WO2021117454A1 - Glass plate production method and production device - Google Patents

Glass plate production method and production device Download PDF

Info

Publication number
WO2021117454A1
WO2021117454A1 PCT/JP2020/043167 JP2020043167W WO2021117454A1 WO 2021117454 A1 WO2021117454 A1 WO 2021117454A1 JP 2020043167 W JP2020043167 W JP 2020043167W WO 2021117454 A1 WO2021117454 A1 WO 2021117454A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
glass
air supply
supply port
mark
Prior art date
Application number
PCT/JP2020/043167
Other languages
French (fr)
Japanese (ja)
Inventor
正福 久良木
友和 南
敬一 吉野
純一 和泉
直樹 熊崎
孝英 藤居
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2021117454A1 publication Critical patent/WO2021117454A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments

Definitions

  • the present invention relates to a method for manufacturing a glass plate and a manufacturing apparatus.
  • a method of cutting out one or more glass plates to be a product from a large-area glass original plate may be adopted.
  • Such a method is often used in the manufacturing process of glass substrates for displays such as liquid crystal displays and organic EL displays.
  • the mother glass is cut out from a molded original plate manufactured by cutting a glass ribbon to a predetermined length by a float method or a down draw method, or a glass substrate for a display is cut out from the mother glass. ..
  • the molded original plate becomes the glass original plate
  • the mother glass becomes the glass original plate.
  • Such a glass original plate may be transported in a vertical position.
  • a marking step of forming a mark indicating identification information on the glass original plate may be performed on the transport path.
  • a defect inspection step for inspecting defects contained in the original glass plate is performed on a path for transporting the original glass plate in a vertical posture.
  • the defect information obtained in the defect inspection process is stored in the computer together with the identification information of the glass original plate.
  • a marking step of forming a mark indicating identification information on the glass original plate is performed on the transport path on the downstream side of the defect inspection step. Then, when the glass plate to be the product is cut out from the original glass plate, the mark formed on the original glass plate is read to obtain the optimum cutting pattern in consideration of the defect information from the computer.
  • Patent Document 1 discloses that the posture of the original glass plate is maintained in the vertical posture by holding the upper end portion of the original glass plate by a chuck mechanism. Further, the same document discloses that a marking device is used to form a mark indicating identification information on a glass original plate in such a vertical posture.
  • the original glass plate may shake when forming a mark indicating identification information.
  • the position of the original glass plate with respect to the marking device fluctuates greatly.
  • the position of the original glass plate with respect to the marking device fluctuates greatly.
  • the position of the glass original plate with respect to the marking device fluctuates in this way, there may be a problem that a mark cannot be appropriately formed on the glass original plate.
  • the present invention when a mark is formed on a glass plate while holding the upper end portion of the glass plate in a vertical posture, it is possible to reliably suppress the occurrence of mark formation failure due to the shaking or warping of the glass plate. Make it an issue.
  • the present invention which was devised to solve the above problems, is a method for manufacturing a glass plate including a marking process for forming a mark on the glass plate while holding the upper end portion of the glass plate in a vertical posture.
  • the feature is that a mark is formed on the upper part of the glass plate.
  • the upper part of the glass plate is less affected by the shaking and warping of the glass plate than the lower part of the glass plate. Therefore, if the mark is formed on the upper part of the glass plate, it is possible to surely suppress the poor formation of the mark due to the shaking or warping of the glass plate.
  • the glass plate in the marking process, is housed in the processing chamber, gas is supplied from the air supply port provided at the upper part of the processing chamber, and gas is supplied from the exhaust port provided at the lower part of the processing chamber. Is preferably exhausted.
  • the direction of the gas supplied from the air supply port is changed by the windbreak member provided between the air supply port and the glass plate, and the gas supplied from the air supply port is changed. It is preferable not to reach the glass plate directly.
  • the windbreak member When a windbreak member is used, the windbreak member includes an inclined surface portion that covers the air supply port, and the inclined surface portion is inclined so that one end of the inclined surface portion is located above the other end of the inclined surface portion. One end is preferably attached to the upper part of the treatment chamber outside the air supply port.
  • a glass plate manufacturing device including a holding portion for holding an upper end portion of a glass plate in a vertical posture and a marking device for forming a mark on the glass plate held by the holding portion.
  • the marking device is an upper portion of the glass plate. It is characterized in that it is configured to form a mark on the glass.
  • the present invention when a mark is formed on a glass plate while holding the upper end portion of the glass plate in a vertical posture, it is possible to reliably suppress the occurrence of mark formation failure due to the shaking or warping of the glass plate. ..
  • FIG. 1 is a cross-sectional view taken along the line AA of FIG. It is a cross-sectional view of BB of FIG. It is sectional drawing which shows the processing chamber (including the windbreak member) of the glass plate manufacturing apparatus which concerns on 2nd Embodiment. It is sectional drawing which shows the windbreak member in the glass plate manufacturing apparatus which concerns on 3rd Embodiment.
  • FIG. 5C is a cross-sectional view taken along the line CC of FIG. 5A. It is sectional drawing which shows the windbreak member in the glass plate manufacturing apparatus which concerns on 4th Embodiment.
  • FIG. 10A is a cross-sectional view taken along the line EE of FIG. 10A. It is sectional drawing which shows the windbreak member in the glass plate manufacturing apparatus which concerns on 9th Embodiment.
  • XYZ in the figure is a Cartesian coordinate system.
  • the X and Y directions are horizontal, and the Z direction is vertical.
  • the X direction is the transport direction, and the Y direction is the width direction orthogonal to the transport direction.
  • the method for manufacturing a glass plate according to the first embodiment includes a molding step (not shown), a cutting step S1, a defect inspection step S2, and a marking step S3.
  • the glass plate manufacturing apparatus includes a processing chamber 1 for performing each of the above steps.
  • the treatment chamber 1 forms a space that can block pollutants from the outside to some extent.
  • the processing room 1 is, for example, a clean room.
  • a plurality of spaces 2, 3, 4, 5, and 6 corresponding to each process are provided in the processing chamber 1.
  • Each space 2 to 6 is partitioned by a partition wall 7.
  • the partition wall 7 is provided with a slit-shaped opening (not shown) for allowing the glass original plate G to pass through.
  • a shutter for opening and closing the opening may be provided in the opening for passing the glass original plate G.
  • the division mode of the partition wall 7 in the processing chamber 1 can be changed as appropriate. However, it is preferable that the split mode is such that the glass powder generated in the space 2 in which the cutting step S1 is performed can be prevented from entering the other spaces 3 to 6.
  • a vertical glass ribbon is continuously molded by the overflow down draw method.
  • the molding process is not limited to the process using the overflow down draw method.
  • the molding step may be, for example, a step using another down draw method such as a slot down draw method or a redraw method, or a float method.
  • a glass original plate (glass plate) G which is a molded original plate, is obtained by cutting the glass ribbon to a predetermined length while maintaining the vertical posture.
  • the glass ribbon is roughly cut by cutting due to bending stress.
  • the cutting method (rough cutting) of the glass ribbon is not particularly limited, and may be laser cutting, laser cutting, or the like.
  • the glass original plate G obtained in the cutting step S1 is sequentially conveyed to the defect inspection step S2 and the marking step S3 provided on the downstream side of the cutting step S1 while maintaining the vertical posture (preferably the vertical posture).
  • the upper end portion of the glass original plate G is held by the chuck mechanism (holding portion) 8.
  • the chuck mechanism 8 is attached to a base member 9 that can move on a rail (not shown) extending along the transport direction X of the glass original plate G (see, for example, FIGS. 2 and 3).
  • the transport direction X of the glass original plate G is a direction parallel to the main surfaces Ga and Gb of the glass original plate G, but the present invention is not limited to this.
  • the defect inspection step S2 includes a step S2a (space 5) of measuring the type (for example, bubbles, foreign matter, etc.), position (coordinates), and size of defects contained in the glass original plate G with the sensor 10.
  • the step S2b before the step S2a, the step S2b (space 3) for measuring the uneven thickness of the glass original plate G with the sensor 11 and the streak (pulse) of the glass original plate G with the sensor 12 are performed.
  • defect information including the inspection results of these steps S2a to S2c is generated.
  • the defect information is stored in a computer (for example, a server) together with the identification information (including the ID information) of the glass original plate G to be inspected.
  • the identification information may include information on the production area of the original glass plate G in addition to the ID information of the original glass plate G.
  • a computer an optimum cutting pattern that takes defect information into consideration is required. As the cutting pattern, for example, a pattern that minimizes the amount of glass discarded is selected.
  • the order of steps S2a to S2c is not particularly limited. Step S2b and step S2c may be omitted.
  • the marking device 13 forms a mark M indicating identification information on the glass original plate G. While the mark M is formed, the transfer of the glass original plate G is stopped. Since the upper end portion of the glass original plate G is held by the chuck mechanism 8, the upper portion R of the glass original plate G is less affected by the shaking and warpage of the glass original plate G than the lower portion of the glass original plate G. Therefore, in the marking step S3, the marking device 13 forms the mark M on the upper portion R of the glass original plate G. As a result, it is possible to reliably suppress the poor formation of the mark M due to the shaking and warping of the glass original plate G.
  • the peripheral portion of the glass original plate G is, for example, an ineffective portion Gx that is cut and removed at the time of cutting
  • the central portion of the glass original plate G is a glass plate (for example, mother glass) that is a product at the time of cutting.
  • the effective part is Gy. Therefore, it is preferable that the upper portion R of the glass original plate G on which the mark M is formed is included in the ineffective portion Gx.
  • the upper portion R of the glass original plate G on which the mark M is formed is preferably a region within 200 mm from the upper side of the glass original plate G, and more preferably a region within 150 mm from the upper side of the glass original plate G. preferable.
  • a two-dimensional code (preferably a data matrix code) or the like can be used.
  • the mark M for example, engraving (printing) by laser processing, printing with an inkjet printer, or the like can be used.
  • the engraving by laser processing can form not only the main surface Ga of the glass original plate G but also the mark M inside the glass original plate G.
  • the marking by laser processing may not be able to form the mark M on the glass original plate G used for, for example, a high-hardness glass substrate for a liquid crystal display.
  • the mark M can be easily formed on the main surface Ga of the glass original plate G regardless of the hardness of the glass original plate G. Therefore, the method for forming the mark M is preferably printing with an inkjet printer.
  • gas for example, air
  • gas F is supplied to the space 6 from the air supply port 14a of the air supply device 14 provided on the ceiling 1a of the processing chamber 1 while being provided on the floor surface 1b of the processing chamber 1.
  • the gas F in the space 6 is exhausted from the exhaust port 15a of the exhaust device 15.
  • This downward flow is formed on both main surfaces Ga and Gb of the glass original plate G. Therefore, particles such as dust floating in the space 6 of the processing chamber 1 can be effectively removed. As a result, it is possible to reduce the adhesion of particles to the glass original plate G.
  • the distance H from the air supply port 14a to the upper side of the glass original plate G is set to, for example, 500 mm to 2000 mm.
  • FIG. 3 illustrates a case where a plurality of air supply ports 14a (air supply device 14) and exhaust ports 15a (exhaust device 15) are provided at intervals in the transport direction (three in the illustrated example).
  • the number and arrangement of the air supply port 14a (air supply device 14) and the exhaust port 15a (exhaust device 15) are not particularly limited.
  • this manufacturing method further includes a packing step, a transportation step, and a processing step after the marking step S3.
  • the pallet may be one in which the glass original plates G are laminated in a vertical posture, or may be one in which the glass original plates G are laminated in a horizontal posture.
  • the posture of the original glass plate G preferably has an angle of 40 ° to 80 ° with the horizontal plane.
  • the posture of the original glass plate G preferably has an angle formed by the horizontal posture of 0 ° (horizontal posture) to 30 °, and preferably 0 ° to 15 °. ..
  • a protective sheet such as a paper (interlaced paper) or a foamed resin sheet is interposed between the glass original plates G.
  • the glass original plate G packed in the pallet is transported to the processing process.
  • Transport includes at least one of land, air and sea.
  • the mark M formed on the original glass plate G is read by a scanner.
  • the computer outputs an optimum cutout pattern in consideration of the defect information corresponding to the read mark M.
  • the mother glass is cut out from the glass original plate G according to the cutting pattern output by the computer.
  • the glass original plate G is placed on a surface plate or the like in a flat position, and the glass original plate G is precisely cut in this state.
  • a cutting method (fine cutting) of the glass original plate G for example, bending stress cutting, laser cutting, laser cutting and the like can be used.
  • the glass plate manufacturing method and the manufacturing apparatus according to the second embodiment are different from the first embodiment in the air supply port 14a in the space 6 of the processing chamber 1 in which the marking step S3 is performed.
  • a point is that a windbreak member 21 is provided between the glass original plate G and the glass original plate G.
  • the windbreak member 21 adjusts the direction of the gas F supplied from the air supply port 14a so that the gas F supplied from the air supply port 14a does not directly reach the glass plate G. In other words, the windbreak member 21 prevents the gas F supplied from the air supply port 14a from flowing straight toward the glass original plate G located directly below the air supply port 14a. By providing the windbreak member 21 in this way, it is possible to reduce the shaking of the glass original plate G due to the gas F supplied from the air supply port 14a. That is, it is possible to more reliably suppress the poor formation of the mark M by the marking device 13.
  • the windbreak member 21 includes an inclined surface portion 22 that covers the air supply port 14a.
  • One end 22a of the inclined surface portion 22 in the width direction Y is attached to the ceiling 1a of the processing chamber 1 (space 6) on the side of the air supply port 14a.
  • the other end 22b of the inclined surface portion 22 in the width direction Y is located below the one end 22a of the inclined surface portion 22. That is, the inclined surface portion 22 is inclined in the width direction Y.
  • the gas F supplied from the air supply port 14a collides with the inclined surface portion 22 and is guided to one side in the width direction Y following the inclined surface portion 22.
  • the gas F is mainly guided to one main surface Gb side of the glass original plate G, but the downward flow due to the gas F is generated on both main surfaces Ga and Gb sides (both sides) of the glass original plate G.
  • the causes of the downward flow on both sides of the original glass plate G are that the original glass plate G is intermittently conveyed into the processing chamber 1 in which the marking step S3 is performed, and that the gas F is introduced below the original glass plate G. Exhaust from the exhaust port 15a, and the like.
  • the inclined surface portion 22 may be inclined in the transport direction X.
  • the angle ⁇ formed by the inclined surface portion 22 with the horizontal plane is preferably 35 ° to 55 °.
  • the windbreak member 31 includes a triangular roof portion 32 and a support column 33.
  • the triangular roof portion 32 includes two inclined surfaces 32a that cover the air supply port 14a at a position downwardly separated from the air supply port 14a.
  • the two inclined surfaces 32a are inclined in the width direction Y so that the central portion of the triangular roof portion 32 in the width direction Y is the top.
  • a total of four columns 33 are provided at the four corners of the triangular roof portion 32, and the triangular roof portion 32 is suspended and supported from the ceiling 1a of the processing chamber 1 (space 6).
  • the number and position of the columns 33 are not limited to this.
  • the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y following each inclined surface 32a of the triangular roof portion 32.
  • the two inclined surfaces 32a may be inclined in the transport direction X so that the central portion of the triangular roof portion 32 in the transport direction X is the top.
  • the windbreak member 41 includes a partially tubular portion 42 and a support column 43.
  • the partial tubular portion 42 covers the air supply port 14a at a position downward from the air supply port 14a.
  • the partial tubular portion 42 is curved in the width direction Y so that the central portion of the partial tubular portion 42 in the width direction Y is the top.
  • a total of four columns 43 are provided at the four corners of the partial tubular portion 42, and the partial tubular portion 42 is suspended and supported from the ceiling 1a of the processing chamber 1 (space 6). The number and position of the columns 43 are not limited to this.
  • the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y following the partial tubular portion 42.
  • the partial tubular portion 42 may be curved in the transport direction X so that the central portion of the partial tubular portion 42 in the transport direction X is the top.
  • the windbreak member 51 includes a horizontal surface portion 52 and a support column 53.
  • the horizontal surface portion 52 covers the air supply port 14a at a position downward from the air supply port 14a.
  • a total of four columns 53 are provided at the four corners of the horizontal surface portion 52, and the horizontal surface portion 52 is suspended and supported from the ceiling 1a of the processing chamber 1 (space 6).
  • the number and position of the columns 53 are not limited to this.
  • the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y following the horizontal plane portion 52.
  • the gas F supplied from the air supply port 14a may be separated on both sides in the transport direction X following the horizontal surface portion 52 after colliding with the horizontal surface portion 52.
  • the windbreak member 61 includes an inverted triangular roof portion 62 and a support column 63.
  • the inverted triangular roof portion 62 includes two inclined surfaces 62a that cover the air supply port 14a at a position downwardly separated from the air supply port 14a.
  • the two inclined surfaces 62a are inclined in the width direction Y so that the central portion of the inverted triangular roof portion 62 in the width direction Y is the bottom portion.
  • a total of four columns 63 are provided at the four corners of the inverted triangular roof portion 62, and the inverted triangular roof portion 62 is suspended and supported from the ceiling 1a of the processing chamber 1 (space 6).
  • the number and position of the columns 63 are not limited to this.
  • the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y following each inclined surface 62a of the inverted triangular roof portion 62.
  • the two inclined surfaces 62a may be inclined in the conveying direction X so that the central portion of the inverted triangular roof portion 62 in the conveying direction X is the bottom portion.
  • the seventh embodiment exemplifies a modification of the windbreak member 21 described in the second embodiment.
  • the windbreak member 71 includes a partial tubular portion 72.
  • the partial tubular portion 72 extends along the width direction Y, and both ends in the upper direction and the width direction Y are open.
  • the partial tubular portion 72 is attached to the ceiling 1a of the processing chamber 1 (space 6) so as to cover the air supply port 14a. After colliding with the partial tubular portion 72, the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y following the partial tubular portion 72.
  • the partial tubular portion 72 may extend along the transport direction X and may be open upward and at both ends in the transport direction X.
  • the eighth embodiment exemplifies a modification of the windbreak member 21 described in the second embodiment.
  • the windbreak member 81 includes a box-shaped portion 82.
  • the box-shaped portion 82 is attached to the ceiling 1a of the processing chamber 1 (space 6) so as to cover the air supply port 14a.
  • the box-shaped portion 82 is open at the upper side and has a plurality of ventilation holes 83 on both side wall surfaces 82a in the width direction Y. After colliding with the box-shaped portion 82, the gas F supplied from the air supply port 14a is separated into both sides in the width direction Y through the ventilation holes 83 of the side wall surfaces 82a.
  • the ventilation holes 83 may be provided on the wall surfaces 82b on both sides of the box-shaped portion 82 in the transport direction X.
  • the windbreak member 91 includes a duct 92.
  • the duct 92 is a tubular member directly connected to the air supply port 14a.
  • a plurality of ducts 92 are provided so that the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y.
  • a plurality of ducts 92 may be provided so that the gas F supplied from the air supply port 14a is separated on both sides of the transport direction X.
  • the present invention is not limited to the configuration of the above-described embodiment, and is not limited to the above-mentioned action and effect.
  • the present invention can be modified in various ways without departing from the gist of the present invention.
  • the air supply port (air supply device) and the exhaust port (exhaust device) are provided in the space where the marking process of the processing chamber is performed.
  • An air supply port and an exhaust port may be provided in the space.
  • the case where the gas supplied from the air supply port is prevented from directly reaching the glass original plate is illustrated by the windbreak member, but the arrangement position and the air volume of the air supply port are illustrated without using the windbreak member. , The direction of the wind, etc. may be adjusted so that the gas supplied from the air supply port does not reach the original glass plate directly.
  • the mark is formed on the glass plate while holding the upper end portion of the glass plate in the vertical posture.
  • the present invention can be applied in various cases.
  • the present invention can be applied to the case where a mark is formed on the mother glass and a glass substrate for a final product such as a glass substrate for a liquid crystal display is cut out from the mother glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The glass plate production method comprises a marking step of forming a mark M onto a glass plate G in a state wherein the glass plate G in a vertical orientation is being held from the upper end portion thereof. In the marking step, the mark M is formed in the upper portion of the glass plate G.

Description

ガラス板の製造方法及び製造装置Glass plate manufacturing method and manufacturing equipment
 本発明は、ガラス板の製造方法及び製造装置に関する。 The present invention relates to a method for manufacturing a glass plate and a manufacturing apparatus.
 ガラス板の製造工程では、製造効率の観点から、大面積のガラス原板から製品となる一枚又は複数枚のガラス板を切り出す方法が採用される場合がある。このような方法は、液晶ディスプレイ、有機ELディスプレイなどのディスプレイ用のガラス基板の製造工程で多く採用されている。 In the glass plate manufacturing process, from the viewpoint of manufacturing efficiency, a method of cutting out one or more glass plates to be a product from a large-area glass original plate may be adopted. Such a method is often used in the manufacturing process of glass substrates for displays such as liquid crystal displays and organic EL displays.
 具体的には、例えばフロート法やダウンドロー法などによりガラスリボンを所定長さに切断して製造された成形原板からマザーガラスを切り出す場合や、マザーガラスからディスプレイ用のガラス基板を切り出す場合がある。前者の場合は成形原板がガラス原板となり、後者の場合はマザーガラスがガラス原板となる。 Specifically, for example, there are cases where the mother glass is cut out from a molded original plate manufactured by cutting a glass ribbon to a predetermined length by a float method or a down draw method, or a glass substrate for a display is cut out from the mother glass. .. In the former case, the molded original plate becomes the glass original plate, and in the latter case, the mother glass becomes the glass original plate.
 このようなガラス原板は、縦姿勢の状態で搬送される場合がある。また、搬送経路上で、ガラス原板に識別情報を示すマークを形成するマーキング工程が行われる場合がある。例えば特許文献1に記載される方法では、ガラス原板を縦姿勢で搬送する経路上で、ガラス原板に含まれる欠陥を検査する欠陥検査工程が行われる。欠陥検査工程で得られた欠陥情報は、ガラス原板の識別情報と一緒にコンピュータに記憶される。これと併せて、欠陥検査工程の下流側の搬送経路上では、ガラス原板に識別情報を示すマークを形成するマーキング工程が行われる。そして、ガラス原板から製品となるガラス板を切り出す際、ガラス原板に形成されたマークを読み取ることで、コンピュータから欠陥情報を考慮した最適な切り出しパターンを取得する。 Such a glass original plate may be transported in a vertical position. In addition, a marking step of forming a mark indicating identification information on the glass original plate may be performed on the transport path. For example, in the method described in Patent Document 1, a defect inspection step for inspecting defects contained in the original glass plate is performed on a path for transporting the original glass plate in a vertical posture. The defect information obtained in the defect inspection process is stored in the computer together with the identification information of the glass original plate. At the same time, a marking step of forming a mark indicating identification information on the glass original plate is performed on the transport path on the downstream side of the defect inspection step. Then, when the glass plate to be the product is cut out from the original glass plate, the mark formed on the original glass plate is read to obtain the optimum cutting pattern in consideration of the defect information from the computer.
特開2018-104221号公報JP-A-2018-104221
 特許文献1には、ガラス原板の上端部をチャック機構により保持することで、ガラス原板の姿勢を縦姿勢で維持することが開示されている。また、同文献には、このようにして縦姿勢としたガラス原板に対して、マーキング装置で識別情報を示すマークを形成することが開示されている。 Patent Document 1 discloses that the posture of the original glass plate is maintained in the vertical posture by holding the upper end portion of the original glass plate by a chuck mechanism. Further, the same document discloses that a marking device is used to form a mark indicating identification information on a glass original plate in such a vertical posture.
 しかしながら、ガラス原板の上端部を保持してガラス原板を縦姿勢とした場合、識別情報を示すマークを形成する際に、ガラス原板が揺れる場合がある。このようにガラス原板に揺れが生じると、マーキング装置に対するガラス原板の位置が大きく変動する。同様に、ガラス原板に反りがある場合も、マーキング装置に対するガラス原板の位置が大きく変動する。そして、このようにマーキング装置に対するガラス原板の位置が変動すると、ガラス原板に対してマークを適切に形成できないという問題が生じ得る。 However, if the upper end of the original glass plate is held and the original glass plate is placed in a vertical position, the original glass plate may shake when forming a mark indicating identification information. When the original glass plate is shaken in this way, the position of the original glass plate with respect to the marking device fluctuates greatly. Similarly, when the original glass plate is warped, the position of the original glass plate with respect to the marking device fluctuates greatly. Then, if the position of the glass original plate with respect to the marking device fluctuates in this way, there may be a problem that a mark cannot be appropriately formed on the glass original plate.
 本発明は、縦姿勢のガラス板の上端部を保持した状態でガラス板にマークを形成する際に、ガラス板の揺れや反りに起因するマークの形成不良が生じるのを確実に抑制することを課題とする。 According to the present invention, when a mark is formed on a glass plate while holding the upper end portion of the glass plate in a vertical posture, it is possible to reliably suppress the occurrence of mark formation failure due to the shaking or warping of the glass plate. Make it an issue.
 上記の課題を解決するために創案された本発明は、縦姿勢のガラス板の上端部を保持した状態でガラス板にマークを形成するマーキング工程を備えるガラス板の製造方法であって、マーキング工程では、ガラス板の上部にマークを形成することを特徴とする。 The present invention, which was devised to solve the above problems, is a method for manufacturing a glass plate including a marking process for forming a mark on the glass plate while holding the upper end portion of the glass plate in a vertical posture. The feature is that a mark is formed on the upper part of the glass plate.
 このようにすれば、ガラス板の上端部が保持されているため、ガラス板の上部は、ガラス板の下部に比べて、ガラス板の揺れや反りの影響が小さくなる。したがって、ガラス板の上部にマークを形成すれば、ガラス板の揺れや反りに起因するマークの形成不良を確実に抑制できる。 In this way, since the upper end of the glass plate is held, the upper part of the glass plate is less affected by the shaking and warping of the glass plate than the lower part of the glass plate. Therefore, if the mark is formed on the upper part of the glass plate, it is possible to surely suppress the poor formation of the mark due to the shaking or warping of the glass plate.
 上記の構成において、マーキング工程では、ガラス板を処理室内に収容すると共に、処理室の上部に設けられた給気口からガスを給気しながら、処理室の下部に設けられた排気口からガスを排気することが好ましい。 In the above configuration, in the marking process, the glass plate is housed in the processing chamber, gas is supplied from the air supply port provided at the upper part of the processing chamber, and gas is supplied from the exhaust port provided at the lower part of the processing chamber. Is preferably exhausted.
 このようにすれば、処理室内に下降流が形成されるため、処理室内に浮遊する塵埃などのパーティクルを効果的に除去できる。その結果、ガラス板にパーティクルが付着するのを低減できる。 By doing so, since a downward flow is formed in the processing chamber, particles such as dust floating in the processing chamber can be effectively removed. As a result, it is possible to reduce the adhesion of particles to the glass plate.
 処理室内でマーキング工程を行う場合、給気口から給気されるガスがガラス板に直接到達しないように、給気口から給気されるガスの向きを設定することが好ましい。 When performing the marking process in the processing chamber, it is preferable to set the direction of the gas supplied from the air supply port so that the gas supplied from the air supply port does not reach the glass plate directly.
 このようにすれば、給気口から給気されるガスによるガラス板の揺れを低減できる。 By doing so, it is possible to reduce the shaking of the glass plate due to the gas supplied from the air supply port.
 処理室内でマーキング工程を行う場合、給気口とガラス板との間に設けられた防風部材によって給気口から給気されるガスの向きを変更し、給気口から給気されるガスがガラス板に直接到達しないようにすることが好ましい。 When the marking process is performed in the processing chamber, the direction of the gas supplied from the air supply port is changed by the windbreak member provided between the air supply port and the glass plate, and the gas supplied from the air supply port is changed. It is preferable not to reach the glass plate directly.
 このように防風部材を用いれば、既存の設備であっても、給気口から給気されるガスによるガラス板の揺れを簡単に低減できる。 By using the windbreak member in this way, it is possible to easily reduce the shaking of the glass plate due to the gas supplied from the air supply port even in the existing equipment.
 防風部材を用いる場合、防風部材は、給気口を覆う傾斜面部を備え、傾斜面部は、傾斜面部の一端が傾斜面部の他端よりも上方に位置するように傾斜しており、傾斜面部の一端は、給気口の外側で処理室の上部に取り付けられていることが好ましい。 When a windbreak member is used, the windbreak member includes an inclined surface portion that covers the air supply port, and the inclined surface portion is inclined so that one end of the inclined surface portion is located above the other end of the inclined surface portion. One end is preferably attached to the upper part of the treatment chamber outside the air supply port.
 このようにすれば、防風部材の設置が容易になると共に、給気口から給気されるガスがガラス板に直接到達するのを防止する効果も高い。 By doing so, the installation of the windbreak member becomes easy, and the effect of preventing the gas supplied from the air supply port from directly reaching the glass plate is also high.
 上記の構成において、マーキング工程では、インクジェットプリンターによってガラス板にマークを印刷することが好ましい。 In the above configuration, in the marking process, it is preferable to print the mark on the glass plate with an inkjet printer.
 このようにすれば、液晶ディスプレイ用の高硬度ガラス基板であっても、マークを簡単に形成できる。 In this way, marks can be easily formed even on a high-hardness glass substrate for a liquid crystal display.
 縦姿勢のガラス板の上端部を保持する保持部と、保持部に保持されたガラス板にマークを形成するマーキング装置とを備えるガラス板の製造装置であって、マーキング装置は、ガラス板の上部にマークを形成するように構成されていることを特徴とする。 A glass plate manufacturing device including a holding portion for holding an upper end portion of a glass plate in a vertical posture and a marking device for forming a mark on the glass plate held by the holding portion. The marking device is an upper portion of the glass plate. It is characterized in that it is configured to form a mark on the glass.
 このようにすれば、既に述べた対応する構成と同様の効果を享受できる。 In this way, the same effect as the corresponding configuration already described can be enjoyed.
 本発明によれば、縦姿勢のガラス板の上端部を保持した状態でガラス板にマークを形成する際に、ガラス板の揺れや反りに起因するマークの形成不良が生じるのを確実に抑制できる。 According to the present invention, when a mark is formed on a glass plate while holding the upper end portion of the glass plate in a vertical posture, it is possible to reliably suppress the occurrence of mark formation failure due to the shaking or warping of the glass plate. ..
第一実施形態に係るガラス板の製造装置を示す概略平面図である。It is a schematic plan view which shows the manufacturing apparatus of the glass plate which concerns on 1st Embodiment. 図1のA-A断面図である。FIG. 1 is a cross-sectional view taken along the line AA of FIG. 図1のB-B断面図である。It is a cross-sectional view of BB of FIG. 第二実施形態に係るガラス板の製造装置の処理室(防風部材を含む)を示す断面図である。It is sectional drawing which shows the processing chamber (including the windbreak member) of the glass plate manufacturing apparatus which concerns on 2nd Embodiment. 第三実施形態に係るガラス板の製造装置における防風部材を示す断面図である。It is sectional drawing which shows the windbreak member in the glass plate manufacturing apparatus which concerns on 3rd Embodiment. 図5AのC-C断面図である。FIG. 5C is a cross-sectional view taken along the line CC of FIG. 5A. 第四実施形態に係るガラス板の製造装置における防風部材を示す断面図である。It is sectional drawing which shows the windbreak member in the glass plate manufacturing apparatus which concerns on 4th Embodiment. 第五実施形態に係るガラス板の製造装置における防風部材示す断面図である。It is sectional drawing which shows the windbreak member in the manufacturing apparatus of the glass plate which concerns on 5th Embodiment. 第六実施形態に係るガラス板の製造装置における防風部材を示す断面図である。It is sectional drawing which shows the windbreak member in the glass plate manufacturing apparatus which concerns on 6th Embodiment. 第七実施形態に係るガラス板の製造装置における防風部材を示す断面図である。It is sectional drawing which shows the windbreak member in the glass plate manufacturing apparatus which concerns on 7th Embodiment. 図9AのD-D断面図である。9A is a cross-sectional view taken along the line DD of FIG. 9A. 第八実施形態に係るガラス板の製造装置における防風部材を示す断面図である。It is sectional drawing which shows the windbreak member in the glass plate manufacturing apparatus which concerns on 8th Embodiment. 図10AのE-E断面図である。FIG. 10A is a cross-sectional view taken along the line EE of FIG. 10A. 第九実施形態に係るガラス板の製造装置における防風部材を示す断面図である。It is sectional drawing which shows the windbreak member in the glass plate manufacturing apparatus which concerns on 9th Embodiment.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図中のXYZは直交座標系である。X方向及びY方向は水平方向であり、Z方向は鉛直方向である。X方向は搬送方向であり、Y方向は搬送方向と直交する幅方向である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that XYZ in the figure is a Cartesian coordinate system. The X and Y directions are horizontal, and the Z direction is vertical. The X direction is the transport direction, and the Y direction is the width direction orthogonal to the transport direction.
(第一実施形態)
 図1に示すように、第一実施形態に係るガラス板の製造方法は、成形工程(図示省略)と、切断工程S1と、欠陥検査工程S2と、マーキング工程S3とを備える。
(First Embodiment)
As shown in FIG. 1, the method for manufacturing a glass plate according to the first embodiment includes a molding step (not shown), a cutting step S1, a defect inspection step S2, and a marking step S3.
 換言すれば、本実施形態に係るガラス板の製造装置は、上記の各工程を行うための処理室1を備える。処理室1は、外部からの汚染物質をある程度遮断できる空間を区画形成する。処理室1は、例えばクリーンルームである。処理室1内には、各工程に対応する複数の空間2,3,4,5,6が設けられている。各空間2~6は、それぞれ仕切り壁7によって仕切られている。仕切り壁7には、ガラス原板Gを通過させるためのスリット状の開口部(図示省略)が設けられている。ガラス原板Gを通過させるための開口部には、開口部を開閉するためのシャッターを設けてもよい。なお、処理室1内の仕切り壁7による分割態様は適宜変更できる。ただし、切断工程S1を行う空間2で発生したガラス粉が、他の空間3~6に侵入するのを抑制できる分割態様であることが好ましい。 In other words, the glass plate manufacturing apparatus according to the present embodiment includes a processing chamber 1 for performing each of the above steps. The treatment chamber 1 forms a space that can block pollutants from the outside to some extent. The processing room 1 is, for example, a clean room. A plurality of spaces 2, 3, 4, 5, and 6 corresponding to each process are provided in the processing chamber 1. Each space 2 to 6 is partitioned by a partition wall 7. The partition wall 7 is provided with a slit-shaped opening (not shown) for allowing the glass original plate G to pass through. A shutter for opening and closing the opening may be provided in the opening for passing the glass original plate G. The division mode of the partition wall 7 in the processing chamber 1 can be changed as appropriate. However, it is preferable that the split mode is such that the glass powder generated in the space 2 in which the cutting step S1 is performed can be prevented from entering the other spaces 3 to 6.
 成形工程では、オーバーフローダウンドロー法によって、縦姿勢のガラスリボンを連続成形する。なお、成形工程は、オーバーフローダウンドロー法を用いた工程に限定されない。成形工程は、例えば、スロットダウンドロー法、リドロー法などの他のダウンドロー法や、フロート法などを用いた工程であってもよい。 In the molding process, a vertical glass ribbon is continuously molded by the overflow down draw method. The molding process is not limited to the process using the overflow down draw method. The molding step may be, for example, a step using another down draw method such as a slot down draw method or a redraw method, or a float method.
 切断工程S1(空間2)では、ガラスリボンを縦姿勢のまま所定長さに切断することで、成形原板であるガラス原板(ガラス板)Gを得る。切断工程S1では、曲げ応力による割断によってガラスリボンの粗切を行う。なお、ガラスリボンの切断方法(粗切)は、特に限定されるものではなく、レーザー割断やレーザー溶断などであってもよい。 In the cutting step S1 (space 2), a glass original plate (glass plate) G, which is a molded original plate, is obtained by cutting the glass ribbon to a predetermined length while maintaining the vertical posture. In the cutting step S1, the glass ribbon is roughly cut by cutting due to bending stress. The cutting method (rough cutting) of the glass ribbon is not particularly limited, and may be laser cutting, laser cutting, or the like.
 切断工程S1で得られたガラス原板Gは、縦姿勢(好ましくは鉛直姿勢)を維持したまま、切断工程S1の下流側に設けられた欠陥検査工程S2及びマーキング工程S3に順に搬送される。この搬送の間、ガラス原板Gの上端部は、チャック機構(保持部)8によって保持される。これにより、ガラス原板Gは、縦姿勢で吊り下げ支持される。チャック機構8は、ガラス原板Gの搬送方向Xに沿って延びるレール(図示省略)上を移動可能なベース部材9に取り付けられている(例えば図2及び図3を参照)。本実施形態では、ガラス原板Gの搬送方向Xは、ガラス原板Gの主表面Ga,Gbと平行な方向であるが、これに限定されない。 The glass original plate G obtained in the cutting step S1 is sequentially conveyed to the defect inspection step S2 and the marking step S3 provided on the downstream side of the cutting step S1 while maintaining the vertical posture (preferably the vertical posture). During this transfer, the upper end portion of the glass original plate G is held by the chuck mechanism (holding portion) 8. As a result, the glass original plate G is suspended and supported in a vertical posture. The chuck mechanism 8 is attached to a base member 9 that can move on a rail (not shown) extending along the transport direction X of the glass original plate G (see, for example, FIGS. 2 and 3). In the present embodiment, the transport direction X of the glass original plate G is a direction parallel to the main surfaces Ga and Gb of the glass original plate G, but the present invention is not limited to this.
 欠陥検査工程S2は、センサ10でガラス原板Gに含まれる欠陥の種類(例えば、泡、異物など)、位置(座標)、大きさを測定する工程S2a(空間5)を備える。本実施形態では、欠陥検査工程S2は、工程S2aの前に、センサ11でガラス原板Gの偏肉を測定する工程S2b(空間3)と、センサ12でガラス原板Gの筋(脈理)を測定する工程S2c(空間4)とをさらに備える。欠陥検査工程S2では、これらの工程S2a~S2cの検査結果を含む欠陥情報を生成する。欠陥情報は、検査対象のガラス原板Gの識別情報(ID情報を含む)と共に、コンピュータ(例えばサーバー)に記憶される。識別情報は、ガラス原板GのID情報の他に、ガラス原板Gの生産地情報などを含んでいてもよい。コンピュータでは、欠陥情報を考慮した最適な切り出しパターンが求められる。切り出しパターンとしては、例えばガラスの廃棄量が最も少なくなるパターンが選択される。なお、工程S2a~S2cの順序は特に限定されない。工程S2b及び工程S2cは省略してもよい。 The defect inspection step S2 includes a step S2a (space 5) of measuring the type (for example, bubbles, foreign matter, etc.), position (coordinates), and size of defects contained in the glass original plate G with the sensor 10. In the present embodiment, in the defect inspection step S2, before the step S2a, the step S2b (space 3) for measuring the uneven thickness of the glass original plate G with the sensor 11 and the streak (pulse) of the glass original plate G with the sensor 12 are performed. It further includes a step S2c (space 4) for measurement. In the defect inspection step S2, defect information including the inspection results of these steps S2a to S2c is generated. The defect information is stored in a computer (for example, a server) together with the identification information (including the ID information) of the glass original plate G to be inspected. The identification information may include information on the production area of the original glass plate G in addition to the ID information of the original glass plate G. In a computer, an optimum cutting pattern that takes defect information into consideration is required. As the cutting pattern, for example, a pattern that minimizes the amount of glass discarded is selected. The order of steps S2a to S2c is not particularly limited. Step S2b and step S2c may be omitted.
 図2及び図3に示すように、マーキング工程S3(空間6)では、マーキング装置13により、ガラス原板Gに識別情報を示すマークMを形成する。マークMを形成する間、ガラス原板Gの搬送は停止される。ガラス原板Gの上端部はチャック機構8によって保持されているため、ガラス原板Gの上部Rは、ガラス原板Gの下部に比べてガラス原板Gの揺れや反りの影響が小さくなる。そこで、マーキング工程S3では、マーキング装置13でガラス原板Gの上部RにマークMを形成する。これにより、ガラス原板Gの揺れや反りに起因するマークMの形成不良を確実に抑制できる。 As shown in FIGS. 2 and 3, in the marking step S3 (space 6), the marking device 13 forms a mark M indicating identification information on the glass original plate G. While the mark M is formed, the transfer of the glass original plate G is stopped. Since the upper end portion of the glass original plate G is held by the chuck mechanism 8, the upper portion R of the glass original plate G is less affected by the shaking and warpage of the glass original plate G than the lower portion of the glass original plate G. Therefore, in the marking step S3, the marking device 13 forms the mark M on the upper portion R of the glass original plate G. As a result, it is possible to reliably suppress the poor formation of the mark M due to the shaking and warping of the glass original plate G.
 ここで、ガラス原板Gの周縁部は、例えば精切時に切断除去される非有効部Gxとされ、ガラス原板Gの中央部は、精切時に製品となるガラス板(例えば、マザーガラス)が採取される有効部Gyとされる。そのため、マークMが形成されるガラス原板Gの上部Rは、非有効部Gxに含まれることが好ましい。具体的には、マークMが形成されるガラス原板Gの上部Rは、ガラス原板Gの上辺から200mm以内の領域であることが好ましく、ガラス原板Gの上辺から150mm以内の領域であることがより好ましい。 Here, the peripheral portion of the glass original plate G is, for example, an ineffective portion Gx that is cut and removed at the time of cutting, and the central portion of the glass original plate G is a glass plate (for example, mother glass) that is a product at the time of cutting. It is said that the effective part is Gy. Therefore, it is preferable that the upper portion R of the glass original plate G on which the mark M is formed is included in the ineffective portion Gx. Specifically, the upper portion R of the glass original plate G on which the mark M is formed is preferably a region within 200 mm from the upper side of the glass original plate G, and more preferably a region within 150 mm from the upper side of the glass original plate G. preferable.
 マークMとしては、例えば二次元コード(好ましくは、データマトリックスコード)などが使用できる。 As the mark M, for example, a two-dimensional code (preferably a data matrix code) or the like can be used.
 マークMの形成方法としては、例えば、レーザー加工による刻印(焼付)や、インクジェットプリンターによる印刷などが使用できる。レーザー加工による刻印は、ガラス原板Gの主表面Gaのみならず、ガラス原板Gの内部にマークMを形成することもできる。ただし、レーザー加工による刻印は、例えば液晶ディスプレイ用の高硬度ガラス基板に利用されるガラス原板GにはマークMを形成できない場合がある。これに対し、インクジェットプリンターによる印刷は、ガラス原板Gの硬度によらず、ガラス原板Gの主表面Gaに簡単にマークMを形成できる。したがって、マークMの形成方法は、インクジェットプリンターによる印刷であることが好ましい。 As a method for forming the mark M, for example, engraving (printing) by laser processing, printing with an inkjet printer, or the like can be used. The engraving by laser processing can form not only the main surface Ga of the glass original plate G but also the mark M inside the glass original plate G. However, the marking by laser processing may not be able to form the mark M on the glass original plate G used for, for example, a high-hardness glass substrate for a liquid crystal display. On the other hand, in printing with an inkjet printer, the mark M can be easily formed on the main surface Ga of the glass original plate G regardless of the hardness of the glass original plate G. Therefore, the method for forming the mark M is preferably printing with an inkjet printer.
 マーキング工程S3では、処理室1の天井1aに設けられた給気装置14の給気口14aからガス(例えば空気)Fを空間6内に給気しながら、処理室1の床面1bに設けられ排気装置15の排気口15aから空間6内のガスFを排気する。このようにすれば、処理室1の空間6内に下降流が形成される。この下降流は、ガラス原板Gの両主表面Ga,Gb側に形成される。そのため、処理室1の空間6内に浮遊する塵埃などのパーティクルを効果的に除去できる。その結果、ガラス原板Gに、パーティクルが付着するのを低減できる。 In the marking step S3, gas (for example, air) F is supplied to the space 6 from the air supply port 14a of the air supply device 14 provided on the ceiling 1a of the processing chamber 1 while being provided on the floor surface 1b of the processing chamber 1. The gas F in the space 6 is exhausted from the exhaust port 15a of the exhaust device 15. In this way, a downward flow is formed in the space 6 of the processing chamber 1. This downward flow is formed on both main surfaces Ga and Gb of the glass original plate G. Therefore, particles such as dust floating in the space 6 of the processing chamber 1 can be effectively removed. As a result, it is possible to reduce the adhesion of particles to the glass original plate G.
 給気口14aからガラス原板Gの上辺までの距離Hは、例えば500mm~2000mmに設定される。 The distance H from the air supply port 14a to the upper side of the glass original plate G is set to, for example, 500 mm to 2000 mm.
 なお、図3では、搬送方向に間隔を置いて複数(図示例は3つ)の給気口14a(給気装置14)及び排気口15a(排気装置15)を設ける場合を例示しているが、給気口14a(給気装置14)及び排気口15a(排気装置15)の数や配置態様は特に限定されない。 Note that FIG. 3 illustrates a case where a plurality of air supply ports 14a (air supply device 14) and exhaust ports 15a (exhaust device 15) are provided at intervals in the transport direction (three in the illustrated example). The number and arrangement of the air supply port 14a (air supply device 14) and the exhaust port 15a (exhaust device 15) are not particularly limited.
 本製造方法は、図示は省略するが、マーキング工程S3の後に、梱包工程と、輸送工程と、加工工程とをさらに備える。 Although not shown, this manufacturing method further includes a packing step, a transportation step, and a processing step after the marking step S3.
 梱包工程では、ガラス原板Gをパレットに複数枚積層して梱包する。パレットは、ガラス原板Gを縦姿勢で積層するものであってもよいし、ガラス原板Gを横姿勢で積層するものであってもよい。ガラス原板Gを縦姿勢で梱包する場合、ガラス原板Gの姿勢は、水平面とのなす角が40°~80°であることが好ましい。ガラス原板Gを横姿勢で梱包する場合、ガラス原板Gの姿勢は、水平姿勢とのなす角が0°(水平姿勢)~30°であることが好ましく、0°~15°であることが好ましい。ガラス原板Gの各相互間には、紙(合紙)、発泡樹脂シートなどの保護シートが介在していることが好ましい。 In the packing process, a plurality of original glass plates G are laminated on a pallet and packed. The pallet may be one in which the glass original plates G are laminated in a vertical posture, or may be one in which the glass original plates G are laminated in a horizontal posture. When the original glass plate G is packed in a vertical posture, the posture of the original glass plate G preferably has an angle of 40 ° to 80 ° with the horizontal plane. When the original glass plate G is packed in the horizontal posture, the posture of the original glass plate G preferably has an angle formed by the horizontal posture of 0 ° (horizontal posture) to 30 °, and preferably 0 ° to 15 °. .. It is preferable that a protective sheet such as a paper (interlaced paper) or a foamed resin sheet is interposed between the glass original plates G.
 輸送工程では、パレットに梱包されたガラス原板Gを加工工程まで輸送する。輸送には、陸送、空輸及び海運の少なくとも一つが含まれる。 In the transportation process, the glass original plate G packed in the pallet is transported to the processing process. Transport includes at least one of land, air and sea.
 加工工程では、ガラス原板Gに形成されたマークMをスキャナーで読み取る。コンピュータは、読み取ったマークMに対応する欠陥情報を考慮した最適な切り出しパターンを出力する。そして、コンピュータが出力した切り出しパターンに従って、ガラス原板Gからマザーガラスを切り出す。この際、ガラス原板Gは定盤などの上に平置き姿勢で載置され、この状態でガラス原板Gが精切される。なお、ガラス原板Gの切断方法(精切)としては、例えば、曲げ応力割断、レーザー割断、レーザー溶断などが使用できる。 In the processing process, the mark M formed on the original glass plate G is read by a scanner. The computer outputs an optimum cutout pattern in consideration of the defect information corresponding to the read mark M. Then, the mother glass is cut out from the glass original plate G according to the cutting pattern output by the computer. At this time, the glass original plate G is placed on a surface plate or the like in a flat position, and the glass original plate G is precisely cut in this state. As a cutting method (fine cutting) of the glass original plate G, for example, bending stress cutting, laser cutting, laser cutting and the like can be used.
(第二実施形態)
 図4に示すように、第二実施形態に係るガラス板の製造方法及び製造装置が、第一実施形態と相違するところは、マーキング工程S3を行う処理室1の空間6において、給気口14aとガラス原板Gとの間に防風部材21を設けた点である。
(Second Embodiment)
As shown in FIG. 4, the glass plate manufacturing method and the manufacturing apparatus according to the second embodiment are different from the first embodiment in the air supply port 14a in the space 6 of the processing chamber 1 in which the marking step S3 is performed. A point is that a windbreak member 21 is provided between the glass original plate G and the glass original plate G.
 防風部材21は、給気口14aから給気されるガスFがガラス原板Gに直接到達しないように、給気口14aから給気されるガスFの向きを調整する。換言すれば、防風部材21は、給気口14aから給気されるガスFが給気口14aの真下に位置するガラス原板Gに向かって直進する流れを阻止する。このように防風部材21を設ければ、給気口14aから給気されるガスFによるガラス原板Gの揺れを低減できる。つまり、マーキング装置13によるマークMの形成不良をより確実に抑制できる。 The windbreak member 21 adjusts the direction of the gas F supplied from the air supply port 14a so that the gas F supplied from the air supply port 14a does not directly reach the glass plate G. In other words, the windbreak member 21 prevents the gas F supplied from the air supply port 14a from flowing straight toward the glass original plate G located directly below the air supply port 14a. By providing the windbreak member 21 in this way, it is possible to reduce the shaking of the glass original plate G due to the gas F supplied from the air supply port 14a. That is, it is possible to more reliably suppress the poor formation of the mark M by the marking device 13.
 本実施形態では、防風部材21は、給気口14aを覆う傾斜面部22を備える。幅方向Yにおける傾斜面部22の一端22aは、給気口14aの側方で処理室1(空間6)の天井1aに取り付けられている。幅方向Yにおける傾斜面部22の他端22bは、傾斜面部22の一端22aよりも下方に位置している。つまり、傾斜面部22は、幅方向Yにおいて傾斜している。給気口14aから給気されるガスFは、傾斜面部22に衝突し、傾斜面部22に倣って幅方向Yの一方側に誘導される。そのため、ガスFは、ガラス原板Gの一方の主表面Gb側に主として誘導されるが、ガスFによる下降流は、ガラス原板Gの両主表面Ga,Gb側(両側方)において発生する。このようにガラス原板Gの両側方で下降流が発生する要因としては、マーキング工程S3を行う処理室1内にガラス原板Gが断続的に搬送されること、ガラス原板Gの下方でガスFを排気口15aから排気していること、などが挙げられる。なお、傾斜面部22は、搬送方向Xにおいて傾斜していてもよい。 In the present embodiment, the windbreak member 21 includes an inclined surface portion 22 that covers the air supply port 14a. One end 22a of the inclined surface portion 22 in the width direction Y is attached to the ceiling 1a of the processing chamber 1 (space 6) on the side of the air supply port 14a. The other end 22b of the inclined surface portion 22 in the width direction Y is located below the one end 22a of the inclined surface portion 22. That is, the inclined surface portion 22 is inclined in the width direction Y. The gas F supplied from the air supply port 14a collides with the inclined surface portion 22 and is guided to one side in the width direction Y following the inclined surface portion 22. Therefore, the gas F is mainly guided to one main surface Gb side of the glass original plate G, but the downward flow due to the gas F is generated on both main surfaces Ga and Gb sides (both sides) of the glass original plate G. The causes of the downward flow on both sides of the original glass plate G are that the original glass plate G is intermittently conveyed into the processing chamber 1 in which the marking step S3 is performed, and that the gas F is introduced below the original glass plate G. Exhaust from the exhaust port 15a, and the like. The inclined surface portion 22 may be inclined in the transport direction X.
 傾斜面部22の水平面とのなす角θは、35°~55°であることが好ましい。 The angle θ formed by the inclined surface portion 22 with the horizontal plane is preferably 35 ° to 55 °.
 本実施形態におけるその他の構成は、第一実施形態と同じである。本実施形態において、第一実施形態と共通する構成要素には、共通符号を付している。 Other configurations in this embodiment are the same as those in the first embodiment. In the present embodiment, components common to the first embodiment are designated by a common reference numeral.
(第三実施形態)
 図5A及び図5Bに示すように、第三実施形態では、第二実施形態で説明した防風部材21の変形例を例示する。
(Third Embodiment)
As shown in FIGS. 5A and 5B, in the third embodiment, a modification of the windbreak member 21 described in the second embodiment will be illustrated.
 本実施形態に係る防風部材31は、三角屋根部32と、支柱33とを備える。三角屋根部32は、給気口14aから下方に離れた位置で給気口14aを覆う2つの傾斜面32aを備える。2つの傾斜面32aは、三角屋根部32の幅方向Yの中央部が頂部となるように、幅方向Yにおいて傾斜している。支柱33は、三角屋根部32の四隅に計4本設けられ、処理室1(空間6)の天井1aから三角屋根部32を吊り下げ支持している。支柱33の数や位置はこれに限定されない。給気口14aから給気されるガスFは、三角屋根部32に衝突した後、三角屋根部32の各傾斜面32aに倣って幅方向Yの両側に分離される。なお、2つの傾斜面32aは、三角屋根部32の搬送方向Xの中央部が頂部となるように、搬送方向Xにおいて傾斜していてもよい。 The windbreak member 31 according to the present embodiment includes a triangular roof portion 32 and a support column 33. The triangular roof portion 32 includes two inclined surfaces 32a that cover the air supply port 14a at a position downwardly separated from the air supply port 14a. The two inclined surfaces 32a are inclined in the width direction Y so that the central portion of the triangular roof portion 32 in the width direction Y is the top. A total of four columns 33 are provided at the four corners of the triangular roof portion 32, and the triangular roof portion 32 is suspended and supported from the ceiling 1a of the processing chamber 1 (space 6). The number and position of the columns 33 are not limited to this. After colliding with the triangular roof portion 32, the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y following each inclined surface 32a of the triangular roof portion 32. The two inclined surfaces 32a may be inclined in the transport direction X so that the central portion of the triangular roof portion 32 in the transport direction X is the top.
 本実施形態におけるその他の構成は、第一実施形態及び第二実施形態と同じである。本実施形態において、第一実施形態及び第二実施形態と共通する構成要素には、共通符号を付している。 Other configurations in this embodiment are the same as those in the first embodiment and the second embodiment. In the present embodiment, components common to the first embodiment and the second embodiment are designated by a common reference numeral.
(第四実施形態)
 図6に示すように、第四実施形態では、第二実施形態で説明した防風部材21の変形例を例示する。
(Fourth Embodiment)
As shown in FIG. 6, in the fourth embodiment, a modified example of the windbreak member 21 described in the second embodiment will be illustrated.
 本実施形態に係る防風部材41は、部分筒状部42と、支柱43とを備える。部分筒状部42は、給気口14aから下方に離れた位置で給気口14aを覆う。部分筒状部42は、部分筒状部42の幅方向Yの中央部が頂部となるように、幅方向Yにおいて湾曲している。支柱43は、部分筒状部42の四隅に計4本設けられ、処理室1(空間6)の天井1aから部分筒状部42を吊り下げ支持している。支柱43の数や位置はこれに限定されない。給気口14aから給気されるガスFは、部分筒状部42に衝突した後、部分筒状部42に倣って幅方向Yの両側に分離される。なお、部分筒状部42は、部分筒状部42の搬送方向Xの中央部が頂部となるように、搬送方向Xにおいて湾曲していてもよい。 The windbreak member 41 according to the present embodiment includes a partially tubular portion 42 and a support column 43. The partial tubular portion 42 covers the air supply port 14a at a position downward from the air supply port 14a. The partial tubular portion 42 is curved in the width direction Y so that the central portion of the partial tubular portion 42 in the width direction Y is the top. A total of four columns 43 are provided at the four corners of the partial tubular portion 42, and the partial tubular portion 42 is suspended and supported from the ceiling 1a of the processing chamber 1 (space 6). The number and position of the columns 43 are not limited to this. After colliding with the partial tubular portion 42, the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y following the partial tubular portion 42. The partial tubular portion 42 may be curved in the transport direction X so that the central portion of the partial tubular portion 42 in the transport direction X is the top.
 本実施形態におけるその他の構成は、第一実施形態及び第二実施形態と同じである。本実施形態において、第一実施形態及び第二実施形態と共通する構成要素には、共通符号を付している。 Other configurations in this embodiment are the same as those in the first embodiment and the second embodiment. In the present embodiment, components common to the first embodiment and the second embodiment are designated by a common reference numeral.
(第五実施形態)
 図7に示すように、第五実施形態では、第二実施形態で説明した防風部材21の変形例を例示する。
(Fifth Embodiment)
As shown in FIG. 7, in the fifth embodiment, a modified example of the windbreak member 21 described in the second embodiment is illustrated.
 本実施形態に係る防風部材51は、水平面部52と、支柱53とを備える。水平面部52は、給気口14aから下方に離れた位置で給気口14aを覆う。支柱53は、水平面部52の四隅に計4本設けられ、処理室1(空間6)の天井1aから水平面部52を吊り下げ支持している。支柱53の数や位置はこれに限定されない。給気口14aから給気されるガスFは、水平面部52に衝突した後、水平面部52に倣って幅方向Yの両側に分離される。なお、給気口14aから給気されるガスFは、水平面部52に衝突した後、水平面部52に倣って搬送方向Xの両側に分離されてもよい。 The windbreak member 51 according to the present embodiment includes a horizontal surface portion 52 and a support column 53. The horizontal surface portion 52 covers the air supply port 14a at a position downward from the air supply port 14a. A total of four columns 53 are provided at the four corners of the horizontal surface portion 52, and the horizontal surface portion 52 is suspended and supported from the ceiling 1a of the processing chamber 1 (space 6). The number and position of the columns 53 are not limited to this. After colliding with the horizontal plane portion 52, the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y following the horizontal plane portion 52. The gas F supplied from the air supply port 14a may be separated on both sides in the transport direction X following the horizontal surface portion 52 after colliding with the horizontal surface portion 52.
 本実施形態におけるその他の構成は、第一実施形態及び第二実施形態と同じである。本実施形態において、第一実施形態及び第二実施形態と共通する構成要素には、共通符号を付している。 Other configurations in this embodiment are the same as those in the first embodiment and the second embodiment. In the present embodiment, components common to the first embodiment and the second embodiment are designated by a common reference numeral.
(第六実施形態)
 図8に示すように、第六実施形態では、第二実施形態で説明した防風部材21の変形例を例示する。
(Sixth Embodiment)
As shown in FIG. 8, in the sixth embodiment, a modified example of the windbreak member 21 described in the second embodiment is illustrated.
 本実施形態に係る防風部材61は、逆三角屋根部62と、支柱63とを備える。逆三角屋根部62は、給気口14aから下方に離れた位置で給気口14aを覆う2つの傾斜面62aを備える。2つの傾斜面62aは、逆三角屋根部62の幅方向Yの中央部が底部となるように、幅方向Yにおいて傾斜している。支柱63は、逆三角屋根部62の四隅に計4本設けられ、処理室1(空間6)の天井1aから逆三角屋根部62を吊り下げ支持している。支柱63の数や位置はこれに限定されない。給気口14aから給気されるガスFは、逆三角屋根部62に衝突した後、逆三角屋根部62の各傾斜面62aに倣って幅方向Yの両側に分離される。なお、2つの傾斜面62aは、逆三角屋根部62の搬送方向Xの中央部が底部となるように、搬送方向Xにおいて傾斜していてもよい。 The windbreak member 61 according to the present embodiment includes an inverted triangular roof portion 62 and a support column 63. The inverted triangular roof portion 62 includes two inclined surfaces 62a that cover the air supply port 14a at a position downwardly separated from the air supply port 14a. The two inclined surfaces 62a are inclined in the width direction Y so that the central portion of the inverted triangular roof portion 62 in the width direction Y is the bottom portion. A total of four columns 63 are provided at the four corners of the inverted triangular roof portion 62, and the inverted triangular roof portion 62 is suspended and supported from the ceiling 1a of the processing chamber 1 (space 6). The number and position of the columns 63 are not limited to this. After colliding with the inverted triangular roof portion 62, the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y following each inclined surface 62a of the inverted triangular roof portion 62. The two inclined surfaces 62a may be inclined in the conveying direction X so that the central portion of the inverted triangular roof portion 62 in the conveying direction X is the bottom portion.
 本実施形態におけるその他の構成は、第一実施形態及び第二実施形態と同じである。本実施形態において、第一実施形態及び第二実施形態と共通する構成要素には、共通符号を付している。 Other configurations in this embodiment are the same as those in the first embodiment and the second embodiment. In the present embodiment, components common to the first embodiment and the second embodiment are designated by a common reference numeral.
(第七実施形態)
 図9A及び図9Bに示すように、第七実施形態では、第二実施形態で説明した防風部材21の変形例を例示する。
(Seventh Embodiment)
As shown in FIGS. 9A and 9B, the seventh embodiment exemplifies a modification of the windbreak member 21 described in the second embodiment.
 本実施形態に係る防風部材71は、部分筒状部72を備える。部分筒状部72は、幅方向Yに沿って延び、上方及び幅方向Yの両端が開口している。部分筒状部72は、給気口14aを覆うように処理室1(空間6)の天井1aに取り付けられている。給気口14aから給気されるガスFは、部分筒状部72に衝突した後、部分筒状部72に倣って幅方向Yの両側に分離される。なお、部分筒状部72は、搬送方向Xに沿って延び、上方及び搬送方向Xの両端が開口していてもよい。 The windbreak member 71 according to this embodiment includes a partial tubular portion 72. The partial tubular portion 72 extends along the width direction Y, and both ends in the upper direction and the width direction Y are open. The partial tubular portion 72 is attached to the ceiling 1a of the processing chamber 1 (space 6) so as to cover the air supply port 14a. After colliding with the partial tubular portion 72, the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y following the partial tubular portion 72. The partial tubular portion 72 may extend along the transport direction X and may be open upward and at both ends in the transport direction X.
 本実施形態におけるその他の構成は、第一実施形態及び第二実施形態と同じである。本実施形態において、第一実施形態及び第二実施形態と共通する構成要素には、共通符号を付している。 Other configurations in this embodiment are the same as those in the first embodiment and the second embodiment. In the present embodiment, components common to the first embodiment and the second embodiment are designated by a common reference numeral.
(第八実施形態)
 図10A及び図10Bに示すように、第八実施形態では、第二実施形態で説明した防風部材21の変形例を例示する。
(Eighth embodiment)
As shown in FIGS. 10A and 10B, the eighth embodiment exemplifies a modification of the windbreak member 21 described in the second embodiment.
 本実施形態に係る防風部材81は、箱状部82を備える。箱状部82は、給気口14aを覆うように処理室1(空間6)の天井1aに取り付けられている。箱状部82は、上方が開口すると共に、幅方向Yの両側壁面82aに複数の通気孔83を有する。給気口14aから給気されるガスFは、箱状部82に衝突した後、両側壁面82aの通気孔83を通じて幅方向Yの両側に分離される。なお、通気孔83は、箱状部82の搬送方向Xの両側壁面82bに設けられていてもよい。 The windbreak member 81 according to this embodiment includes a box-shaped portion 82. The box-shaped portion 82 is attached to the ceiling 1a of the processing chamber 1 (space 6) so as to cover the air supply port 14a. The box-shaped portion 82 is open at the upper side and has a plurality of ventilation holes 83 on both side wall surfaces 82a in the width direction Y. After colliding with the box-shaped portion 82, the gas F supplied from the air supply port 14a is separated into both sides in the width direction Y through the ventilation holes 83 of the side wall surfaces 82a. The ventilation holes 83 may be provided on the wall surfaces 82b on both sides of the box-shaped portion 82 in the transport direction X.
 本実施形態におけるその他の構成は、第一実施形態及び第二実施形態と同じである。本実施形態において、第一実施形態及び第二実施形態と共通する構成要素には、共通符号を付している。 Other configurations in this embodiment are the same as those in the first embodiment and the second embodiment. In the present embodiment, components common to the first embodiment and the second embodiment are designated by a common reference numeral.
(第九実施形態)
 図11に示すように、第九実施形態では、第二実施形態で説明した防風部材21の変形例を例示する。
(Ninth Embodiment)
As shown in FIG. 11, in the ninth embodiment, a modified example of the windbreak member 21 described in the second embodiment is illustrated.
 本実施形態に係る防風部材91は、ダクト92を備える。ダクト92は、給気口14aに直接連結された筒状部材である。ダクト92は、給気口14aから給気されるガスFが幅方向Yの両側に分離されるように、複数本設けられている。なお、ダクト92は、給気口14aから給気されるガスFが搬送方向Xの両側に分離されるように、複数本設けられていてもよい。 The windbreak member 91 according to this embodiment includes a duct 92. The duct 92 is a tubular member directly connected to the air supply port 14a. A plurality of ducts 92 are provided so that the gas F supplied from the air supply port 14a is separated on both sides in the width direction Y. A plurality of ducts 92 may be provided so that the gas F supplied from the air supply port 14a is separated on both sides of the transport direction X.
 本実施形態におけるその他の構成は、第一実施形態及び第二実施形態と同じである。本実施形態において、第一実施形態及び第二実施形態と共通する構成要素には、共通符号を付している。 Other configurations in this embodiment are the same as those in the first embodiment and the second embodiment. In the present embodiment, components common to the first embodiment and the second embodiment are designated by a common reference numeral.
 なお、本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above-described embodiment, and is not limited to the above-mentioned action and effect. The present invention can be modified in various ways without departing from the gist of the present invention.
 上記の実施形態では、処理室のマーキング工程を行う空間において、給気口(給気装置)及び排気口(排気装置)を設ける場合を説明したが、処理室の欠陥検査工程などを行う他の空間において、給気口及び排気口を設けてもよい。この場合、マーキング工程を行う空間と同様に、給気口から給気されるガスがガラス板に直接到達しないように、給気口とガラス板との間に防風部材を設けることが好ましい。 In the above embodiment, the case where the air supply port (air supply device) and the exhaust port (exhaust device) are provided in the space where the marking process of the processing chamber is performed has been described. An air supply port and an exhaust port may be provided in the space. In this case, it is preferable to provide a windbreak member between the air supply port and the glass plate so that the gas supplied from the air supply port does not directly reach the glass plate, as in the space where the marking process is performed.
 上記の実施形態では、防風部材によって、給気口から給気されるガスがガラス原板に直接到達しないようにする場合を例示したが、防風部材を用いることなく、給気口の配置位置、風量、風向きなどを調整し、給気口から給気されるガスがガラス原板に直接到達しないようにしてもよい。 In the above embodiment, the case where the gas supplied from the air supply port is prevented from directly reaching the glass original plate is illustrated by the windbreak member, but the arrangement position and the air volume of the air supply port are illustrated without using the windbreak member. , The direction of the wind, etc. may be adjusted so that the gas supplied from the air supply port does not reach the original glass plate directly.
 上記の実施形態では、成形原板にマークを形成し、成形原板からマザーガラスを切り出す場合を例示したが、本発明は、縦姿勢のガラス板の上端部を保持した状態でガラス板にマークを形成する限り、様々な場合に適用できる。例えば、マザーガラスにマークを形成し、マザーガラスから液晶ディスプレイ用のガラス基板などの最終製品用のガラス基板を切り出す場合にも本発明を適用できる。 In the above embodiment, a case where a mark is formed on the molded original plate and the mother glass is cut out from the molded original plate is illustrated, but in the present invention, the mark is formed on the glass plate while holding the upper end portion of the glass plate in the vertical posture. As long as it is, it can be applied in various cases. For example, the present invention can be applied to the case where a mark is formed on the mother glass and a glass substrate for a final product such as a glass substrate for a liquid crystal display is cut out from the mother glass.
1   処理室
8   チャック機構
13  マーキング装置
14  給気装置
14a 給気口
15  排気装置
15a 排気口
21  防風部材
22  傾斜面部
31  防風部材
32  三角屋根部
41  防風部材
42  部分筒状部
51  防風部材
52  水平面部
61  防風部材
62  逆三角屋根部
71  防風部材
72  部分筒状部
81  防風部材
82  箱状部
91  防風部材
92  ダクト
F   ガス
G   ガラス原板
M   マーク
S1  切断工程
S2  欠陥検査工程
S3  マーキング工程
1 Processing chamber 8 Chuck mechanism 13 Marking device 14 Air supply device 14a Air supply port 15 Exhaust device 15a Exhaust port 21 Windbreak member 22 Inclined surface part 31 Windproof member 32 Triangular roof part 41 Windproof member 42 Partial tubular part 51 Windproof member 52 Horizontal part 61 Windproof member 62 Inverted triangular roof 71 Windproof member 72 Partial tubular part 81 Windproof member 82 Box-shaped part 91 Windproof member 92 Duct F Gas G Glass original plate M Mark S1 Cutting process S2 Defect inspection process S3 Marking process

Claims (7)

  1.  縦姿勢のガラス板の上端部を保持した状態で前記ガラス板にマークを形成するマーキング工程を備えるガラス板の製造方法であって、
     前記マーキング工程では、前記ガラス板の上部に前記マークを形成することを特徴とするガラス板の製造方法。
    A method for manufacturing a glass plate, which comprises a marking step of forming a mark on the glass plate while holding the upper end portion of the glass plate in a vertical posture.
    The marking step is a method for manufacturing a glass plate, characterized in that the mark is formed on the upper portion of the glass plate.
  2.  前記マーキング工程では、処理室内に前記ガラス板を収容すると共に、前記処理室の上部に設けられた給気口からガスを給気しながら、前記処理室の下部に設けられた排気口から前記ガスを排気する請求項1に記載のガラス板の製造方法。 In the marking step, the glass plate is housed in the processing chamber, and the gas is supplied from the air supply port provided at the upper part of the processing chamber while the gas is supplied from the exhaust port provided at the lower part of the processing chamber. The method for manufacturing a glass plate according to claim 1.
  3.  前記給気口から給気される前記ガスが前記ガラス板に直接到達しないように、前記給気口から給気される前記ガスの向きを設定する請求項2に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 2, wherein the direction of the gas supplied from the air supply port is set so that the gas supplied from the air supply port does not directly reach the glass plate.
  4.  前記給気口と前記ガラス板との間に設けられた防風部材によって前記給気口から給気される前記ガスの向きを変更し、前記給気口から給気される前記ガスが前記ガラス板に直接到達しないようにする請求項3に記載のガラス板の製造方法。 A windbreak member provided between the air supply port and the glass plate changes the direction of the gas supplied from the air supply port, and the gas supplied from the air supply port is the glass plate. The method for manufacturing a glass plate according to claim 3, wherein the glass plate is not directly reached.
  5.  前記防風部材は、前記給気口を覆う傾斜面部を備え、
     前記傾斜面部は、前記傾斜面部の一端が前記傾斜面部の他端よりも上方に位置するように傾斜しており、
     前記傾斜面部の前記一端は、前記給気口の外側で前記処理室の上部に取り付けられている請求項4に記載のガラス板の製造方法。
    The windbreak member includes an inclined surface portion that covers the air supply port.
    The inclined surface portion is inclined so that one end of the inclined surface portion is located above the other end of the inclined surface portion.
    The method for manufacturing a glass plate according to claim 4, wherein the one end of the inclined surface portion is attached to the upper part of the processing chamber outside the air supply port.
  6.  前記マーキング工程では、インクジェットプリンターによって、前記ガラス板に前記マークを印刷する請求項1~5のいずれか1項に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to any one of claims 1 to 5, wherein in the marking step, the mark is printed on the glass plate by an inkjet printer.
  7.  縦姿勢のガラス板の上端部を保持する保持部と、前記保持部に保持された前記ガラス板にマークを形成するマーキング装置とを備えるガラス板の製造装置であって、
     前記マーキング装置は、前記ガラス板の上部に前記マークを形成するように構成されていることを特徴とするガラス板の製造装置。
    A glass plate manufacturing apparatus including a holding portion for holding an upper end portion of a glass plate in a vertical posture and a marking device for forming a mark on the glass plate held by the holding portion.
    The marking device is a glass plate manufacturing device characterized in that the mark is formed on an upper portion of the glass plate.
PCT/JP2020/043167 2019-12-12 2020-11-19 Glass plate production method and production device WO2021117454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-224559 2019-12-12
JP2019224559A JP2021091584A (en) 2019-12-12 2019-12-12 Manufacturing method of glass plate and manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2021117454A1 true WO2021117454A1 (en) 2021-06-17

Family

ID=76311889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043167 WO2021117454A1 (en) 2019-12-12 2020-11-19 Glass plate production method and production device

Country Status (2)

Country Link
JP (1) JP2021091584A (en)
WO (1) WO2021117454A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264031A (en) * 1997-03-25 1998-10-06 Central Glass Co Ltd Marking device and marking method
JP2010518604A (en) * 2007-02-01 2010-05-27 ウィラード アンド ケルシー ソーラー グループ, エルエルシー Glass sheet semiconductor coating system and method and resulting product
JP2014201449A (en) * 2013-04-01 2014-10-27 日本電気硝子株式会社 Glass plate transportation device and glass plate transportation method
JP2018104221A (en) * 2016-12-26 2018-07-05 日本電気硝子株式会社 Production method of glass plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264031A (en) * 1997-03-25 1998-10-06 Central Glass Co Ltd Marking device and marking method
JP2010518604A (en) * 2007-02-01 2010-05-27 ウィラード アンド ケルシー ソーラー グループ, エルエルシー Glass sheet semiconductor coating system and method and resulting product
JP2014201449A (en) * 2013-04-01 2014-10-27 日本電気硝子株式会社 Glass plate transportation device and glass plate transportation method
JP2018104221A (en) * 2016-12-26 2018-07-05 日本電気硝子株式会社 Production method of glass plate

Also Published As

Publication number Publication date
JP2021091584A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
TWI565643B (en) Air plate for flotation
EP2458371A1 (en) Glass member quality control method and quality control device, and glass member with mark
US11471974B2 (en) Laser lift-off apparatus, laser lift-off method, and method for manufacturing organic el display
TWI602763B (en) Transfer apparatus of a glass substrate, and the manufacturing method of a glass substrate
US20050005996A1 (en) Liquid droplet ejection apparatus, method of ejecting liquid droplet, method of manufacturing electrooptic device, electrooptic device, electronic device, and substrate
KR102397590B1 (en) Method for manufacturing a glass plate
JP2007051001A (en) Method and apparatus for conveying thin sheet-like material
JP2007106521A (en) Air table for conveying thin material and conveyance device for thin material
JP4978398B2 (en) Component mounting system and component mounting method
JP4392692B2 (en) Semiconductor wafer and liquid crystal glass air levitation transfer device
WO2021117454A1 (en) Glass plate production method and production device
JP2011073688A (en) Glass substrate storage tray
JP2008076170A (en) Substrate inspection device
JP4629007B2 (en) Air plate for sheet material conveyance and sheet material conveyance device
JP2009200247A (en) Packing method and packing apparatus
WO2018025495A1 (en) Laser release device, laser release method, and method for manufacturing organic el display
JP5372363B2 (en) Inkjet recording device
JP5223615B2 (en) Method and apparatus for detecting floating conveyance state of thin plate
WO2021117555A1 (en) Method for manufacturing glass plates
CN112305866B (en) Gas bath device and lithographic apparatus
JP6026603B2 (en) Glass substrate transfer apparatus and glass substrate manufacturing method
JP4575675B2 (en) Conveyor belt
JP6690980B2 (en) Glass substrate transfer method and glass substrate transfer device
JP2024058799A (en) Apparatus and method for manufacturing glass sheet
JP6484477B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897735

Country of ref document: EP

Kind code of ref document: A1