화학식 1의 화합물로 이루어질 수 있고, 또는 상기 화학식 1의 화합물에 무기물이 도핑된 화합물을 포함할 수 있다. 상기 무기물은 1가 내지 3가의 양이온 금속 또는 이들의 산화물을 포함할 수 있으며, 2 종 이상의 복수의 양이온 금속을 사용할 수도 있다.
본 명세서의 일 실시예에 따르면, 상기 자성 입자 또는 자성 입자 클러스트는 산화철일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 자성 입자는 개별 입경이 15nm 내지 40nm일 수 있다. 이때, 개별 입경은 입자 각각의 개별적인 입경을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 자성 입자는 자성 입자 클러스트를 형성하고 있을 수 있다. 상기 자성 입자 클러스트란, 1차 입자인 자성 입자가 서로 응집되어 형성된 덩어리인 2차 입자를 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 자성 입자 클러스트를 이루는 1차 입자인 자성 입자는 개별 입경이 15nm 내지 40nm일 수 있다. 상기 자성 입자 클러스트를 이루는 1차 입자의 입경은 결정 크기로 확인할 수 있으며, 상기 자성 입자 클러스트를 이루는 1차 입자의 입경은 상기 자성 입자 클러스트 내 결정 크기로 대변될 수 있다. 다시 말하면, 상기 자성 입자 클러스트의 결정 크기, 또는 상기 자성복합체의 결정 크기는 15nm 내지 40nm일 수 있다.
여기서, 1차 입자인 자성 입자는 결정이 성장하며 이루어진 입자로서 같은 결정특성을 가지며, 자성 입자 클러스트는 1차 입자가 응집되어 형성된 2차 입자로서 자성 입자 클러스트 내 결정특성은 1차 입자의 결정특성에 영향을 받아 다양한 결정특성을 갖는다. 따라서, 최종적으로 제조된 자성 입자 클러스트 또는 자성복합체에 대해서 결정특성을 분석한 결과는 1차 입자인 자성 입자의 특성이다.
일 실시상태에 있어서, 상기 자성입자 클러스트의 주변에 표면 처리제가 존재할 수 있다. 즉, 본 명세서의 자성 복합체는 자성 입자 및 이의 표면에 구비된 표면 처리제를 포함하며, 바람직하게는 자성 입자 클러스트 및 이의 표면에 구비된 표면 처리제를 포함한다.
상기 자성복합체 제조시 표면처리제를 첨가하는 방법으로 자성복합체에 포함되는 1차 입자인 자성 입자의 결정의 크기가 조절될 수 있으며, 또한 상기 1차 입자인 자성 입자의 평균입경을 제어하여 발열 특성이 조절될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 자성복합체는 결정 크기가 15 nm 내지 40 nm인 것인 자성 입자를 포함하며, 상기 결정 크기는 바람직하게 20 nm 내지 35 nm이다.
상기 자성 입자가 전술한 범위의 결정 크기를 만족하는 경우, 자성 복합체의 발열량을 향상시킬 수 있다.
상기 자성 입자의 결정 크기는 X선 회절 분석법(XRD)를 이용하여 측정할 수 있다. 구체적으로, Bruker사의 XRD-07-D8_Endeavor 장비를 이용해 10˚ 내지 90˚의 2θ 구간을 측정한다. 62.57˚피크를 포함한 60.824˚ 내지 64.957˚ 구간을 이용해 결정의 크기(τ)를 구한다. DIFFRAC.SUITE EVA 프로그램에 내장된 Scherrer equation(τ=(K×λ)/(β×cos(θ)))을 이용할 수 있고, K 값은 0.94로 설정하여 구할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 자성 입자 클러스트의 평균 입경은 20 nm 내지 300 nm이다. 바람직하게 상기 자성 입자 클러스트의 평균 입경은 60 nm 내지 200 nm이고, 더욱 바람직하게 80 nm 내지 120 nm이다.
상기 자성 입자 클러스트의 평균 입경은 시편을 제조하여 주사전자현미경(SEM)을 이용하여 측정할 수 있다.
구체적으로 상기 시편은 상기 자성 입자 클러스트에 백금(Pt) 코팅을 진행하여 제조할 수 있다. 상기 백금(Pt) 코팅은 CRESSINGTON SPUTTER COATER 108 모델을 사용할 수 있고, 오토(auto) 모드로 60초 내지 90초 코팅하여 시편을 제조할 수 있다. 상기 주사전자현미경(SEM)은 JEOL사의 FESEM, JSM7610F 장비일 수 있다. 상기 시편의 주사전자현미경(SEM) 사진을 통해, 상기 자성 입자의 나노클러스터 형성 여부를 확인하고 평균 입경을 구할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 자성 복합체는 표면처리제를 포함한다. 여기서, 표면처리제는 자성 입자의 표면에 처리되어 내제되어 있지 않은 특성을 새롭게 부여할 수 있는 물질을 의미하며, 그 중에 특별히 자성 입자가 적용될 제품에 고르게 분산될 수 있도록 자성 입자에 분산 특성을 부여하는 표면처리제를 분산제라 할 수 있다. 자성 입자에 분산 특성을 부여하는 표면처리제라 하더라도, 상기 분산 특성과 함께 다른 표면특성도 함께 부여할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 표면처리제는 상기 자성 입자의 전구체, 상기 자성 입자 또는 자성 입자 클러스트의 표면에 강한 결합력으로 결합할 수 있는 관능기를 가지는 화합물을 적용할 수 있다. 상기 관능기를 가지는 화합물로는 인산기(phosphoric acid group), 카복실기(carboxyl group), 술폰산기(sulfonic acid group), 아미노기(amino group) 및/또는 시아노기(cyano group)를 가지는 화합물을 적용할 수 있다. 따라서 상기 자성 입자, 자성 입자의 전구체 또는 자성 입자 클러스트는 상기와 같은 관능기를 가지는 물질, 즉 표면처리제에 의해서 표면 처리되어 있을 수 있다.
본 출원에서 표면처리제로서 적용할 수 있는 화합물로는, 폴리올계 화합물, 폴리실록산계 화합물, 알킬 인산(alkyl phosphoric acid)계 표면처리제(예를 들면, 하기 화학식 A의 화합물), 알킬 카복실산(alkyl carboxylic acid)계 표면 처리제(예를 들면, 하기 화학식 B의 화합물), 술폰산(alkyl sulfonic acid)계 표면 처리제(예를 들면, 하기 화학식 C의 화합물), 기타 장쇄 알킬기를 포함하는 산 화합물, 산성 관능기 또는 아미노기를 포함하는 아크릴 공중합체, 방향족 산계 표면 처리제, 산성 관능기 또는 아미노기를 포함하는 블록 공중합체 등을 적용할 수 있다.
[화학식 A]
Figure PCTKR2020018148-appb-img-000001
[화학식 B]
Figure PCTKR2020018148-appb-img-000002
[화학식 C]
Figure PCTKR2020018148-appb-img-000003
화학식 A 내지 C에서 R 1 내지 R 3는 각각 독립적으로 알킬기, 아릴알킬기, 알콕시기 또는 아릴알콕시기이다.
상기 화학식 A 내지 C에 포함될 수 있는 알킬기 또는 알콕시기로는 탄소수가 6 내지 24의 범위 내인 알킬기 또는 알콕시기가 예시될 수 있다. 또한, 상기 알킬기 또는 알콕시기의 탄소수는 다른 예시에서 7개 이상, 8개 이상, 9개 이상, 10개 이상, 11개 이상, 12개 이상, 13개 이상, 14개 이상, 15개 이상, 16개 이상, 17개 이상, 18개 이상, 19개 이상, 20개 이상, 21개 이상, 22개 이상 또는 23개 이상이거나, 23개 이하, 22개 이하, 21개 이하, 20개 이하, 19개 이하, 18개 이하, 17개 이하, 16개 이하, 15개 이하, 14개 이하, 13개 이하, 12개 이하, 11개 이하, 10개 이하, 9개 이하, 8개 이하 또는 7개 이하 정도일 수도 있다.
상기 화학식 A 내지 C에 포함될 수 있는 알킬기 또는 알콕시기는 탄소수 6 내지 13 정도의 아릴기가 치환될 수 있고, 예를 들면, 벤질기 또는 페닐기 등이 적용될 수 있다.
또한, 다른 예시에서 상기 표면 처리제로는, (a) 임의적으로 지방산-개질된 또는 알콕시화(특히 에톡시화)된 폴리아민의 인산 에스테르염, 에폭사이드-폴리아민 부가물의 인산 에스테르염, 아미노기를 포함하는 아크릴레이트 또는 메타크릴레이트 공중합체의 인산 에스테르염 또는 아크릴레이트-폴리아민 부가물의 인산 에스테르염 등과 같은 아미노기를 포함하는 올리고머 또는 폴리머의 인산 에스테르 염; (b) 알킬, 아릴, 아랄킬, 또는 알킬아릴 알콕실레이트를 갖는 인산염의 모노에스테르 또는 디에스테르(예: 노닐페놀 에톡시레이트, 이소트리데실 알콜 에톡시레이트, 부탄올-출발 알킬렌 옥사이드 폴리에테르의 인산 모노에스테르 또는 디에스테르), 폴리에스테르를 갖는 인산의 모노에스테르 또는 디에스테르(예: 카프로락톤 폴리에스테르 또는 카프로락톤/발레로락톤 혼합된 폴리에스테르와 같은 락톤 폴리에스테르) 등과 같은 인산의 모노에스테르 또는 디에스테르; (c) 알킬, 아릴, 아랄킬, 또는 알킬아릴 알콕실레이트를 갖는 산성 디카르복시 모노에스테르(특히 숙신산, 말레산 또는 프탈산의 것)(예: 노닐페놀 에톡실레이트, 이소트리데실 알콜 에톡실레이트, 또는 부탄올-개시 알킬렌 옥사이드 폴리에테르) 등과 같은 산성 디카르복시 모노에스테르; (d) 폴리우레탄-폴리아민 부가물; (e) 폴리알콕시화 모노아민 또는 디아민(예: 에톡시화 올레일아민 또는 알콕시화 에틸렌디아민) 또는 (f) 모노아민, 디아민, 폴리아민, 아미노 알콜과 불포화 지방산의 반응생성물 및 불포화 1,2-디카르복시산 및 이들의 무수물 및 이들의 염 및 알콜 및/또는 아민과의 반응생성물 등도 적용될 수 있다.
상기와 같은 표면 처리제는, 시판 제품으로 공지되어 있는데, 예를 들어, BYK-220 S, BYK-P 9908, BYK-9076, BYK-9077, BYK-P 104, BYK-P 104 S, BYK-P 105, BYK-W 9010, BYK-W 920, BYK-W 935, BYK-W 940, BYK-W 960, BYK-W 965, BYK-W 966, BYK-W 975, BYK-W 980, BYK-W 990, BYK-W 995, BYK-W 996, BYKUMEN, BYKJET 9131, LACTIMON, ANTI-TERRA-202, ANTI-TERRA-203, ANTI-TERRA-204, ANTI-TERRA-205, ANTI-TERRA-206, ANTI-TERRA-207, ANTI-TERRA-U 100, ANTI-TERRA-U 80, ANTI-TERRA-U, LP-N-21201, LP-N-6918, DISPERBYK, DISPERBYK-101, DISPERBYK-102, DISPERBYK-103, DISPERBYK-106, DISPERBYK-107, DISPERBYK-108, DISPERBYK-109, DISPERBYK-110, DISPERBYK-111, DISPERBYK-112, DISPERBYK-115, DISPERBYK-116, DISPERBYK-118, DISPERBYK-130, DISPERBYK-140, DISPERBYK-142, DISPERBYK-145, DISPERBYK-160, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164, DISPERBYK-165, DISPERBYK-166, DISPERBYK-167, DISPERBYK-168, DISPERBYK-169, DISPERBYK-170, DISPERBYK-171, DISPERBYK-174, DISPERBYK-176, DISPERBYK-180, DISPERBYK-181, DISPERBYK-182, DISPERBYK-183, DISPERBYK-184, DISPERBYK-185, DISPERBYK-187, DISPERBYK-190, DISPERBYK-191, DISPERBYK-192, DISPERBYK-193, DISPERBYK-194, DISPERBYK-2000, DISPERBYK-2001, DISPERBYK-2008, DISPERBYK-2009, DISPERBYK-2010, DISPERBYK-2020, DISPERBYK-2025, DISPERBYK-2050, DISPERBYK-2070, DISPERBYK-2090, DISPERBYK-2091, DISPERBYK-2095, DISPERBYK-2096, DISPERBYK-2150, DISPERBYK-2151, DISPERBYK-2152, DISPERBYK-2155, DISPERBYK-2163, DISPERBYK-2164, DISPERBLAST-1010, DISPERBLAST-1011, DISPERBLAST-1012, DISPERBLAST-1018 또는 DISPERBLAST-I, DISPERBLAST-P 등과 같은 제품명(베젤의 BYK-Chemie)으로 알려진 표면 처리제가 사용될 수 있다.
적절한 표면 처리 효과를 위해서 상기 표면 처리제로는, 산가가 10 mgKOH/g 내지 400 mgKOH/g의 범위 내에 있거나, 아민가가 5 mgKOH/g 내지 400 mgKOH/g의 범위 내에 있는 표면 처리제를 사용할 수 있다.
상기 표면 처리제의 산가는 다른 예시에서 약 20mgKOH/g 이상, 30mgKOH/g 이상, 40mgKOH/g 이상, 50mgKOH/g 이상, 60mgKOH/g 이상, 70mgKOH/g 이상, 80 mgKOH/g 이상 또는 90 mgKOH/g 이상이거나, 약 390mgKOH/g 이하, 380mgKOH/g 이하, 370mgKOH/g 이하, 360mgKOH/g 이하, 350mgKOH/g 이하, 340mgKOH/g 이하, 330mgKOH/g 이하, 320mgKOH/g 이하, 310mgKOH/g 이하, 300mgKOH/g 이하, 290mgKOH/g 이하, 280mgKOH/g 이하, 270mgKOH/g 이하, 260mgKOH/g 이하, 250mgKOH/g 이하, 240mgKOH/g 이하, 230mgKOH/g 이하, 220mgKOH/g 이하, 210mgKOH/g 이하, 200mgKOH/g 이하, 190mgKOH/g 이하, 180mgKOH/g 이하, 170mgKOH/g 이하, 160mgKOH/g 이하, 150mgKOH/g 이하, 140mgKOH/g 이하, 130mgKOH/g 이하, 120mgKOH/g 이하, 110 mgKOH/g 이하 또는 100 mgKOH/g 이하 정도일 수도 있다.
상기 표면 처리제의 아민가는 다른 예시에서 약 10 mgKOH/g 이상, 약 15 mgKOH/g 이상, 약 20mgKOH/g 이상, 30mgKOH/g 이상, 40mgKOH/g 이상, 50mgKOH/g 이상, 60mgKOH/g 이상, 70mgKOH/g 이상, 80 mgKOH/g 이상 또는 90 mgKOH/g 이상이거나, 약 390mgKOH/g 이하, 380mgKOH/g 이하, 370mgKOH/g 이하, 360mgKOH/g 이하, 350mgKOH/g 이하, 340mgKOH/g 이하, 330mgKOH/g 이하, 320mgKOH/g 이하, 310mgKOH/g 이하, 300mgKOH/g 이하, 290mgKOH/g 이하, 280mgKOH/g 이하, 270mgKOH/g 이하, 260mgKOH/g 이하, 250mgKOH/g 이하, 240mgKOH/g 이하, 230mgKOH/g 이하, 220mgKOH/g 이하, 210mgKOH/g 이하, 200mgKOH/g 이하, 190mgKOH/g 이하, 180mgKOH/g 이하, 170mgKOH/g 이하, 160mgKOH/g 이하, 150mgKOH/g 이하, 140mgKOH/g 이하, 130mgKOH/g 이하, 120mgKOH/g 이하, 110 mgKOH/g 이하 또는 100 mgKOH/g 이하 정도일 수도 있다.
본 명세서에서 용어 아민가는, 표면 처리제가 포함하는 아미노기(-NH 2, -NHR 또는 -NR 2)를 KOH로 적정하여 KOH 소비량으로 나눈 수치(표면 처리제 1g 당 적정된 KOH의 소비량을 mg로 나타낸 수치)를 의미한다.
또한, 용어 산가는 표면 처리제가 가지고 있는 산기(-COOH)를 KOH로 적정하여 KOH 소비량으로 나눈 수치(표면 처리제 1g 당 적정된 KOH의 소비량을 mg로 나타낸 수치)를 의미한다.
한편, 목적하는 물성(점도 등)을 확보하기 위해서는, 상기 자성 입자 또는 자성 입자 클러스트와 결합을 형성하고 있는 표면 처리제는 중량평균분자량(Mw)이 대략 20,000 g/mol 이하인 화합물인 것이 적절할 수 있다. 본 명세서에서 용어 중량평균분자량은 GPC(Gel Permeation Chromatograph)로 측정한 표준 폴리스티렌 환산 수치이고, 특별히 달리 규정하지 않는 한 단순하게 분자량으로 호칭할 수도 있다. 또한, 상기 분자량의 단위는 g/mol일 수 있다.
상기 표면 처리제의 중량평균 분자량은 다른 예시에서 약 19,000 이하, 18,000 이하, 17,000 이하, 16,000 이하, 15,000 이하, 14,000 이하, 13,000 이하, 12,000 이하, 11,000 이하, 10,000 이하, 9,000 이하, 8,000 이하, 7,000 이하, 6,000 이하, 5,000 이하, 4,000 이하, 3,000 이하, 2,000 이하, 또는 1,000 이하이거나, 혹은 100 이상, 200 이상, 300 이상, 400 이상, 500 이상, 600 이상, 700 이상, 800 이상, 900 이상 또는 1,000 이상일 수도 있다.
본 출원에서는, 특정 관능기, 구체적으로 앵커링 관능기를 가지는 화합물에 존재하는 상기 관능기와 상기 자성 입자 또는 자성 입자 클러스트를 상호 작용시키는 방식을 적용하거나, 또는 상기 표면처리제가 상기 관능기를 가지지 않는 경우에는, 공지된 화학적 방식에 의해 상기 표면처리제에 상기 관능기를 도입한 다음에 상기 자성 입자 또는 자성 입자 클러스트와 상호 작용시켜서 상기 자성 복합체를 형성할 수도 있다.
상기 자성 복합체 내에서 상기 표면 처리제의 비율은 특별히 제한되지 않으며, 전술한 조건, 예를 들어 자성 입자 클러스트의 평균 입경을 만족할 수 있는 자성 복합체를 제조할 수 있는 정도로 첨가될 수 있다. 예를 들어, 상기 표면 처리제는, 자성 입자 100 중량부 대비 0.01 중량부 내지 30 중량부의 범위 내의 비율로 포함되거나, 상기 표면 처리제는, 자성 입자 전구체 100 중량부 대비 0.01 중량부 내지 30 중량부의 범위 내의 비율로 포함될 수 있다. 이러한 비율 하에서 목적하는 발열 특성을 가지는 자성 복합체를 수득할 수 있다.
본 명세서에서 특별히 다르게 규정하지 않는 한, 단위 "중량부"는 각 성분 사이의 중량의 비율을 의미한다.
상기 비율은, 다른 예시에서 0.1 중량부 이상, 1 중량부 이상, 2 중량부 이상, 3 중량부 이상 또는 4 중량부 이상일 수 있고, 27 중량부 이하, 25 중량부 이하, 23 중량부 이하, 21 중량부 이하 또는 20 중량부 이하일 수 있다.
상기 자성 입자를 상기 표면처리제로 표면 처리하여 상기 자성 복합체를 얻는 방식은 특별히 제한되지 않는다. 예를 들어, 용매의 존재 등 적절한 환경 하에서 상기 자성 입자와 상기 표면 처리제를 혼합함으로 해서 자성 입자와 상기 표면처리제 사이의 상호 작용을 유도하고, 전술한 자성 입자와 상기 표면처리제 사이 또는 상기 표면처리제 사이의 결합을 형성할 수 있다. 이러한 표면처리제는 상기 자성 입자의 표면, 구체적으로 상기 자성 입자의 둘레에 존재할 수 있다.
본 명세서는 자성복합체 및 고분자 수지를 포함하는 조성물을 제조하는 단계를 포함하는 수처리 엘리먼트용 핫멜트 접착제 조성물의 제조방법을 제공한다.
본 명세서는 자성 입자 전구체 및 용매를 포함하는 반응용액을 제1 온도로 가열하여 자성 입자를 형성하는 단계;
제2 온도로 가열하여 형성된 자성 입자의 클러스트화를 진행하여 자성 입자 클러스트를 형성하는 단계;
상기 자성 입자 클러스트가 포함된 용액에 표면처리제를 첨가하여 자성복합체를 제조하는 단계; 및
상기 자성복합체 및 고분자 수지를 포함하는 조성물을 제조하는 단계를 포함하는 수처리 엘리먼트용 핫멜트 접착제 조성물의 제조방법을 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 자성 입자 전구체는 후처리에 의해 자성 입자를 형성할 수 있는 물질을 의미하며, 상기 전구체의 가수 분해, 탈수, 환원 및 상전이 등을 거쳐서 상기 자성 입자를 형성할 수 있는 화합물이면 제한 없이 적용 가능하다. 예를 들어, 상기 자성 입자가 FeOFe 2O 3일 경우, 상기 자성 입자의 전구체는 FeCl 3 .6H 2O(Iron (III) chloride hexahydrate), FeCl 3, Fe(NO 3) 3, Fe(CO) 5, Fe(NO 3) 2, Fe(SO 4) 3 또는 Fe(AcAc) 3{철(III) 아세틸아세토네이트} 중 선택된 것일 수 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 반응용액 내에서, 자성 입자 전구체의 농도는 0.025 M 내지 0.125 M이며, 바람직하게는 0.05 M 내지 0.1 M일 수 있다. 해당 농도범위를 만족하는 경우, 원하는 사이즈의 조절 및 입자분포가 균일한 자성입자를 합성할 수 있는 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 반응용액은 염기를 더 포함할 수 있다. 이때, 상기 염기의 농도는 0.4 M 내지 4 M이며, 바람직하게는 0.5M 내지 2M일 수 있다. 해당 농도범위를 만족하는 경우, 자성 입자의 크기를 조절할 수 있는 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 반응용액 내에서, 자성 입자 전구체와 염기의 몰비는 1:5 내지 1: 20일 수 있으며, 구체적으로 1: 9 내지 1: 10일 수 있고, 바람직하게는 1:9.5이다. 이 경우 원하는 입자 사이즈를 얻을 수 있는 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 염기는 예를 들어, 산화나트륨 및 수산화칼륨 등의 강염기성 화합물; 및 탄산나트륨, 탄산수소나트륨, 탄산세슘, 탄산칼슘, 암모니아수 또는 아세트산 나트륨 등의 약염기성 화합물 중 선택된 것일 수 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 반응용액 내에서, 상기 용매의 함량은 50 중량% 이상, 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상 또는 90 중량% 이상이고, 약 100 중량% 이하, 99 중량% 이하, 98 중량% 이하, 97 중량% 이하, 96 중량% 이하 또는 95 중량% 이하일 수 있다. 해당 범위를 만족하는 경우, 용매의 비율이 커서 나노 입자의 결정이 생성된 후, 큰 덩어리화가 되지 않도록 방지해준다.
본 명세서의 일 실시상태에 있어서, 상기 반응용액 내에서, 상기 용매는 물을 포함하며, 극성용매를 더 포함할 수 있다. 상기 용매는 물과 극성용매를 포함하는 것이 바람직하다. 상기 극성 용매는 환원제의 역할과 염을 녹여주는 역할을 한다. 그러나, 극성 용매만을 사용하는 경우, 환원력이 너무 강하여 자성체 입체 생성이 어렵고, 비정형 형상의 비자성체의 그린 러스트(green rust)만이 형성된다. 따라서, 물과 극성용매를 함께 사용하는 경우, 상기 극성 용매가 적절한 환원제 역할을 하여, 상기 자성 입자 전구체의 가수분해 및 응축 반응을 유도하게 되며, 그 결과 상기 자성 입자의 전구체가 비결정성의 고체를 형성하게 된다. 이어서, 가열을 지속하면 그 비결정성 고체가 상변화를 일으켜 결정성을 띄게 된다.
본 명세서의 일 실시상태에 있어서, 상기 반응용액 내에서, 상기 용매가 물과 극성용매를 포함하는 경우, 상기 극성용매의 중량을 기준으로, 상기 물의 함량은 1 부피% 내지 20 부피%일 수 있으며, 바람직하게는 5 부피% 내지 11 부피%일 수 있다. 이 경우 극성 용매의 환원력을 저해하지 않으면서, 염을 해리시킬 수 있는 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 극성용매는 특정 온도, 예를 들어 25℃에서의 유전 상수(dielectric constant)가 대략 75 내지 85 범위 내인 용매를 의미할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 극성용매는 에틸렌 글리콜, 글리세린, 부탄디올 및 트리메틸올 프로판 등의 저분자량 폴리올; 및 폴리에틸렌글리콜 및 메톡시폴리에틸렌글리콜 등의 고분자량 폴리올 중 선택된 것일 수 있으나, 이에 한정되지 않는다. 이때, 저분자량 폴리올은 단분자형 폴리올을 의미할 수 있고, 고분자량 폴리올은 분자량(중량평균분자량)이 2,000 g/mol인 폴리올을 의미할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 극성용매는 폴리올을 포함할 수 있으며, 저분자량 폴리올 및 고분자량 폴리올 중 적어도 하나를 포함할 수 있으며, 구체적으로, 폴리올 중 선택된 어느 하나 또는 둘 이상의 혼합일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 온도는 자성 입자의 결정을 형성할 수 있는 온도로, 50 ℃ 내지 90 ℃ 일 수 있으며, 바람직하게는 70℃일 수 있다. 상기 온도에서 자성입자를 구성하는 결정이 적절하게 형성이 될 수 있는 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상온에서 상기 반응용액을 제조한 후 제1 온도로 가열하는 시간은 약 20분에서 60분이며, 이때의 승온 속도는 약 2.5℃/min일 수 있다. 이 경우, 원하는 크기의 결정입자를 생성하고 성장시킬 수 있다. 반면, 시간이 짧게 되면 자성특성이 낮고, 결정크기가 작은 입자가 , 시간이 길게 되면 결정크기가 커지고, 자성특성이 증가하게 된다. 이때, 상온(room temperature)은 가열하거나 냉각하지 않은 자연 그대로의 온도를 의미하며, 약 20±5℃이다.
본 명세서의 일 실시상태에 있어서, 상기 제2 온도는 형성된 자성 입자가 응집될 수 있는 온도, 상기 제1 온도보다 높은 온도로, 170 ℃ 내지 210 ℃일 수 있다. 상기 제2 온도는 175 ℃ 이상, 180 ℃ 이상, 185 ℃ 이상 또는 190 ℃ 이상일 수 있고, 205 ℃ 이하, 200 ℃ 이하, 195 ℃ 이하 또는 190 ℃ 이하일 수 있다. 이 단계는 결정크기의 자성입자가 환원되면서 응집되는 과정으로 최종 입자의 크기에 영향을 미치는 단계이며, 너무 높은 온도에서 처리하게 되면 마이크로 사이즈의 결정으로 성장하며, 낮은 온도에서는 구형의 입자형태가 적고, 비정형의 분포가 많은 형태로 성장을 하게 된다.
본 명세서의 일 실시상태에 있어서, 제1 온도에서 제2 온도로 가열하는 시간은 약 40분에서 120분이며, 이때의 승온 속도는 약 1℃/min일 수 있다. 시간이 길어짐에 따라 결정의 탈수/환원 반응이 더 진행이 되어 결정끼리 붙어서 성장하거나, 시간이 부족하면 입자의 형태 및 사이즈 분포가 불균일해진다.
상기 수처리 엘리먼트용 핫멜트 접착제 조성물의 제조방법은 상기 자성 입자 클러스트가 포함된 용액에 표면처리제를 첨가하기 전에, 상기 자성 입자 클러스트가 포함된 용액을 제3 온도로 냉각하는 단계를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제3 온도는 50 ℃ 내지 90 ℃일 수 있다. 상기 온도 범위 내에서 자성 입자와 표면 처리제의 상호 작용이 원활히 진행될 수 있다. 상기 제3 온도는 다른 예시에서, 55 ℃ 이상, 60 ℃ 이상, 65 ℃ 이상 또는 70 ℃ 이상일 수 있고, 85 ℃ 이하, 80 ℃ 이하, 75 ℃ 이하 또는 70 ℃ 이하일 수 있다.
본 명세서의 일 실시상태에 있어서, 제2 온도에서 제3 온도로 냉각하는 시간은 약 2시간이며, 이때의 냉각 속도는 약 1℃/min일 수 있다. 이 경우 가장 입자의 분포가 균일한 장점이 있다.
상기 자성 입자는 추가적으로 표면 처리되어 있을 수 있다. 이 경우, 상기 언급된 표면처리제는 1차 표면처리제로 호칭될 수 있고, 추가적인 표면 처리를 위해 적용되는 표면 처리제는 2차 표면처리제로 호칭될 수 있다. 일 예시에서 상기 자성 복합체는 상기 표면처리제(1차 표면처리제) 또는 상기 자성 입자와 결합을 형성하고 있는 2차 표면처리제를 추가로 포함할 수 있다. 즉 상기 자성 복합체가 2차 표면처리제를 추가로 포함하는 경우, 상기 2차 표면처리제는 상기 자성 입자의 표면 및/또는 상기 자성 입자의 표면에 처리된 1차 표면처리제의 표면에 도입되어 있을 수 있다.
상기 2차 표면처리제로는 고분자 화합물을 사용할 수 있다. 예를 들어, 상기 2차 표면처리제로는 중량평균 분자량이 대략 1,000 내지 500,000의 범위 내인 고분자 화합물이 적용될 수 있다. 상기 2차 표면처리제가 고분자 화합물인 경우, 이의 분자량(Mw)은 다른 예시에서 약 1500 이상, 2000 이상, 2500 이상, 3000 이상, 3500 이상, 4000 이상, 4500 이상, 5000 이상, 5500 이상, 6000 이상, 6500 이상, 7000 이상, 7500 이상, 8000 이상, 8500 이상, 9000 이상, 9500 이상, 10000 이상, 12000 이상, 14000 이상, 16000 이상, 18000 이상, 19000 이상 또는 20000 이상이거나, 450000 이하, 400000 이하, 350000 이하, 300000 이하, 250000 이하, 200000 이하, 150000 이하, 100000 이하, 90000 이하, 80000 이하, 70000 이하, 60000 이하, 50000 이하, 40000 이하, 30000 이하 또는 25000 이하 정도일 수도 있다.
2차 표면처리제로 사용될 수 있는 고분자 화합물로는, 폴리우레탄계 표면 처리제, 폴리우레아계 표면 처리제, 폴리(우레탄-우레아)계 표면 처리제 및/또는 폴리에스테르계(구체적으로 가지형 폴리에스테르계) 표면 처리제일 수 있다. 상기 2차 표면 처리제로는 상기 언급된 고분자 화합물에 대해서 상기 1차 표면 처리제 및/또는 상기 자성 입자와 상호 작용하는 관능기를 포함하는 화합물을 적용할 수 있고, 또는 상기 관능기를 포함하지 않는다면, 그러한 관능기를 특정 고분자 화합물에 도입하여 적용함으로 해서 2차 표면 처리를 수행할 수도 있다.
상기 2차 표면처리제로는 상기 1차 표면 처리제 및/또는 자성 입자와 상호 작용하는 관능기를 가지는 화합물을 적용할 수 있고, 이러한 관능기로는 전술한 인산기, 카복실기, 술폰산기, 아미노기 및/또는 시아노기 등이나, 2차 또는 3차 아민기 또는 아미노기나, 우레아 결합 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
일 예시에서, 상기 2차 표면처리제로는, 우레아 단위 및/또는 우레탄 단위를 포함하는 고분자를 적용할 수도 있다.
상기에서, 우레아 단위는 하기 화학식 D로 표시되고, 우레아 단위는 하기 화학식 D 또는 E로 표시될 수 있다:
[화학식 D]
Figure PCTKR2020018148-appb-img-000004
화학식 D에서 R 4 내지 R 7은 각각 독립적으로 수소 원자 또는 알킬기이고, L 1 및 L 2는 각각 독립적으로 지방족, 지환족 또는 방향족 2가 잔기이다.
[화학식 E]
Figure PCTKR2020018148-appb-img-000005
화학식 E에서 R 8 및 R 9은 각각 독립적으로 수소 원자 또는 알킬기이고, L 3 및 L 4는 각각 독립적으로 지방족, 지환족 또는 방향족 2가 잔기이다.
화학식 D의 단위는 소위 우레아 단위로서, 폴리아민(polyamine)과 디이소시아네이트 화합물의 반응 생성물일 수 있다. 따라서 예를 들어, 상기 화학식 D에서 L 1은 상기 반응에 참여하는 디이소시아네이트 화합물에서 유래한 구조일 수 있고, L 2는 상기 반응에 참여하는 폴리아민에서 유래한 구조일 수 있다. 상기에서 "유래한 구조"란, L 1의 경우 상기 디이소시아네이트 화합물에서 이소시아네이트기를 제외한 구조일 수 있고, L 2의 경우 폴리아민 화합물에서 아민기(-NH 2)를 제외한 부분의 구조일 수 있다.
화학식 E의 단위는 소위 우레탄 단위로서, 폴리올(polyol)과 디이소시아네이트 화합물의 반응 생성물일 수 있다. 따라서 예를 들어, 상기 화학식 E에서 L 3는 상기 반응에 참여하는 디이소시아네이트 화합물에서 유래한 구조이고, L 4는 상기 반응에 참여하는 폴리올에서 유래한 구조일 수 있다. 상기에서 "유래한 구조"란, L 3의 경우 상기 디이소시아네이트 화합물에서 이소시아네이트기를 제외한 구조일 수 있고, L 4의 경우 상기 폴리올에서 히드록시기(-OH) 를 제외한 부분의 구조일 수 있다.
상기 화학식 D 및 E의 구조를 형성할 수 있는 디이소시아네이트 화합물로는, 톨릴렌 디이소시아네이트, 크실렌(자일렌) 디이소시아네이트, 디페닐메탄 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 이소보론 디이소시아네이트, 테트라메틸크실렌 디이소시아네이트 또는 나프탈렌 디이소시아네이트 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
또한 상기 화학식 D의 구조를 형성할 수 있는 폴리아민으로는 에틸렌디아민 또는 프로필렌디아민 등과 같이 탄소수 1 내지 20, 1 내지 16, 1 내지 12, 1 내지 8 또는 1 내지 4의 알킬렌 단위를 가지는 알킬렌디아민이 예시될 수 있지만, 이에 제한되는 것은 아니다.
나아가 상기 화학식 E의 구조를 형성할 수 있는 폴리올로는 에틸렌글리콜 또는 프로필렌글리콜 등과 같이 탄소수 1 내지 20, 1 내지 16, 1 내지 12, 1 내지 8 또는 1 내지 4의 알킬렌 단위를 가지는 알킬렌글리콜이 예시될 수 있지만, 이에 제한되는 것은 아니다.
따라서 상기와 같은 공지의 단량체를 적절하게 조합시켜서 제조한 폴리우레탄 및/또는 폴리우레아 혹은 폴리(우레탄-우레아) 등을 상기 2차 표면 처리제로 적용할 수 있다. 필요하다면, 공지된 화학적 방법으로 상기 폴리우레탄 및/또는 폴리우레아 혹은 폴리(우레탄-우레아) 등에 필요한 관능기를 도입한 다음에 적용할 수도 있다.
2차 표면처리제로는 상기 자성 복합체와 배합되는 화합물의 종류에 따라서는 적절한 산가 및/또는 아민가를 가지거나 혹은 그렇지 않은 화합물을 적용할 수 있다. 일 예시에서 상기 2차 표면 처리제는 산가가 10 mgKOH/g 내지 400 mgKOH/g의 범위 내이거나, 아민가가 5 mgKOH/g 내지 400 mgKOH/g의 범위 내일 수 있다.
상기 2차 표면처리제의 산가는 다른 예시에서 약 20mgKOH/g 이상, 30mgKOH/g 이상, 40mgKOH/g 이상, 50mgKOH/g 이상, 60mgKOH/g 이상, 70mgKOH/g 이상, 80 mgKOH/g 이상 또는 90 mgKOH/g 이상이거나, 약 390mgKOH/g 이하, 380mgKOH/g 이하, 370mgKOH/g 이하, 360mgKOH/g 이하, 350mgKOH/g 이하, 340mgKOH/g 이하, 330mgKOH/g 이하, 320mgKOH/g 이하, 310mgKOH/g 이하, 300mgKOH/g 이하, 290mgKOH/g 이하, 280mgKOH/g 이하, 270mgKOH/g 이하, 260mgKOH/g 이하, 250mgKOH/g 이하, 240mgKOH/g 이하, 230mgKOH/g 이하, 220mgKOH/g 이하, 210mgKOH/g 이하, 200mgKOH/g 이하, 190mgKOH/g 이하, 180mgKOH/g 이하, 170mgKOH/g 이하, 160mgKOH/g 이하, 150mgKOH/g 이하, 140mgKOH/g 이하, 130mgKOH/g 이하, 120mgKOH/g 이하, 110 mgKOH/g 이하 또는 100 mgKOH/g 이하, 90 mgKOH/g 이하, 80 mgKOH/g 이하, 70 mgKOH/g 이하, 60 mgKOH/g 이하, 50 mgKOH/g 이하, 40 mgKOH/g 이하 또는 30 mgKOH/g 이하 정도일 수도 있다.
상기 2차 표면처리제의 아민가는 다른 예시에서 약 10 mgKOH/g 이상, 약 15 mgKOH/g 이상, 약 20mgKOH/g 이상, 30mgKOH/g 이상, 40mgKOH/g 이상, 50mgKOH/g 이상, 60mgKOH/g 이상, 70mgKOH/g 이상, 80 mgKOH/g 이상 또는 90 mgKOH/g 이상이거나, 약 390mgKOH/g 이하, 380mgKOH/g 이하, 370mgKOH/g 이하, 360mgKOH/g 이하, 350mgKOH/g 이하, 340mgKOH/g 이하, 330mgKOH/g 이하, 320mgKOH/g 이하, 310mgKOH/g 이하, 300mgKOH/g 이하, 290mgKOH/g 이하, 280mgKOH/g 이하, 270mgKOH/g 이하, 260mgKOH/g 이하, 250mgKOH/g 이하, 240mgKOH/g 이하, 230mgKOH/g 이하, 220mgKOH/g 이하, 210mgKOH/g 이하, 200mgKOH/g 이하, 190mgKOH/g 이하, 180mgKOH/g 이하, 170mgKOH/g 이하, 160mgKOH/g 이하, 150mgKOH/g 이하, 140mgKOH/g 이하, 130mgKOH/g 이하, 120mgKOH/g 이하, 110 mgKOH/g 이하 또는 100 mgKOH/g 이하, 90 mgKOH/g 이하, 80 mgKOH/g 이하, 70 mgKOH/g 이하, 60 mgKOH/g 이하, 50 mgKOH/g 이하, 40 mgKOH/g 이하 또는 30 mgKOH/g 이하 정도 정도일 수도 있다.
상기 2차 표면처리제로는 소위 초분지 폴리에스테르계(branched polyester-based) 분산제 등으로 알려진 가지형 폴리에스테르 표면 처리제도 적용 가능하다.
상기 2차 표면처리제는 상기 자성 복합체에서, 상기 자성 입자 100 중량부 대비 0.01 중량부 내지 30 중량부의 비율로 포함될 수 있다. 이러한 비율 하에서 목적하는 성능을 가지는 자성 복합체를 형성할 수도 있다. 상기 비율은 다른 예시에서 약 0.5 중량부 이상, 1 중량부 이상, 1.5 중량부 이상, 2 중량부 이상, 2.5 중량부 이상, 3 중량부 이상, 3.5 중량부 이상, 4 중량부 이상, 4.5 중량부 이상 또는 5 중량부 이상이거나, 약 25 중량부 이하, 20 중량부 이하, 15 중량부 이하, 약 13 중량부 이하, 약 12 중량부 이하 또는 10 중량부 이하 정도일 수도 있다.
본 명세서의 일 실시상태에 있어서, 상기 자성 복합체의 발열량(SAR)은 70 W/g 내지 120 W/g일 수 있다. 바람직하게 상기 발열량은 70 W/g 내지 110 W/g일 수 있다.
상기 자성 복합체가 전술한 발열량의 범위를 만족하는 경우, 본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물의 고발열 특성을 만족시킬 수 있다.
상기 발열량(SAR)은 하기 식 1을 이용하여 계산할 수 있다.
[식 1]
Figure PCTKR2020018148-appb-img-000006
상기 식 1에서,
C i: The specific heat capacity of the medium (Water: 4.184 J/g·K),
m i: The mass of the medium (10 g),
Figure PCTKR2020018148-appb-img-000007
: The mass of MNC in the medium (0.5 g),
△t=60s
△T: The temperature difference between the initial temperature and after 60 s이다.
상기 발열량은 상기 자성 복합체의 혼합액의 부피에 영향을 받기 때문에 상기 혼합액의 부피를 0.35 ml로 고정하고 상승된 평균 온도를 측정하여 계산할 수 있다. 상기 평균 온도의 측정은 thermocouple을 사용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 자성 복합체의 발열온도는 343 K 내지 370 K일 수 있다. 바람직하게 상기 발열온도는 345 K 내지 360 K일 수 있다.
상기 자성 복합체가 전술한 발열온도를 만족하는 경우 상기 자성 복합체를 포함하는 수처리 엘리먼트용 핫멜트 접착제 조성물을 이용하여 수처리 엘리먼트의 생산성을 높이고, 불량률을 줄이며 작업성을 향상시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 수처리 엘리먼트용 핫멜트 접착제 조성물의 용융흐름지수(MFI, Melt flow index)는 177℃, 2.16 kg에서 5 g/10 min 내지 50 g/10 min이다.
상기 수처리 엘리먼트 핫멜트 접착제 조성물의 용융흐름지수가 상기 범위 내인 경우, 일정한 점도를 유지하여 수처리 엘리먼트 조립시 유효 면적을 적절히 유지할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 수처리 엘리먼트용 핫멜트 접착제 조성물은 접착력이 800 gf/mm 내지 2,500 gf/mm이다.
이때, 접착력은 Adhesion force 800-2500 g peel-off test (ASTM D1876) 기준으로 측정했다. 상술한 방법으로 접착력을 측정하는 경우, 분리막 위에 접착시켜 박리시키면서 접착력을 측정해야 하는데, 상기 수처리 엘리먼트용 핫멜트 접착제 조성물을 분리막으로부터 박리할 때, 접착력이 너무 좋아 분리막이 찢어진다. 상술한 접착력의 범위는 해당 방법으로 접착제가 분리막과 함께 뜯어질 때의 측정치이다. 따라서, 일반적으로 수처리 엘리먼트용 접착제에 대해 접착력을 측정하는 방법으로는 정확한 접착력을 측정할 수 없었고, 이는 종래의 수처리 엘리먼트용 접착제보다 상당히 높은 접착력을 가진다는 것을 의미한다.
상기 접착력이 상기 범위를 만족하는 경우, 수처리 엘리먼트 롤링시의 작업이 용이하고, 수처리 엘리먼트의 생산성을 향상시킬 수 있다.
본 명세서의 일 실시상태는 상기 수처리 엘리먼트용 핫멜트 접착제 조성물을 포함하는 접착 필름을 포함하는 수처리 엘리먼트를 제공한다.
상기 수처리 엘리먼트는 전술한 수처리 엘리먼트용 핫멜트 접착제 조성물을 포함하는 접착 필름을 포함하는 것을 제외하고 당 기술분야에 사용되는 구성요소들을 제한없이 적용할 수 있다. 본 명세서의 일 실시상태에 있어서, 상기 접착 필름은 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)에 구비될 수 있다. 또한, 상기 접착 필름은 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)에 수직하는 가장자리부(end seal)에 구비될 수 있다.
본 명세서에 있어서, “수직”이란 기하학에서 정의하는 의미, 예컨대, '두 개의 직선·반직선·선분이 직각으로 만나는 상태'만을 의미하는 것은 아니고, 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)가 아닌 중심관에 부착되지 않은 가장자리부를 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 접착 필름의 두께는 100 ㎛ 내지 1,200 ㎛이다.
본 명세서의 일 실시상태에 있어서, 상기 접착 필름의 두께는 200 ㎛ 내지 400 ㎛이다.
상기 접착 필름의 두께가 200 ㎛ 내지 400 ㎛인 경우, 수처리 엘리먼트의 Side seal 부분에서 개선효과가 우수하다.
수처리 엘리먼트의 Side seal의 경우 접착부의 중첩이 많이 이루어지기 때문에 다른 접착부(End seal)에 비해 발열량이 많기 때문에, 접착 부분의 두께를 제어하는 것이 중요하다.
본 명세서에 따른 접착 필름을 사용하는 경우, 접착 필름의 두께 감소로 인한 전체 분리막 두께 감소할 수 있고, 금속 입자 비율이 감소할 수 있으며, 수처리 엘리먼트 제조시의 효율성이 향상될 수 있다.
구체적으로 수처리 엘리먼트 제조시 Side seal 가공 공정인 트리밍 공정을 생략할 수 있고 투입되는 원부자재가 감소할 수 있다.
또 다른 본 명세서의 일 실시상태에 있어서, 상기 접착 필름의 두께는 401 ㎛ 내지 800 ㎛이다.
상기 접착 필름의 두께가 401 ㎛ 내지 800 ㎛인 경우, 수처리 엘리먼트의 End seal 부분에서 개선효과가 우수하다.
기존의 액체 글루로 수처리 엘리먼트 롤링시, 둥글게 말리면서 선속 차이에 의해 원부재들이 밀리면서 end seal 부분의 폭이 증가하며 일정한 두께를 유지하기 어려워진다.
기존의 액체 글루를 이용하여 수처리 엘리먼트 제조시 선속차이에 의해 밀리면서 두께가 바뀌고, end seal 폭이 약 2배 증가하는 단점이 있다. 또한, 액체 글루는 수처리 엘리먼트 분야의 일반적인 공정에서 도포시 직각으로 정확하게 도포하는 것이 어렵다.
그러나 본 명세서에 따른 접착 필름으로 수처리 엘리먼트 end seal 부분을 밀봉(sealing)하면 접착 부분의 폭을 일정하게 유지하면서 얇게 할 수 있기 때문에, 유효막 면적이 증가하는 효과가 탁월하며, 액체 글루보다 두께도 얇아서 수처리 엘리먼트의 효율을 증가시킬 수 있다.
상기 접착 필름의 두께란, 도 2의 T로 표시된 길이를 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 접착 필름의 폭이 5 mm 내지 100 mm이다.
바람직하게 상기 접착 필름의 폭은 15 mm 내지 25 mm이다.
상기 접착필름의 폭이 상기 범위를 만족하는 경우, 수처리 엘리먼트 롤링시의 작업이 용이하고, 수처리 엘리먼트의 생산성을 향상시킬 수 있다.
상기 접착 필름의 폭이란, 도 2의 W로 표시된 길이를 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 수처리 엘리먼트는 분리막 리프(leaf) 및 유로재를 포함할 수 있으며, 상기 분리막 리프 및 유로재의 단부를 접착시키는 경우 전술한 수처리 엘리먼트용 핫멜트 접착제 조성물을 포함하는 접착 필름을 이용하여 접착시킬 수 있다. 상기 단부는 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal) 또는 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)를 의미할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 수처리 엘리먼트는 하나 이상의 분리막 리프를 포함하고, 상기 접착 필름은 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)에 구비된다.
본 명세서의 일 실시상태에 있어서, 상기 수처리 엘리먼트는 하나 이상의 분리막 리프를 포함하고, 상기 접착 필름은 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)에 수직하는 가장자리부(end seal)에 구비된다.
즉, 상기 분리막 리프 및 유로재의 사이에 상기 접착 필름을 포함시킨 후, 인덕션을 이용하여 상기 접착 필름을 가열 용융함으로써 접착시킬 수 있다.
구체적으로, 상기 인덕션을 이용하여 상기 접착 필름을 가열 용융하는 것은, 자기장 200 A 내지 500 A에서, 1 내지 10분간 인가하여 비접촉식 유도가열 방식을 이용할 수 있다. 구체적으로, 자기장 375 A에서 1분간 인가하여 비접촉식 유도가열 방식을 이용할 수 있다.
본 명세서에 있어서, 상기 분리막 리프란 상기 수처리 엘리먼트에 포함되는 구성 요소로서, 하나의 분리막으로 구성될 수 있고, 또한 두 개의 분리막으로 구성될 수 있다. 상기 분리막 리프가 하나의 분리막으로 구성되는 경우, 상기 분리막의 공급측의 면이 공급측 유로재를 사이에 두고 접어진 형태로 구성될 수 있다. 상기 분리막 리프가 두 개의 분리막으로 구성되는 경우, 분리막의 공급측의 면이 서로 마주보도록 배열되고 분리막 사이에 공급측 유로재가 위치할 수 있다. 바람직하게 상기 분리막 리프는 한 개의 분리막으로 구성될 수 있다
본 명세서에 있어서, 상기 유로재는 공급측 유로재 또는 투과측 유로재를 의미할 수 있다. 상기 공급측 유로재는 스페이서(spacer)일 수 있고, 상기 투과측 유로재는 트리코트(tricot)일 수 있다. 상기 유로재는 상기 공급 통로를 통해 유입되는 원수 또는 상기 투과 통로를 통해 유입되는 생산수가 흘러나갈 수 있는 공간을 만들어주는 유로 역할을 수행한다. 상기 유로재의 형상, 종류는 특별히 한정되지 않으며, 당 기술분야에서 사용되는 유로재가 적용될 수 있다. 상기 공급측 유로재와 상기 투과측 유로재의 소재는 특별히 한정되지 않고, 동일한 소재일 수 있으며, 다른 소재일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 공급측 유로재는 스페이서 또는 피드 스페이서(feed spacer)로 표현될 수 있으며, 외부로부터 이물질이 포함된 물(원수)이 수용될 수 있도록 하나의 분리막과 다른 하나의 분리막의 사이의 간격을 일정하게 유지시키는 역할을 수행할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 투과측 유로재는 트리코트(tricot)로 표현될 수 있으며, 상기 분리막에 의해 여과된 생산수가 수용될 수 있도록 반으로 접어진 하나의 분리막 내부의 공간 또는 통로을 의미한다. 상기 트리코트는 직물 또는 편물로 된 구조를 가지며, 생산수가 흘러나갈 수 있는 공간을 만들어 줄 수 있도록 다공성 표면 구조를 가질 수 있다.
상기 수처리 엘리먼트는 상기 분리막 리프 및 상기 유로재 외에 중심관을 더 포함할 수 있다. 구체적으로 상기 분리막 리프의 접어진 부분 또는 밀봉된 부분이 상기 중심관을 향하도록 배치되어 복수의 분리막 리프 및 유로재가 권취될 수 있다. 이와 같이 권취되는 경우, 수처리 엘리먼트는 나권형(spiral wound) 형태로 제조된다.
본 명세서에 있어서, 상기 중심관은 여과된 생산수(정제수)가 유입되어 배출되는 통로 역할을 수행한다.
상기 중심관의 형상은 특별히 한정되는 것은 아니나, 상기 수처리 엘리먼트의 중심에 위치하는 것이 바람직하다. 또한, 상기 중심관은 생산수가 배출될 수 있도록 일 측면이 개방될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중심관은 다수 개의 공극을 포함할 수 있으며, 수처리 엘리먼트에 의해 수처리가 진행되면 생산수가 상기 중심관의 다수 개의 공극을 통하여 상기 중심관의 내부에 유입된 후, 유입된 생산수는 상기 중심관의 개방되어 있는 일 측면을 통하여 배출되게 된다.
상기 중심관의 소재는 특별히 한정되는 것은 아니고, 이 분야에서 공지된 일반적인 소재를 사용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 수처리 엘리먼트는 권취된 형태가 유지되도록 랩핑(wrapping)하는 단계를 더 포함할 수 있다.
상기 랩핑된 수처리 엘리먼트는 직렬 또는 병렬로 연결되어 압력 용기에 수납될 수 있고, 분리막 모듈로 사용될 수 있다. 구체적으로 상기 분리막 모듈은 수처리에 사용될 수 있으며, 수처리에 사용하는 경우 원수는 해수일 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 분리막 리프에 포함되는 분리막은 수처리 분리막 또는 기체 분리막을 의미할 수 있다. 상기 수처리 분리막은 정밀 여과막, 한외 여과막, 나노 여과막 또는 역삼투막 등으로 사용될 수 있으며, 바람직하게는 역삼투막으로 이용될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 분리막은 수처리 분리막일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 분리막은 역삼투막일 수 있다.
본 명세서의 또 다른 일 실시상태에 있어서, 상기 분리막은 기체 분리막일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 분리막은 다공성층; 및 다공성 지지체 상에 구비된 폴리아미드 활성층을 포함한다.
상기 폴리아미드 활성층은 다공성층 상에 아민 화합물을 포함하는 수용액층을 형성하는 단계; 상기 아민 화합물을 포함하는 수용액층 상에 아실 할라이드 화합물을 포함하는 유기용액을 접촉시켜 폴리아미드 활성층을 형성하는 단계를 통하여 형성될 수 있다.
상기 다공성층으로는, 부직포 상에 고분자 재료의 코팅층이 형성된 것을 사용할 수 있다. 상기 고분자 재료로는, 예를 들면, 폴리설폰, 폴리에테르설폰, 폴리카보네이트, 폴리에틸렌옥사이드, 폴리이미드, 폴리에테르이미드, 폴리에테르에테르케톤, 폴리프로필렌, 폴리메틸펜텐, 폴리메틸클로라이드 및 폴리비닐리덴플루오라이드 등이 사용될 수 있으나, 반드시 이들로 제한되는 것은 아니다. 구체적으로, 상기 고분자 재료로서 폴리설폰을 사용할 수 있다. 상기 코팅층은 폴리설폰층일 수 있다.
상기 부직포의 재료로서는 폴리에틸렌테레프탈레이트가 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 부직포의 두께는 50 ㎛ 내지 150 ㎛일 수 있으나, 이에 한정되는 것은 아니다. 바람직하게 상기 두께는 80 ㎛ 내지 120 ㎛일 수 있다. 상기 부직포의 두께가 상기 범위를 만족하는 경우, 상기 부직포를 포함하는 다공성 지지체를 포함하는 분리막의 내구성이 유지될 수 있다.
상기 코팅층의 두께는 20 ㎛ 내지 100 ㎛일 수 있으나, 이에 한정되는 것은 아니다. 바람직하게 상기 두께는 40 ㎛ 내지 80 ㎛일 수 있다. 상기 코팅층의 두께가 상기 범위를 만족하는 경우, 상기 코팅층을 포함하는 다공성 지지체를 포함하는 분리막의 내구성이 유지될 수 있다.
일 예에 따르면, 상기 코팅층은 상기 폴리설폰이 포함된 고분자 용액으로 제조될 수 있다. 상기 폴리설폰이 포함된 고분자 용액은, 상기 폴리설폰이 포함된 고분자 용액 총 중량을 기준으로, 80 중량% 내지 90 중량%의 용매 디메틸포름아마이드에 10 중량% 내지 20 중량%의 폴리설폰 고형을 넣고 80 ℃ 내지 85 ℃에서 12시간 동안 녹인 후 얻은 균질(homogeneous)한 액상일 수 있으나, 상기 중량 범위가 상기 범위로 한정되는 것은 아니다.
상기 폴리설폰이 포함된 고분자 용액의 총 중량을 기준으로 상기 범위의 폴리설폰 고형이 포함되는 경우, 상기 코팅층을 포함하는 다공성층을 포함하는 분리막의 내구성이 유지될 수 있다.
상기 코팅층은 캐스팅의 방법으로 형성될 수 있다. 상기 캐스팅은 용액 주조(casting) 방법을 의미하는 것으로, 구체적으로, 상기 고분자 재료를 용매에 용해시킨 후, 접착성이 없는 평활한 표면에 전개시킨 후 용매를 치환시키는 방법을 의미할 수 있다. 구체적으로, 상기 용매로 치환시키는 방법은 비용매 유도 상분리법(nonsolvent induced phase separation)을 이용할 수 있다. 상기 비용매 유도 상분리법이란, 고분자를 용매에 용해시켜 균일 용액을 만들고 이를 일정형태로 성형시킨 후 비용매에 침지시킨다. 이후 비용매와 용매의 확산에 의한 상호교환이 이루어지며 고분자 용액의 조성이 변하게 되고, 고분자의 침전이 일어나면서 용매와 비용매가 차지하던 부분을 기공으로 형성시키는 방법이다.
상기 폴리아미드 활성층은 아민 화합물과 아실 할라이드 화합물의 접촉시 아민 화합물과 아실 할라이드 화합물이 반응하면서 계면 중합에 의해 폴리아미드를 생성하고, 전술한 다공성층에 흡착되어 형성될 수 있다. 상기 접촉은 침지, 스프레이 또는 코팅 등의 방법을 통해 수행될 수 있다. 계면 중합 조건은 당 기술분야에 알려져 있는 것들이 제한 없이 사용될 수 있다.
상기 폴리아미드 활성층을 형성시키기 위하여, 상기 다공성층 상에 아민 화합물을 포함하는 수용액층을 형성할 수 있다. 상기 다공성층 상에 아민 화합물을 포함하는 수용액층을 형성하는 방법은 특별히 한정하지 않으며, 상기 다공성 지지체 위에 수용액층을 형성할 수 있는 방법이라면 제한하지 않고 사용할 수 있다. 구체적으로, 상기 다공성층 상에 아민 화합물을 포함하는 수용액층을 형성하는 방법은 분무, 도포, 침지, 적하, 코팅 등을 들 수 있다.
이 때, 상기 수용액층은 필요에 따라 과잉의 아민 화합물을 포함하는 수용액을 제거하는 단계를 추가적으로 거칠 수 있다. 상기 다공성층 상에 형성된 수용액층은 상기 다공성층 상에 존재하는 수용액이 지나치게 많은 경우에는 불균일하게 분포할 수 있는데, 수용액이 불균일하게 분포하는 경우에는 이후의 계면 중합에 의해 불균일한 폴리아미드 활성층이 형성될 수 있다. 따라서, 상기 다공성층 상에 수용액층을 형성한 후에 과잉의 수용액을 제거하는 것이 바람직하다. 상기 과잉의 수용액 제거는 특별히 제한되지는 않으나, 예를 들면, 스펀지, 에어나이프, 질소 가스 블로잉, 자연건조, 또는 압축 롤 등을 이용하여 수행할 수 있다.
상기 아민 화합물을 포함하는 수용액에서 상기 아민 화합물은 분리막 제조에 사용되는 아민 화합물이라면 그 종류를 제한하지 않으나, 구체적인 예를 든다면, m-페닐렌디아민, p-페닐렌디아민, 1,3,6-벤젠트리아민, 4-클로로-1,3-페닐렌디아민, 6-클로로-1,3-페닐렌디아민, 3-클로로-1,4-페닐렌디아민 또는 이들의 혼합물인 것이 바람직하다.
상기 아민 화합물을 포함하는 수용액의 용매는 물일 수 있고, 추가로 아세톤, 디메틸술폭사이드(DMSO), 1-메틸-2-피롤리디논(NMP) 또는 헥사메틸포스포아미드(hexamethylphosphoramide, HMPA)를 포함할 수 있다.
상기 아민 화합물의 함량은 상기 조성물 전체 중량 대비 1 중량% 이상 10 중량% 이하일 수 있다. 상기 함량을 만족하는 경우, 본 발명에서 목적하는 염 제거율과 유량을 확보할 수 있다.
폴리아미드 활성층은 아민 화합물을 포함하는 수용액을 상기 다공성층 상에 코팅한 후, 아실 할라이드 화합물을 포함하는 유기 용액을 접촉시켜 계면 중합함으로써 제조될 수 있다.
상기 아실 할라이드 화합물로는 폴리아미드의 중합에 사용될 수 있는 것이라면 제한하지 않으나, 구체적인 예로서 2 내지 3개의 카르복실산 할라이드를 갖는 방향족 화합물로서, 트리메조일클로라이드, 이소프탈로일클로라이 및 테레프탈로일클로라이드로 이루어진 화합물군으로부터 선택되는 1종 또는 2종 이상의 혼합물이 바람직하게 사용될 수 있다.
상기 아실 할라이드 화합물의 함량은 상기 조성물 전체 중량 대비 0.01 중량% 이상 0.5 중량% 이하일 수 있다. 상기 함량을 만족하는 경우, 우수한 염 제거율과 유량을 확보할 수 있다.
상기 아실 할라이드 화합물을 포함하는 유기 용액에 포함되는 유기 용매로는 지방족 탄화수소 용매, 예를 들면, 프레온류와 탄소수가 5 내지 12인 헥산, 사이클로헥산, 헵탄, 알칸과 같은 물과 섞이지 않는 소수성 액체, 예를 들면, 탄소수가 5 내지 12인 알칸과 그 혼합물인 IsoPar(Exxon), ISOL-C(SK Chem), ISOL-G(Exxon) 등이 사용될 수 있으나, 이로써 제한되는 것은 아니다.
상기 유기 용매의 함량은 상기 아실 할라이드 화합물을 포함하는 유기 용액 전체 중량 대비 95 중량% 내지 99.99 중량%일 수 있으나, 이에 한정되는 것은 아니다. 상기 함량을 만족하는 경우, 우수한 염 제거율과 유량을 확보할 수 있다.
상기 폴리아미드 활성층의 두께는 10 nm 내지 1,000 nm일 수 있으나, 이에 한정되는 것은 아니다. 상기 두께는 바람직하게 300 nm 내지 500 nm일 수 있다. 상기 폴리아미드 활성층의 두께가 상기 범위를 만족하는 경우, 상기 함량을 만족하는 경우, 우수한 염 제거율과 유량을 확보할 수 있다.
도 1은 본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물로 구성되는 접착 필름을 포함하는 분리막 리프(M)의 일 평면도를 나타낸 것이고, 도 2는 사시도를 나타낸 것이다. 분리막 리프 및 유로재 사이에 접착 필름(10, 20)을 포함시킨 후, 인덕션을 이용하여 상기 접착 필름(10, 20)을 가열 용융한다. 본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물은 고체형이므로 접착 면적 및 두께의 조절이 용이하여, 롤링시의 작업이 용이하다는 장점이 있다. 또한, 경화 시간이 짧고, 공정이 단순화되어, 수처리 엘리먼트 제조시 작업성을 향상시킬 수 있다는 장점이 있다. 후술하는 비교예와 같이 액체형 폴리우레탄 접착제 조성물을 이용하는 경우, 수처리 엘리먼트 제조과정에 있어서, 유효 면적이 줄어들 수 있어 일부 분리막이 손실될 수 있다. 또한, 액체형 접착제 조성물은 도포시 바로 고정이 되지 않으므로 두께 및 면적의 제어가 힘들다는 단점이 있다. 그리고, 롤링 공정시 리크가 발생하는 등의 수처리 분리막 엘리먼트의 불량률이 높아질 수 있다. 또한, 액체형 접착제 조성물의 경화시간이 오래 걸린다는 단점이 있다. 반면, 본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물은 전술한 액체형 폴리우레탄 접착제 조성물의 단점을 보완할 수 있다. 상기 접착 필름은 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)(10)에 구비될 수 있다. 또한, 상기 접착 필름은 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)에 수직하는 가장자리부(end seal)(20)에 구비될 수 있다.
도 3은 본 명세서에 따른 수처리 엘리먼트를 구성하는 구성요소들의 적층 모식도를 나타낸 것이다. 본 명세서의 수처리 엘리먼트는 복수의 분리막 리프(2) 및 복수의 유로재가 번갈아가면서 배열되어 제조될 수 있다. 상기 유로재는 공급측 유로재(1-2) 또는 투과측 유로재(1-1)일 수 있다. 각각의 배열된 복수의 분리막 리프(2) 및 복수의 유로재 사이에 상기 접착 필름이 구비되어 수처리 엘리먼트를 구성할 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1.
수처리 엘리먼트용 핫멜트 접착제 조성물 100 중량부를 기준으로, 자성복합체인 산화철(LANXESS사의 Bayoxide E8712) 5 중량부와 고분자 수지(WINMELT AT, 우진)을 95 중량부로 혼합한 후, 스크류 압출기를 통하여 수처리 엘리먼트용 핫멜트 접착제 조성물을 제조하였다. 상기 수처리 엘리먼트용 핫멜트 접착제 조성물은 가로 20 mm × 세로 1,000 mm 크기의 필름 형태였다.
상기 제조된 수처리 엘리먼트용 핫멜트 접착제 조성물을 도 1과 같이 분리막의 side seal과 end seal에 위치시킨 후, 권취하여 나권형(spiral wound) 형태의 수처리용 엘리먼트를 제조하였다.
그 다음, 권취된 나권형(spiral wound) 형태의 수처리 엘리먼트는 자기장 코일 내에 위치시켰으며, 자기장을 375 A에서 1분간 인가하여 비접촉식 유도가열 방식을 통한 접착을 진행하였다.
상기 수처리 엘리먼트용 핫멜트 접착제 조성물을 수처리 엘리먼트에 적용한 두께는 300 ㎛이었고, 폭은 20 mm 이었다.
실시예 2.
실시예 1에서 상기 수처리 엘리먼트용 핫멜트 접착제 조성물을 수처리 엘리먼트에 적용한 두께 및 폭은 하기 표 1에 기재된 것을 적용하고, 도 1의 side seal에만 위치시킨 것을 제외하고는 실시예 1에서 동일한 제조방법 및 조건에 의해 실시예 2의 접착 필름 및 이를 포함하는 수처리 엘리먼트를 제조하였다.
두께 (㎛) 폭 (mm)
실시예 2 200 20
실시예 3 및 4.
실시예 1에서 상기 수처리 엘리먼트용 핫멜트 접착제 조성물을 수처리 엘리먼트에 적용한 두께 및 폭, 자기장 인가 시간을 하기 표 2에 기재된 시간을 적용하고, 도 1의 end seal에만 위치시킨 것을 제외하고는 실시예 1에서 동일한 제조방법 및 조건에 의해 실시예 3 및 4의 접착 필름 및 이를 포함하는 수처리 엘리먼트를 제조하였다.
두께 (㎛) 폭 (mm) 인가시간(분) 결과
실시예 3 450 30 3 잘 붙음
실시예 4 450 30 1 잘 안 붙고,
다른 막에 영향줌
비교예 1.
상기 실시예 1에서의 수처리 엘리먼트용 핫멜트 접착제 조성물 대신, 액체 형태의 폴리우레탄 접착제(H.B. Fuller, UR3519)를 이용한 것을 제외하고는 실시예 1에서와 동일한 방법으로 수처리 엘리먼트를 제조하였다.
액체 형태의 폴리우레탄 접착제를 이용한 접착필름 제조시 적용한 두께 및 폭, 이의 평균 값(ave.)은 하기 표 3에 기재된 것과 같다.
비교예 1 두께 (㎛) 폭 (mm)
Side End Side End
#1 510 724 48.3 52.4
#2 507 737 49.2 51.7
#3 508 709 50.4 51.9
#4 515 731 49.5 51.3
#5 516 725 47.5 49.2
#6 510 732 49.5 45.3
#7 510 734 49.8 45.1
#8 520 724 50.5 50.1
#9 516 724 45.7 45.2
#10 515 709 51.0 51.4
ave. 513 725 49.2 49.4
실시예 1 내지 4 및 비교예 1에 대한 실험
[투과 유량 및 염 제거율 측정]
상기 실시예 1 내지 4 및 비교예 1의 수처리 엘리먼트를 사용하여 실험하였다. 원수 농도 NaCl 2,000 ppm, 원수 압력 225 psi로 수처리 엘리먼트에 공급수를 통과시켰다. 수처리 엘리먼트의 분리막을 통해 여과된 순수한 물이 중심관을 통해 배출되었다. 이 때, 생산수 유량과 공급한 원수 유량의 비율(recovery)이 15%가 되도록 하였다. 이 조건을 표준 조건으로 설정하였다. 수처리 엘리먼트의 안정화를 위해 1 시간의 가동 후, 생산수 유량과 전기 전도도를 측정하여 수처리용 엘리먼트의 유량과 염 제거율을 측정하였다. 그 결과는 하기 표 4와 같다.
투과 유량(GFD) 염 제거율(%)
실시예 1 12,542 99.73
실시예 2 12,605 99.72
실시예 3 12,403 99.73
비교예 1 12,604 99.72
상기 표 4에 의하면, 비접촉식 유도가열 방식을 통해 접착한 실시예 1 내지 3이 액체 글루를 사용한 비교예 1과 비교하였을 때, 동등한 수준의 성능을 보이는 것을 확인했다. 이를 통해, 기존의 액체 글루를 실시예 1 내지 3과 같이 인덕션 글루(induction glue)로 대체가 가능함을 확인했다. 액체 글루를 대체할 수 있는 인덕션 글루인 본원 명세서의 핫멜트 접착제 조성물을 수처리 엘리먼트 제조에 이용하는 경우, 수처리 엘리먼트의 불량률을 줄이며, 생산성을 높이고 작업성을 향상되는 등 공정적인 개선이 가능하다.
[Autopsy를 통한 리크(leak) 유무 체크]
주름이나 와인딩 과정에서 문제 여부를 확인하기 위해서 수처리 엘리먼트의 생산수 유로재 측에 염료(Dye)가 섞인 물을 흘려 보내 막에 손상된 부분의 염색 정도와 조립시 발생하는 리크 여부를 시각적으로 확인하였다. 이의 결과는 하기 표 5에 기재된 것과 같다.
리크 유무 판단 기준
실시예 1 X Autopsy 및 염 제거율 기준
실시예 2 X Autopsy 및 염 제거율 기준
실시예 3 X Autopsy 및 염 제거율 기준
실시예 4 X Autopsy 및 염 제거율 기준
비교예 1 X Autopsy 및 염 제거율 기준
전술한 염 제거율 측정 및 Autopsy를 통해 실시예 1 내지 4와 비교예 1의 리크가 없음을 확인하였다. 이로써, 본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물을 수처리 엘리먼트 제조에 이용하는 경우, 수처리 엘리먼트의 불량률을 줄이며, 생산성을 높이고 작업성을 향상시킬 수 있음을 확인하였다.
[진공도 체크를 통한 리크(leak) 유무 체크]
상기 실시예 3 및 비교예 1에서 와인딩이 완료된 수처리 엘리먼트의 중심관(생산수)쪽에서 진공 펌프를 통해 공기를 빼내어 진공도가 어느 정도 유지되는지를 측정하여 엘리먼트에 리크(leak)가 있는지 여부를 판단하였다. 구체적으로 진공 펌프로 공기를 흡입하면서, 1,000 mbar 기준으로 30초 동안 얼마나 진공이 잡히는지 진공 초기 압력을 측정하였다. 이후 진공 펌프로 공기를 흡입시키는 것을 멈추면서 30초 동안 얼마나 진공이 풀리는지 진공 말기 압력을 측정하였다. 진공 초기 압력과 진공 말기 압력의 차이 값을 계산하여 진공도가 어느 정도 유지되는지 확인하였다. 그 결과는 하기 표 6과 같다.
진공 초기 평균 (mbar) 진공 말기 평균
(mbar)
실시예 3 53.6 71.1
비교예 1 44.7 68.0
[자성 복합체의 제조]
실험예 1
(1) 자성 입자 전구체(Iron (III) chloride hexahydrate), 수성 용매(증류수) 및 염기(sodium acetate)를 극성 용매(ethylene glycol)와 혼합하여 원료를 제조하였다. 상기 자성 입자 전구체와 염기의 상기 원료 내에서의 농도는 각각 0.1 M 및 1.09 M가 되도록 혼합하고, 수성 용매는 상기 극성 용매의 부피 대비 10.67 부피% 가 되도록 혼합하였다. 이때, 수성 용매(증류수)는 160 mL, 극성 용매(ethylene glycol) 1500 mL를 사용했다.
(2) 상기 원료를 상온(약 23 ℃)에서 상기 원료의 온도가 대략 70 ℃가 될 때까지(약 2.5℃/min의 승온 속도로 20분 내지 60분의 시간 동안) 가열하여, 결정을 생성시켰다.
(3) 상기 (2) 과정을 거친 원료의 온도가 대략 190 ℃가 될 때까지(약 1℃/min의 승온 속도로 40분 내지 120분의 시간 동안) 가열하여 상기 (2) 과정에서 생성된 결정을 클러스트화 하였다.
(4) 상기 (3) 과정을 거친 원료의 온도가 대략 70 ℃가 될 때까지(약 1℃/min의 감온 속도로 2 시간 동안) 냉각하고, 상기 냉각된 원료에 표면 처리제(중량평균 분자량이 5,100 g/mol인 폴리아크릴산, Sigma Aldrich社)를 상기 원료에 적용된 자성 입자 전구체 100 중량부 대비 약 4.8 중량부로 혼합하였다.
실험예 2
상기 (1) 과정에서 상기 자성 입자 전구체와 염기의 상기 원료 내에서의 농도는 각각 0.05 M 및 0.76 M가 되도록 혼합하고, 수성 용매는 상기 극성 용매의 부피 대비 5.26 부피% 가 되도록 혼합하고, 상기 (4) 과정에서 냉각된 원료에 표면 처리제를 상기 원료에 적용된 자성 입자 전구체 100 중량부 대비 약 19.4 중량부로 혼합한 것을 제외하고는 실험예 1과 동일한 방식으로 자성 복합체를 제조하였다.
실험예 3
상기 (1) 과정에서 상기 자성 입자 전구체와 염기의 상기 원료 내에서의 농도는 각각 0.05 M 및 0.76 M가 되도록 혼합하고, 수성 용매는 상기 극성 용매의 부피 대비 5.26 부피% 가 되도록 혼합하고, 상기 (4) 과정에서 냉각된 원료에 표면 처리제(중량평균 분자량이 15,000인 폴리아크릴산, Sigma Aldrich社)를 상기 원료에 적용된 자성 입자 전구체 100 중량부 대비 약 19.4 중량부로 혼합한 것을 제외하고는 실험예 1과 동일한 방식으로 자성 복합체를 제조하였다.
실험예 4
상기 (1) 과정에서 상기 자성 입자 전구체와 염기의 상기 원료 내에서의 농도는 각각 0.05 M 및 0.76 M가 되도록 혼합하고, 수성 용매는 상기 극성 용매의 부피 대비 5.26 부피% 가 되도록 혼합하고, 상기 (4) 과정에서 냉각된 원료에 표면 처리제(인산계 단분자 분산제로 알려진 CRODA社의 CS20A 제품)를 상기 원료에 적용된 자성 입자 전구체 100 중량부 대비 약 16.67 중량부로 혼합한 것을 제외하고는 실험예 1과 동일한 방식으로 자성 복합체를 제조하였다.
실험예 5
상기 (1) 과정에서 상기 자성 입자 전구체와 염기의 상기 원료 내에서의 농도는 각각 0.05 M 및 0.76 M가 되도록 혼합하고, 수성 용매는 상기 극성 용매의 부피 대비 5.26 부피% 가 되도록 혼합하고, 상기 (4) 과정에서 냉각된 원료에 표면 처리제(인산계 공중합체 분산제로 알려진 BYK社의 Disper-111 제품)를 상기 원료에 적용된 자성 입자 전구체 100 중량부 대비 약 16.67 중량부로 혼합한 것을 제외하고는 실험예 1과 동일한 방식으로 자성 복합체를 제조하였다.
실험예 6
(1) 자성 입자 전구체(Iron (III) chloride hexahydrate), 수성 용매(증류수), 염기(sodium acetate) 및 표면 처리제(중량평균 분자량이 5,100인 폴리아크릴산, Sigma Aldrich社)를 극성 용매(ethylene glycol)와 혼합하여 원료를 제조하였다. 상기 자성 입자 전구체와 염기의 상기 원료 내에서의 농도는 각각 0.05 M 및 0.76 M가 되도록 혼합하고, 수성 용매는 상기 극성 용매의 부피 대비 5.26 부피% 가 되도록 혼합하며, 상기 표면 처리제는 상기 자성 입자 전구체 100 중량부 대비 대략 19.44 중량부의 비율로 혼합하였다.
(2) 상기 원료를 상온(약 23 ℃)에서 상기 원료의 온도가 대략 70 ℃가 될 때까지(약 2.5 ℃/min 의 승온 속도로 20분의 시간 동안) 가열하여, 결정을 생성시켰다.
(3) 상기 (2) 과정을 거친 원료의 온도가 대략 190 ℃가 될 때까지(약 1℃/min의 승온 속도로 120분의 시간 동안) 가열하여 상기 (2) 과정에서 생성된 결정을 클러스트화 하였다.
(4) 상기 (3) 과정을 거친 원료의 온도가 대략 70 ℃가 될 때까지(약 1℃/min의 감온 속도로 2 시간 동안) 냉각하였다.
실험예 7
상기 (1) 과정에서 상기 자성 입자 전구체와 염기의 상기 원료 내에서의 농도는 각각 0.09 M 및 1.43 M가 되도록 혼합하고, 수성 용매는 상기 극성 용매의 부피 대비 10.53 부피%가 되도록 혼합하며, 상기 표면 처리제는 상기 자성 입자 전구체 100 중량부 대비 대략 약 9.72 중량부의 비율로 혼합한 것을 제외하고는 상기 실험예 6과 동일한 방식으로 자성 복합체를 제조하였다.
실험예 8
상기 (1) 과정에서 상기 자성 입자 전구체와 염기의 상기 원료 내에서의 농도는 각각 0.05 M 및 0.76 M가 되도록 혼합하고, 수성 용매는 상기 극성 용매의 부피 대비 5.26 부피% 가 되도록 혼합하고, 상기 표면 처리제(중량평균 분자량이 15,000인 폴리아크릴산, Sigma Aldrich社)는 상기 자성 입자 전구체 100 중량부 대비 약 19.44 중량부의 비율로 혼합한 것을 제외하고는 상기 실험예 6와 동일한 방식으로 자성 복합체를 제조하였다.
실험예 9
상기 (1) 과정에서 상기 표면 처리제로는 인산계 단분자 분산제로 알려진 CRODA社의 CS20A 제품을 적용하며, 상기 자성 입자 전구체와 염기의 상기 원료 내에서의 농도는 각각 0.09 M 및 1.43 M가 되도록 혼합하고, 수성 용매는 상기 극성 용매의 부피 대비 10.53 부피% 가 되도록 혼합하고, 상기 표면 처리제는 상기 자성 입자 전구체 100 중량부 대비 약 8.33 중량부의 비율로 혼합한 것을 제외하고는 상기 실험예 6과 동일한 방식으로 자성 복합체를 제조하였다.
실험예 10
상기 (1) 과정에서 상기 표면 처리제로는 인산계 공중합체 분산제로 알려진 BYK社의 Disper-111 제품을 적용하며, 상기 자성 입자 전구체와 염기의 상기 원료 내에서의 농도는 각각 0.05 M 및 0.76 M가 되도록 혼합하고, 수성 용매는 상기 극성 용매의 부피 대비 5.26 부피% 가 되도록 혼합하고, 상기 표면 처리제는 상기 자성 입자 전구체 100 중량부 대비 약 16.67 중량부의 비율로 혼합한 것을 제외하고는 상기 실험예 6과 동일한 방식으로 자성 복합체를 제조하였다.
[수처리 엘리먼트용 핫멜트 접착제 조성물의 제조]
수처리 엘리먼트용 핫멜트 접착제 조성물 100 중량부를 기준으로, 상기 제조한 실험예 1 내지 10 각각의 자성 복합체 5 중량부와 고분자 수지(WINMELT AT, 우진)을 95 중량부로 혼합한 후, 스크류 압출기를 통하여 수처리 엘리먼트용 핫멜트 접착제 조성물을 제조하였다. 상기 수처리 엘리먼트용 핫멜트 접착제 조성물은 가로 20 mm × 세로 1,000 mm 크기의 필름형태였다.
상기 제조된 수처리 엘리먼트용 핫멜트 접착제 조성물을 도 1과 같이 분리막의 side seal과 end seal에 위치시킨 후, 권취하여 나권형(spiral wound) 형태의 수처리용 엘리먼트를 제조하였다.
그 다음, 권취된 나권형(spiral wound) 형태의 수처리 엘리먼트는 자기장 코일 내에 위치시켰으며, 자기장을 375 A, 회전 속도 60 rpm으로 10분간 인가하여 비접촉식 유도가열 방식을 통한 접착을 진행하였다.
상기 수처리 엘리먼트용 핫멜트 접착제 조성물을 수처리 엘리먼트에 적용한 두께는 300 ㎛이었고, 폭은 20 mm 이었다.
실험예 1 내지 10에 대한 실험
[결정 크기 측정]
하기 방법에 따라 실험예 1 내지 10에서 합성한 자성 복합체 내의 자성 입자의 자구(=결정)의 크기를 측정하였다.
(1) Brucker社의 XRD-07-D8_Endeavor 장비를 이용해서 상기 장비의 매뉴얼에 따라 상기 자성체의 10˚ 내지 90˚의 2θ 회절 각도 구간에서의 신호 세기(intensity)를 측정하였다.
(2) 상기 (1) 단계에서 수득한 X선 회절 분석 결과에서, 62.57˚에서 피크를 나타내는 60.824˚ 내지 64.957˚의 2θ 범위 내에서의 결과값을, 하기 수식 3에 대입하여 결정의 크기를 측정하였다. 이를 하기 표 8에 기재하였다.
[수식 3]
τ=(K×λ)/(β×cos(θ))
상기 수식 3에서,
τ는 결정 크기이고, K는 Scherrer 상수로, cubic symmetry를 가지는 구형 결정의 최대 반치폭에 대해 0.94 이며, X-ray의 파장, β는 회절 피크의 최대 반치 폭, θ는 Bragg 회절 각도이다.
[평균 입경 측정]
(1) 실험예 1 내지 10에서 제조한 자성 복합체에 대하여 CRESSINGTON SPUTTER COATER 108 모델을 사용하여 오토(auto) 모드로 60~90초 가량 백금 코팅(Pt coating)을 진행하여 시편을 제조하였다.
(2) 상기 시편에 대해서 SEM(주사전자현미경, JEOL사의 FESEM, JSM7610F 장비)을 이용하여 상기 장비의 매뉴얼에 따라 상기 자성체의 SEM 사진을 촬영하였다.
(3) 자성체의 SEM 사진을 통해, 자성 입자가 클러스트화 된지 여부를 확인하고, 자성체의 평균 입경을 측정하였다. 이를 하기 표 7에 기재하였다.
결정 크기(nm) 평균 입경(nm)
실험예 1 30.6 100
실험예 2 28.2 85
실험예 3 24 60
실험예 4 26.8 110
실험예 5 29.1 80
실험예 6 8.4 100
실험예 7 10.5 85
실험예 8 7.6 30
실험예 9 12.4 90
실험예 10 6.9 40
표 7에 따르면, 실험예 1 내지 5는 자성 입자의 결정 크기가 15 nm 내지 40nm의 범위를 만족하나, 실험예 6 내지 10은 자성 입자의 결정 크기가 15nm 미만인 것을 확인할 수 있다. 실험예 1 내지 5의 자성체 내의 자성 입자는 실험예 6 내지 10의 자성체 대비 더 매끄러운 표면을 가지며, 실시예의 자성체 내의 자성 입자는 결정이 클러스터화된 형태를 가지고, 각 자성 입자가 표면 처리제로 표면 처리되어 있다. 표면 처리제의 투입 시점이 상이한 실험예 6 내지 10의 자성체의 자성 입자에서는 표면 처리제가 결정의 표면에 도입되어서 실험예 1 내지 5 대비 비교적 작은 결정 크기를 가진다.
[발열량 측정]
상기 발열량(SAR)은 하기 식 1을 이용하여 계산하였다.
[식 1]
Figure PCTKR2020018148-appb-img-000008
상기 식 1에서,
C i: The specific heat capacity of the medium (Water: 4.184 J/g·K),
m i: The mass of the medium (10 g),
Figure PCTKR2020018148-appb-img-000009
: The mass of MNC in the medium (0.5 g),
△t=60s
△T: The temperature difference between the initial temperature and after 60 s이다.
상기 발열량은 상기 자성 복합체의 혼합액의 부피에 영향을 받기 때문에 상기 혼합액의 부피를 0.35 ml로 고정하고 상승된 평균 온도를 측정하여 계산하였다. 상기 평균 온도의 측정은 thermocouple을 사용하였다. 이를 하기 표 8에 기재하였다.
[발열 온도 측정]
발열온도는 자성 입자의 분말 0.5 g을 물 10g에 용해시켜서 제조한 자성 유체 0.35 mL에 교류 자기장을 120.4 A의 전류와 310 kHz의 주파수 조건으로 60초 동안 인가하여 측정하였으며, 이를 하기 표 8에 기재하였다.
[육안에 의한 접착 여부 확인]
상기 제조한 수처리 엘리먼트용 핫멜트 조성물을 이용하여 접착한 수처리 엘리먼트의 접착 정도를 육안으로 확인하여 접착 정도를 하기 표 8에 기재하였다.
발열량(W/g) 발열 온도(K) 육안에 의한 접착 여부 확인
실험예 1 78.9 350.6 접착
실험예 2 95.4 362.4 접착
실험예 3 72.2 345.8 접착
실험예 4 91.4 359.5 접착
실험예 5 81.3 352.3 접착
실험예 6 50.2 330.0 부분접착
실험예 7 49.0 329.1 부분접착
실험예 8 26.8 313.2 미접착
실험예 9 48.4 328.7 부분접착
실험예 10 27.2 313.5 부분접착
상기 표 9에 따르면, 자성 입자의 결정 크기가 15 nm 내지 40nm의 범위를 만족하는 실험예 1 내지 5의 경우 수처리 엘리먼트 접착 필름이 양호하게 접착되었으나, 자성 입자의 결정 크기가 15 nm 미만인 실험예 6 내지 10의 경우 부분 접착되거나 접착되지 않아 접착도가 떨어져서 수처리 엘리먼트에 리크(leak)가 생길 수 있음을 확인하였다. 이로써, 본 명세서에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물을 수처리 엘리먼트 제조에 이용하는 경우, 수처리 엘리먼트의 불량률을 줄이며, 생산성을 높이고 작업성을 향상시킬 수 있음을 확인하였다.이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.

Claims (14)

  1. 고분자 수지; 및 자성복합체를 포함하는 수처리 엘리먼트용 핫멜트 접착제 조성물.
  2. 청구항 1에 있어서, 상기 수처리 엘리먼트용 핫멜트 접착제 조성물 100 중량부를 기준으로 상기 고분자 수지는 90 내지 99.9 중량부이고, 상기 자성복합체는 0.1 내지 10 중량부인 것인 수처리 엘리먼트용 핫멜트 접착제 조성물.
  3. 청구항 1에 있어서, 상기 수처리 엘리먼트용 핫멜트 접착제 조성물의 용융흐름지수(MFI, Melt flow index)는 177℃, 2.16 kg에서 5 g/10 min 내지 50 g/10 min인 것인 수처리 엘리먼트용 핫멜트 접착제 조성물.
  4. 청구항 1에 있어서, 상기 수처리 엘리먼트용 핫멜트 접착제 조성물은 150℃의 온도, 70 kg/cm 2의 압력 및 30초의 조건에서 경화되는 것인 수처리 엘리먼트용 핫멜트 접착제 조성물.
  5. 청구항 1에 있어서, 상기 자성복합체는 결정 크기가 15 nm 내지 40 nm의 범위 내에 있는 자성 입자가 응집된 자성 입자 클러스트를 포함하는 것인 수처리 엘리먼트용 핫멜트 접착제 조성물.
  6. 청구항 5에 있어서, 상기 자성 입자 클러스트의 평균 입경이 20 nm 내지 300 nm 인 것인 수처리 엘리먼트용 핫멜트 접착제 조성물.
  7. 청구항 5에 있어서, 상기 자성 복합체는 상기 자성 입자 클러스트의 표면에 구비된 표면처리제를 포함하는 것인 수처리 엘리먼트용 핫멜트 접착제 조성물.
  8. 청구항 1 내지 7 중 어느 한 항에 따른 수처리 엘리먼트용 핫멜트 접착제 조성물을 포함하는 접착 필름.
  9. 청구항 8에 있어서, 상기 접착 필름의 두께가 200 ㎛ 내지 400 ㎛인 것인 접착 필름.
  10. 청구항 8에 있어서, 상기 접착 필름의 두께가 401 ㎛ 내지 800 ㎛인 것인 접착 필름.
  11. 청구항 8에 있어서, 상기 접착필름의 폭이 5 mm 내지 100 mm인 것인 접착 필름.
  12. 청구항 8에 따른 접착 필름을 포함하는 수처리 엘리먼트.
  13. 청구항 12에 있어서, 상기 수처리 엘리먼트는 하나 이상의 분리막 리프를 포함하고, 상기 접착 필름은 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)에 구비되는 것인 수처리 엘리먼트.
  14. 청구항 12에 있어서, 상기 수처리 엘리먼트는 하나 이상의 분리막 리프를 포함하고, 상기 접착 필름은 상기 분리막 리프의 서로 대향하는 한 쌍의 가장자리부(side seal)에 수직하는 가장자리부(end seal)에 구비되는 것인 수처리 엘리먼트.
PCT/KR2020/018148 2019-12-11 2020-12-11 수처리 엘리먼트용 핫멜트 접착제 조성물, 접착 필름 및 이를 포함하는 수처리 엘리먼트 WO2021118289A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080057395.2A CN114269877B (zh) 2019-12-11 2020-12-11 用于水处理元件的热熔粘合剂组合物、包含其的粘合剂膜和水处理元件
US17/635,853 US20220298384A1 (en) 2019-12-11 2020-12-11 Hot-melt adhesive composition for water treatment element, adhesive film, and water treatment element comprising same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2019-0164854 2019-12-11
KR10-2019-0164850 2019-12-11
KR1020190164854A KR20210073983A (ko) 2019-12-11 2019-12-11 접착 필름 및 이를 포함하는 수처리 엘리먼트
KR10-2019-0164867 2019-12-11
KR10-2019-0164847 2019-12-11
KR1020190164850A KR20210073981A (ko) 2019-12-11 2019-12-11 접착 필름 및 이를 포함하는 수처리 엘리먼트
KR1020190164867A KR20210073989A (ko) 2019-12-11 2019-12-11 수처리 엘리먼트용 핫멜트 접착제 조성물 및 이를 포함하는 수처리 엘리먼트
KR1020190164847A KR20210073978A (ko) 2019-12-11 2019-12-11 수처리 엘리먼트용 핫멜트 접착제 조성물 및 이를 포함하는 수처리 엘리먼트

Publications (1)

Publication Number Publication Date
WO2021118289A1 true WO2021118289A1 (ko) 2021-06-17

Family

ID=76328968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018148 WO2021118289A1 (ko) 2019-12-11 2020-12-11 수처리 엘리먼트용 핫멜트 접착제 조성물, 접착 필름 및 이를 포함하는 수처리 엘리먼트

Country Status (3)

Country Link
US (1) US20220298384A1 (ko)
CN (1) CN114269877B (ko)
WO (1) WO2021118289A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019746A (ko) * 1998-09-15 2000-04-15 이영관 폴리에스테르 부직포의 분리막 지지체
KR20160060737A (ko) * 2013-09-23 2016-05-30 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 조합된 핫-멜트 접착제 및 감압 접착제 시스템 및 이로부터 제조된 복합 물질
KR20160116608A (ko) * 2015-03-30 2016-10-10 한국신발피혁연구원 유도가열이 가능한 접착제 조성물 및 이를 이용한 유도가열 방법
JP2019052232A (ja) * 2017-09-14 2019-04-04 ダイセン・メンブレン・システムズ株式会社 ポリウレタン接着剤組成物、及びこれを用いて製作される中空糸膜モジュール
KR20190094126A (ko) * 2018-02-02 2019-08-12 주식회사 엘지화학 경화성 조성물
KR102024257B1 (ko) * 2015-09-25 2019-09-23 주식회사 엘지화학 점착제 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753488B2 (ja) * 2001-04-03 2011-08-24 株式会社ユポ・コーポレーション Icタグ用シート
US20120234488A1 (en) * 2011-03-18 2012-09-20 GM Global Technology Operations LLC Magnetic hot melt adhesive and methods of making and using the same
US10894903B2 (en) * 2016-06-16 2021-01-19 3M Innovative Properties Company Nanoparticle filled barrier adhesive compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019746A (ko) * 1998-09-15 2000-04-15 이영관 폴리에스테르 부직포의 분리막 지지체
KR20160060737A (ko) * 2013-09-23 2016-05-30 루브리졸 어드밴스드 머티어리얼스, 인코포레이티드 조합된 핫-멜트 접착제 및 감압 접착제 시스템 및 이로부터 제조된 복합 물질
KR20160116608A (ko) * 2015-03-30 2016-10-10 한국신발피혁연구원 유도가열이 가능한 접착제 조성물 및 이를 이용한 유도가열 방법
KR102024257B1 (ko) * 2015-09-25 2019-09-23 주식회사 엘지화학 점착제 조성물
JP2019052232A (ja) * 2017-09-14 2019-04-04 ダイセン・メンブレン・システムズ株式会社 ポリウレタン接着剤組成物、及びこれを用いて製作される中空糸膜モジュール
KR20190094126A (ko) * 2018-02-02 2019-08-12 주식회사 엘지화학 경화성 조성물

Also Published As

Publication number Publication date
CN114269877A (zh) 2022-04-01
US20220298384A1 (en) 2022-09-22
CN114269877B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2015016683A1 (ko) 내구성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
CN101163734B (zh) 新型聚酰亚胺膜及其利用
JPS61111359A (ja) ポリイミド膜
WO2018147602A1 (ko) 폴리아마이드-이미드 필름
WO2015137678A1 (ko) 산화그래핀 코팅층을 포함하는 복합막, 이를 포함하는 다공성 고분자 지지체 및 이의 제조방법
CN101979451B (zh) 粘接薄膜、柔性敷金属叠层板及其制备方法
KR100487696B1 (ko) 접합된웨이퍼,이의제조방법및기판
WO2014081228A1 (ko) 내염소성이 우수한 고유량 수처리 분리막
WO2014196835A1 (ko) 내산화성 및 내염소성이 우수한 폴리아미드계 수처리 분리막 및 그 제조방법
WO2014069786A1 (ko) 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
KR102312132B1 (ko) 디스플레이 기판용 수지 조성물, 디스플레이 기판용 수지 박막 및 디스플레이 기판용 수지 박막의 제조 방법
TW201206995A (en) Method for producing polyimide film, polyimide film and laminate using the same
TWI735550B (zh) 聚醯胺酸、聚醯胺酸溶液、聚醯亞胺、及聚醯亞胺基板與其等之製造方法
WO2013180517A1 (ko) 카보디이미드계 화합물을 포함하는 고투과 역삼투막 및 이를 제조하는 방법
US5478918A (en) Low stress polyimide composition and precursor composition solution of same
WO2021118289A1 (ko) 수처리 엘리먼트용 핫멜트 접착제 조성물, 접착 필름 및 이를 포함하는 수처리 엘리먼트
KR20180134772A (ko) 폴리이미드 또는 폴리(아미드-이미드) 코폴리머 필름, 상기 필름을 포함하는 표시 장치, 상기 필름을 제조하는 방법
KR20120101503A (ko) 폴리이미드 필름의 제조 방법, 및 폴리이미드 필름
TWI701277B (zh) 超薄黑色聚醯亞胺膜及其製備方法
WO2016036125A1 (ko) 하이브리드 cnt-ro막 압력용기
JP5167712B2 (ja) ポリイミド積層体の製造方法、ポリイミド積層体
JP2001115019A (ja) ポリイミド前駆体水系溶媒溶液および液晶配向膜
WO2020105933A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2021112389A1 (ko) 자성체, 이를 포함하는 경화성 조성물 및 상기 자성체의 제조 방법
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897966

Country of ref document: EP

Kind code of ref document: A1