WO2021117412A1 - センサおよびこれを備えた測定装置、センサユニット、細胞培養分析装置、液体試料測定方法 - Google Patents

センサおよびこれを備えた測定装置、センサユニット、細胞培養分析装置、液体試料測定方法 Download PDF

Info

Publication number
WO2021117412A1
WO2021117412A1 PCT/JP2020/042273 JP2020042273W WO2021117412A1 WO 2021117412 A1 WO2021117412 A1 WO 2021117412A1 JP 2020042273 W JP2020042273 W JP 2020042273W WO 2021117412 A1 WO2021117412 A1 WO 2021117412A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
electrode
electrode portion
liquid sample
measurement
Prior art date
Application number
PCT/JP2020/042273
Other languages
English (en)
French (fr)
Inventor
真吾 大谷
雅博 高下
賢太 中前
哲朗 高岡
生一郎 池谷
山本 正樹
Original Assignee
Phcホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019222086A external-priority patent/JP2021090368A/ja
Priority claimed from JP2019234144A external-priority patent/JP2021101643A/ja
Application filed by Phcホールディングス株式会社 filed Critical Phcホールディングス株式会社
Priority to US17/781,848 priority Critical patent/US20230008595A1/en
Publication of WO2021117412A1 publication Critical patent/WO2021117412A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material

Definitions

  • the present invention relates to, for example, a sensor for measuring a cell culture environment in a medium while immersed in a liquid cell medium, a measuring device provided with the sensor, a sensor unit, a cell culture analyzer, and a liquid sample measuring method.
  • a conventional cell culture analyzer includes a substrate, a sensor fixed to a through-hole portion provided in the substrate, and a lead wire connected to the sensor and for taking out a signal.
  • Patent Document 1 discloses a sensor that measures a cell culture environment in a medium while being immersed in a liquid cell medium.
  • Patent Document 2 discloses a configuration including an elevating mechanism (elevator) for arranging a sensor on a medium.
  • Patent Document 3 discloses an apparatus and method for analyzing cells contained in a medium in a container by immersing a sensor in the medium.
  • the above-mentioned conventional sensor has the following problems. That is, in the conventional cell culture analyzer disclosed in the above publication, there is a problem that the measurement accuracy may be lowered because the sensor is unstable in the immersion state in the liquid sample (medium). Specifically, in the vicinity of the center of the container containing the liquid sample (medium), the liquid level of the liquid sample is lowered due to the meniscus effect. Therefore, even if the immersion height of the sensor in the container is constant, the electrode portion of the sensor may not be sufficiently immersed depending on the position of the sensor with respect to the container (for example, near the center).
  • the sensor according to the first invention is a sensor that is used in a state of being immersed in a liquid sample placed in a container to measure a liquid sample, and includes a main body, an electrode, a liquid holding portion, and a liquid holding portion. It has.
  • the main body has a first surface and a second surface opposite to the first surface.
  • the electrode portion is provided on the first surface of the main body portion, and a predetermined voltage is applied when the measurement is performed while the electrode portion is immersed in the liquid sample.
  • the liquid holding portion is provided around the electrode portion on the first surface, and is arranged close to the inner wall surface of the container to hold the liquid sample between the liquid holding portion and the inner wall surface.
  • this sensor is a sensor that is used in a state of being immersed in a liquid sample placed in a container and measures the liquid sample.
  • An electrode portion is provided on the first surface of the main body of the sensor, and the inside of the container is provided. By arranging the first surface close to the wall surface, a liquid holding portion that holds the liquid sample up to above the electrode portion is formed between the inner wall surface of the container and the first surface.
  • this sensor is used in a state where the electrode portion is immersed in the liquid sample, and is used, for example, for analyzing the cell culture environment of the liquid sample.
  • the main body has, for example, a plate shape and has a first surface and a second surface on the opposite side.
  • the electrode portion is, for example, a working electrode, a counter electrode, a reference electrode, or the like arranged on the first surface, and the liquid sample is measured by applying a voltage while immersed in the liquid sample.
  • the electrode portion arranged on the first surface does not have to be provided with all of the working electrode, the counter electrode, and the reference electrode. For example, only the working electrode is provided on the first surface, and at least one. It suffices if two electrodes are provided.
  • the liquid holding portion is provided on the same surface (first surface) as the electrode portion, and the first surface is arranged close to the inner wall surface of the container, so that the surface tension of the liquid sample is utilized to obtain the first surface.
  • the liquid sample is held up to the upper part covering the entire electrode portion in the gap between the one surface. As a result, the liquid sample can be held at a position higher than the second surface side opposite to the first surface on the first surface side arranged close to the inner wall surface of the container.
  • the first surface side it is possible to form a state in which the liquid sample is present at a position higher than that on the second surface side, so that the electrode portion provided on the first surface can be sufficiently immersed in the liquid sample. ..
  • the sensor used in the state of being immersed in the liquid sample it is possible to improve the measurement accuracy by the sensor used in the state of being immersed in the liquid sample.
  • the sensor according to the second invention is the sensor according to the first invention, and the liquid holding portion has a first surface up to a position higher than the second surface side when the electrode portion is immersed in the liquid sample. Hold the liquid sample on the side.
  • the liquid sample is held on the first surface side arranged close to the inner wall surface of the container to a position higher than the second surface on the side opposite to the first surface.
  • the sensor according to the third invention is the sensor according to the first or second invention, and the liquid holding portion is placed on the upper portion of the electrode portion on the first surface in a state where the electrode portion is immersed in the liquid sample. It is provided.
  • a liquid holding portion for holding the liquid sample between the inner wall surface of the container and the inner wall surface of the container is provided above the electrode portion on the first surface.
  • the electrode portion is arranged at a position lower than the liquid sample held by the liquid holding portion, it is possible to form a state in which the electrode portion is sufficiently immersed in the liquid sample.
  • the sensor according to the fourth invention is a sensor according to any one of the first to third inventions, and the liquid holding portion has substantially the same width as the first surface in the portion where the electrode portion is provided. Alternatively, it has a width larger than the width of the first surface.
  • the width of the portion provided with the liquid holding portion is equal to or greater than the width of the portion provided with the electrode portion.
  • the liquid sample can be easily held by the liquid holding portion having a width larger than the portion provided with the electrode portion.
  • the sensor according to the fifth invention is a sensor according to any one of the first to fourth inventions, and the main body portion is a liquid sample held between the first surface and the inner wall surface of the container. It is placed close to the inner wall surface up to the distance where surface tension is generated.
  • the installation position of the main body is set so that the liquid sample held between the first surface and the inner wall surface of the container is arranged close to the distance where surface tension is generated.
  • the surface tension of the liquid sample can be utilized to hold the liquid sample at a position higher than the second surface on the first surface side.
  • the sensor according to the sixth invention is the sensor according to the fifth invention, the container is substantially circular in top view, and the first surface is substantially circular with respect to the inner wall surface of the container in top view. , Placed at the position of a substantially circular string.
  • the main body portion (first surface) is installed so as to be arranged at the position of the substantially circular string with respect to the substantially circular container in the top view.
  • the first surface of the main body can be arranged in close proximity to the inner peripheral surface of the substantially circular container.
  • the sensor according to the seventh invention is the sensor according to the sixth invention, and the width of the first surface provided with the electrode portion is smaller than the diameter of the substantially circular container.
  • the width of the portion of the first surface where the electrode portion is provided is smaller than the diameter of the substantially circular container in top view.
  • the first surface can be brought close to a position close to the inner peripheral surface of the substantially circular container in the top view.
  • the sensor according to the eighth invention is the sensor according to the fifth invention, the container is substantially square in top view, and the first surface is on one side of the inner wall surface of the container which is substantially square in top view. It is arranged so as to be close to each other.
  • the main body portion (first surface) is installed so as to be arranged close to the inner wall surface forming one side of the substantially square shape, for example, with respect to a substantially square container.
  • the first surface of the main body can be arranged in close proximity to the inner wall surface of the substantially square container.
  • the sensor according to the ninth invention is the sensor according to the eighth invention, and the width of the first surface provided with the electrode portion is smaller than the diagonal length of the substantially square container.
  • the width of the portion of the first surface where the electrode portion is provided is smaller than the diagonal length of the substantially square container in the top view.
  • the first surface can be brought close to a position close to the inner wall surface of the substantially square container in the top view.
  • the sensor according to the tenth invention is a sensor according to any one of the first to ninth inventions, and the electrode portion includes at least one of a reference electrode, a working electrode, and a counter electrode.
  • an electrode portion including at least one of a reference electrode, an working electrode, and a counter electrode is used.
  • the liquid sample can be measured by applying a voltage while each electrode is immersed in the liquid sample.
  • the sensor according to the eleventh invention is a sensor according to any one of the first to tenth inventions, and the main body has a substantially L-shaped shape or a substantially inverted T-shaped shape when viewed from the front. doing.
  • a sensor having a main body having a substantially L-shaped or substantially inverted T-shaped shape is used.
  • a portion including an electrode portion immersed in the liquid sample, a liquid holding portion arranged above the electrode portion, and the like can be provided in a wide portion having a substantially L-shape or a substantially inverted T-shape.
  • the electrode portion can be sufficiently immersed in the liquid sample while the liquid sample is held in the wide portion.
  • the sensor unit according to the twelfth invention includes a sensor according to any one of the first to eleventh inventions, a substrate provided with a plurality of sensors, and a connecting portion for connecting the substrate and the sensor. There is.
  • a plurality of sensors are connected to the substrate via a connecting portion.
  • the sensor unit according to the thirteenth invention is the sensor unit according to the twelfth invention, and the plurality of sensors are formed by cutting out a part of a substrate.
  • a part of the substrate is cut out to form a plurality of sensors.
  • a part of the substrate is cut out and bent to form a sensor, so that one substrate can include a plurality of sensors.
  • the sensor unit according to the fourteenth invention is the sensor unit according to the twelfth or thirteenth invention, further including a bottom cover provided below the substrate and a top cover provided above the substrate.
  • the substrate is configured to be sandwiched between the bottom cover and the top cover from above and below. This makes it possible to configure a sensor unit in which a substrate including a plurality of sensors is arranged so as to be sandwiched between the bottom cover and the top cover from above and below.
  • the sensor unit according to the fifteenth invention is the sensor unit according to the fourteenth invention, and the bottom cover is provided with a through hole for penetrating the sensor downward.
  • a bottom cover is used in which through holes are formed to allow a plurality of sensors included in the substrate to penetrate downward. As a result, the plurality of sensors can be immersed in the plurality of containers arranged below the bottom cover through the through holes.
  • the cell culture analyzer according to the sixteenth invention includes a sensor unit according to any one of the twelfth to fifteenth inventions, and a culture container installation unit on which the sensor unit is installed.
  • a cell culture analyzer including the sensor unit, a culture container installation unit on which the sensor unit and a culture container in which a liquid sample is placed is placed is configured.
  • the sensor according to the seventeenth invention is a sensor that is used in a state of being immersed in a liquid sample placed in a container and measures a cell culture environment in the liquid sample, and comprises a main body portion and an electrode portion.
  • the main body has a first surface and a second surface opposite to the first surface.
  • the electrode portion is provided on the first surface of the main body portion, and a predetermined voltage is applied when the measurement is performed while the electrode portion is immersed in the liquid sample.
  • the main body is installed at a position offset from the center of the container.
  • this sensor is a sensor that is used in a state of being immersed in a liquid sample placed in a container and measures the liquid sample.
  • An electrode portion is provided on the first surface of the main body of the sensor, and the center of the container is provided.
  • the main body is installed at a position offset from.
  • this sensor is used in a state where the electrode portion is immersed in the liquid sample, and is used, for example, for analyzing the cell culture environment of the liquid sample.
  • the main body has, for example, a plate shape and has a first surface and a second surface opposite to the first surface, and is installed at a position offset from the center of the container containing the liquid sample. ..
  • the electrode portion is, for example, a reference electrode, a counter electrode, a working electrode, or the like arranged on the first surface, and the liquid sample is measured by applying a voltage while immersed in the liquid sample.
  • the sensor is arranged at a position offset from the center of the container, that is, a position close to the inner wall surface. Therefore, the liquid sample can be held at a position higher than the second surface side opposite to the first surface on the first surface of the main body portion arranged close to the inner wall surface.
  • the first surface side it is possible to form a state in which the liquid sample is present at a position higher than that on the second surface side, so that the electrode portion provided on the first surface can be sufficiently immersed in the liquid sample. ..
  • the sensor used in the state of being immersed in the liquid sample it is possible to improve the measurement accuracy by the sensor used in the state of being immersed in the liquid sample.
  • the sensor according to the eighteenth invention is a sensor that is used in a state of being immersed in a liquid sample placed in a container and measures the liquid sample, and is a main body portion, a measurement electrode portion, and an immersion detection electrode portion. And have.
  • the measurement electrode portion is provided in the main body portion, and a predetermined first voltage is applied when the measurement is performed in a state of being immersed in the liquid sample.
  • the immersion detection electrode portion is provided above the measurement electrode portion in the main body while being immersed in the liquid sample, and detects whether or not the measurement electrode portion is immersed in the liquid sample. At that time, a predetermined second voltage is applied.
  • this sensor is a sensor that is used in a state of being immersed in a liquid sample placed in a container to measure a liquid sample, and a measurement electrode portion and an immersion detection electrode portion are provided in the main body of the sensor.
  • a predetermined voltage (second voltage) is applied to the immersion detection electrode portion provided above the measurement electrode portion to detect the immersion state of the measurement electrode portion.
  • this sensor is used in a state where the measurement electrode portion is immersed in the liquid sample, and is used, for example, for analyzing the cell culture environment of the liquid sample.
  • the main body has, for example, a plate shape, and the measurement electrode portion and the immersion detection electrode portion are provided on the same surface or different surfaces.
  • the measuring electrode portion is, for example, a working electrode, a counter electrode, a reference electrode, etc. arranged in the main body portion, and measures the concentration of the liquid sample or the like by applying a voltage while immersed in the liquid sample. ..
  • the measuring electrode portion arranged on the main body portion does not have to have all of the working electrode, the counter electrode, and the reference electrode on the same surface.
  • the working electrode is on the first surface and the other electrode is on the first surface.
  • the configuration may be such that it is provided on two surfaces.
  • the immersion detection electrode portion is, for example, 1 to 4 electrodes provided in the main body portion in order to detect whether or not the measurement electrode portion is sufficiently immersed in the liquid sample.
  • the immersion detection electrode portion is arranged at a position above the measurement electrode portion, for example, its lower end portion is substantially equal to or slightly above the upper end portion of the measurement electrode portion.
  • the first voltage applied to the measurement electrode portion when measuring the liquid sample and the second voltage applied to the immersion detection electrode portion when detecting the immersion state of the measurement electrode portion are the same voltage. It may be a value or it may be a different voltage value.
  • the measurement of the liquid sample and the detection of the immersion state of the measurement electrode portion may be performed at different timings or may be performed at the same time.
  • the second voltage is applied to the immersion detection electrode portion and the measurement electrode portion is immersed, that is, the measurement electrode portion is liquid. It is possible to accurately detect whether or not the sample is immersed in the sample.
  • the measurement electrode portion can be surely liquid sample.
  • the measurement can be performed while immersed in the inside. As a result, the measurement accuracy can be improved by detecting the immersion state of the measurement electrode portion of the sensor in the liquid sample.
  • the sensor according to the nineteenth invention is the sensor according to the eighteenth invention, and the main body portion has a first surface provided with a measurement electrode portion.
  • the immersion detection electrode portion is arranged above the measurement electrode portion on the first surface.
  • the measurement electrode portion and the immersion detection electrode portion are provided on the same surface (first surface) of the main body portion.
  • the sensor according to the twentieth invention is the sensor according to the eighteenth or nineteenth invention, and further includes a protective film covering at least a part of the measurement electrode portion.
  • a protective film is provided to cover the reagent arranged on the electrode such as the working electrode included in the measurement electrode portion.
  • the permeation rate of the specific component in the liquid sample and the outflow rate of the reagent into the liquid sample can be controlled by the protective film covering at least a part of the measurement electrode portion.
  • the sensor according to the 21st invention is a sensor according to any one of the 18th to 20th inventions, and the measurement electrode portion includes two poles of the working electrode and the counter electrode, or the working electrode, the counter electrode, and the reference. Includes 3 poles.
  • the measurement electrode portion a two-pole configuration of a working electrode and a counter electrode, or a three-pole configuration of a working electrode, a counter electrode, and a reference electrode is adopted. Thereby, the concentration of the liquid sample and the like can be measured by using the measurement electrode portion including the two electrodes or the three electrodes.
  • the sensor according to the 22nd invention is the sensor according to the 19th invention, and the protective film is provided so as to cover at least the working electrode included in the measurement electrode portion.
  • a protective film is provided on the working electrode that easily affects the measurement accuracy when measuring a liquid sample.
  • the outflow of the reagent to the liquid sample and the permeation rate of a specific component in the liquid sample can be controlled by the protective film.
  • the sensor according to the 23rd invention is a sensor according to any one of the 18th to 22nd inventions, and the immersion detection electrode portion is arranged directly above the working electrode included in the measurement electrode portion.
  • the immersion detection electrode portion is provided directly above the working electrode, which easily affects the measurement accuracy when measuring a liquid sample.
  • the immersion detection electrode portion is provided directly above the working electrode, which easily affects the measurement accuracy, so that at least the immersion state of the working electrode can be accurately detected. ..
  • the sensor according to the 24th invention is a sensor according to any one of the 18th to 23rd inventions, and the immersion detection electrode portion is adjusted to the width of the working electrode included in the measurement electrode portion in a substantially horizontal direction. Is installed.
  • the immersion detection electrode portion is arranged according to the width of the working electrode (dimension in the substantially horizontal direction).
  • the immersion detection electrode portion is provided according to the width of the working electrode that easily affects the measurement accuracy, so that at least the immersion state of the working electrode can be accurately detected. Can be done.
  • the sensor according to the 25th invention is a sensor according to any one of the 18th to 24th inventions, and the immersion detection electrode portion has two or three electrodes.
  • the immersion detection electrode portion is composed of two or three electrodes. As a result, by applying a voltage between the two electrodes or by applying a voltage to two of the three electrodes and measuring the current value, the measurement electrode portion is sufficient in the liquid sample. It is possible to detect whether or not the sample is immersed in.
  • the sensor according to the 26th invention is a sensor according to any one of the 18th to 25th inventions, and the immersion detection electrode portion has one electrode. A second voltage is applied between the measurement electrode portion and at least one electrode constituting the measurement electrode portion.
  • the sensor according to the 27th invention is a sensor according to any one of the 18th to 26th inventions, and the immersion detection electrode portion is a plurality of combs extended substantially parallel to the liquid surface of the liquid sample. It has a tooth-like shape.
  • electrodes having a plurality of comb-shaped shapes are used as the immersion detection electrode portion.
  • the change in the immersion state in the depth direction of the liquid sample can be amplified and detected by the plurality of comb teeth stretched substantially parallel to the liquid surface of the liquid sample. Therefore, not only the presence or absence of immersion in the measurement electrode portion but also the height of the liquid level of the liquid sample in the container can be detected.
  • the sensor according to the 28th invention is a sensor according to any one of the 18th to 27th inventions, and the immersion detection electrode portion is immersed in a liquid sample and has a dimension in a substantially horizontal direction. It has a shape that changes in the depth direction.
  • the immersion detection electrode portion an electrode whose dimensions change in the substantially horizontal direction, such as an electrode having a substantially triangular shape, is used.
  • the sensor according to the 29th invention is the sensor according to the 28th invention, and the immersion detection electrode portion has a substantially triangular shape.
  • an electrode having a substantially triangular shape is used as the immersion detection electrode portion.
  • the substantially triangular electrodes so that their apex faces upward or downward, the change in the height of the liquid surface of the liquid sample can be amplified and detected, so that the measurement electrode portion is immersed. Not only the presence or absence of the liquid sample, but also the height of the liquid level of the liquid sample in the container can be detected.
  • the sensor according to the thirtieth invention is a sensor according to any one of the eighteenth to twenty-ninth inventions, and the working electrode included in the measuring electrode portion is the counter electrode included in the measuring electrode portion in the main body portion. They are located at separate positions.
  • the working electrode included in the measurement electrode portion is provided at a position separated from the counter electrode in the main body portion.
  • the protective film can be easily provided on the working electrode because the counter electrodes are arranged at positions separated from each other.
  • the sensor according to the thirty-first invention is a sensor according to any one of the eighteenth to thirtieth inventions, and the immersion detection electrode portion is arranged at a substantially central portion of the container.
  • the immersion detection electrode portion for detecting the immersion state of the measurement electrode portion is arranged substantially near the center of the container.
  • the immersion detection electrode portion is arranged near the center of the container where the liquid level is expected to be the lowest in the container.
  • the measuring device applies predetermined first voltage and 2nd voltage to the sensor according to any one of the 18th to 31st inventions, the measuring electrode portion and the immersion detection electrode portion.
  • the liquid sample is measured based on the first current value obtained by applying the first voltage to the voltage application section and the measurement electrode section, and the second voltage obtained by applying the second voltage to the immersion detection electrode section is performed. It is provided with a control unit that detects the presence or absence of an immersion state of the measurement electrode unit based on the current value.
  • the control unit measures the liquid sample and detects the immersion state of the measuring electrode.
  • a measuring device for measuring the liquid sample and detecting the immersion state of the measuring electrode can be configured based on the first current value and the second current value.
  • the measuring device according to the 33rd invention is the measuring device according to the 32nd invention, and the control unit is a liquid sample based on a second current value obtained by applying a second voltage to the immersion detection electrode unit. Detects the liquid level of.
  • the liquid level of the liquid sample in the container is detected based on the change in the second current value detected when the second voltage is applied to the immersion detection electrode portion.
  • the immersion detection electrode portion for example, an electrode long in the immersion depth direction, a comb-shaped electrode, a substantially triangular electrode whose dimensions change in the substantially horizontal direction, or the like is preferably used.
  • the liquid level height of the liquid sample in the container can be detected.
  • the measuring device according to the 34th invention is the measuring device according to the 32nd or 33rd invention, and the voltage application unit applies a substantially alternating current voltage to the measurement electrode unit and the immersion detection electrode unit.
  • a substantially AC voltage is used as the voltage applied to the measurement electrode portion and the immersion detection electrode portion.
  • the substantially AC voltage includes, for example, a voltage having a sine wave waveform, a voltage having a square wave waveform, and the like.
  • the sensor unit according to the 35th invention includes a sensor according to any one of the 18th to 31st inventions, a substrate provided with a plurality of sensors, and a connecting portion for connecting the substrate and the sensor. There is.
  • a plurality of sensors are connected to the substrate via a connecting portion.
  • the sensor unit according to the 36th invention is the sensor unit according to the 35th invention, and the plurality of sensors are formed by cutting out a part of a substrate.
  • a part of the substrate is cut out to form a plurality of sensors.
  • a part of the substrate is cut out and bent to form a sensor, so that one substrate can include a plurality of sensors.
  • the sensor unit according to the 37th invention is a sensor unit according to the 35th or 36th invention, further comprising a bottom cover provided below the substrate and a top cover provided above the substrate. ing.
  • the board is configured to be sandwiched between the bottom cover and the top cover from above and below. This makes it possible to configure a sensor unit in which a substrate including a plurality of sensors is arranged so as to be sandwiched between the bottom cover and the top cover from above and below.
  • the sensor unit according to the 38th invention is the sensor unit according to the 37th invention, and the bottom cover is provided with a through hole for penetrating the sensor downward.
  • a bottom cover is used in which through holes are formed to allow a plurality of sensors included in the substrate to penetrate downward. As a result, the plurality of sensors can be immersed in the plurality of containers arranged below the bottom cover through the through holes.
  • the sensor unit according to the 39th invention is a sensor unit including a plurality of sensors used in a state of being immersed in a liquid sample placed in a plurality of containers, and is a first sensor and a second sensor. And have.
  • the first sensor is provided at a position corresponding to the first container arranged on at least one edge of the plurality of containers.
  • the second sensor is provided at a position corresponding to the second container arranged at a position other than the first sensor among the plurality of containers.
  • the first sensor has an immersion detection electrode portion that detects whether or not the measurement electrode of the second sensor immersed in the liquid sample is immersed in the liquid sample.
  • the second sensor has a measuring electrode portion for measuring a liquid sample.
  • the sensor is immersed in the liquid sample as a sensor arranged at a position corresponding to the container arranged on at least one edge.
  • a first sensor having an immersion detection electrode portion for detecting whether or not the measurement electrode of the sensor is immersed in a liquid sample is used, and a sensor arranged at a position corresponding to a container arranged at a position other than the first sensor.
  • a second sensor having a measurement electrode portion for measuring a liquid sample is used.
  • the first sensor may have a configuration having not only the immersion detection electrode portion but also the measurement electrode portion.
  • the second sensor may have a configuration having not only the measurement electrode portion but also the immersion detection electrode portion.
  • the measurement electrode portion is immersed in a plurality of containers by using a sensor having a simple configuration. The state can be detected.
  • the sensor unit according to the 40th invention is the sensor unit according to the 39th invention, and the first sensor is located at a position corresponding to a container arranged at four corners among a plurality of containers arranged in a substantially square shape. Have been placed.
  • a first sensor having an immersion detection electrode portion is arranged at a position corresponding to the containers arranged at the four corners.
  • the cell culture analyzer according to the 41st invention includes a sensor unit according to any one of the 35th to 40th inventions, a culture container installation unit on which the sensor unit and a container for storing a liquid sample are placed. , Is equipped.
  • a cell culture analyzer including the sensor unit, a culture container installation unit on which the sensor unit and a culture container in which a liquid sample is placed is placed, is configured.
  • the cell culture analyzer according to the 42nd invention is the cell culture analyzer according to the 41st invention, which is connected to immersion detection electrode portions of a plurality of sensors provided on a substrate and placed in a container. It further includes an immersion detection unit that detects the immersion state of the measurement electrode unit with respect to the liquid sample, and a display unit that displays the detection result in the immersion detection unit.
  • the immersion state of the measurement electrode portion detected by the plurality of sensors is displayed by using, for example, a display unit that turns on light.
  • a display unit that turns on light.
  • the light of the display portion connected to each sensor can be turned on.
  • the user can easily recognize in which container the measurement electrode portion of the sensor is in the immersed state or the unimmersed state, and puts the liquid sample in the unimmersed container in which the light is not lit. Measures such as addition can be taken.
  • the liquid sample measuring method according to the 43rd invention is a liquid sample measuring method for measuring using the sensors according to the 18th to 31st inventions, and a second voltage is applied to the immersion detection electrode portion. It includes a immersion detection step and a measurement step of applying a first voltage to the measurement electrode portion.
  • it is a measurement method for measuring a liquid sample using the above-mentioned sensor. After applying a second voltage to the immersion detection electrode portion to detect the immersion state of the measurement electrode portion in the liquid sample, the measurement electrode portion A first voltage is applied to and the concentration of the liquid sample is measured.
  • the liquid sample measurement method according to the 44th invention is the liquid sample measurement method according to the 43rd invention, in which the application of the second voltage to the immersion detection electrode portion is stopped between the immersion detection step and the measurement step. A voltage application stop step is further provided.
  • a voltage-free period is provided between the detection of the immersion state of the measurement electrode portion described above and the measurement of the liquid sample.
  • the voltage applied for immersion detection is suppressed from affecting the measurement of the liquid sample, so that the measurement of the liquid sample can be performed with higher accuracy.
  • the front view of the cell culture apparatus equipped with the cell culture analyzer provided with the sensor unit which concerns on one Embodiment of this invention.
  • the perspective view of the cell culture apparatus of FIG. The perspective view of the cell culture analyzer of FIG.
  • the perspective view of the cell culture analyzer of FIG. The exploded perspective view of the cell culture analyzer of FIG.
  • the control block diagram of the cell culture analyzer of FIG. An enlarged perspective view of the sensor unit of FIG.
  • An exploded perspective view of the sensor unit of FIG. A partially cutaway perspective view of the sensor unit of FIG.
  • a partially enlarged cross-sectional view of the sensor unit of FIG. A partial plan view of the sensor unit of FIG.
  • FIG. 19 is a perspective view of the cell culture analyzer of FIG.
  • the exploded perspective view of the cell culture analyzer of FIG. The control block diagram of the cell culture analyzer of FIG. An enlarged perspective view of the sensor unit of FIG. 19. An exploded perspective view of the sensor unit of FIG. 19.
  • FIG. 6 is a control block diagram showing a configuration in which a voltage is applied to an immersion detection electrode portion included in the sensor of FIG. 29.
  • the circuit diagram which shows the structure of the control unit of FIG. (A) is a diagram showing a square wave applied by the control unit of FIG. 33.
  • (B) is a graph showing a current value detected by applying the voltage of (a).
  • (A) and (b) are views showing the unimmersed state in which the sensor of FIG. 29 is installed in the well.
  • the flowchart which shows the flow of the measuring method of the liquid sample using the sensor of FIG.
  • the front view which shows the structure of the sensor which concerns on other embodiment of this invention.
  • the circuit diagram which shows the circuit structure of the sensor of FIG. 37.
  • the front view which shows the structure of the sensor which concerns on still another Embodiment of this invention.
  • the front view which shows the structure of the sensor which concerns on still another Embodiment of this invention.
  • (A) to (d) are front views showing the detection of the liquid level using the sensor of FIG. 43.
  • (A) to (c) are graphs showing changes in the detected current value according to the shape of the electrodes included in the sensor.
  • (A) is a front view showing the configuration of the sensor according to still another embodiment of the present invention.
  • (B) is a diagram showing a configuration in which the sensor of (a) is unitized.
  • (A) and (b) are front views showing the configuration of the sensor according to still another embodiment of the present invention.
  • (A) is a front view showing a configuration of a sensor including an immersion detection electrode portion included in a sensor unit according to still another embodiment of the present invention.
  • (B) is a plan view showing the position of the well in which the sensor of (a) is installed.
  • the front view which shows the state which the immersion detection electrode part of the sensor which concerns on still another Embodiment of this invention is arranged near the center of a well.
  • the front view which shows the structure of the sensor which concerns on still another Embodiment of this invention.
  • (A) and (b) are diagrams showing the shape of the main body of the sensor according to still another embodiment of the present invention.
  • the sensor 16 according to the embodiment of the present invention, the sensor unit 9 provided with the sensor 16, and the cell culture analyzer 3 will be described with reference to the accompanying drawings.
  • the cell culture device 1 includes a culture chamber 2 and a cell culture analyzer 3.
  • a cell culture analyzer 3 is arranged in the culture chamber 2 of the cell culture device 1. Although not shown in FIGS. 1 and 2, the door is attached to the front surface of the culture chamber 2 in a state where the door can be opened and closed. In the culture chamber 2, cell culture is performed, and the state of the cell culture environment is detected using the sensor 16 of the cell culture analyzer 3, which will be described later.
  • the cell culture analyzer 3 As shown in FIG. 3, the cell culture analyzer 3 includes a door 4, a main body case 5, and a culture container installation unit 6.
  • the culture container installation portion 6 is arranged in the main body case 5 provided with the door 4 on the front side.
  • the culture container 7 and the sensor unit 9 are placed on the culture container installation unit 6.
  • the culture vessel 7 has, for example, 24 wells (containers) 8.
  • Each of the wells 8 contains a liquid medium (liquid sample) to be analyzed using the sensor unit 9.
  • the well 8 is, for example, a substantially cylindrical container having a diameter of 15.1 mm, into which a sensor 16 having a width of about 7.0 mm is inserted.
  • the medium (liquid sample) placed in each well 8 is, for example, 0.5 to 1.0 ml.
  • the culture vessel 7 is installed in a state of being positioned in a substantially quadrangular recess 6a formed in the cell culture installation portion 6.
  • the recess 6a is a recessed portion formed according to the outer shape of the culture container 7, has substantially the same outer shape as the outer shape of the culture container 7, and holds the culture container 7 so as not to move in the plane direction.
  • FIG. 6 shows a control block of the cell culture analyzer 3. That is, as shown in FIG. 6, the cell culture analyzer 3 includes a control unit 12 including a measurement unit 33 and a control unit 34 connected to the sensor unit 9, a storage unit 35, and a communication unit 36. ..
  • the control unit 12 applies a voltage to the electrode portion 21 of each sensor 16 included in the sensor unit 9 via the connection portions 20a and 20b (see FIG. 11). Then, the control unit 12 transmits information regarding the cell culture environment of the medium (liquid sample) contained in the well 8 to a data processing device (for example, a personal computer) outside the cell culture device 1.
  • a data processing device for example, a personal computer
  • the external device 37 includes a communication unit 38, a control unit 39, a display unit 40, and an input unit 41 (for example, a mouse, a keyboard, etc.).
  • the control unit 39 controls the display unit 40 so that the display unit 40 displays the detected data.
  • a sensor unit 9 including a sensor 16 (see FIG. 9) for analyzing the state of the cell culture environment of the medium (liquid sample) placed in the well 8 is arranged on the culture vessel 7.
  • the sensor unit 9 has four legs (support portions) 10 provided on the lower surface side thereof, and is inserted into a positioning hole 11 provided in the culture container installation portion 6.
  • the sensor unit 9 is installed on the culture vessel 7 at a predetermined position in the culture vessel installation unit 6 at a predetermined interval.
  • legs 10 for securing storage spaces for the plurality of wells 8 included in the culture container 7 are provided on the culture container installation portion 6. There is. Then, the sensor unit 9 is arranged on the culture container installation portion 6 by the legs 10. As described above, the legs 10 support the sensor unit 9 on the culture container installation portion 6 through a predetermined gap on the culture container installation portion 6 in order to secure a storage space for the culture container 7. ..
  • the support portion that supports the sensor unit 9 from below is not limited to the legs provided on the sensor unit 9.
  • it may be a support that supports the sensor unit 9 from below with respect to the culture container installation portion 6.
  • the control unit 12 described above is arranged on the sensor unit 9.
  • the sensor unit 9 includes, for example, a substrate 13 made of PET (polyethylene terephthalate) which is a resin material, a bottom cover 14 arranged below the substrate 13, and a substrate 13. It is provided with a top cover 15 arranged above. The substrate 13 is sandwiched from above and below by the bottom cover 14 and the top cover 15. As shown in FIG. 9, the substrate 13 is provided with a plurality of sensors 16. Specifically, the plurality of sensors 16 are formed in a state in which a part of the substrate 13 is cut out and a bent portion 17 in which the connecting portion between the sensor 16 and the substrate 13 is bent downward is left on the substrate 13.
  • PET polyethylene terephthalate
  • the substrate 13 to which the plurality of sensors 16 are connected is sandwiched between the top cover 15 and the bottom cover 14 from above and below.
  • the bottom cover 14 is provided with a plurality of through holes 30. Therefore, the lateral side portion of the sensor 16 (the portion where the working electrode 21a, the counter electrode 21b, and the reference electrode 21c exist) penetrates the through hole 30 and is arranged below the bottom cover 14.
  • a support portion 31 that supports the lower side of the bent portion 17 of the sensor 16 is provided at the opening edge of the through hole 30 of the bottom cover 14.
  • a pressing portion 32 that pushes the upper side of the bent portion 17 of the sensor 16 downward is provided at a portion of the top cover 15 facing the support portion 31.
  • These support portions 31 have a curved upper surface shape. Further, the pressing portion 32 has a curved lower surface shape.
  • the bent portion 17 of the sensor 16 is moved up and down by the support portion 31 and the pressing portion 32. It is sandwiched from.
  • the lateral side portion of the substantially L-shaped sensor 16 (the portion provided with the working pole 21a, the counter electrode 21b, and the reference pole 21c) is stably maintained in a state of being arranged along the substantially horizontal direction. Can be done.
  • the lateral side portion of the sensor 16 (the portion provided with the working electrode 21a, the counter electrode 21b, and the reference electrode 21c) is held in each well 8 of the culture vessel 7 at a stable position, and is held in each well 8. Since it is immersed in the medium, the culture state can be appropriately detected. Then, since the bent portion 17 of the sensor 16 is supported from above and below by the supporting portion 31 and the pressing portion 32, the sensor 16 bent at an substantially uniform angle with respect to the substrate 13 can be inserted into the well 8. .. Therefore, the sensor 16 can be accurately arranged in the vicinity of the inner peripheral surface 8a of the well 8 described later.
  • the R of the arc portion of the bent portion 17 of the sensor 16 is defined by the bottom cover 14 and the top cover 15 and excessive stress is not applied to the bent portion 17, it is possible to prevent disconnection due to cracks.
  • either the top cover 15 or the bottom cover 14 may be bent while being attached to the substrate 13. Further, heat may be applied to the bent portion 17 to perform the bending process. In that case, the top cover 15 or the bottom cover 14 is unnecessary.
  • the sensor 16 is formed so as to be cut out from the substrate 13 with the bent portion 17 remaining and bent downward with respect to the substrate 13. This eliminates the need for a configuration for fixing the sensor 16 to the substrate 13, and the sensor unit 9 can be miniaturized. Further, as the configuration of the sensor 16, since the sensor 16 and the wiring portion on the substrate 13 can be integrally formed, the connection connector between the sensor 16 and the wiring 19 becomes unnecessary. Therefore, the sensor unit 9 can be miniaturized.
  • the wiring 19 of the substrate 13 is collected as a wiring pattern on the substrate 13 and collected in the connection portions 20a and 20b. Since the connection portions 20a and 20b are connected to the connection connector of the control unit 12, it is not necessary to connect the sensor unit 9 and the control unit 12 by wiring such as a lead wire. Therefore, the cell culture analyzer 3 itself can be miniaturized. As described above, in the present embodiment, as shown in FIG. 5, even when many wells 8 are used, the culture state is simultaneously detected by the sensor unit 9 including a plurality of miniaturized sensors 16. be able to.
  • the sensor 16 of the present embodiment is formed by cutting out a part of the substrate 13 into a substantially L-shape, and has a substantially L-shape as shown in FIG.
  • FIG. 10 shows a partially enlarged cross-sectional view of FIG.
  • a substantially L-shaped vertical side upper portion is formed as a bent portion 17, and is connected to the substrate 13. That is, the bent portion 17 is provided as a connecting portion for connecting the substrate 13 and each sensor 16.
  • the substantially L-shaped portion 18 of the substrate 13 shown in FIG. 11 is an opening in which the substantially L-shaped sensor 16 is cut out. Further, the substrate 13 has a rectangular shape.
  • the substantially L-shaped sensor 16 is formed by cutting out the vertical side of the sensor 16 from the substrate 13 at an angle with respect to the two opposing sides of the substrate 13. Further, as shown in FIG. 11, the wiring 19 on the substrate 13 connected to the bent portion 17 of the sensor 16 has a vertical side cutout portion 18a of the sensor 16 adjacent to each other and a horizontal side cutout portion 18b of the sensor 16. It is pulled out to the outer peripheral portion of the substrate 13 through the space.
  • the sensor 16 has a substantially L-shape, and the side portions thereof are held in the well 8 so as to be arranged along the horizontal direction. Immerse in the medium in well 8. Thereby, each sensor 16 immersed in the plurality of wells 8 can be used to detect the state of the cell culture environment in the plurality of wells 8. Further, a detection electrode (electrode portion 21) for detecting the state of the cell culture environment in the well 8 is formed on the lower lateral side portion of the sensor 16. For example, the sensitivity of the sensor 16 can be improved by increasing the electrode area of the electrode portion 21 provided as the detection electrode as compared with the substantially I-shaped sensor.
  • the sensor 16 since the sensor 16 has a substantially L-shape, the sensor 16 inclines the substantially L-shaped vertical side with respect to the two opposite sides of the substrate 13 with respect to the rectangular substrate 13. In this state, it is cut out from the substrate 13 and formed. As a result, the length of the vertical side portion (vertical portion in FIG. 13) of the sensor 16 can be sufficiently secured. Therefore, it is possible to adjust the detection electrode formed on the lateral side portion (lateral portion in FIG. 13) of the sensor 16 to be immersed in the medium in the well 8.
  • an working electrode 21a, a counter electrode 21b, and a reference electrode 21c are provided as electrode portions 21 on the lateral side portion of the substantially L-shaped sensor 16. Further, a silver layer (at least one of a silver layer and a silver chloride layer) is provided on the surface of the reference electrode 21c. Further, a reagent layer formed from an enzyme, a mediator, or the like is provided on the surface of the working electrode 21a. The electrode portions 21 are covered with a protective film.
  • the sensor 16 immerses the working electrode 21a, the counter electrode 21b, and the reference electrode 21c in the liquid sample of the medium in the well 8, and electrochemically detects the concentration of a specific component of the medium to culture the cells of the medium. Analyze the environment. For example, when detecting the concentration of the glucose component in the medium, the reagent layer immobilized on the surface of the working electrode 21a contains an enzyme (for example, GOx) and a redox mediator.
  • an enzyme for example, GOx
  • a redox mediator for example, GOx
  • the principle of this glucose detection is that glucose that has permeated from the medium through the protective film is oxidized by an enzymatic reaction with an enzyme (for example, GOx) in the reagent layer to become gluconolactone, and at the same time, the redox mediator in the reagent layer is reduced and reduced. Become a body.
  • the glucose concentration in the medium can be measured by measuring the electrons generated when the reduced product returns to the oxidized product as a current value.
  • the protective film permeates the detection electrode portion of the sensor 16 while limiting permeation in order to control the permeation rate of glucose in the medium, and also contains enzymes and mediators which are components of the reagent layer immobilized on the working electrode 21a. Is provided to prevent the protective film from flowing out.
  • the enzyme and mediator are crosslinked and immobilized on the surface of the working electrode 21a. Therefore, the reagent layer is polymerized and has a large molecular weight. Thus, glucose can permeate and prevent enzymes and mediators from leaving the protective membrane (see WO 2019/146788 for more details).
  • the sensor 16 has the above-mentioned electrode portion 21 and the liquid holding portion 22 on one surface (first surface 23a) of the substantially L-shaped main body portion 16a.
  • the liquid holding portion 22 is provided on the same surface as the surface on which the electrode portion 21 is provided, that is, around the electrode portion 21 on the first surface 23a, for example, above the electrode portion 21. Has been done.
  • the liquid holding portion 22 has a width equal to or larger than the width of the portion where the electrode portion 21 is provided.
  • the liquid holding portion 22 is formed as a surface arranged to a position higher than the liquid surface of the medium L held on the first surface 23a side.
  • the sensor 16 measures the medium, as shown in FIG. 14, the inner peripheral surface (inner wall surface) 8a of the well 8 which is substantially circular in top view. It is placed in a position close to the relative. At this time, as shown in FIG. 14, the first surface 23a of the sensor 16 is arranged at the position of the chord centered on the center O of the substantially circular well 8 in the top view.
  • the first surface 23a of the sensor 16 is arranged so that the distance d1 of the well 8 with respect to the inner peripheral surface 8a is, for example, 1.0 to 2.0 mm. Further, the distance d2 between both ends of the sensor 16 and the inner peripheral surface 8a of the well 8 is arranged so as to be, for example, 1.0 mm. As a result, even if the liquid level near the center of the well 8 is lowered due to the meniscus effect generated between the medium (liquid sample) placed in the well 8 and the inner peripheral surface 8a of the well 8, the inner peripheral surface of the well 8 is lowered.
  • the main body portion 16a of the sensor 16 at a position close to 8a, all the electrodes included in the electrode portion 21 can be immersed in the medium L.
  • the legs 10 of the sensor unit 9 described above are cultured in the positioning holes 11 of the culture container installation portion 6. This is done by installing the containers 7 in the recesses 6a of the culture container installation portion 6, respectively. That is, the positioning of the sensor 16 of the sensor unit 9 with respect to the well 8 of the culture container 7 is performed by using the recess 6a formed in the culture container installation portion 6 and the positioning hole 11.
  • each of the sensors 16 arranged so as to project from the lower surface side of the sensor unit 9 is accurately angled with respect to the lower surface of the sensor unit 9 by the support portion 31 and the pressing portion 32. Have been placed.
  • the sensor unit 9 (each sensor 16) is aligned with the culture container 7 (each well 8). Can be done. Therefore, the sensor 16 can be accurately installed at a predetermined position close to the inner peripheral surface 8a of each well 8.
  • the senor 16 can be accurately arranged at a position close to the inner peripheral surface 8a for each well 8. Further, the width of the first surface 23a of the main body 16a of the sensor 16 is smaller than the diameter of the circle of the substantially circular well 8 in the top view. As a result, the sensor 16 can be arranged in a state where the first surface 23a is brought close to the inner peripheral surface 8a of the well 8.
  • the liquid holding portion 22 provided on the first surface 23a side of the main body portion 16a of the sensor 16 holds the medium (liquid sample) L to a position higher than the second surface 23b side. .. That is, the liquid holding portion 22 is second due to the surface tension generated in the medium (liquid sample) by arranging the first surface 23a of the main body portion 16a of the sensor 16 close to the inner peripheral surface 8a of the well 8. The medium is held up to a position higher than the surface 23b side.
  • the electrode portion 21 is provided even when the liquid level near the center of the well 8 is lowered due to the meniscus effect generated between the medium (liquid sample) placed in the well 8 and the inner peripheral surface 8a of the well 8.
  • the sensor 16 of the present embodiment is arranged at a position offset from the center O of the substantially circular well 8 in the top view so that the electrode portion 21 is sufficiently immersed in the medium.
  • the senor 16 is arranged so as to avoid the vicinity of the center of the well 8 where the liquid level drops due to the meniscus effect generated between the medium (liquid sample) placed in the well 8 and the inner peripheral surface 8a of the well 8. ..
  • the sensor 16 is arranged near the inner peripheral surface 8a where the liquid level is high, all of the sensors 16 included in the electrode portion 21.
  • the electrode can be immersed in the medium L.
  • FIGS. 1 and 1 and 19 A sensor according to another embodiment of the present invention, a measuring device provided with the sensor, a sensor unit, a cell culture analyzer, and a liquid sample measuring method will be described below with reference to FIGS. 1 and 1 and 19 to 36. It's a street.
  • the cell culture device 1 includes a culture chamber 2 and a cell culture analyzer 3.
  • a cell culture analyzer 3 is arranged in the culture chamber 2 of the cell culture device 1. Although not shown in FIGS. 1 and 2, the door is attached to the front surface of the culture chamber 2 in a state where the door can be opened and closed. In the culture chamber 2, cell culture is performed, and the state of the cell culture environment is detected using the sensor 1016 of the cell culture analyzer 3, which will be described later.
  • the cell culture analyzer 3 As shown in FIG. 19, the cell culture analyzer 3 includes a door 1004, a main body case 5, a culture container installation unit 1006, and a display unit 1038.
  • the culture container installation unit 1006 is arranged in the main body case 5 provided with the door 1004 on the front side. As shown in FIGS. 20 and 21, the culture container 1007 and the sensor unit 1009 are placed on the culture container installation unit 1006.
  • the display unit 1038 is arranged at a position corresponding to the sensor 1016 immersed in the medium in the 24 wells 1008 contained in the culture container 1007.
  • the display unit 1038 has a one-to-one correspondence with each sensor 1016, and when the immersion state of the electrode unit 1021 for measurement described later is detected, the light of a predetermined color (for example, red) is turned on. The lighting is controlled by the control unit 1034.
  • the user can see on the display unit 1038, for example, when the light of a predetermined color is turned off without being turned on, or when the light is blinking, or when the light of a different color is turned on.
  • the unimmersed state of the electrode portion 1021 for measurement can be recognized.
  • the culture container 1007 has, for example, 24 (length 4 ⁇ width 6) wells (containers) 1008.
  • Each of the wells 1008 contains a liquid medium (liquid sample) to be analyzed using the sensor unit 1009.
  • Well 1008 is, for example, a substantially cylindrical container having a diameter of 15.1 mm, into which a sensor 1016 having a width of about 7.0 mm is inserted.
  • the medium (liquid sample) placed in each well 1008 is, for example, 0.5 to 1.0 ml.
  • the culture container 1007 is installed in a state of being positioned in a substantially quadrangular recess 1006a formed in the culture container installation portion 1006.
  • the recess 1006a is a recessed portion formed according to the outer shape of the culture container 1007, has substantially the same outer shape as the outer shape of the culture container 1007, and holds the culture container 1007 so as not to move in the plane direction.
  • FIG. 22 shows a control block of the cell culture analyzer 3. That is, as shown in FIG. 22, the cell culture analyzer 3 includes a measurement unit 1033, a control unit 1034, an immersion detection unit 1037, a storage unit 1035, a communication unit 1036, and a display unit 1038 connected to the sensor unit 1009.
  • the control unit 1012 including the above is provided.
  • the control unit 1012 applies a voltage to the electrode portion (measurement electrode portion) 1021 of each sensor 1016 included in the sensor unit 1009 via the connection portions 1020a and 1020b (see FIG. 27). Then, the control unit 1012 transmits information regarding the cell culture environment of the medium (liquid sample) placed in the well 1008 to the data processing device (for example, a personal computer) outside the cell culture device 1.
  • the data processing device for example, a personal computer
  • Information about the cell culture environment in the well 1008 detected by the sensor 1016 is transmitted to the control unit 1034 via the measurement unit 1033 provided in the control unit 1012, and is stored in the storage unit 1035. Then, as shown in FIG. 22, the information regarding the cell culture environment stored in the storage unit 1035 is transmitted to the communication unit 1041 of the external device 1040 (for example, a personal computer or the like) via the communication unit 1036.
  • the communication unit 1041 of the external device 1040 for example, a personal computer or the like
  • the external device 1040 includes a communication unit 1041, a control unit 1042, a display unit 1043, and an input unit 1044 (for example, a mouse, a keyboard, etc.).
  • the control unit 1042 controls the display unit 1043 so that the display unit 1043 displays the detected data.
  • Sensor unit 1009 On the culture vessel 1007, as shown in FIG. 21, a sensor unit 1009 including a plurality of sensors 1016 (see FIG. 25) for analyzing the state of the cell culture environment of the medium (liquid sample) placed in the well 1008. Is placed.
  • the sensor unit 1009 has four legs 1010 provided on the lower surface side thereof, and is inserted into the positioning hole 1011 provided in the culture container installation portion 1006.
  • the sensor unit 1009 is installed on the culture container 1007 at a predetermined position on the culture container installation unit 1006 at a predetermined interval. That is, on the lower surface side of the sensor unit 1009, as shown in FIG. 24, legs 1010 for securing storage spaces for the plurality of wells 1008 included in the culture container 1007 are provided on the culture container installation portion 1006. There is. Then, the sensor unit 1009 is arranged on the culture container installation portion 1006 by the legs 1010.
  • the leg 1010 supports the sensor unit 1009 on the culture container installation unit 1006 through a predetermined gap in order to secure a storage space for the culture container 1007 on the culture container installation unit 1006.
  • the support portion that supports the sensor unit 1009 from below is not limited to the legs provided on the sensor unit 1009.
  • it may be a support that supports the sensor unit 1009 from below with respect to the culture container installation unit 1006.
  • the control unit 1012 described above is arranged on the sensor unit 1009.
  • the sensor unit 1009 includes, for example, a substrate 1013 made of PET (polyethylene terephthalate) which is a resin material, a bottom cover 1014 arranged below the substrate 1013, and a substrate 1013. It is provided with a top cover 1015 arranged above. The substrate 1013 is sandwiched from above and below by the bottom cover 1014 and the top cover 1015.
  • PET polyethylene terephthalate
  • the substrate 1013 is provided with a plurality of sensors 1016. Specifically, the plurality of sensors 1016 are formed in a state in which a part of the substrate 1013 is cut out and a bent portion 1017 in which the connecting portion between the sensor 1016 and the substrate 1013 is bent downward is left on the substrate 1013. As shown in FIG. 25, the substrate 1013 to which the plurality of sensors 1016 are connected is sandwiched between the top cover 1015 and the bottom cover 1014 from above and below. As shown in FIG. 24, the bottom cover 1014 is provided with a plurality of through holes 1030. Therefore, as shown in FIG. 25, the lateral side portion of the sensor 1016 (the portion where the working electrode 1021a and the counter electrode 1021b (see FIG. 29) are present) penetrates the through hole 1030 and protrudes from the lower surface of the bottom cover 1014. Is placed in.
  • a support portion 1031 that supports the lower side of the bent portion 1017 of the sensor 1016 is provided at the opening edge of the through hole 1030 of the bottom cover 1014.
  • a pressing portion 1032 that pushes the upper side of the bent portion 1017 of the sensor 1016 downward is provided at a portion of the top cover 1015 facing the support portion 1031.
  • These support portions 1031 have a curved upper surface shape. Further, the pressing portion 1032 has a curved lower surface shape.
  • the bent portion 1017 of the sensor 1016 is moved up and down by the support portion 1031 and the pressing portion 1032. It is sandwiched from.
  • the lateral side portion of the substantially I-shaped sensor 1016 (the portion provided with the working pole 1021a and the counter pole 1021b) can be stably maintained in a state of being arranged along the substantially horizontal direction.
  • the lateral side portion of the sensor 1016 (the portion provided with the working electrode 1021a and the counter electrode 1021b) is held at a stable position in each well 1008 of the culture vessel 1007, and is immersed in the medium in each well 1008. Therefore, the culture state can be appropriately detected. Then, since the bent portion 1017 of the sensor 1016 is supported from above and below by the supporting portion 1031 and the pressing portion 1032, the sensor 1016 bent at an substantially uniform angle with respect to the substrate 1013 can be inserted into the well 1008. .. Therefore, the sensor 1016 can be accurately arranged at a predetermined position in the well 1008 described later.
  • the radius of the arc portion of the bent portion 1017 of the sensor 1016 is defined by the bottom cover 1014 and the top cover 1015, excessive stress is not applied to the bent portion 1017, so that disconnection due to cracks can be prevented.
  • either the top cover 1015 or the bottom cover 1014 may be bent while being attached to the substrate 1013. Further, heat may be applied to the bent portion 1017 to perform the bending process. In that case, the top cover 1015 or the bottom cover 1014 is unnecessary.
  • the sensor 1016 is formed so as to be cut out from the substrate 1013 with the bent portion 1017 left and bent downward with respect to the substrate 1013. This eliminates the need for a configuration for fixing the sensor 1016 to the substrate 1013, and the sensor unit 1009 can be miniaturized. Further, as the configuration of the sensor 1016, the sensor 1016 and the wiring portion on the substrate 1013 can be integrally formed, so that the connection connector between the sensor 1016 and the wiring 1019 becomes unnecessary. Therefore, the sensor unit 100 can be miniaturized.
  • the wiring 1019 of the substrate 1013 is aggregated as a wiring pattern on the substrate 1013 and collected in the connection portions 1020a and 1020b. Since the connection portions 1020a and 1020b are connected to the connection connector of the control unit 1012, it is not necessary to connect the sensor unit 1009 and the control unit 1012 by wiring such as a lead wire. Therefore, the cell culture analyzer 3 itself can be miniaturized.
  • the culture state is carried out by the sensor unit 1009 including a plurality of miniaturized sensors 1016. Can be detected at the same time.
  • the sensor 1016 of the present embodiment is formed by cutting out a part of the substrate 1013 in a substantially I shape, and has a main body portion 1016a having a substantially I shape as shown in FIGS. 25 and 28.
  • FIG. 26 shows a partially enlarged cross-sectional view of FIG. 25.
  • the upper part of the vertical side of the substantially I-shaped main body portion 1016a is a bent portion 1017, which is connected to the substrate 1013. That is, the bent portion 1017 is provided as a connecting portion for connecting the substrate 1013 and each sensor 1016.
  • the substantially I-shaped portion 1018 of the substrate 1013 shown in FIG. 27 is an opening in which the substantially I-shaped sensor 1016 is cut out. Further, the substrate 1013 has a rectangular shape.
  • the substantially I-shaped sensor 1016 is formed by cutting out the vertical side of the sensor 1016 from the substrate 1013 at an angle with respect to the two opposing sides of the substrate 1013.
  • the wiring 1019 on the substrate 1013 connected to the bent portion 1017 of the sensor 1016 has a vertical side cutout portion 1018a of the sensor 1016 adjacent to each other and a horizontal side cutout portion 1018b of the sensor 1016. It is pulled out to the outer peripheral portion of the substrate 1013 via a gap.
  • the main body portion 1016a of the sensor 1016 has a substantially I-shaped shape, and the lateral side portions thereof are held so as to be arranged along the horizontal direction in the well 1008. In the state, it is immersed in the medium in each well 1008. Thereby, the state of the cell culture environment in the plurality of wells 1008 can be detected by using each sensor 1016 immersed in the plurality of wells 1008.
  • an electrode portion 1021 for detecting the state of the cell culture environment in the well 1008 (for example, the concentration of a specific component contained in the medium L) is formed.
  • the length of the vertical side portion of the sensor 1016 (the portion extended along the vertical direction in FIG. 29) is sufficiently secured, and the horizontal side portion of the sensor 1016 (the portion extended along the vertical direction in FIG. 29) is arranged.
  • the detection electrode formed in the portion can be immersed in the medium in the well 1008.
  • an working electrode 1021a and a counter electrode 1021b are provided as an electrode portion 1021 near the lower end portion of the substantially I-shaped sensor 1016. Further, a reagent layer formed from an enzyme, a mediator, or the like is provided on the surfaces of the working electrode 1021a and the counter electrode 1021b. The electrode portion 1021 including the working electrode 1021a and the counter electrode 1021b is covered with the protective film 1024.
  • the sensor 1016 analyzes the cell culture environment of the medium by immersing the working pole 1021a and the counter pole 1021b in the medium L in the well 1008 and electrochemically detecting the concentration of a specific component of the medium.
  • the reagent layer immobilized on the surface of the working electrode 1021a contains an enzyme (for example, GOx) and a redox mediator.
  • the principle of this glucose detection is that glucose permeated from the medium through the protective film 1024 is oxidized by an enzymatic reaction with an enzyme (for example, GOx) in the reagent layer to become gluconolactone, and at the same time, the redox mediator in the reagent layer is reduced. It becomes a reducer.
  • the glucose concentration in the medium can be measured by measuring the electrons generated when the reduced product returns to the oxidized product as a current value.
  • the protective film 1024 is provided to limit permeation in order to control the permeation rate of glucose in the medium and to permeate glucose into the detection electrode portion of the sensor 1016. Further, the protective film 1024 is provided to prevent the enzyme and the mediator, which are the components of the reagent layer immobilized on the working electrode 1021a, from flowing out to the outside (in the medium) of the protective film 1024.
  • the reagent layer is polymerized and has a large molecular weight.
  • glucose permeates the reagent layer, it can prevent enzymes and mediators from permeating through the protective membrane 1024 and flowing out (see WO 2019/146788 for more details).
  • the sensor 1016 has the above-mentioned electrode portion 1021 and the immersion detection electrode portion 1022 on one surface (first surface 1023a) of the substantially I-shaped main body portion 1016a. ..
  • the immersion detection electrode portion 1022 is on the same surface as the surface on which the electrode portion 1021 for measurement is provided, that is, directly above the electrode portion 1021 on the first surface 1023a, for example, the electrode portion 1021. It is provided on the upper part of the working electrode 1021a included in the above. Further, the immersion detection electrode unit 1022 has two electrodes (first electrode 1022a and second electrode 1022b). The first electrode 1022a and the second electrode 1022b are installed above the working electrode 1021a at intervals substantially equal to the width of the working electrode 1021a of the electrode portion 1021 for measurement.
  • the sensor 1016 When a predetermined voltage is applied to the electrode portion 1021 to measure the medium, the sensor 1016 is located at the center (near the center O) of the substantially circular well 1008 in the top view as shown in FIG. Be placed.
  • the medium (liquid sample) L placed in the well 1008 has a liquid level near the center O of the well 1008 due to the meniscus effect generated between the medium (liquid sample) L and the inner peripheral surface 1008a of the well 1008. descend. Therefore, in the sensor 1016 of the present embodiment, the main body portion 1016a of the sensor 1016 is arranged near the center O of the well 1008 where the liquid level of the medium L is expected to be the lowest, and the electrode portion 1021 to the medium L is arranged. By detecting the immersion state of the above, it is possible to detect whether or not the electrode portion 1021 is surely immersed in the medium L.
  • the legs 1010 of the sensor unit 1009 described above are placed in the positioning holes 1011 of the culture container installation portion 1006, and the culture container 1007 is placed in the culture container. This is done by installing each in the recess 1006a of the installation portion 1006. That is, the positioning of the sensor 1016 of the sensor unit 1009 with respect to the well 1008 of the culture container 1007 is performed by using the recess 1006a formed in the culture container installation portion 1006 and the positioning hole 1011.
  • each sensor 1016 arranged so as to project from the lower surface side of the sensor unit 1009 is accurately angled with respect to the lower surface of the sensor unit 1009 by the support portion 1031 and the pressing portion 1032. Have been placed.
  • the sensor unit 1009 (each sensor 1016) is aligned with the culture container 1007 (each well 1008). Can be done. Therefore, the sensor 1016 can be accurately installed at a position near the center O of each well 1008.
  • the sensor 1016 can be accurately arranged for each well 1008. Further, in the sensor 1016 of the present embodiment, the immersion detection electrode portion 1022 is arranged on the working electrode 1021a included in the measurement electrode portion 1021. Here, the change in the state of immersion of the working electrode 1021a in the medium L is more likely to affect the current value measured by applying a voltage to the electrode portion 1021 as compared with other electrodes (counter electrode 1021b or the like). Therefore, in the sensor 16 of the present embodiment, the immersion detection electrode portion 1022 is arranged on the working electrode 1021a in order to reliably detect the immersion state of the working electrode 1021a, which tends to affect the measurement due to the change in the immersion state. ..
  • the control unit 1012 includes a voltage application unit 1012a for applying a predetermined voltage (second voltage) between the first electrode 1022a and the second electrode 1022b of the sensor 1016, and the first electrode. It functions as a measuring device including a current meter 1012b for measuring the current flowing between the 1022a and the second electrode 1022b.
  • a predetermined voltage (second voltage) is applied from the voltage application unit 1012a to the immersion detection electrode unit 1022 (first electrode 1022a and second electrode 1022b), and a current is applied.
  • a total of 1012b measures the current value flowing between the first electrode 1022a and the second electrode 1022b.
  • the control unit 1034 applies a predetermined voltage (second voltage) for immersion detection to the D / A (Digital / Analog) converters 1012db and 1012da included in the circuit shown in FIG. 33. ), 1.0 V is set for each, and each is applied. Then, by shifting the switch 1012ca from OFF to ON and then shifting the switch 1012cc from OFF to ON, the current value flowing between the first electrode 1022a and the second electrode 1022b is measured in the ammeter 1012b. ..
  • the ammeter 1012b includes a resistor, an operational amplifier, and an A / D (Analog / Digital) converter 1012e, and detects a minute current flowing between the first electrode 1022a and the second electrode 1022b.
  • the current value measured by the ammeter 1012b increases as the area of the first electrode 1022a and the second electrode 1022b immersed in the medium L increases.
  • the immersion detection electrode section 1022 is immersed in the medium L, that is, directly under the immersion detection electrode section 1022. It is possible to detect that the arranged electrode portion 1021 for measurement is immersed in the medium L.
  • the liquid level of the medium L may be determined according to the magnitude of the current value detected by the ammeter 1012b.
  • the two electrodes (first electrode 1022a and second electrode 1022b) constituting the immersion detection electrode portion 1022 are installed according to the width of the working electrode 1021a. Therefore, by applying a predetermined voltage to the immersion detection electrode unit 1022 and detecting the immersion state, it is possible to detect at least whether or not the working electrode 1021a that affects the measurement result is in the immersion state.
  • the voltage application unit 1012a applies a square wave (DUTY: 50%, frequency: 10 Hz, amplitude: 50 mV) voltage to the first electrode 1022a and the second electrode 1022b. ..
  • a square wave (DUTY: 50%, frequency: 10 Hz, amplitude: 50 mV) voltage to the first electrode 1022a and the second electrode 1022b.
  • the current value measured for detecting the immersion state of the electrode portion 1021 for measurement is converted from current to voltage in the transimpedance circuit on the second electrode 1022b side shown in FIG. 33, and the A / D converter 1012e Is entered in.
  • the value of the current value detected by the ammeter 1012b is as shown in FIG. 34 (b). Changes in the direction of becoming smaller. Specifically, the immersion depth is the maximum (the entire area of the first electrode 1022a and the second electrode 1022b is immersed) from 0 to 20 s on the horizontal axis shown in FIG. 34 (b), and the immersion is performed up to 20 to 40 s. When the immersion state is changed so that the depth is 50%, the immersion depth is 25% from 40 to 60 s, and the immersion depth is 0% from 60 s, the detected current value also corresponds accordingly. It changes in the direction of becoming smaller.
  • the sensor 1016 approaches the inner peripheral surface 1008a of the well 1008. It is possible to detect that the first electrode 1022a and the second electrode 1022b of the immersion detection electrode portion 1022 are not immersed even when the medium L is arranged at a different position and the liquid level of the medium L is lowered. it can.
  • a part of the measurement electrode part 1021 (for example, a part of the working electrode 1021a and a part of the counter electrode 1021b) arranged below the lower end of the immersion detection electrode part 1022 is not immersed.
  • measures such as adding the medium L or increasing the immersion depth of the sensor 1016 can be taken.
  • the measurement is performed in an unimmersed state in which a part of the electrode portion 1021 for measurement (for example, a part of the working electrode 1021a and a part of the counter electrode 1021b) is not immersed, and it is possible to avoid a decrease in measurement accuracy. it can.
  • the voltage application unit 1012a applies the voltage of the AC wave (square wave) shown in FIG. 34A to the first electrode 1022a and the second electrode 1022b.
  • a large current value can be obtained as compared with the case where a DC wave voltage is applied, and the SN ratio and the detection speed can be improved.
  • step S11 in order to detect the immersion state of the electrode unit 1021 for measurement, the voltage application unit 1012a has a predetermined voltage with respect to the immersion detection electrode unit 1022 (first electrode 1022a and second electrode 1022b). (Second voltage) is applied.
  • step S12 the immersion state of the electrode portion 1021 for measurement is detected according to the current value detected by the ammeter 1012b.
  • step S13 it is determined from the detection result in step S12 whether or not the electrode portion 1021 for measurement is in the immersed state.
  • the process proceeds to step S14, and if it is determined that the medium L is not in the immersed state due to a small amount of the medium L or the like, the process proceeds to step S17.
  • step S14 since it was determined in step S13 that the electrode portion 1021 for measurement was in the immersed state, the voltage applying portion 1012a was immersed in order to shift the measurement of the medium (liquid sample) L to the implementation. The application of the second voltage applied to the detection electrode unit 1022 is stopped.
  • step S15 the voltage application unit 1012a applies the first voltage for measurement to the measurement electrode unit 1021.
  • step S16 the concentration of the specific component (glucose) contained in the medium L is measured according to the current value detected by the ammeter 1012b, and the process is completed.
  • the display unit 1038 described above is used in step S17 to correspond to the sensor 1016 determined to be in the unimmersed state. A warning is displayed on the display unit 1038 at the desired position.
  • a light of a predetermined color to be turned on when a normal immersion state is detected is not turned on (leaves off), or a light of a different color is blinked. Includes lighting and so on.
  • the user can easily recognize at which position the electrode portion 1021 for measurement of the sensor 1016 placed in the well 1008 is not immersed in the medium L.
  • the user can take measures such as adding the medium L to the well 1008 in which the sensor 1016 at the corresponding position is installed, ignoring the measurement result by the sensor 1016 at the corresponding position, and the like. Therefore, in the measurement using the sensor 1016, it is possible to prevent the measurement accuracy from being lowered due to the immersion state of the electrode portion 1021 for measurement, and to improve the measurement accuracy.
  • the sensor 1116 of the present embodiment has three electrodes (first) directly above the measurement electrode portion 1021 provided near the lower end portion of the first surface 1123a of the main body portion 1116a.
  • An immersion detection electrode portion 1122 including an electrode 1122a, a second electrode 1122b, and a third electrode 1122c) is provided.
  • the first electrode 1122a and the third electrode 1122c are located near both ends of the main body portion 1116a of the sensor 1116 in the width direction and are arranged directly above the electrode portion 1021 for measurement.
  • the second electrode 1122b is located near the center of the main body portion 1116a of the sensor 1116 in the width direction, and is arranged directly above the position between the working electrode 1021a and the counter electrode 1021b of the measuring electrode portion 1021. ..
  • the control unit 1112 includes a selection circuit 1112a, and the control unit 1134 selects two electrodes to which a voltage is applied to select the first electrode 1122a and the second electrode 1122b.
  • the immersion state between them and the immersion state between the first electrode 1122a and the third electrode 1122c are detected, respectively. Thereby, the immersion state of the first electrode 1122a, the second electrode 1122b, and the third electrode 1122c can be detected.
  • the immersion detection electrode portion 1222 for detecting the immersion state of the measurement electrode portion 1021 one electrode (first electrode 1222a) and the working electrode 1021a of the measurement electrode portion 1021 are combined. It is different from the above-described second embodiment in that two electrodes (first electrode 22a and second electrode 22b) are used. That is, as shown in FIG. 39, the sensor 1216 of the present embodiment has one electrode (first electrode) directly above the measurement electrode portion 1021 provided near the lower end portion of the first surface 1223a of the main body portion 1216a. An immersion detection electrode unit 1222 including an electrode 1222a) is provided.
  • the first electrode 1222a is located near the end on the side where the working electrode 1021a is arranged in the width direction of the main body portion 1216a of the sensor 1216, and is arranged directly above the working electrode 1021a.
  • the control unit 1212 has the first electrode 1222a and the working electrode 1021a by applying a voltage for immersion detection between the first electrode 1222a and the working electrode 1021a by the control unit 1234. It is possible to detect the immersion state between the two.
  • the working electrode 1021a included in the measurement electrode portion 1021 shown in FIG. 39 is immersed. Then, one first electrode 1222a is used as the immersion detection electrode portion 1222, and a circuit including the working electrode 1021a of the measurement electrode portion 1021 is used for immersion detection, thereby simplifying the configuration of the sensor 1216. be able to.
  • the sensor 1316 of the present embodiment includes a protective film 1324 provided so as to cover the working electrode 1021a in the vicinity of the lower end portion of the first surface 1323a of the main body portion 1316a.
  • the protective film 1324 is arranged so as to cover only the working electrode 1021a provided near the end portion in the width direction of the main body portion 1316a of the sensor 1316.
  • the control unit 1312 applies a voltage for immersion detection between the first electrode 1322a and the counter electrode 1021b by the control unit 1334, so that the immersion state of the electrode unit 1021 for measurement is changed. Can be detected. Therefore, it is possible to accurately detect whether or not the measurement electrode portion 1021 shown in FIG. 41 is immersed in the medium L.
  • the protective film 1324 is provided so that the components contained in the reagent layer provided on the working electrode 1021a do not dissolve into the medium L, so that at least the acting electrode 1021a is provided. It is preferable that it is provided so as to cover it.
  • the reagent layer is not provided for the counter electrode 1021b
  • the sensor 1316 is used as a medium without providing a waiting time for penetrating the protective film.
  • the immersion state of the working electrode 1021a can be detected. Therefore, the immersion state can be detected more quickly than when a voltage for immersion detection is applied between the first electrode 1322a and the working electrode 1021a.
  • the immersion detection electrode portion 1422 has a comb-teeth shape including a plurality of comb teeth 1422a, and the above-described second embodiment uses electrodes 1022a, 1022b and the like having a simple shape (substantially rectangular). It is different from ⁇ 5.
  • the sensor 1416 of the present embodiment has a plurality of comb teeth extending in a direction substantially perpendicular to the immersion depth direction (substantially horizontal direction) with respect to the first surface 1423a of the main body portion 1416a.
  • An immersion detection electrode portion 1422 having a substantially E-shape including 1422a is provided. Since these plurality of comb teeth 1422a are stretched along a substantially horizontal direction in a state of being installed in the well 8, they are installed substantially parallel to the liquid level of the medium L in the well 8.
  • FIG. 45 corresponds to FIGS. 44 (a) to 44 (d).
  • a shape including a plurality of comb teeth 1422a is adopted as the immersion detection electrode portion 1422, not only the immersion detection of the measurement electrode portion but also the detection of the liquid level of the medium L can be performed.
  • Embodiment 7 The configuration of the sensor 1516 according to still another embodiment of the present invention will be described below with reference to FIGS. 46 and 47.
  • the electrodes 1522a of the immersion detection electrode portion 1522 have a triangular shape downward, and the above-described embodiments 2 to 6 using electrodes 22a, 22b and the like having a simple shape (substantially rectangular shape). Is different. That is, as shown in FIG. 46, the sensor 1516 of the present embodiment has its apex facing downward directly above the working electrode 1021a of the measurement electrode portion 1021 provided near the lower end portion of the first surface 1523a of the main body portion 1516a. It is provided with an electrode 1522a having a triangular shape arranged in.
  • the electrode 1522a Since the electrode 1522a has a long triangular shape in the immersion depth direction, the dimension in the width direction changes in the immersion depth direction. That is, the area of the electrode 1522a immersed in the medium L increases in a quadratic curve as the degree of immersion increases. Therefore, the amount of change in the current value detected by the electrode 1522a whose width dimension in the immersion depth direction changes can be amplified according to the change in the liquid level of the medium L.
  • FIG. 47 (a) when the inverted triangular electrode 1522a shown in FIG. 46 is used, the detected current increases as the depth of the liquid level level increases (the degree of immersion increases). The change in value can be made large.
  • FIG. 47 (b) when the quadrangular electrode 1522b of the first embodiment or the like described above is used, the change in the depth of the liquid level and the change in the current value have a substantially proportional relationship.
  • the configuration of the sensor 1616 according to still another embodiment of the present invention will be described with reference to FIG. 48.
  • the lower part of the main body portion 1616a of the sensor 1616 is divided into two forks, and the working electrode 1621a of the electrode portion 1621 for measurement covers the protective film 1624 on one of the first surfaces 1623aa divided into two forks.
  • the counter electrode 1621b of the electrode portion 1621 and the electrode 1622a of the immersion detection electrode portion 1622 are provided on the other first surface 1623ab.
  • the working electrode 1621a and the counter electrode 1621b constituting the electrode portion 1021 for measurement are located at positions separated from each other on the first surfaces 1623aa and 1623ab of the main body portion 1616a. It is provided.
  • a predetermined voltage (second voltage) is applied between the electrode 1622a and the counter electrode 1621b, and a predetermined voltage (second voltage) is applied between them. It suffices to measure the value of the current flowing through.
  • the electrodes (electrode 1622a and counter electrode 1621b) used for immersion detection are arranged at positions separated from the working electrode 1621a, which needs to be covered with the protective film 1624. Therefore, the electrodes (electrode 1622a and counter electrode 1621b) used for immersion detection are not covered with the protective film 1624. As a result, the area of the electrode used for immersion detection can be increased, so that the measurement sensitivity can be improved. Further, even when the protective film 1624 is formed so as to cover only the working electrode 1621a at the time of production, the production can be easily performed.
  • the sensor 1716 of the present embodiment includes an working electrode 1721a, a counter electrode 1721b, and a reference electrode 1721c as an electrode portion 1721 for measurement at the lower end portion of the first surface 1723a of the main body portion 1716a. ing.
  • the working electrode 1721a, the counter electrode 1721b, and the reference electrode 1721c are covered with a protective film 1724.
  • the protective film 1724 may be provided so as to cover only the working electrode 1721a as in the above-described embodiment.
  • the electrode 1722a of the immersion detection electrode portion 1722 is arranged directly above the working electrode 1721a.
  • a predetermined voltage (second voltage) is applied between the electrode 1722a of the immersion detection electrode unit 1722 and the working electrode 1721a or the counter electrode 1721b or the reference electrode 1721c. Then, it is performed by measuring the value of the current flowing between them.
  • the senor 1816 is used in a state of being bent at two folds, and is an electrode for measurement on one end (first end) side in the longitudinal direction of the first surface 1823a of the main body 1816a.
  • the above-described embodiment is in that the working electrode 1821a and the reference electrode 1821c constituting the portion are arranged, and the counter electrode 1821b and the immersion detection electrode portion 1822 (electrode 1822a) are arranged on the other end (second end) side. It is different from 2-9.
  • the sensor 1816 of the present embodiment is used by being bent into a substantially U shape at two folds provided in the vicinity of the substantially center in the longitudinal direction of the main body portion 1816a.
  • an working electrode 1821a and a reference electrode 1821c, a counter electrode 1821b, and an immersion detection electrode portion 1822 (electrode 1822a) forming an electrode portion for measurement are arranged, respectively.
  • a connection pad 1825 connected to the electric circuit of the control unit 1012 is provided between the two folds.
  • the electrodes (electrode 1822a and counter electrode 1821b) used for immersion detection are arranged at positions separated from the working electrode 1821a, which needs to be covered with the protective film 1824. Therefore, the electrodes (electrode 1822a and counter electrode 1821b) used for immersion detection are not covered with the protective film 1824.
  • a plurality of sensors 1816 shown in FIG. 50 (a) may be connected to form a unitized configuration shown in FIG. 50 (b).
  • the present embodiment is different from the above embodiments 2 to 10 in that the counter electrode 1921b constituting the measurement electrode portion 1921 is provided so as to extend above the working electrode 1921a and the reference electrode 1921c. .. Further, in the present embodiment, the electrode 1922a of the immersion detection electrode portion 1922 is provided so as to extend from a height position substantially equal to that of the electrode portion 1921 for measurement to above the working electrode 1921a of the electrode portion 1921 and the like. In that respect, it is different from the above-described embodiments 2 to 10.
  • each electrode 1921a, counter electrode 1921b, reference electrode 1921c, electrode 1922a is provided from the vicinity of the lower end portion of the main body portion 1916a. ing.
  • the counter electrode 1921b and the electrode 1922a are arranged so as to extend to a position higher than the working electrode 1921a and the reference electrode 1921c.
  • the electrode 1922a of the immersion detection electrode portion 1922 has a long shape in the immersion depth direction. Therefore, when the liquid level of the medium L changes, the area of the electrode 1922a immersed in the medium L changes, so that the magnitude of the detected current value also changes.
  • the protective film 1924 is formed so as to cover the vicinity of the lower end portion of the main body portion 1923a. More specifically, the protective film 1924 is formed so as to cover the entire working electrode 1021a and the reference electrode 1921c, and to cover the counter electrode 1921b and the lower half of the electrode 1922a.
  • the lower part of the main body portion 2016a is divided into two forks, and the working electrode 1021a and the reference electrode 1021c of the electrode portion 2021 for measurement are on the protective film 1024 on the first surface 2023aa which is divided into two forks.
  • the sensor of the eighth embodiment which does not include a reference electrode, is provided in a covered state, and the counter electrode 2021b of the electrode portion 2021 and the electrode 2022a of the immersion detection electrode portion 2022 are provided on the other first surface 2023ab. It is different from 1616.
  • the reference pole 2021c is provided on the first surface 2023aa on the side where the working pole 2021a is provided, and the working pole 2021a and the reference pole are provided. 2021c is covered with a protective film 2024.
  • the counter electrode 2021b and the electrode 2022a used for immersion detection are not covered with the protective film, the waiting time until the components of the medium permeate through the protective film becomes unnecessary, and the processing speed of immersion detection is increased. Can be improved.
  • the protective film 2020 is provided so as to cover the working electrode 2021a.
  • the manufacturing process at the time of forming can be facilitated. (Embodiment 13)
  • the configuration of the sensor 2116 according to still another embodiment of the present invention will be described below with reference to FIGS. 52 (a) and 52 (b).
  • the sensor configuration including the electrode portion for measurement has been described in that the two electrodes 2122a and 2122b connected to the control unit 2112 and provided in the main body portion 2116a are used as the immersion detection electrode portion 2122. It is different from the above embodiments 2 to 12. That is, as shown in FIG. 52A, the sensor 2116 of the present embodiment includes an immersion detection electrode portion 2122 including two immersion detection electrodes 2122a and 2122b, and serves as a sensor that only performs immersion detection. It is configured.
  • the sensors 2116 were arranged at the four corners of the culture vessel 2007 containing a total of 24 wells arranged in a substantially quadrangular shape (square) with a length of 4 ⁇ a width of 6. Installed for well 2008a. That is, in the present embodiment, the sensors 2116 shown in FIG. 52 (a) are installed in the wells 2008a arranged at the four corners shown in FIG. 52 (b), and the wells 2008b other than the four corners are described above.
  • a sensor 16 or the like according to each of the above-described embodiments, or a sensor dedicated to measurement having an electrode portion 21 for measurement and not having an immersion detection electrode portion is installed.
  • the liquid sample such as the medium L contained therein is likely to evaporate. That is, in the well 2008a, the liquid sample evaporates faster and the liquid level tends to drop as compared with the other wells 2008b. Therefore, by installing the sensor 2116 including the immersion detection electrode portion 2122 in the wells 2008a arranged at the four corners where the liquid level of the liquid sample tends to be the lowest, the measurement electrode portions of the sensors installed in the other wells can be installed. It is possible to determine whether or not the product is sufficiently immersed.
  • immersion detection sensors are installed in the wells arranged at the four corners of the plurality of wells arranged in a substantially quadrangular shape.
  • a plurality of sensors are installed.
  • a sensor for immersion detection may be installed in the wells arranged on the outermost side and where the liquid sample is likely to evaporate.
  • the portion of the main body 16a of the sensor 16 as the liquid holding portion 22 on the first surface 23a has been described with reference to an example in which the portion as the liquid holding portion 22 is mainly provided on the upper portion of the electrode portion 21.
  • the present invention is not limited to this.
  • the liquid holding portion may be provided from the side to the upper side of the electrode portion on the first surface.
  • the senor 16 having the main body portion 16a having a substantially plate-like shape has been described as an example.
  • the present invention is not limited to this.
  • the shape of the main body of the sensor is not limited to a substantially plate shape, and may be another shape such as a substantially rectangular parallelepiped shape.
  • the present invention is not limited to this.
  • the substantially I-shaped sensor 116 shown in FIG. 16 may be used, or the substantially inverted T-shaped sensor 216 shown in FIG. 17 may be used.
  • the above-mentioned electrode portion 21 is provided in the lower end region of the first surface 123a of the rectangular main body portion 116a when viewed from the front, and the electrode portion 21 of the electrode portion 21 is provided.
  • the structure may be such that the liquid holding portion 122 is provided in the upper region.
  • the above-mentioned electrode portion 21 is provided in the wide lower end region of the first surface 223a of the inverted T-shaped main body portion 216a when viewed from the front.
  • the structure may be such that the liquid holding portion 222 is provided in the upper region of the electrode portion 21.
  • a distance of 1 to 2 mm has been described as an example.
  • the present invention is not limited to this.
  • the distance at which the liquid sample can be effectively held in the liquid holding portion may be larger or smaller than 1 to 2 mm depending on the type of the liquid sample and the like.
  • two or more sensors may be installed in one well (container).
  • the inner diameter of the well (container) may be increased and a plurality of sensors may be installed in the vicinity of the inner peripheral surface.
  • F In the above embodiment, an example in which the sensor 16 is immersed in a container (well 8) having a substantially circular shape (substantially cylindrical shape) in a top view to analyze the cell culture environment of the medium has been described.
  • the present invention is not limited to this.
  • the container in which the sensor is immersed is not limited to a substantially cylindrical container, and a substantially square (for example, substantially quadrangular) container 108 may be used in the top view shown in FIG.
  • a substantially square (for example, substantially quadrangular) container 108 may be used in the top view shown in FIG.
  • the sensor 16 it is preferable to use the sensor 16 in which the width of the portion provided with the electrode portion is smaller than the diagonal line of the substantially square container 108 in the top view.
  • the sensor 16 can be arranged so that the first surface 23a is close to the inner wall surface 108a of the substantially square container 108.
  • the electrode portion 21 to which the voltage is applied includes the working electrode 21a, the counter electrode 21b, and the reference electrode 21c has been described.
  • the present invention is not limited to this.
  • the type of electrode constituting the electrode portion is not limited to the configuration of the above embodiment, and other types of electrodes may be provided.
  • liquid sample is not limited to the medium for cell culture, and may be a liquid sample to be subjected to other analysis or the like.
  • At least one of the electrodes constituting the electrode portion may be arranged.
  • K In the second embodiment, an example in which an electrode portion 1021 for measuring a liquid sample and an immersion detection electrode portion 1022 are provided on the first surface 1023a of the main body portion 1016a of the sensor 1016 has been described. However, the present invention is not limited to this.
  • the measurement electrode portion for measuring the liquid sample and the immersion detection electrode portion for detecting the immersion state of the measurement electrode portion may be provided on separate surfaces of the main body portion of the sensor.
  • all the electrodes (working electrode 1021a, counter electrode 1021b) constituting the electrode portion 1021 are provided on the first surface 1023a of the main body portion 1016a of the sensor 1016.
  • the present invention is not limited to this.
  • the electrodes constituting the electrode portion only the working electrode may be provided on the first surface, and the counter electrode and the reference electrode may be provided on the second surface. That is, at least one of the electrodes constituting the electrode portion may be arranged.
  • M In the second embodiment, when measuring the medium (liquid sample), a voltage is applied to the immersion detection electrode unit 1022 in order to detect the immersion state of the measurement electrode unit 1021, and then the voltage is applied. This has been described with reference to an example in which a voltage is applied to the electrode portion 1021 for measurement after temporarily stopping the above. However, the present invention is not limited to this.
  • the immersion detection and the measurement may be performed at the same time without providing a voltage-free period between the immersion detection and the measurement.
  • the sensor 1016 is arranged near the center of the well 1008 to detect and measure the immersion state.
  • the present invention is not limited to this.
  • the sensor 16 may be installed so that the electrode 1022a of the immersion detection electrode portion 1022 provided in the main body portion 1016a of the sensor 1016 is arranged substantially in the center of the well 1008.
  • the electrode 1022a of the immersion detection electrode portion 1022 is arranged near the substantially center of the well 1008 where the liquid level of the medium L tends to be the lowest due to the above-mentioned meniscus effect. Therefore, when it is detected that the electrode 1022a is in the immersed state, it is considered that the electrode portion 1021 for measurement arranged below the electrode 1022a is surely in the immersed state.
  • the immersion state of the electrode portion for measurement can be detected more reliably, and the measurement accuracy of the liquid sample can be further improved.
  • the first surface 1423a of the main body 1416a is substantially perpendicular to the immersion depth direction.
  • the liquid level of the medium in which the control unit 2212 is placed in the well is used by using the immersion detection electrode unit 2222 including a plurality of electrodes 21222a to 2222e arranged along the immersion depth direction.
  • the level may be detected digitally.
  • P In the second embodiment and the like, an example in which the main body portion 1016a of the sensor 1016 has a substantially I-shaped shape has been described. However, the present invention is not limited to this.
  • a sensor having a substantially L-shaped main body portion 2316a shown in FIG. 55 (a) may be used, or a sensor having a substantially inverted T-shaped main body portion 2416a shown in FIG. 55 (b) may be used. Good.
  • the sensor of the present invention has the effect of improving the measurement accuracy of the sensor used in the state of being immersed in the liquid sample, it can be widely applied to various analyzers using the sensor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

センサ(16)は、ウェル(8)内に入れられた培地に浸漬された状態で使用され、培地の測定を行うセンサであって、第1面(23a)と第1面(23a)とは反対側の第2面(23b)とを有する本体部(16a)と、本体部(16a)における第1面(23a)に設けられており、培地中に浸漬された状態で測定を行う際に所定の電圧が印加される電極部(21)と、第1面(23a)における電極部(21)の周囲に設けられており、ウェル(8)の内壁面(8a)に対して近接配置されて内壁面(8a)との間に電極部(21)の上方まで培地を保持する液体保持部(22)と、を備えている。

Description

センサおよびこれを備えた測定装置、センサユニット、細胞培養分析装置、液体試料測定方法
 本発明は、例えば、液体細胞培地に浸漬された状態で培地内の細胞培養環境を測定するセンサおよびこれを備えた測定装置、センサユニット、細胞培養分析装置、液体試料測定方法に関する。
 従来の細胞培養分析装置は、基体と、基体に設けられた貫通孔部分に固定されたセンサと、センサに接続され信号を取り出すためのリード線とを備えていた。
 例えば、特許文献1には、液体細胞培地に浸漬された状態で、培地内の細胞培養環境の測定を行うセンサについて開示されている。
 特許文献2には、培地にセンサを配置するための昇降機構(エレベータ)を備えた構成について開示されている。
 特許文献3には、培地内にセンサが浸漬されて容器内の培地に含まれる細胞を分析する装置および方法について開示されている。
米国特許出願公開第2014/0186876号明細書 米国特許出願公開第2016/0077083号明細書 米国特許第7638321号明細書
 しかしながら、上記従来のセンサでは、以下に示すような問題点を有している。
 すなわち、上記公報に開示された従来の細胞培養分析装置では、センサが液体試料(培地)に対する浸漬状態が不安定であったために、測定精度が低くなるおそれがあるという課題があった。
 具体的には、液体試料(培地)が入れられた容器の中央付近では、メニスカス効果によって、液体試料の液面が低下する。このため、容器に対するセンサの浸漬高さを一定にしても、容器に対するセンサの位置(例えば、中央付近)によっては、センサの電極部分が十分に浸漬されないおそれがある。
 特に、容器に入れられる液体試料の量が少ない場合には、センサの電極部分を液体試料中に安定的に浸漬することは困難である。
 本発明の目的は、センサの液体試料に対する浸漬状態を安定化させることで、測定精度を向上させることにある。
 第1の発明に係るセンサは、容器内に入れられた液体試料に浸漬された状態で使用され、液体試料の測定を行うセンサであって、本体部と、電極部と、液体保持部と、を備えている。本体部は、第1面と第1面とは反対側の第2面とを有する。電極部は、本体部における第1面に設けられており、液体試料中に浸漬された状態で測定を行う際に、所定の電圧が印加される。液体保持部は、第1面における電極部の周囲に設けられており、容器の内壁面に対して近接配置されて内壁面との間に液体試料を保持する。
 ここでは、容器内に入れられた液体試料に浸漬された状態で使用され液体試料の測定を行うセンサであって、センサの本体部の第1面に電極部が設けられており、容器の内壁面に対して第1面を近接配置することで、容器の内壁面と第1面との間において電極部の上方まで液体試料を保持する液体保持部を形成する。
 ここで、本センサは、液体試料に電極部が浸漬された状態で使用され、例えば、液体試料の細胞培養環境の分析等を行うために使用される。
 本体部は、例えば、板状の形状であって、第1面とその反対側の第2面とを有している。
 電極部は、例えば、第1面に配置された作用極、対極、参照極等であって、液体試料に浸漬された状態で電圧が印加されることで、液体試料の測定を行う。
 なお、第1面に配置された電極部は、上記作用極、対極、参照極の全てが設けられていなくてもよく、例えば、作用極のみが第1面に設けられている等、少なくとも1つの電極が設けられていればよい。
 液体保持部は、電極部と同じ面(第1面)に設けられており、第1面が容器の内壁面に対して近接配置されることで、液体試料の表面張力を利用して、第1面との間の隙間において電極部の全体を覆う上方まで液体試料を保持する。
 これにより、容器の内壁面に対して近接配置された第1面側においては、第1面とは反対側の第2面側よりも高い位置まで液体試料を保持することができる。
 よって、第1面側では、第2面側よりも高い位置まで液体試料がある状態を形成することができるため、第1面に設けられた電極部を液体試料に十分に浸漬させることができる。
 この結果、液体試料に浸漬された状態で使用されるセンサによる測定精度を向上させることができる。
 第2の発明に係るセンサは、第1の発明に係るセンサであって、液体保持部は、電極部が液体試料中に浸漬された状態において、第2面側よりも高い位置まで第1面側において液体試料を保持する。
 ここでは、容器の内壁面に近接配置された第1面側に、第1面とは反対側の第2面よりも高い位置まで液体試料を保持している。
 これにより、第1面側に設けられた電極部は、液体試料に十分に浸漬された状態となる。
 よって、液体試料に浸漬された状態で使用されるセンサによる測定精度を向上させることができる。
 第3の発明に係るセンサは、第1または第2の発明に係るセンサであって、液体保持部は、電極部が液体試料中に浸漬された状態において、第1面における電極部の上部に設けられている。
 ここでは、容器の内壁面との間に液体試料を保持する液体保持部が、第1面における電極部の上部に設けられている。
 これにより、電極部は、液体保持部によって保持された液体試料よりも低い位置に配置されるため、液体試料中に十分に浸漬された状態を形成することができる。
 第4の発明に係るセンサは、第1から第3の発明のいずれか1つに係るセンサであって、液体保持部は、電極部が設けられた部分における第1面の幅とほぼ同じ、あるいは第1面の幅よりも大きい幅を有している。
 ここでは、第1面において、液体保持部が設けられた部分の幅が、電極部が設けられた部分の幅と同等以上である。
 これにより、電極部が設けられた部分よりも幅が大きい液体保持部によって液体試料を保持しやすくすることができる。
 第5の発明に係るセンサは、第1から第4の発明のいずれか1つに係るセンサであって、本体部は、第1面と容器の内壁面との間に保持される液体試料に表面張力が発生する距離まで、内壁面に対して近接配置される。
 ここでは、第1面と容器の内壁面との間に保持される液体試料に表面張力が発生する距離まで近接配置させるように、本体部の設置位置を設定している。
 これにより、液体試料の表面張力を利用して、液体試料を、第1面側において第2面よりも高い位置まで保持することができる。
 第6の発明に係るセンサは、第5の発明に係るセンサであって、容器は、上面視において略円形であって、第1面は、上面視において略円形の容器の内壁面に対して、略円形の弦の位置に配置される。
 ここでは、上面視において、略円形の容器に対して、略円形の弦の位置に配置されるように、本体部(第1面)を設置する。
 これにより、略円形の容器の内周面に対して、本体部の第1面を近接した状態で配置することができる。
 第7の発明に係るセンサは、第6の発明に係るセンサであって、電極部が設けられた第1面の幅は、略円形の容器の直径よりも小さい。
 ここでは、第1面における電極部が設けられた部分の幅が、上面視において略円形の容器の直径よりも小さい。
 これにより、上面視において略円形の容器の内周面に近接した位置まで、第1面を近づけることができる。
 第8の発明に係るセンサは、第5の発明に係るセンサであって、容器は、上面視において略方形であって、第1面は、上面視において略方形の容器の内壁面の一辺に対して近接するように配置される。
 ここでは、上面視において、例えば、略四角形等の略方形の容器に対して、略方形の一辺を構成する内壁面に近接配置されるように、本体部(第1面)を設置する。
 これにより、略方形の容器の内壁面に対して、本体部の第1面を近接した状態で配置することができる。
 第9の発明に係るセンサは、第8の発明に係るセンサであって、電極部が設けられた第1面の幅は、略方形の容器の対角線の長さよりも小さい。
 ここでは、第1面における電極部が設けられた部分の幅が、上面視において略方形の容器の対角線の長さよりも小さい。
 これにより、上面視において略方形の容器の内壁面に近接した位置まで、第1面を近づけることができる。
 第10の発明に係るセンサは、第1から第9の発明のいずれか1つに係るセンサであって、電極部は、参照極、作用極、対極の少なくとも1つを含む。
 ここでは、参照極、作用極、対極の少なくとも1つを含む電極部が用いられる。
 これにより、液体試料に各電極を浸漬させた状態で電圧を印加することで、液体試料の測定を行うことができる。
 第11の発明に係るセンサは、第1から第10の発明のいずれか1つに係るセンサであって、本体部は、正面視において、略L字状あるいは略逆T字状の形状を有している。
 ここでは、略L字状あるいは略逆T字状の形状を有する本体部を備えたセンサを用いている。
 これにより、液体試料に浸漬される電極部を含む部分、その上部等に配置される液体保持部を、略L字あるいは略逆T字の幅が広い部分に設けることができる。
 この結果、幅が広い部分において液体試料を保持した状態で、電極部を十分に液体試料中に浸漬することができる。
 第12の発明に係るセンサユニットは、第1から第11の発明のいずれか1つに係るセンサと、センサが複数設けられた基板と、基板とセンサとを接続する接続部と、を備えている。
 ここでは、基板に対して、接続部を介して複数のセンサが接続されている。
 これにより、複数の容器の上部に配置された基板を降下させることで、同時に、複数の容器に対して複数のセンサを浸漬することができる。
 第13の発明に係るセンサユニットは、第12の発明に係るセンサユニットであって、複数のセンサは、基板の一部を切り抜いて形成されている。
 ここでは、基板の一部を切り抜いて、複数のセンサが形成されている。
 これにより、基板の一部を切り抜いて折り曲げてセンサとすることで、1枚の基板に対して複数のセンサを含む構成とすることができる。
 第14の発明に係るセンサユニットは、第12または第13の発明に係るセンサユニットであって、基板の下方に設けられたボトムカバーと、基板の上方に設けられたトップカバーと、をさらに備え、基板は、ボトムカバーとトップカバーとで上下から挟まれて構成されている。
 これにより、複数のセンサを含む基板を、ボトムカバーとトップカバーとで上下から挟み込むように配置したセンサユニットを構成することができる。
 第15の発明に係るセンサユニットは、第14の発明に係るセンサユニットであって、ボトムカバーには、センサを下方に貫通させる貫通孔が設けられている。
 ここでは、基板に含まれる複数のセンサを下方に貫通させる貫通孔が形成されボトムカバーを用いている。
 これにより、ボトムカバーの下方に配置された複数の容器に対して、貫通孔を介して、複数のセンサを浸漬することができる。
 第16の発明に係る細胞培養分析装置は、第12から第15の発明のいずれか1つに係るセンサユニットと、センサユニットが設置される培養容器設置部と、を備えている。
 ここでは、上記センサユニットと、センサユニットと液体試料が入れられる培養容器とが載置される培養容器設置部と、を含む細胞培養分析装置を構成する。
 これにより、培養容器設置部に設置された培養容器の内壁面に対して、センサユニットのセンサを近接するように配置することで、上述した各種効果を得ることができる。
 第17の発明に係るセンサは、容器内に入れられた液体試料に浸漬された状態で使用され、液体試料における細胞培養環境の測定を行うセンサであって、本体部と、電極部と、を備えている。本体部は、第1面と第1面とは反対側の第2面とを有する。電極部は、本体部における第1面に設けられており、液体試料中に浸漬された状態で測定を行う際に、所定の電圧が印加される。測定を実施する際には、本体部が容器の中央からオフセットされた位置に設置される。
 ここでは、容器内に入れられた液体試料に浸漬された状態で使用され液体試料の測定を行うセンサであって、センサの本体部の第1面に電極部が設けられており、容器の中央からオフセットさせた位置に本体部が設置される。
 ここで、本センサは、液体試料に電極部が浸漬された状態で使用され、例えば、液体試料の細胞培養環境の分析等を行うために使用される。
 本体部は、例えば、板状の形状であって、第1面とその反対側の第2面とを有しており、液体試料が入れられた容器の中央からオフセットさせた位置に設置される。
 電極部は、例えば、第1面に配置された参照極、対極、作用極等であって、液体試料に浸漬された状態で電圧が印加されることで、液体試料の測定を行う。
 これにより、センサは、容器の中央からオフセットされた位置、すなわち、内壁面に対して近接した位置へ配置される。このため、内壁面に対して近接配置された本体部の第1面では、第1面とは反対側の第2面側よりも高い位置まで液体試料を保持することができる。
 よって、第1面側では、第2面側よりも高い位置まで液体試料がある状態を形成することができるため、第1面に設けられた電極部を液体試料に十分に浸漬させることができる。
 この結果、液体試料に浸漬された状態で使用されるセンサによる測定精度を向上させることができる。
 第18の発明に係るセンサは、容器内に入れられた液体試料に浸漬された状態で使用され、液体試料の測定を行うセンサであって、本体部と、測定電極部と、浸漬検知電極部と、を備えている。測定電極部は、本体部に設けられており、液体試料中に浸漬された状態で測定を行う際に、所定の第1電圧が印加される。浸漬検知電極部は、液体試料中に浸漬された状態で本体部における測定電極部よりも上方に設けられており、液体試料中に測定電極部が浸漬された状態であるか否かを検出する際に所定の第2電圧が印加される。
 ここでは、容器内に入れられた液体試料に浸漬された状態で使用され液体試料の測定を行うセンサであって、センサの本体部に測定電極部と浸漬検知電極部とが設けられており、測定電極部よりも上方に設けられた浸漬検知電極部に所定の電圧(第2電圧)を印加して測定電極部の浸漬状態を検出する。
 ここで、本センサは、液体試料に測定電極部が浸漬された状態で使用され、例えば、液体試料の細胞培養環境の分析等を行うために使用される。
 本体部は、例えば、板状の形状であって、同一面あるいは異なる面に、測定電極部と浸漬検知電極部とが設けられている。
 測定電極部は、例えば、本体部に配置された作用極、対極、参照極等であって、液体試料に浸漬された状態で電圧が印加されることで、液体試料の濃度等の測定を行う。
 なお、本体部に配置された測定電極部は、上記作用極、対極、参照極の全てが同一面に設けられていなくてもよく、例えば、作用極が第1面に、他の電極が第2面に設けられている等の構成であってもよい。
 浸漬検知電極部は、測定電極部が液体試料中に十分に浸漬されているか否かを検出するために、本体部に設けられた、例えば、1~4本の電極である。浸漬検知電極部は、測定電極部よりも上方の位置、例えば、その下端部が測定電極部の上端とほぼ同等か若干上方に配置されている。
 ここで、液体試料の測定を行う際に測定電極部に印加される第1電圧と、測定電極部の浸漬状態を検知する際に浸漬検知電極部に印加される第2電圧とは、同じ電圧値であってもよいし、異なる電圧値であってもよい。
 また、液体試料の測定と、測定電極部の浸漬状態の検知とは、タイミングをずらして実施されてもよいし、同時に実施されてもよい。
 これにより、測定電極部に第1電圧を印加して液体試料の測定を実施する際に、浸漬検知電極部に第2電圧を印加して測定電極部の浸漬状態、つまり、測定電極部が液体試料中に浸漬されているか否かを正確に検出することができる。
 よって、検出された測定電極部の浸漬状態に応じて、容器へ液体試料を追加する、センサの位置を浸漬深さ方向に移動させる等の措置を講ずることで、測定電極部が確実に液体試料中に浸漬された状態で測定を行うことができる。
 この結果、センサの測定電極部の液体試料に対する浸漬状態を検出することで、測定精度を向上させることができる。
 第19の発明に係るセンサは、第18の発明に係るセンサであって、本体部は、測定電極部が設けられた第1面を有している。浸漬検知電極部は、第1面における測定電極部の上方に配置されている。
 ここでは、測定電極部と浸漬検知電極部とが、本体部における同一の面(第1面)に設けられている。
 これにより、測定電極部と同じ面に設けられた浸漬検知電極部を用いて、測定電極部の液体試料中への浸漬状態を検出することで、測定電極部が液体試料中に浸漬されているか否かを正確に検出することができる。
 第20の発明に係るセンサは、第18または第19の発明に係るセンサであって、測定電極部の少なくとも一部を覆う保護膜を、さらに備えている。
 ここでは、例えば、測定電極部に含まれる作用極等の電極上に配置された試薬を覆うために、保護膜が設けられている。
 これにより、測定電極部の少なくとも一部を覆う保護膜によって、液体試料中の特定成分の透過速度と、試薬の液体試料中への流出速度とを制御することができる。
 第21の発明に係るセンサは、第18から第20の発明のいずれか1つに係るセンサであって、測定電極部は、作用極および対極の2極を含む、あるいは作用極、対極、参照極の3極を含む。
 ここでは、測定電極部として、作用極および対極の2極構成、あるいは作用極、対極、参照極の3極構成を採用している。
 これにより、2つの電極あるいは3つの電極を含む測定電極部を用いて、液体試料の濃度等を測定することができる。
 第22の発明に係るセンサは、第19の発明に係るセンサであって、保護膜は、少なくとも、測定電極部に含まれる作用極を覆うように設けられている。
 ここでは、液体試料の測定を行う際の測定精度に影響を及ぼしやすい作用極上に、保護膜が設けられている。
 これにより、例えば、作用極上に試薬が設けられた構成であっても、保護膜によって、試薬の液体試料への流出、液体試料中の特定成分の透過速度を制御することができる。
 第23の発明に係るセンサは、第18から第22の発明のいずれか1つに係るセンサであって、浸漬検知電極部は、測定電極部に含まれる作用極の直上に配置されている。
 ここでは、液体試料の測定を行う際の測定精度に影響を及ぼしやすい作用極の直上に、浸漬検知電極部が設けられている。
 これにより、測定電極部に含まれる電極のうち、測定精度に影響を及ぼしやすい作用極の直上に浸漬検知電極部が設けられているため、少なくとも作用極の浸漬状態を正確に検出することができる。
 第24の発明に係るセンサは、第18から第23の発明のいずれか1つに係るセンサであって、浸漬検知電極部は、測定電極部に含まれる作用極の略水平方向における幅に合わせて設置されている。
 ここでは、作用極の幅(略水平方向の寸法)に合わせて、浸漬検知電極部が配置されている。
 これにより、測定電極部に含まれる電極のうち、測定精度に影響を及ぼしやすい作用極の幅に合わせて浸漬検知電極部が設けられているため、少なくとも作用極の浸漬状態を正確に検出することができる。
 第25の発明に係るセンサは、第18から第24の発明のいずれか1つに係るセンサであって、浸漬検知電極部は、2本または3本の電極を有している。
 ここでは、2本または3本の電極によって、浸漬検知電極部を構成する。
 これにより、2本の電極間に電圧を印加する、あるいは3本の電極のうちの2本の電極に電圧を印加して、電流値を測定することで、液体試料中に測定電極部が十分に浸漬されているか否かを検出することができる。
 第26の発明に係るセンサは、第18から第25の発明のいずれか1つに係るセンサであって、浸漬検知電極部は、1本の電極を有している。測定電極部を構成する少なくとも1つの電極との間に第2電圧が印加される。
 ここでは、浸漬検知電極部として、1本の電極と測定電極部に含まれる電極とを用いている。
 これにより、簡素な構成により、測定電極部の浸漬状態の検出と、液体試料の測定とを実施することができる。
 第27の発明に係るセンサは、第18から第26の発明のいずれか1つに係るセンサであって、浸漬検知電極部は、液体試料の液面に対して略平行に延伸した複数の櫛歯状の形状を有している。
 ここでは、浸漬検知電極部として、複数の櫛歯状の形状を有する電極を用いている。
 これにより、液体試料の液面に対して略平行に延伸した複数の櫛歯によって、液体試料の深さ方向における浸漬状態の変化を増幅させて検出することができる。このため、測定電極部の浸漬の有無だけでなく、容器内の液体試料の液面の高さも検出することができる。
 第28の発明に係るセンサは、第18から第27の発明のいずれか1つに係るセンサであって、浸漬検知電極部は、液体試料に浸漬された状態で、略水平方向における寸法が浸漬深さ方向において変化する形状を有している。
 ここでは、浸漬検知電極部として、例えば、略三角形の形状を有する電極等、略水平方向における寸法が変化する電極を用いている。
 これにより、液体試料の液面の高さの変化を増幅させて検出することができるため、測定電極部の浸漬の有無だけでなく、容器内の液体試料の液面の高さも検出することができる。
 第29の発明に係るセンサは、第28の発明に係るセンサであって、浸漬検知電極部は、略三角形の形状を有している。
 ここでは、浸漬検知電極部として、略三角形の形状を有する電極を用いている。
 これにより、略三角形の電極を、その頂点が上向きあるいは下向きになるように配置することで、液体試料の液面の高さの変化を増幅させて検出することができるため、測定電極部の浸漬の有無だけでなく、容器内の液体試料の液面の高さも検出することができる。
 第30の発明に係るセンサは、第18から第29の発明のいずれか1つに係るセンサであって、測定電極部に含まれる作用極は、本体部において、測定電極部に含まれる対極と離間した位置に配置されている。
 ここでは、測定電極部に含まれる作用極が、本体部において対極から離間した位置に設けられている。
 これにより、例えば、作用極だけを覆うように保護膜を設ける場合でも、対極が離間した位置に配置されているため、作用極上に保護膜を容易に設けることができる。
 第31の発明に係るセンサは、第18から第30の発明のいずれか1つに係るセンサであって、浸漬検知電極部は、容器における略中央部分に配置されている。
 ここでは、測定電極部の浸漬状態を検出するための浸漬検知電極部を、容器における略中央付近に配置している。
 ここで、容器に入れられた液体試料は、メニスカス効果によって容器の内壁面付近が持ち上げられ、容器の中央付近が最も液面が低くなりやすい。
 このため、本センサは、浸漬検知電極部を容器内において最も液面が低くなると想定される容器の中央付近に配置している。
 これにより、容器内における最も液面が低くなりやすい容器の中央付近における液体試料の有無を検出することで、測定電極部が容器内のどこにあっても浸漬状態にあるか否かを正確に検出することができる。
 第32の発明に係る測定装置は、第18から第31の発明のいずれか1つに係るセンサと、測定電極部および浸漬検知電極部に対して所定の第1電圧および第2電圧を印加する電圧印加部と、測定電極部に第1電圧が印加されて得られる第1電流値に基づいて、液体試料の測定を行うとともに、浸漬検知電極部に第2電圧が印加されて得られる第2電流値に基づいて、測定電極部の浸漬状態の有無を検知する制御部と、を備えている。
 ここでは、上述したセンサの測定電極部および浸漬検知電極部に対して電圧印加部から所定の電圧(第1電圧および第2電圧)を印加して検出される電流値(第1電流値および第2電流値)に基づいて、制御部が液体試料の測定および測定電極の浸漬状態の検出を行う。
 これにより、第1電流値および第2電流値に基づいて、液体試料の測定および測定電極の浸漬状態の検出を行う測定装置を構成することができる。
 第33の発明に係る測定装置は、第32の発明に係る測定装置であって、制御部は、浸漬検知電極部に第2電圧が印加されて得られる第2電流値に基づいて、液体試料の液面レベルを検知する。
 ここでは、浸漬検知電極部に第2電圧が印加された際に検出される第2電流値の変化に基づいて、容器内の液体試料の液面レベルを検出する。
 ここで、浸漬検知電極部としては、例えば、浸漬深さ方向に長い電極、櫛歯状の電極、略水平方向における寸法が変化する略三角形の電極等が用いられることが好ましい。
 これにより、測定電極部の浸漬状態に加えて、容器内における液体試料の液面高さを検出することができる。
 第34の発明に係る測定装置は、第32または第33の発明に係る測定装置であって、電圧印加部は、測定電極部および浸漬検知電極部に対して、略交流の電圧を印加する。
 ここでは、測定電極部および浸漬検知電極部へ印加される電圧として、略交流状の電圧を用いている。
 ここで、略交流の電圧には、例えば、正弦波の波形を有する電圧、方形波の波形を有する電圧等が含まれる。
 これにより、直流の電圧を印加した場合と比較して、大きな電流値を取得することができるため、例えば、S/N比、検出精度を向上させることができる。
 第35の発明に係るセンサユニットは、第18から第31の発明のいずれか1つに係るセンサと、センサが複数設けられた基板と、基板とセンサとを接続する接続部と、を備えている。
 ここでは、基板に対して、接続部を介して複数のセンサが接続されている。
 これにより、複数の容器の上部に配置された基板を降下させることで、同時に、複数の容器に対して複数のセンサを浸漬することができる。
 第36の発明に係るセンサユニットは、第35の発明に係るセンサユニットであって、複数のセンサは、基板の一部を切り抜いて形成されている。
 ここでは、基板の一部を切り抜いて、複数のセンサが形成されている。
 これにより、基板の一部を切り抜いて折り曲げてセンサとすることで、1枚の基板に対して複数のセンサを含む構成とすることができる。
 第37の発明に係るセンサユニットは、第35または第36の発明に係るセンサユニットであって、基板の下方に設けられたボトムカバーと、基板の上方に設けられたトップカバーと、をさらに備えている。基板は、ボトムカバーとトップカバーとで上下から挟まれて構成されている。
 これにより、複数のセンサを含む基板を、ボトムカバーとトップカバーとで上下から挟み込むように配置したセンサユニットを構成することができる。
 第38の発明に係るセンサユニットは、第37の発明に係るセンサユニットであって、ボトムカバーには、センサを下方に貫通させる貫通孔が設けられている。
 ここでは、基板に含まれる複数のセンサを下方に貫通させる貫通孔が形成されボトムカバーを用いている。
 これにより、ボトムカバーの下方に配置された複数の容器に対して、貫通孔を介して、複数のセンサを浸漬することができる。
 第39の発明に係るセンサユニットは、複数の容器に入れられた液体試料に対して浸漬された状態で使用される複数のセンサを備えたセンサユニットであって、第1センサと、第2センサとを備えている。第1センサは、複数の容器のうち、少なくとも一方の縁に配置された第1容器に対応する位置に設けられている。第2センサは、複数の容器のうち、第1センサ以外の位置に配置された第2容器に対応する位置に設けられている。第1センサは、液体試料に浸漬される第2センサの測定電極が液体試料に浸漬されているか否かを検知する浸漬検知電極部を有している。第2センサは、液体試料の測定を行う測定電極部を有している。
 ここでは、複数の容器に入れられた液体試料中に浸漬されるそれぞれのセンサについて、少なくとも一方の縁に配置された容器に対応する位置に配置されたセンサとして、液体試料に浸漬される第2センサの測定電極が液体試料に浸漬されているか否かを検知する浸漬検知電極部を有する第1センサを用いるとともに、第1センサ以外の位置に配置された容器に対応する位置に配置されたセンサとして、液体試料の測定を行う測定電極部を有する第2センサを用いている。
 ここで、第1センサは、浸漬検知電極部だけでなく、測定電極部を有する構成であってもよい。また、第2センサは、測定電極部だけでなく、浸漬検知電極部を有する構成であってもよい。
 これにより、複数配置された容器のうち、最も液体試料が蒸発して液面が下がりやすい位置に配置された容器に対応する位置に、浸漬検知電極部を有する第1センサを配置することができる。
 この結果、最も液体試料が蒸発して液面が下がりやすい位置に配置された容器の液体試料の液面レベルを検出することで、他の容器における測定電極部の浸漬状態を容易に認識することができる。
 また、第1センサとして測定電極部のない構成、第2センサとして浸漬検知電極部のない構成を採用した場合には、簡素な構成のセンサを用いて、複数の容器内における測定電極部の浸漬状態を検出することができる。
 第40の発明に係るセンサユニットは、第39の発明に係るセンサユニットであって、第1センサは、略方形に配置された複数の容器のうち、四隅に配置された容器に対応する位置に配置されている。
 ここでは、例えば、略長方形等の略方形に配置された複数の容器のうち、四隅に配置された容器に対応する位置に、浸漬検知電極部を有する第1センサを配置している。
 これにより、液体試料が最も蒸発して液面レベルが下がりやすい四隅の容器をダミー容器として用いて、液面レベルの検出だけを行うことができる。
 第41の発明に係る細胞培養分析装置は、第35から第40の発明のいずれか1つに係るセンサユニットと、センサユニットと液体試料が入れられる容器とが載置される培養容器設置部と、を備えている。
 ここでは、上記センサユニットと、センサユニットと液体試料が入れられる培養容器とが載置される培養容器設置部と、を含む細胞培養分析装置を構成する。
 これにより、培養容器設置部に設置された容器内へ、センサユニットのセンサを配置することで、上述した各種効果を得ることができる。
 第42の発明に係る細胞培養分析装置は、第41の発明に係る細胞培養分析装置であって、基板に設けられた複数のセンサの浸漬検知電極部に接続されており、容器に入れられた液体試料に対する測定電極部の浸漬状態を検知する浸漬検知部と、浸漬検知部における検知結果を表示する表示部と、をさらに備えている。
 ここでは、複数のセンサによって検出された測定電極部の浸漬状態を、例えば、光を点灯させる表示部を用いて表示する。
 これにより、測定電極部が液体試料中に十分に浸漬された状態であることを検出した場合には、例えば、各センサに接続された表示部の光を点灯させることができる。
 この結果、使用者は、どの容器でセンサの測定電極部が浸漬状態であるか、未浸漬状態であるかを容易に認識して、光が点灯していない未浸漬状態の容器に液体試料を追加する等の措置を講ずることができる。
 第43の発明に係る液体試料測定方法は、第18から第31の発明に係るセンサを用いて測定を行う液体試料測定方法であって、浸漬検知電極部に対して第2電圧が印加される浸漬検知ステップと、測定電極部に対する第1電圧を印加させる測定ステップと、を備えている。
 ここでは、上述したセンサを用いて液体試料の測定を行う測定方法であって、浸漬検知電極部へ第2電圧を印加して液体試料における測定電極部の浸漬状態を検出した後、測定電極部へ第1電圧を印加して液体試料の濃度等の測定を行う。
 これにより、液体試料の測定を実施する前に、測定電極が液体試料中に十分に浸漬された状態であるか否かを検出することができるため、測定精度を向上させることができる。
 第44の発明に係る液体試料測定方法は、第43の発明に係る液体試料測定方法であって、浸漬検知ステップと測定ステップとの間に、浸漬検知電極部に対する第2電圧の印加を停止させる電圧印加停止ステップを、さらに備えている。
 ここでは、上述した測定電極部の浸漬状態の検出と、液体試料の測定との間に、電圧無印加期間が設けられている。
 これにより、浸漬検知のために印加された電圧が、液体試料の測定に影響を及ぼすことを抑制することで、液体試料の測定をより高精度に実施することができる。
(発明の効果)
本発明に係るセンサによれば、液体試料に浸漬された状態で使用されるセンサによる測定精度を向上させることができる。
本発明の一実施形態に係るセンサユニットを備えた細胞培養分析装置を搭載した細胞培養装置の正面図。 図1の細胞培養装置の斜視図。 図1の細胞培養分析装置の斜視図。 図1の細胞培養分析装置の斜視図。 図1の細胞培養分析装置の分解斜視図。 図1の細胞培養分析装置の制御ブロック図。 図1のセンサユニットの拡大斜視図。 図1のセンサユニットの分解斜視図。 図1のセンサユニットの一部切欠斜視図。 図1のセンサユニットの一部拡大断面図。 図1のセンサユニットの一部平面図。 図1のセンサユニットの一部拡大斜視図。 図1のセンサユニットに含まれるセンサの正面図。 図13のセンサをウェル内に設置した状態を示す上面図。 図14の側面図。 本発明の他の実施形態に係るセンサの構成を示す正面図。 本発明のさらに他の実施形態に係るセンサの構成を示す正面図。 本発明のさらに他の実施形態に係るウェルにセンサが挿入された状態を示す上面図。 本発明の他の実施形態に係る細胞培養分析装置の斜視図。 図19の細胞培養分析装置の斜視図。 図19の細胞培養分析装置の分解斜視図。 図19の細胞培養分析装置の制御ブロック図。 図19のセンサユニットの拡大斜視図。 図19のセンサユニットの分解斜視図。 図19のセンサユニットの一部切欠斜視図。 図19のセンサユニットの一部拡大断面図。 図19のセンサユニットの一部平面図。 図19のセンサユニットの一部拡大斜視図。 図19のセンサユニットに含まれるセンサの正面図。 図29のセンサがウェル内に設置された状態を示す上面図。 図29のセンサがウェル内に設置された浸漬状態を示す正面図。 図29のセンサに含まれる浸漬検知電極部に電圧を印加する構成を示す制御ブロック図。 図29の制御ユニットの構成を示す回路図。 (a)は、図33の制御部によって印加される方形波を示す図。(b)は、(a)の電圧が印加されて検出される電流値を示すグラフ。 (a),(b)は、図29のセンサがウェル内に設置された未浸漬状態を示す図。 図29のセンサを用いた液体試料の測定方法の流れを示すフローチャート。 本発明の他の実施形態に係るセンサの構成を示す正面図。 図37のセンサの回路構成を示す回路図。 本発明のさらに他の実施形態に係るセンサの構成を示す正面図。 図39のセンサの回路構成を示す回路図。 本発明のさらに他の実施形態に係るセンサの構成を示す正面図。 図41のセンサの回路構成を示す回路図。 本発明のさらに他の実施形態に係るセンサの構成を示す正面図。 (a)~(d)は、図43のセンサを用いた液面レベルの検知を示す正面図。 図44(a)~図44(d)の液面レベルの変化に対応する検出電流の値を示すグラフ。 本発明のさらに他の実施形態に係るセンサの構成を示す正面図。 (a)~(c)は、センサに含まれる電極の形状に応じた検出電流値の変化を示すグラフ。 本発明のさらに他の実施形態に係るセンサの構成を示す正面図。 本発明のさらに他の実施形態に係るセンサの構成を示す正面図。 (a)は、本発明のさらに他の実施形態に係るセンサの構成を示す正面図。(b)は、(a)のセンサをユニット化した構成を示す図。 (a)および(b)は、本発明のさらに他の実施形態に係るセンサの構成を示す正面図。 (a)は、本発明のさらに他の実施形態に係るセンサユニットに含まれる浸漬検知電極部を含むセンサの構成を示す正面図。(b)は、(a)のセンサが設置されるウェルの位置を示す平面図。 本発明のさらに他の実施形態に係るセンサの浸漬検知電極部がウェルの中心付近に配置された状態を示す正面図。 本発明のさらに他の実施形態に係るセンサの構成を示す正面図。 (a)および(b)は、本発明のさらに他の実施形態に係るセンサの本体部の形状を示す図。
 (実施形態1)
 以下、本発明の一実施形態に係るセンサ16およびこれを備えたセンサユニット9、細胞培養分析装置3について、添付図面を用いて説明する。
 (1)細胞培養装置1の概要説明
 細胞培養装置1は、図1および図2に示すように、培養室2と、細胞培養分析装置3とを備えている。
 細胞培養装置1の培養室2内には、細胞培養分析装置3が配置されている。なお、図1および図2では、図示していないが、培養室2の前面には、扉が開閉可能な状態で取り付けられている。培養室2内では、細胞培養が行われるとともに、後述する細胞培養分析装置3のセンサ16を用いて細胞培養環境の状態が検出される。
 (2)細胞培養分析装置3
 細胞培養分析装置3は、図3に示すように、扉4と、本体ケース5と、培養容器設置部6とを備えている。
 培養容器設置部6は、図3に示すように、前面側に扉4が設けられた本体ケース5内に配置されている。培養容器設置部6上には、図4および図5に示すように、培養容器7とセンサユニット9とが載置されている。
 培養容器7は、図5に示すように、例えば、24個のウェル(容器)8を有している。そして、ウェル8には、それぞれ、センサユニット9を用いた分析対象となる液体状の培地(液体試料)が入れられている。
 ウェル8は、例えば、直径15.1mmの略円筒状の容器であって、約7.0mm幅のセンサ16が挿入される。各ウェル8内に入れられる培地(液体試料)は、例えば、0.5~1.0mlである。
 また、培養容器7は、細胞培養設置部6に形成された略四角形の凹部6a内に位置決めされた状態で設置される。凹部6aは、培養容器7の外形に合わせて形成された凹み部分であって、培養容器7の外形とほぼ同じ外形を有しており、培養容器7が平面方向において移動しないように保持する。
 図6は、細胞培養分析装置3の制御ブロックを示している。
 すなわち、細胞培養分析装置3は、図6に示すように、センサユニット9に接続される測定部33および制御部34と、記憶部35と、通信部36とを含む制御ユニット12を備えている。
 制御ユニット12は、接続部20a,20b(図11参照)を介してセンサユニット9に含まれる各センサ16の電極部21に電圧を印加する。そして、制御ユニット12は、細胞培養装置1外のデータ処理装置(例えば、パーソナルコンピュータ)に対して、ウェル8に入れられた培地(液体試料)の細胞培養環境に関する情報を伝達する。
 センサ16によって検出されたウェル8内の細胞培養環境に関する情報は、制御ユニット12内に設けられた測定部33を介して、制御部34に伝達され、記憶部35に保存される。そして、記憶部35に保存された細胞培養環境に関する情報は、通信部36を介して外部機器37(例えば、パーソナルコンピュータ等)の通信部38に伝達される。
 外部機器37は、通信部38、制御部39、表示部40および入力部41(例えば、マウス、キーボート等)を備えている。外部機器37では、表示部40に検出データを表示させるように、制御部39が表示部40を制御する。
 (3)センサユニット9
 培養容器7上には、図5に示すように、ウェル8に入れられた培地(液体試料)の細胞培養環境の状態を分析するためのセンサ16(図9参照)を含むセンサユニット9が配置されている。
 センサユニット9は、図5に示すように、その下面側に設けられた4本の脚(支持部)10が、培養容器設置部6に設けられた位置決め穴11内に挿入される。これにより、培養容器7上に所定間隔離れた状態で、培養容器設置部6における所定の位置へセンサユニット9が設置される。
 つまり、センサユニット9の下面側には、図8に示すように、培養容器設置部6上に、培養容器7に含まれる複数のウェル8の収納空間を確保するための脚10が設けられている。そして、センサユニット9は、脚10によって培養容器設置部6上に配置される。
 なお、脚10は、上述したように、培養容器設置部6上に、培養容器7の収納空間を確保するために、培養容器設置部6上において所定の隙間を介してセンサユニット9を支持する。
 ここで、センサユニット9を下方から支持する支持部としては、センサユニット9に設けられた脚に限定されるものではない。例えば、培養容器設置部6に対して、センサユニット9を下方から支持する支持体であってもよい。
 また、センサユニット9上には、図5に示すように、上述した制御ユニット12が配置されている。
 センサユニット9は、図7から図9に示すように、例えば、樹脂材料であるPET(ポリエチレンテレフタレート)で形成された基板13と、基板13の下方に配置されたボトムカバー14と、基板13の上方に配置されたトップカバー15とを備えている。基板13は、ボトムカバー14と、トップカバー15とによって上下から挟まれている。
 基板13には、図9に示すように、複数のセンサ16が設けられている。具体的には、複数のセンサ16は、基板13の一部を切り抜いて、センサ16と基板13との接続部分を下方に折り曲げた折り曲げ部17を基板13に残した状態で形成されている。
 複数のセンサ16が接続された基板13は、図9に示すように、上下から、トップカバー15、ボトムカバー14によって挟まれた状態となる。なお、ボトムカバー14には、図8に示すように、複数の貫通孔30が設けられている。よって、センサ16の横辺部分(作用極21a、対極21b、参照極21cが存在する部分)は、図9に示すように、貫通孔30を貫通し、ボトムカバー14の下方に配置される。
 本実施形態においては、図10に示すように、ボトムカバー14の貫通孔30の開口縁には、センサ16の折り曲げ部17の下辺側を支える支持部31が設けられている。トップカバー15の支持部31に対向する部分には、センサ16の折り曲げ部17の上辺側を下方に押す押圧部32が設けられている。
 これらの支持部31は、上面湾曲部形状を有している。また、押圧部32は、下面湾曲部形状を有している。
 このため、図9および図10に示すように、トップカバー15とボトムカバー14とで基板13を上下から挟んだ状態にすると、センサ16の折り曲げ部17が支持部31と押圧部32とによって上下から挟まれる。
 これにより、略L字状のセンサ16の横辺部分(作用極21a、対極21b、参照極21cが設けられた部分)は、略水平方向に沿って配置された状態を安定的に維持することができる。
 よって、センサ16の横辺部分(作用極21a、対極21b、参照極21cが設けられた部分)は、培養容器7の各ウェル8内において、それぞれ安定した位置で保持され、各ウェル8内の培地内に浸漬されるため、培養状態を適切に検出することができる。
 そして、センサ16の折り曲げ部17が支持部31と押圧部32とによって上下から支持されるため、基板13に対してほぼ均等な角度で折り曲げられたセンサ16をウェル8内へ挿入することができる。よって、後述するウェル8の内周面8aの近傍へ、センサ16を正確に配置することができる。
 また、センサ16の折り曲げ部17の円弧部分のRが、ボトムカバー14とトップカバー15とによって規定され、折り曲げ部17に無理な応力がかからないため、クラックによる断線を防止することができる。
 折り曲げ部17の折り曲げ方については、トップカバー15あるいはボトムカバー14のどちらか一方が基板13に取り付けられた状態で折り曲げられてもよい。また、折り曲げ部17に熱が加えられて曲げ加工が行われてもよい。その場合には、トップカバー15あるいはボトムカバー14は不要である。
 本実施形態では、以上のように、センサ16は、折り曲げ部17を残した状態で基板13から切り抜かれて、基板13に対して下方に折り曲げられるように形成されている。これにより、センサ16を基板13に固定するための構成が不要となり、センサユニット9を小型化することができる。
 また、センサ16の構成として、センサ16と基板13上の配線部分とを一体として形成することができるため、センサ16と配線19との間の接続コネクタが不要になる。よって、センサユニット9の小型化が可能となる。
 また、基板13の配線19は、基板13上の配線パターンとして集約され、接続部20a,20bに集められている。そして、接続部20a,20bは、制御ユニット12の接続コネクタと接続されるため、センサユニット9と制御ユニット12との間をリード線等の配線で接続する必要がない。よって、細胞培養分析装置3自体の小型化が可能となる。
 以上のように、本実施形態においては、図5に示すように、多くのウェル8を用いた場合でも、小型化された複数のセンサ16を含むセンサユニット9によって、培養状態の検出を同時に行うことができる。
 (4)センサ16
 本実施形態のセンサ16は、基板13の一部を略L字状に切り抜いて形成されており、図9に示すように、略L字形状を有している。
 図10に、図9の一部拡大断面図を示す。本実施形態のセンサ16では、図10に示すように、略L字状の縦辺上部を折り曲げ部17とし、基板13と接続されている。つまり、折り曲げ部17は、基板13と各センサ16とを接続する接続部として設けられている。
 図11に示す基板13の略L字形状部18は、略L字状のセンサ16が切り抜かれた開口部である。また、基板13は、矩形状を有している。略L字状のセンサ16は、その縦辺がこの基板13の対向する2つの辺に対して斜めに、基板13から切り抜かれて形成されている。
 また、センサ16の折り曲げ部17に接続された基板13上の配線19は、図11に示すように、互いに隣接するセンサ16の縦辺切り抜き部18aと、センサ16の横辺切り抜き部18bとの間を介して基板13の外周部に引き出されている。
 本実施形態では、図9および図12に示すように、センサ16を略L字状とし、その横辺部分がウェル8内において水平方向に沿って配置されるように保持された状態で、各ウェル8内の培地に浸漬される。これにより、複数のウェル8内に浸漬された各センサ16を用いて、複数のウェル8内の細胞培養環境の状態を検出することができる。
 また、センサ16の下方の横辺部分には、ウェル8内の細胞培養環境の状態を検出する検出電極(電極部21)が形成されている。例えば、略I字形状のセンサと比較して、検出電極として設けられた電極部21の電極面積が広くなることで、センサ16の感度を向上させることができる。
 すなわち、センサ16が略L字形状を有しているため、センサ16は、矩形状の基板13に対して、略L字状の縦辺を基板13の対向する2つの辺に対して傾斜させた状態で、基板13から切り抜かれて形成される。
 これにより、センサ16の縦辺部分(図13の縦向き部分)の長さを十分に確保することができる。よって、センサ16の横辺部分(図13の横向き部分)に形成された検出電極を、ウェル8内の培地に対して浸漬することが調整可能となる。
 略L字状のセンサ16の横辺部分には、図13に示すように、電極部21として、作用極21a、対極21b、参照極21cが設けられている。
 また、参照極21cの表面には、銀層(銀層と塩化銀層の少なくとも一方)が設けられている。また、作用極21aの表面には、酵素とメディエータ等から形成される試薬層が設けられている。そして、それらの電極部21は、保護膜によって覆われている。
 センサ16は、ウェル8内の培地の液体試料中に作用極21a、対極21b、参照極21cを浸漬させて、電気化学的に培地の特定の成分の濃度を検出することで、培地の細胞培養環境を分析する。
 例えば、培地のグルコース成分の濃度を検出する場合、作用極21aの表面に固定化された試薬層には、酵素(例えば、GOx)、レドックスメディエータが含まれる。
 このグルコースの検出原理は、保護膜を通して培地から透過してきたグルコースが試薬層の酵素(例えば、GOx)との酵素反応で酸化され、グルコノラクトンとなり、同時に試薬層のレドックスメディエータが還元されて還元体となる。この還元体が酸化体に戻る際に発生する電子を電流値として測定することで、培地のグルコース濃度を測定することができる。
 保護膜は、培地中のグルコースの透過速度をコントロールするために透過制限しながらセンサ16の検出電極部分に浸透させるとともに、作用極21aに固定化された試薬層の成分である、酵素とメディエータとを保護膜の外側への流出を防止するために設けられている。
 酵素およびメディエータは、架橋されて作用極21aの表面に固定されている。そのため、試薬層は、高分子化され、分子量は大きくなる。よって、グルコースは透過し、酵素およびメディエータが保護膜から流出することを防止することができる(より詳細には、国際公開第2019/146788号参照)。
 さらに、センサ16は、図13に示すように、略L字状の本体部16aの一方の表面(第1面23a)に、上述した電極部21と液体保持部22とを有している。
 液体保持部22は、図13に示すように、電極部21が設けられた面と同じ面、すなわち、第1面23aにおける電極部21の周辺であって、例えば、電極部21の上部に設けられている。液体保持部22は、電極部21が設けられた部分の幅と同等以上の幅を有している。そして、液体保持部22は、図15に示すように、第1面23a側において保持される培地Lの液面よりも高い位置まで配置された面として形成されている。
 センサ16は、電極部21に対して所定の電圧が印加されて培地の測定を行う際には、図14に示すように、上面視において略円形のウェル8の内周面(内壁面)8aに対して近接する位置に配置される。
 このとき、センサ16の第1面23aは、図14に示すように、上面視において略円形のウェル8の中心Oを中心とする弦の位置に配置される。
 具体的には、センサ16の第1面23aは、ウェル8の内周面8aに対する距離d1が、例えば、1.0~2.0mmになるように配置される。また、センサ16の両端とウェル8の内周面8aに対する距離d2が、例えば、1.0mmになるように配置される。
 これにより、ウェル8に入れられた培地(液体試料)とウェル8の内周面8aとの間に生じるメニスカス効果によってウェル8の中央付近の液面が低下した場合でも、ウェル8の内周面8aに近接する位置にセンサ16の本体部16aを配置したことで、電極部21に含まれる全ての電極を培地L内に浸漬させることができる。
 ここで、複数のセンサ16を複数のウェル8の内周面8aに近接する位置に配置するための位置決めは、上述したセンサユニット9の脚10が培養容器設置部6の位置決め穴11に、培養容器7が培養容器設置部6の凹部6a内にそれぞれ設置されることで行われる。
 すなわち、培養容器7のウェル8に対するセンサユニット9のセンサ16の位置決めは、培養容器設置部6に形成された凹部6aと位置決め穴11とを用いて行われる。
 そして、センサユニット9の下面側から突出するように配置された各センサ16は、上述したように、支持部31と押圧部32とによってセンサユニット9の下面に対して略均等な角度で正確に配置されている。
 これにより、培養容器設置部6に対して、培養容器7とセンサユニット9とを位置合わせすることで、培養容器7(各ウェル8)に対するセンサユニット9(各センサ16)の位置合わせを行うことができる。よって、各ウェル8の内周面8aの近接する所定の位置へ、センサ16を正確に設置することができる。
 よって、各ウェル8に対して正確にセンサ16を内周面8aに近接する位置へ配置することができる。
 また、センサ16の本体部16aの第1面23aの幅は、上面視において略円形のウェル8の円の直径よりも小さい。
 これにより、第1面23aをウェル8の内周面8aに対して近接した位置まで近づけた状態で、センサ16を配置することができる。
 そして、センサ16の本体部16aにおける第1面23a側に設けられた液体保持部22は、図15に示すように、第2面23b側よりも高い位置まで培地(液体試料)Lを保持する。
 つまり、液体保持部22は、センサ16の本体部16aの第1面23aがウェル8の内周面8aに対して近接配置されることで、培地(液体試料)に生じる表面張力によって、第2面23b側よりも高い位置まで培地を保持する。
 これにより、ウェル8に入れられた培地(液体試料)とウェル8の内周面8aとの間に生じるメニスカス効果によってウェル8の中央付近の液面が低下した場合でも、電極部21が設けられた第1面23a側の液面を押し上げることで、電極部21に含まれる全ての電極を培地L内に浸漬させることができる。
 本実施形態のセンサ16は、以上のように、電極部21が培地内に十分に浸漬されるように、上面視において略円形のウェル8の中心Oからオフセットされた位置に配置される。
 すなわち、ウェル8に入れられた培地(液体試料)とウェル8の内周面8aとの間に生じるメニスカス効果によって液面が低下するウェル8の中央付近を避けて、センサ16が配置されている。
 これにより、メニスカス効果によって培地の液面が内周面8a付近よりも低下した場合でも、液面が高い内周面8a付近にセンサ16が配置されているため、電極部21に含まれる全ての電極を培地L内に浸漬させることができる。
 (実施形態2)
 本発明の他の実施形態に係るセンサおよびこれを備えた測定装置、センサユニット、細胞培養分析装置、液体試料測定方法について、図1,2および図19~図36を用いて説明すれば以下の通りである。
 (1)細胞培養装置1の概要説明
 細胞培養装置1は、図1および図2に示すように、培養室2と、細胞培養分析装置3とを備えている。
 細胞培養装置1の培養室2内には、細胞培養分析装置3が配置されている。なお、図1および図2では、図示していないが、培養室2の前面には、扉が開閉可能な状態で取り付けられている。培養室2内では、細胞培養が行われるとともに、後述する細胞培養分析装置3のセンサ1016を用いて細胞培養環境の状態が検出される。
 (2)細胞培養分析装置3
 細胞培養分析装置3は、図19に示すように、扉1004と、本体ケース5と、培養容器設置部1006と、表示部1038とを備えている。
 培養容器設置部1006は、図19に示すように、前面側に扉1004が設けられた本体ケース5内に配置されている。培養容器設置部1006上には、図20および図21に示すように、培養容器1007とセンサユニット1009とが載置されている。
 表示部1038は、培養容器1007に含まれる24個のウェル1008内の培地に浸漬されるセンサ1016に対応する位置にそれぞれ配置されている。表示部1038は、各センサ1016と1対1で対応しており、後述する測定用の電極部1021の浸漬状態が検出されると、所定の色の光(例えば、赤)を点灯させるように制御部1034によって点灯制御される。
 これにより、使用者は、表示部1038において、例えば、所定の色の光が点灯せずに消灯している場合、あるいは点滅表示されている場合、異なる色の光が点灯している場合には、細胞培養分析装置3の外側から、測定用の電極部1021の未浸漬状態を認識することができる。
 培養容器1007は、図21に示すように、例えば、24個(縦4×横6)のウェル(容器)1008を有している。そして、ウェル1008には、それぞれ、センサユニット1009を用いた分析対象となる液体状の培地(液体試料)が入れられている。
 ウェル1008は、例えば、直径15.1mmの略円筒状の容器であって、約7.0mm幅のセンサ1016が挿入される。各ウェル1008内に入れられる培地(液体試料)は、例えば、0.5~1.0mlである。
 また、培養容器1007は、培養容器設置部1006に形成された略四角形の凹部1006a内に位置決めされた状態で設置される。凹部1006aは、培養容器1007の外形に合わせて形成された凹み部分であって、培養容器1007の外形とほぼ同じ外形を有しており、培養容器1007が平面方向において移動しないように保持する。
 図22は、細胞培養分析装置3の制御ブロックを示している。
 すなわち、細胞培養分析装置3は、図22に示すように、センサユニット1009に接続される測定部1033、制御部1034および浸漬検知部1037と、記憶部1035と、通信部1036、表示部1038とを含む制御ユニット1012を備えている。
 制御ユニット1012は、接続部1020a,1020b(図27参照)を介してセンサユニット1009に含まれる各センサ1016の電極部(測定電極部)1021に電圧を印加する。そして、制御ユニット1012は、細胞培養装置1外のデータ処理装置(例えば、パーソナルコンピュータ)に対して、ウェル1008に入れられた培地(液体試料)の細胞培養環境に関する情報を伝達する。
 センサ1016によって検出されたウェル1008内の細胞培養環境に関する情報は、制御ユニット1012内に設けられた測定部1033を介して、制御部1034に伝達され、記憶部1035に保存される。そして、記憶部1035に保存された細胞培養環境に関する情報は、図22に示すように、通信部1036を介して外部機器1040(例えば、パーソナルコンピュータ等)の通信部1041に伝達される。
 外部機器1040は、通信部1041、制御部1042、表示部1043および入力部1044(例えば、マウス、キーボート等)を備えている。外部機器1040では、表示部1043に検出データを表示させるように、制御部1042が表示部1043を制御する。
 (3)センサユニット1009
 培養容器1007上には、図21に示すように、ウェル1008に入れられた培地(液体試料)の細胞培養環境の状態を分析するための複数のセンサ1016(図25参照)を含むセンサユニット1009が配置されている。
 センサユニット1009は、図21に示すように、その下面側に設けられた4本の脚1010が、培養容器設置部1006に設けられた位置決め穴1011内に挿入される。これにより、培養容器1007上に所定間隔離れた状態で、培養容器設置部1006における所定の位置へセンサユニット1009が設置される。
 つまり、センサユニット1009の下面側には、図24に示すように、培養容器設置部1006上に、培養容器1007に含まれる複数のウェル1008の収納空間を確保するための脚1010が設けられている。そして、センサユニット1009は、脚1010によって培養容器設置部1006上に配置される。
 なお、脚1010は、上述したように、培養容器設置部1006上に、培養容器1007の収納空間を確保するために、培養容器設置部1006上において所定の隙間を介してセンサユニット1009を支持する。
 ここで、センサユニット1009を下方から支持する支持部としては、センサユニット1009に設けられた脚に限定されるものではない。例えば、培養容器設置部1006に対して、センサユニット1009を下方から支持する支持体であってもよい。
 また、センサユニット1009上には、図21に示すように、上述した制御ユニット1012が配置されている。
 センサユニット1009は、図23から図25に示すように、例えば、樹脂材料であるPET(ポリエチレンテレフタレート)で形成された基板1013と、基板1013の下方に配置されたボトムカバー1014と、基板1013の上方に配置されたトップカバー1015とを備えている。基板1013は、ボトムカバー1014と、トップカバー1015とによって上下から挟まれている。
 基板1013には、図25に示すように、複数のセンサ1016が設けられている。具体的には、複数のセンサ1016は、基板1013の一部を切り抜いて、センサ1016と基板1013との接続部分を下方に折り曲げた折り曲げ部1017を基板1013に残した状態で形成されている。
 複数のセンサ1016が接続された基板1013は、図25に示すように、上下から、トップカバー1015、ボトムカバー1014によって挟まれている。なお、ボトムカバー1014には、図24に示すように、複数の貫通孔1030が設けられている。よって、センサ1016の横辺部分(作用極1021a、対極1021b(図29参照)が存在する部分)は、図25に示すように、貫通孔1030を貫通し、ボトムカバー1014の下面から突出するように配置される。
 本実施形態においては、図26に示すように、ボトムカバー1014の貫通孔1030の開口縁には、センサ1016の折り曲げ部1017の下辺側を支える支持部1031が設けられている。トップカバー1015の支持部1031に対向する部分には、センサ1016の折り曲げ部1017の上辺側を下方に押す押圧部1032が設けられている。
 これらの支持部1031は、上面湾曲部形状を有している。また、押圧部1032は、下面湾曲部形状を有している。
 このため、図25および図26に示すように、トップカバー1015とボトムカバー1014とで基板1013を上下から挟んだ状態にすると、センサ1016の折り曲げ部1017が支持部1031と押圧部1032とによって上下から挟まれる。
 これにより、略I字状のセンサ1016の横辺部分(作用極1021a、対極1021bが設けられた部分)は、略水平方向に沿って配置された状態を安定的に維持することができる。
 よって、センサ1016の横辺部分(作用極1021a、対極1021bが設けられた部分)は、培養容器1007の各ウェル1008内において、それぞれ安定した位置で保持され、各ウェル1008内の培地内に浸漬されるため、培養状態を適切に検出することができる。
 そして、センサ1016の折り曲げ部1017が支持部1031と押圧部1032とによって上下から支持されるため、基板1013に対してほぼ均等な角度で折り曲げられたセンサ1016をウェル1008内へ挿入することができる。よって、後述するウェル1008内における所定の位置へ、センサ1016を正確に配置することができる。
 また、センサ1016の折り曲げ部1017の円弧部分のRが、ボトムカバー1014とトップカバー1015とによって規定され、折り曲げ部1017に無理な応力がかからないため、クラックによる断線を防止することができる。
 折り曲げ部1017の折り曲げ方については、トップカバー1015あるいはボトムカバー1014のどちらか一方が基板1013に取り付けられた状態で折り曲げられてもよい。また、折り曲げ部1017に熱が加えられて曲げ加工が行われてもよい。その場合には、トップカバー1015あるいはボトムカバー1014は不要である。
 本実施形態では、以上のように、センサ1016は、折り曲げ部1017を残した状態で基板1013から切り抜かれて、基板1013に対して下方に折り曲げられるように形成されている。これにより、センサ1016を基板1013に固定するための構成が不要となり、センサユニット1009を小型化することができる。
 また、センサ1016の構成として、センサ1016と基板1013上の配線部分とを一体として形成することができるため、センサ1016と配線1019との間の接続コネクタが不要になる。よって、センサユニット100の小型化が可能となる。
 また、基板1013の配線1019は、図27に示すように、基板1013上の配線パターンとして集約され、接続部1020a,1020bに集められている。そして、接続部1020a,1020bは、制御ユニット1012の接続コネクタと接続されるため、センサユニット1009と制御ユニット1012との間をリード線等の配線で接続する必要がない。よって、細胞培養分析装置3自体の小型化が可能となる。
 以上のように、本実施形態においては、図21に示すように、多くのウェル1008を含む培養容器1007を用いた場合でも、小型化された複数のセンサ1016を含むセンサユニット1009によって、培養状態の検出を同時に行うことができる。
 (4)センサ16
 本実施形態のセンサ1016は、基板1013の一部を略I字状に切り抜いて形成されており、図25および図28に示すように、略I字形状の本体部1016aを有している。
 図26に、図25の一部拡大断面図を示す。本実施形態のセンサ1016では、図26に示すように、略I字状の本体部1016aの縦辺上部を折り曲げ部1017とし、基板1013と接続されている。つまり、折り曲げ部1017は、基板1013と各センサ1016とを接続する接続部として設けられている。
 図27に示す基板1013の略I字形状部1018は、略I字状のセンサ1016が切り抜かれた開口部である。また、基板1013は、矩形状を有している。略I字状のセンサ1016は、その縦辺がこの基板1013の対向する2つの辺に対して斜めに、基板1013から切り抜かれて形成されている。
 また、センサ1016の折り曲げ部1017に接続された基板1013上の配線1019は、図27に示すように、互いに隣接するセンサ1016の縦辺切り抜き部1018aと、センサ1016の横辺切り抜き部1018bとの間を介して基板1013の外周部に引き出されている。
 本実施形態では、図26および図28に示すように、センサ1016の本体部1016aを略I字形状とし、その横辺部分がウェル1008内において水平方向に沿って配置されるように保持された状態で、各ウェル1008内の培地に浸漬される。これにより、複数のウェル1008内に浸漬された各センサ1016を用いて、複数のウェル1008内の細胞培養環境の状態を検出することができる。
 また、センサ1016の下方には、ウェル1008内の細胞培養環境の状態(例えば、培地Lに含まれる特定成分の濃度)を検出する電極部1021が形成されている。
 これにより、センサ1016の縦辺部分(図29の上下方向に沿って延伸した部分)の長さを十分に確保して、センサ1016の横辺部分(図29の左右方向に沿って配置された部分)に形成された検出電極を、ウェル1008内の培地に対して浸漬することができる。
 略I字状のセンサ1016の下端部付近には、図29に示すように、電極部1021として、作用極1021a、対極1021bが設けられている。
 また、作用極1021aおよび対極1021bの表面には、酵素とメディエータ等から形成される試薬層が設けられている。そして、作用極1021aおよび対極1021bを含む電極部1021は、保護膜1024によって覆われている。
 センサ1016は、ウェル1008内の培地L中に作用極1021a、対極1021bを浸漬させて、電気化学的に培地の特定の成分の濃度を検出することで、培地の細胞培養環境を分析する。
 例えば、培地に含まれるグルコース成分の濃度を検出する場合、作用極1021aの表面に固定化された試薬層には、酵素(例えば、GOx)、レドックスメディエータが含まれる。
 このグルコースの検出原理は、保護膜1024を通して培地から透過してきたグルコースが試薬層の酵素(例えば、GOx)との酵素反応で酸化され、グルコノラクトンとなり、同時に試薬層のレドックスメディエータが還元されて還元体となる。この還元体が酸化体に戻る際に発生する電子を電流値として測定することで、培地のグルコース濃度を測定することができる。
 保護膜1024は、培地中のグルコースの透過速度をコントロールするために透過制限するとともに、センサ1016の検出電極部分にグルコースを浸透させるために設けられている。さらに、保護膜1024は、作用極1021aに固定化された試薬層の成分である酵素とメディエータとが、保護膜1024の外側(培地中)へ流出することを防止するために設けられている。
 酵素およびメディエータは、架橋されて作用極1021aの表面に固定されている。そのため、試薬層は、高分子化され、分子量は大きくなる。よって、グルコースは試薬層を透過する一方、酵素およびメディエータが保護膜1024を透過して流出することを防止することができる(より詳細には、国際公開第2019/146788号参照)。
 さらに、センサ1016は、図29に示すように、略I字状の本体部1016aの一方の表面(第1面1023a)に、上述した電極部1021と浸漬検知電極部1022とを有している。
 浸漬検知電極部1022は、図29に示すように、測定用の電極部1021が設けられた面と同じ面、すなわち、第1面1023aにおける電極部1021の直上であって、例えば、電極部1021に含まれる作用極1021aの上部に設けられている。また、浸漬検知電極部1022は、2本の電極(第1電極1022aおよび第2電極1022b)を有している。第1電極1022aおよび第2電極1022bは、測定用の電極部1021の作用極1021aの幅と略同等の間隔をあけて、作用極1021aの上方に設置されている。
 センサ1016は、電極部1021に対して所定の電圧が印加されて培地の測定を行う際には、図30に示すように、上面視において略円形のウェル1008の中央(中心Oの付近)に配置される。
 ここで、ウェル1008に入れられた培地(液体試料)Lは、図31に示すように、ウェル1008の内周面1008aとの間に生じるメニスカス効果によって、ウェル1008の中心O付近の液面が低下する。このため、本実施形態のセンサ1016では、最も培地Lの液面が低くなることが予想されるウェル1008の中心O付近にセンサ1016の本体部1016aを配置して、培地Lへの電極部1021の浸漬状態を検出することで、電極部1021が確実に培地Lに浸漬されているか否かを検出することができる。
 ここで、複数のセンサ1016を複数のウェル1008の中心O付近に配置するための位置決めは、上述したセンサユニット1009の脚1010が培養容器設置部1006の位置決め穴1011に、培養容器1007が培養容器設置部1006の凹部1006a内にそれぞれ設置されることで行われる。
 すなわち、培養容器1007のウェル1008に対するセンサユニット1009のセンサ1016の位置決めは、培養容器設置部1006に形成された凹部1006aと位置決め穴1011とを用いて行われる。
 そして、センサユニット1009の下面側から突出するように配置された各センサ1016は、上述したように、支持部1031と押圧部1032とによってセンサユニット1009の下面に対して略均等な角度で正確に配置されている。
 これにより、培養容器設置部1006に対して、培養容器1007とセンサユニット1009とを位置合わせすることで、培養容器1007(各ウェル1008)に対するセンサユニット1009(各センサ1016)の位置合わせを行うことができる。よって、各ウェル1008の中心O付近の位置へ、センサ1016を正確に設置することができる。
 よって、各ウェル1008に対して正確にセンサ1016を配置することができる。
 また、本実施形態のセンサ1016では、浸漬検知電極部1022が、測定用の電極部1021に含まれる作用極1021a上に配置されている。
 ここで、作用極1021aの培地Lへの浸漬状態の変化は、他の電極(対極1021b等)と比較して、電極部1021に電圧を印加して測定される電流値に影響を及ぼしやすい。よって、本実施形態のセンサ16では、浸漬状態の変化によって測定に影響を及ぼしやすい作用極1021aの浸漬状態を確実に検出するために、浸漬検知電極部1022を作用極1021a上に配置している。
 これにより、浸漬検知電極部1022の第1電極1022aおよび第2電極1022bに電圧を印加することで、作用極1021aの浸漬状態を確実に検出することができる。
 なお、制御ユニット1012は、図32に示すように、センサ1016の第1電極1022aと第2電極1022bとの間に所定の電圧(第2電圧)を印加する電圧印加部1012aと、第1電極1022aと第2電極1022bとの間に流れる電流を測定する電流計1012bとを備えた測定装置として機能する。つまり、電極部1021の浸漬状態を検出する際には、電圧印加部1012aから浸漬検知電極部1022(第1電極1022aおよび第2電極1022b)へ所定の電圧(第2電圧)が印加され、電流計1012bによって第1電極1022aと第2電極1022bとの間に流れる電流値が計測される。
 より詳細には、図33に示すように、制御部1034が、図33に示す回路に含まれるD/A(Digital/Analog)コンバータ1012db,1012daに、浸漬検知用の所定の電圧(第2電圧)として、それぞれ1.0Vを設定し、それぞれ印加する。そして、スイッチ1012caをOFFからONへ移行させた後、スイッチ1012cbをOFFからONへ移行させることで、電流計1012bにおいて第1電極1022aと第2電極1022bとの間に流れる電流値が測定される。
 電流計1012bには、抵抗、オペアンプ、A/D(Analog/Digital)コンバータ1012eが含まれており、第1電極1022aと第2電極1022bとの間に流れる微小電流を検出する。
 電流計1012bによって計測される電流値は、培地L内へ浸漬された第1電極1022aおよび第2電極1022bの面積が大きくなるほど大きくなる。
 これにより、例えば、電流計1012bにおいて検出された電流値が所定の閾値以上になった場合には、浸漬検知電極部1022が培地Lに浸漬された状態、すなわち、浸漬検知電極部1022の直下に配置された測定用の電極部1021が培地L内に浸漬された状態であることを検出することができる。
 なお、第1電極1022aおよび第2電極1022bの浸漬面積の変化に応じて検出される電流値が変化することを利用して、図31に示すように、浸漬深さ方向(略鉛直方向)に長い電極(第1電極1022aおよび第2電極1022b)を用いる場合には、電流計1012bにおいて検出された電流値の大きさに応じて、培地Lの液面レベルを判定してもよい。
 また、上述したように、浸漬検知電極部1022を構成する2本の電極(第1電極1022a、第2電極1022b)が、作用極1021aの幅に合わせて設置されている。このため、浸漬検知電極部1022に所定の電圧を印加してその浸漬状態を検出することで、少なくとも測定結果に影響を及ぼす作用極1021aが浸漬状態にあるか否かを検出することができる。
 電圧印加部1012aは、第1電極1022aおよび第2電極1022bに対して、図34(a)に示すように、方形波(DUTY:50%、周波数:10Hz、振幅:50mV)の電圧を印加する。
 ここで、測定用の電極部1021の浸漬状態を検出するために測定される電流値は、図33に示す第2電極1022b側のトランスインピーダンス回路において電流から電圧に変換され、A/Dコンバータ1012eへ入力される。
 このとき、時間経過とともに第1電極1022aおよび第2電極1022bの浸漬深さを浅くする方向に変化させると、電流計1012bでは、図34(b)に示すように、検出される電流値の値が小さくなる方向に変化する。
 具体的には、図34(b)に示す横軸0~20sまでは浸漬深さが最大(第1電極1022aおよび第2電極1022bの全面積が浸漬)であって、20~40sまでは浸漬深さ50%であって、40~60sまでは浸漬深さ25%であって、60s~は浸漬深さ0%となるように浸漬状態を変化させると、検出される電流値もそれに応じて小さくなる方向に変化する。
 これにより、例えば、図35(a)に示すように、培地Lの液面レベルが低下した場合、あるいは、図35(b)に示すように、センサ1016がウェル1008の内周面1008aに近接する位置にずれて配置され、かつ培地Lの液面レベルが低下した場合でも、浸漬検知電極部1022の第1電極1022aおよび第2電極1022bが浸漬されていない状態であることを検出することができる。
 よって、浸漬検知電極部1022の下端よりも下方に配置された測定用の電極部1021の一部(例えば、作用極1021a、対極1021bの一部)が浸漬されていない未浸漬状態であることを検出して、培地Lの追加あるいはセンサ1016の浸漬深さを深くする等の措置を講ずることができる。
 この結果、測定用の電極部1021の一部(例えば、作用極1021a、対極1021bの一部)が浸漬されていない未浸漬状態で測定が行われ、測定精度が低下することを回避することができる。
 また、本実施形態では、上述したように、電圧印加部1012aは、第1電極1022aおよび第2電極1022bに対して、図34(a)に示す交流波(方形波)の電圧を印加する。
 これにより、直流波の電圧を印加した場合と比較して、大きな電流値を取得することができ、SN比および検出速度の向上を図ることができる。
 <液体試料の測定方法>
 本実施形態の測定方法では、上述した培地Lに含まれるグルコースの濃度を測定するために、図36に示すフローチャートに従って処理が行われる。
 すなわち、ステップS11では、測定用の電極部1021の浸漬状態を検出するために、電圧印加部1012aが、浸漬検知電極部1022(第1電極1022aおよび第2電極1022b)に対して、所定の電圧(第2電圧)を印加する。
 次に、ステップS12では、電流計1012bにおいて検出された電流値に応じて、測定用の電極部1021の浸漬状態を検出する。
 次に、ステップS13では、ステップS12における検出結果から、測定用の電極部1021が浸漬状態であるか否かを判定する。ここで、浸漬状態であると判定された場合には、ステップS14へ進み、培地Lの量が少ない等の理由により浸漬状態ではないと判定された場合には、ステップS17へ進む。
 次に、ステップS14では、ステップS13において、測定用の電極部1021が浸漬状態であると判定されたため、培地(液体試料)Lの測定を実施へ移行するために、電圧印加部1012aは、浸漬検知電極部1022に対して印加された第2電圧の印加を停止する。
 次に、ステップS15では、電圧印加部1012aが、測定用の電極部1021に対して、測定用の第1電圧を印加する。
 次に、ステップS16では、電流計1012bにおいて検出された電流値に応じて、培地Lに含まれる特定成分(グルコース)の濃度を測定して、処理を終了する。
 一方、ステップS13において、測定用の電極部1021が未浸漬状態であると判定された場合には、ステップS17において、上述した表示部1038を用いて、未浸漬状態と判定されたセンサ1016に対応する位置の表示部1038に警告表示させる。
 ここで、表示部1038の警告表示としては、例えば、正常な浸漬状態が検出された場合に点灯させる所定の色の光を点灯させない(消灯のままとする)、点滅させる、異なる色の光を点灯させる等が含まれる。
 これにより、使用者は、どの位置のウェル1008に入れられたセンサ1016の測定用の電極部1021が培地Lに対して未浸漬状態であるのかを容易に認識することができる。
 この結果、使用者は、該当する位置にあるセンサ1016が設置されたウェル1008に培地Lを追加する、該当する位置のセンサ1016による測定結果を無視する等の措置を講ずることができる。よって、センサ1016を用いた測定において、測定用の電極部1021の浸漬状態に起因する測定精度の低下を防止して、測定精度を向上させることができる。
 (実施形態3)
 本発明のさらに他の実施形態に係るセンサ1116の構成について、図37および図38を用いて説明すれば以下の通りである。
 本実施形態では、測定用の電極部1021の浸漬状態を検出するための浸漬検知電極部1122として、3本の電極(第1電極1122a,第2電極1122b,第3電極1122c)が用いられている点で、2本の電極(第1電極22aおよび第2電極22b)が用いられている上記実施形態2とは異なっている。
 すなわち、本実施形態のセンサ1116は、図37に示すように、本体部1116aの第1面1123aの下端部付近に設けられた測定用の電極部1021の直上に、3本の電極(第1電極1122a,第2電極1122b,第3電極1122c)を含む浸漬検知電極部1122を備えている。
 3本の電極1122a~1122cのうち、第1電極1122aと第3電極1122cとは、センサ1116の本体部1116aの幅方向における両端付近であって、測定用の電極部1021の直上にそれぞれ配置されている。そして、第2電極1122bは、センサ1116の本体部1116aの幅方向における略中央付近であって、測定用の電極部1021の作用極1021aと対極1021bとの間の位置における直上に配置されている。
 制御ユニット1112は、図38に示すように、選択回路1112aを備えており、制御部1134によって電圧が印加される2つの電極が選択されることで、第1電極1122aと第2電極1122bとの間における浸漬状態、第1電極1122aと第3電極1122cとの間における浸漬状態をそれぞれ検出する。これにより、第1電極1122a、第2電極1122bおよび第3電極1122cの浸漬状態を検出することができる。
 よって、図37に示す測定用の電極部1021に含まれる作用極1021a、対極1021bの全体および個々が浸漬されているか否かを正確に検出することができる。
 (実施形態4)
 本発明のさらに他の実施形態に係るセンサ1216の構成について、図39および図40を用いて説明すれば以下の通りである。
 本実施形態では、測定用の電極部1021の浸漬状態を検出するための浸漬検知電極部1222として、1本の電極(第1電極1222a)と測定用の電極部1021の作用極1021aとを組み合わせて用いられている点で、2本の電極(第1電極22aおよび第2電極22b)が用いられている上記実施形態2とは異なっている。
 すなわち、本実施形態のセンサ1216は、図39に示すように、本体部1216aの第1面1223aの下端部付近に設けられた測定用の電極部1021の直上に、1本の電極(第1電極1222a)を含む浸漬検知電極部1222を備えている。
 第1電極1222aは、センサ1216の本体部1216aの幅方向における作用極1021aが配置された側の端部付近であって、作用極1021aの直上に配置されている。
 制御ユニット1212は、図40に示すように、制御部1234によって、第1電極1222aと作用極1021aとの間に浸漬検知用の電圧が印加されることで、第1電極1222aと作用極1021aとの間における浸漬状態を検出することができる。
 よって、図39に示す測定用の電極部1021に含まれる作用極1021aが浸漬されているか否かを正確に検出することができる。
 そして、浸漬検知電極部1222として1本の第1電極1222aを用いるとともに、測定用の電極部1021の作用極1021aを含む回路を浸漬検知用に援用することで、センサ1216の構成を簡素化することができる。
 (実施形態5)
 本発明のさらに他の実施形態に係るセンサ1316の構成について、図41および図42を用いて説明すれば以下の通りである。
 本実施形態では、測定用の電極部1021を構成する作用極1021aおよび対極1021bのうち、作用極1021aだけが保護膜1324によって覆われている点で、作用極1021aおよび対極1021bの両方が保護膜1024によって覆われている上記実施形態4とは異なっている。さらに、本実施形態では、浸漬検知を行う際に、対極側回路1312cを用いて、浸漬検知電極部1322の第1電極1322aと、対極1021bとの間に電圧を印加する点で、上記実施形態2~4とは異なっている。
 すなわち、本実施形態のセンサ1316は、図41に示すように、本体部1316aの第1面1323aの下端部付近において、作用極1021aを覆うように設けられた保護膜1324を備えている。
 保護膜1324は、センサ1316の本体部1316aの幅方向における端部付近に設けられた作用極1021aだけを覆うように配置されている。
 制御ユニット1312は、図42に示すように、制御部1334によって、第1電極1322aと対極1021bとの間に浸漬検知用の電圧が印加されることで、測定用の電極部1021の浸漬状態を検出することができる。
 よって、図41に示す測定用の電極部1021が培地L中に浸漬されているか否かを正確に検出することができる。
 そして、浸漬検知電極部1322として1本の第1電極1322aを用いて、測定用の電極部1021の対極1021bを含む回路を浸漬検知用に援用するとともに、保護膜1324を作用極1021a側だけに設けたことで、センサ1316の構成を簡素化することができる。
 なお、保護膜1324は、上述したように、作用極1021a上に設けられた試薬層に含まれる成分が培地L中に溶け出さないようにするために設けられているため、少なくとも作用極1021aを覆うように設けられていることが好ましい。
 一方、対極1021bについては、試薬層が設けられていないため、第1電極1322aと対極1021bとの間に電圧を印加することで、保護膜を透過する待機時間を設けることなく、センサ1316を培地Lへ浸漬してすぐに、作用極1021aの浸漬状態を検出することができる。よって、第1電極1322aと作用極1021aとの間に浸漬検知用の電圧を印加した場合と比較して、浸漬状態の検出を迅速に行うことができる。
 (実施形態6)
 本発明のさらに他の実施形態に係るセンサ1416の構成について、図43~図45を用いて説明すれば以下の通りである。
 本実施形態では、浸漬検知電極部1422の形状が複数の櫛歯1422aを含む櫛歯状になっている点で、単純な形状(略長方形)の電極1022a,1022b等を用いた上記実施形態2~5とは異なっている。
 すなわち、本実施形態のセンサ1416は、図43に示すように、本体部1416aの第1面1423aに、浸漬深さ方向に対して略垂直な方向(略水平方向)において延伸する複数の櫛歯1422aを含む略E字状の形状の浸漬検知電極部1422を備えている。
 これらの複数の櫛歯1422aは、ウェル8内に設置された状態において、略水平方向に沿って延伸しているため、ウェル8内の培地Lの液面と略平行に設置されている。
 このため、培地Lの液面が各櫛歯1422aよりも低くなるたびに、作用極1421aと浸漬検知電極部1422との間に第2電圧が印加されて電流計において検出される電流値は、大きな傾きを持って変化する。
 例えば、図44(a)に示す3本の櫛歯1422aよりも液面が高い状態から、図44(b)に示す最も上方に配置された櫛歯1422aよりも液面が低くなった状態、図44(c)に示す中央の櫛歯1422aよりも液面が低くなった状態、図44(d)に示す最も下方に配置された櫛歯1422aよりも液面が低くなった場合へ移行すると、図45に示すように、3本の櫛歯1422aを液面が通過するたびに、大きな傾き(図45の破線で囲まれた部分)とともに、検出される電流値が小さくなる。
 ここで、図45に示す(a)~(d)は、図44(a)~図44(d)に対応する。
 これにより、浸漬検知電極部1422として複数の櫛歯1422aを含む形状を採用した場合には、測定用電極部の浸漬検知だけでなく、培地Lの液面レベルの検出も行うことができる。
 (実施形態7)
 本発明のさらに他の実施形態に係るセンサ1516の構成について、図46および図47を用いて説明すれば以下の通りである。
 本実施形態では、浸漬検知電極部1522の電極1522aが、下向きに三角形の形状を有している点で、単純な形状(略長方形)の電極22a,22b等を用いた上記実施形態2~6とは異なっている。
 すなわち、本実施形態のセンサ1516は、図46に示すように、本体部1516aの第1面1523aにおける下端部付近に設けられた測定用の電極部1021の作用極1021aの直上に、頂点が下向きに配置された三角形の形状を有する電極1522aを備えている。
 電極1522aは、浸漬深さ方向において長い三角形の形状を有しているため、浸漬深さ方向において幅方向の寸法が変化する。すなわち、電極1522aは、浸漬度が大きくなるにつれて、培地Lに浸かる面積が2次曲線的に大きくなる。
 このため、浸漬深さ方向における幅寸法が変化する電極1522aによって検出される電流値は、培地Lの液面レベルの変化に応じてその変化量を増幅させることができる。
 すなわち、図47(a)に示すように、図46に示す逆三角形の電極1522aを用いた場合には、液面レベルの深さが大きくなる(浸漬度が大きくなる)につれて、検出される電流値の変化を大きくすることができる。
 一方、図47(b)に示すように、上述した実施形態1等の四角形の電極1522bを用いた場合には、液面レベルの深さの変化と電流値の変化がほぼ比例関係となる。
 また、図47(c)に示すように、図46とは逆向き(頂点が上向き)の三角形の電極1522cを用いた場合には、液面レベルの深さが小さい位置ほど、検出される電流値の変化を大きくすることができる。
 この結果、検出したい浸漬深さの位置等を考慮して、浸漬検知電極部の電極の形状を選択することで、所望の深さにおける液面レベルの変化をより細かく検出することができる。
 (実施形態8)
 本発明のさらに他の実施形態に係るセンサ1616の構成について、図48を用いて説明すれば以下の通りである。
 本実施形態では、センサ1616の本体部1616aの下部が2股に分かれており、2股に分かれた一方の第1面1623aaに、測定用の電極部1621の作用極1621aが保護膜1624に覆われた状態で設けられ、他方の第1面1623abに、電極部1621の対極1621bおよび浸漬検知電極部1622の電極1622aが設けられている点で、上記実施形態2~7とは異なっている。
 すなわち、本実施形態のセンサ1616は、図48に示すように、測定用の電極部1021を構成する作用極1621aと対極1621bとが、本体部1616aの第1面1623aa,1623abにおける離間した位置に設けられている。
 ここで、浸漬検知電極部1622を用いて測定用の電極部1621の浸漬状態を検出する際には、電極1622aと対極1621bとの間に所定の電圧(第2電圧)を印加して、その間を流れる電流値を測定すればよい。
 これにより、浸漬検知に使用される電極(電極1622aと対極1621b)が、保護膜1624によって覆われる必要がある作用極1621aから離間した位置に配置されている。このため、浸漬検知に使用される電極(電極1622aと対極1621b)が、保護膜1624によって覆われることがない。
 この結果、浸漬検知用に用いられる電極の面積を大きくすることができるため、測定感度を向上させることができる。また、製造時において、作用極1621aだけを覆うように保護膜1624を形成する場合でも、製造を容易に行うことができる。
 (実施形態9)
 本発明のさらに他の実施形態に係るセンサ1716の配置について、図49を用いて説明すれば以下の通りである。
 本実施形態では、測定用の電極部1721として、作用極1721a、対極1721b、参照極1721cを含む3極構成を採用している点で、測定用の電極として作用極と対極の2極構成を採用した上記実施形態2~8とは異なっている。
 すなわち、本実施形態のセンサ1716は、図49に示すように、本体部1716aの第1面1723aの下端部に、測定用の電極部1721として、作用極1721a、対極1721b、参照極1721cを備えている。
 そして、作用極1721a、対極1721b、参照極1721cは、保護膜1724によって覆われている。なお、保護膜1724は、上述した実施形態のように、作用極1721aだけを覆うように設けられていてもよい。
 さらに、作用極1721aの直上には、浸漬検知電極部1722の電極1722aが配置されている。
 これにより、測定用の電極部1721の浸漬状態の検出は、浸漬検知電極部1722の電極1722aと作用極1721aまたは対極1721bまたは参照極1721cとの間に、所定の電圧(第2電圧)を印加して、その間を流れる電流値を測定することで行われる。
 よって、作用極1721a、対極1721b、参照極1721cを含む3極構成の測定用の電極部1721を含むセンサ1716であっても、上述した本発明によって得られる効果を得ることができる。
 (実施形態10)
 本発明のさらに他の実施形態に係るセンサ1816の構成について、図50(a)および図50(b)を用いて説明すれば以下の通りである。
 本実施形態では、2つの折り目において折り曲げた状態で使用されるセンサ1816であって、本体部1816aの第1面1823aの長手方向における一方の端部(第1端)側に、測定用の電極部を構成する作用極1821aおよび参照極1821cが配置され、他方の端部(第2端)側に、対極1821bと浸漬検知電極部1822(電極1822a)が配置されている点で、上記実施形態2~9とは異なっている。
 すなわち、本実施形態のセンサ1816は、図50(a)に示すように、本体部1816aの長手方向における略中央付近の2箇所に設けられた折り目において略Uの字に折り曲げて使用される。そして、本体部1816aの長手方向における両端には、それぞれ、測定用の電極部を構成する作用極1821aおよび参照極1821c、対極1821bと浸漬検知電極部1822(電極1822a)が配置されている。
 なお、2つの折り目の間には、制御ユニット1012の電気回路と接続される接続パッド1825が設けられている。
 これにより、浸漬検知に使用される電極(電極1822aと対極1821b)が、保護膜1824によって覆われる必要がある作用極1821aから離間した位置に配置されている。このため、浸漬検知に使用される電極(電極1822aと対極1821b)が、保護膜1824によって覆われることがない。
 この結果、浸漬検知用に用いられる電極の面積を大きくすることができるため、測定感度を向上させることができる。また、製造時において、作用極1821aと参照極1821cとを覆うように保護膜1824を形成する場合でも、製造を容易に行うことができる。
 なお、図50(a)に示すセンサ1816を複数接続して、図50(b)に示すユニット化された構成としてもよい。
 この場合には、1つの基板に対して複数のセンサを設けることができる。さらに、作用極1821aと参照極1821cとを覆うように保護膜1824を設ける場合でも、一方の端部側に集約された作用極1821a等を覆う保護膜1824を容易に形成することができるため、製造を容易化することができる。
 (実施形態11)
 本発明のさらに他の実施形態に係るセンサ1916の構成について、図51(a)を用いて説明すれば以下の通りである。
 本実施形態では、測定用の電極部1921を構成する対極1921bが作用極1921aおよび参照極1921cよりも上方まで延伸するように設けられている点で、上記実施形態2~10とは異なっている。
 また、本実施形態では、浸漬検知電極部1922の電極1922aが、測定用の電極部1921と略同等の高さ位置から、電極部1921の作用極1921a等よりも上方まで延伸するように設けられている点で、上記実施形態2~10とは異なっている。
 すなわち、本実施形態のセンサ1916は、図51(a)に示すように、4つの電極(作用極1921a、対極1921b、参照極1921c、電極1922a)が、本体部1916aの下端部付近から設けられている。そして、対極1921bおよび電極1922aは、作用極1921aおよび参照極1921cよりも高い位置まで延伸するように配置されている。
 これにより、電極1922aと対極1921bとの間に所定の電圧(第2電圧)を印加してその間を流れる電流値を測定することで、作用極1921aが浸漬状態にあるか否かを容易に検出することができる。
 特に、本実施形態では、浸漬検知電極部1922の電極1922aが浸漬深さ方向において長い形状を有している。このため、培地Lの液面レベルが変化すると、培地L内に浸漬された電極1922aの面積が変化することで、検出される電流値の大きさも変化する。
 これにより、電流値の測定により、作用極1921aの浸漬状態の検出だけでなく、培地Lの液面レベルの検出も行うことができる。
 なお、本実施形態のセンサ1916では、保護膜1924が、本体部1923aにおける下端部付近を覆うように形成されている。より詳細には、保護膜1924は、作用極1021aおよび参照極1921c全体を覆うように、そして、対極1921bおよび電極1922aの下半分を覆うように、形成されている。
 これにより、浸漬検知を行う電極1922aと対極1921bにおける保護膜1924によって覆われていない上半分の領域を利用して、浸漬検知を効率よく実施することができる。
 (実施形態12)
 本発明のさらに他の実施形態に係るセンサ2016の構成について、図51(b)を用いて説明すれば以下の通りである。
 本実施形態では、本体部2016aの下部が2股に分かれており、2股に分かれた一方の第1面2023aaに、測定用の電極部2021の作用極1021aと参照極1021cが保護膜1024に覆われた状態で設けられ、他方の第1面2023abに、電極部2021の対極2021bおよび浸漬検知電極部2022の電極2022aが設けられている点で、参照極を含まない上記実施形態8のセンサ1616とは異なっている。
 すなわち、本実施形態のセンサ2016では、図51(b)に示すように、作用極2021aが設けられた側の第1面2023aaに、参照極2021cが設けられており、作用極2021aと参照極2021cとが保護膜2024によって覆われている。
 これにより、浸漬検知に使用される対極2021bと電極2022aとが保護膜によって覆われていないため、保護膜を培地の成分が透過してくるまでの待機時間が不要となり、浸漬検知の処理速度を向上させることができる。
 また、保護膜2024が必要な作用極2021aと、保護膜が不要な対極2021b側とが、本体部2016aにおける互いに離間した位置に設けられているため、作用極2021aを覆うように保護膜2024を形成する際の製造工程を容易化することができる。
 (実施形態13)
 本発明のさらに他の実施形態に係るセンサ2116の構成について、図52(a)および図52(b)を用いて説明すれば以下の通りである。
 本実施形態では、制御ユニット2112に接続され、本体部2116aに設けられた2本の電極2122a,2122bを、浸漬検知電極部2122として用いる点で、測定用の電極部を含むセンサ構成について説明した上記実施形態2~12とは異なっている。
 すなわち、本実施形態のセンサ2116は、図52(a)に示すように、2本の浸漬検知用の電極2122a,2122bを含む浸漬検知電極部2122を備えており、浸漬検知だけを行うセンサとして構成されている。
 そして、センサ2116は、図52(b)に示すように、縦4×横6で略四角形(方形)に配置された計24個のウェルを含む培養容器2007に対して、四隅に配置されたウェル2008aに対して設置される。
 すなわち、本実施形態では、図52(a)に示すセンサ2116が、図52(b)に示す四隅に配置されたウェル2008aにそれぞれ設置されるとともに、四隅以外の他のウェル2008bには、上述した各実施形態に係るセンサ16等、あるいは測定用の電極部21を備え浸漬検知電極部を持たない測定専用のセンサが設置される。
 ここで、センサ2116が設置される四隅に配置されたウェル2008aは、外気と触れる面積が大きいため、入れられた培地L等の液体試料が蒸発しやすい。すなわち、ウェル2008aは、他のウェル2008bと比較して、液体試料の蒸発が早く液面が下がりやすい。
 このため、最も液体試料の液面レベルが低くなりやすい四隅に配置されたウェル2008aに浸漬検知電極部2122を含むセンサ2116を設置することで、他のウェルに設置されたセンサの測定電極部が十分に浸漬された状態であるかを判定することができる。
 なお、本実施形態では、図52(b)に示すように、略四角形に配置された複数のウェルの四隅に配置されたウェルに、浸漬検知用のセンサを設置しているが、例えば、複数のウェルが略円形に配置されている場合には、最も外周側に配置され液体試料が蒸発しやすいウェルに対して浸漬検知用のセンサを設置すればよい。
 [他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施形態では、センサ16の本体部16aの第1面23aにおける液体保持部22としての部分が、主として、電極部21の上部に設けられた例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、第1面における電極部の側方から上方にかけて液体保持部が設けられた構成であってもよい。
 (B)
 上記実施形態では、略板状の形状の本体部16aを有するセンサ16を例として挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、センサの本体部の形状としては、略板状に限らず、略直方体形状等の他の形状であってもよい。
 (C)
 上記実施形態では、センサ16が略L字型の形状を有している例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、図16に示す略I字状のセンサ116を用いてもよいし、図17に示す略逆T字状のセンサ216であってもよい。
 図16に示す略I字状のセンサ116の場合には、正面視において長方形の本体部116aの第1面123aの下端領域に、上述した電極部21が設けられており、その電極部21の上部領域に、液体保持部122が設けられた構成であればよい。
 図17に示す略逆T字状のセンサ216の場合には、正面視において逆T字形状の本体部216aの第1面223aの幅広の下端領域に、上述した電極部21が設けられており、その電極部21の上部領域に、液体保持部222が設けられた構成であればよい。
 (D)
 上記実施形態では、液体保持部22において効果的に液体試料(培地)を保持できるウェル8の内周面8aと第1面23aとの間の距離、すなわち、液体試料の表面張力が発生する近接距離として、1~2mmの距離を例として挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、液体保持部において効果的に液体試料を保持できる距離としては、液体試料の種類等に応じて1~2mmより大きくてもよいし、小さくてもよい。
 (E)
 上記実施形態では、培養容器7に含まれる1つのウェル8に対して1つのセンサ16が設置される例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、1つのウェル(容器)に対して、2つ以上のセンサが設置される構成であってもよい。この場合には、ウェル(容器)の内径を大きくして、内周面の近傍に複数のセンサを設置すればよい。
 (F)
 上記実施形態では、上面視において略円形(略円筒状)の容器(ウェル8)に対してセンサ16を浸漬して培地の細胞培養環境の分析を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、センサが浸漬される容器としては、略円筒状の容器に限らず、図18に示す上面視において略方形(例えば、略四角形)の容器108を用いてもよい。
 この場合には、上面視において略方形の容器108の対角線よりも、電極部が設けられた部分の幅が小さいセンサ16が用いられることが好ましい。
 これにより、略方形の容器108の内壁面108aに対して第1面23aが近接するようにセンサ16を配置することができる。
 (G)
 上記実施形態では、電圧が印加される電極部21が、作用極21a、対極21b、参照極21cを含む例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、電極部を構成する電極の種類は上記実施形態の構成に限らず、他の種類の電極が設けられていてもよい。
 (H)
 上記実施形態では、1枚の基板13の一部を切り抜いて複数のセンサ16が形成された例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、基板に対して1つのセンサが設けられた構成であってもよいし、基板とセンサとが接着、溶着等の手段によって接続された構成であってもよい。
 (I)
 上記実施形態では、細胞培養を行う培地を液体試料として用いた例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、液体試料は、細胞培養を行う培地に限らず、他の分析等の対象となる液体試料であってもよい。
 (J)
 上記実施形態では、センサ16の本体部16aの第1面23aに、電極部21を構成する全ての電極(作用極21a、対極21b、参照極21c)が設けられている例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、電極部を構成する電極のうち、作用極のみが第1面に設けられており、対極、参照極が第2面に設けられた構成であってもよい。
 すなわち、電極部を構成する電極のうち、少なくとも1つの電極が配置された構成であればよい。
 (K)
 上記実施形態2では、センサ1016の本体部1016aの第1面1023aに、液体試料の測定を行う電極部1021と浸漬検知電極部1022とが設けられた例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、液体試料の測定を行う測定電極部と、測定電極部の浸漬状態を検知する浸漬検知電極部とが、センサの本体部における別々の面に設けられた構成であってもよい。
 (L)
 上記実施形態2では、センサ1016の本体部1016aの第1面1023aに、電極部1021を構成する全ての電極(作用極1021a、対極1021b)が設けられている例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、電極部を構成する電極のうち、作用極のみが第1面に設けられており、対極、参照極が第2面に設けられた構成であってもよい。
 すなわち、電極部を構成する電極のうち、少なくとも1つの電極が配置された構成であればよい。
 (M)
 上記実施形態2では、培地(液体試料)の測定を行う際に、測定用の電極部1021の浸漬状態を検知するために浸漬検知電極部1022に対して電圧を印加し、その後、電圧の印加を一旦停止させた後、測定用の電極部1021に対して電圧を印加する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、浸漬検知と測定との間に電圧無印加期間を設けることなく、浸漬検知と測定とを同時に行ってもよい。
 (N)
 上記実施形態2では、ウェル1008の略中央付近にセンサ1016を配置して、浸漬状態の検出および測定を実施する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、図53に示すように、センサ1016の本体部1016aに設けられた浸漬検知電極部1022の電極1022aが、ウェル1008の略中央に配置されるように、センサ16を設置してもよい。
 この場合には、上述したメニスカス効果によって培地Lの液面が最も低くなりやすいウェル1008の略中央付近に、浸漬検知電極部1022の電極1022aが配置されている。このため、この電極1022aを用いて浸漬状態にあると検出された場合には、それよりも下方に配置された測定用の電極部1021が確実に浸漬状態にあると考えられる。
 この結果、測定用の電極部の浸漬状態をより確実に検出して、液体試料の測定精度をさらに向上させることができる。
 (O)
 上記実施形態6では、浸漬状態の検出に加えて液面レベルの検出を行うために、図43に示すように、本体部1416aの第1面1423aに、浸漬深さ方向に対して略垂直な方向(略水平方向)において延伸する複数の櫛歯1422aを含む略E字状の形状の浸漬検知電極部1422を備えたセンサ1416を用いた例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、図54に示すように、浸漬深さ方向に沿って複数配置された複数の電極21222a~2222eを含む浸漬検知電極部2222を用いて、制御ユニット2212がウェルに入れられた培地の液面レベルをデジタル的に検出してもよい。
 (P)
 上記実施形態2等では、センサ1016の本体部1016aが略I字型の形状を有している例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、図55(a)に示す略L字状の本体部2316aを有するセンサを用いてもよいし、図55(b)に示す略逆T字状の本体部2416aを有するセンサを用いてもよい。
 本発明のセンサは、液体試料に浸漬された状態で使用されるセンサによる測定精度を向上させることができるという効果を奏することから、センサを用いた各種分析装置に対して広く適用可能である。
 1   細胞培養装置
 2   培養室
 3   細胞培養分析装置
 4   扉
 5   本体ケース
 6   培養容器設置部
 6a  凹部
 7   培養容器
 8   ウェル(容器)
 8a  内周面(内壁面)
 9   センサユニット
10   脚
11   位置決め穴
12   制御ユニット
13   基板
14   ボトムカバー
15   トップカバー
16   センサ
16a  本体部
17   折り曲げ部
18   L字形状部
18a  縦辺切り抜き部
18b  横辺切り抜き部
19   配線
20a,20b 接続部
21   電極部
21a  作用極
21b  対極
21c  参照極
22   液体保持部
23a  第1面
23b  第2面
30   貫通孔
31   支持部
32   押圧部
33   測定部
34   制御部
35   記憶部
36   通信部
37   外部機器
38   通信部
39   制御部
40   表示部
41   入力部
108  容器
108a 内壁面
116  センサ
116a 本体部
122  液体保持部
123a 第1面
216  センサ
216a 本体部
222  液体保持部
223a 第1面
1006   培養容器設置部
1006a  凹部
1007   培養容器
1008   ウェル(容器)
1008a  内周面
1009   センサユニット
1010   脚
1011   位置決め穴
1012   制御ユニット
1012a  電圧印加部
1012b  電流計
1012ca スイッチ
1012cb スイッチ
1012da D/Aコンバータ
1012db D/Aコンバータ
1012e  A/Dコンバータ
1013   基板
1014   ボトムカバー
1015   トップカバー
1016   センサ
1016a  本体部
1017   折り曲げ部
1018   略I字形状部
1018a  縦辺切り抜き部
18b  横辺切り抜き部
1019   配線
1020a,1020b 接続部
1021   電極部(測定電極部)
1021a  作用極
1021b  対極
1022   浸漬検知電極部
1022a  第1電極
1022b  第2電極
1023a  第1面
1024   保護膜
1030   貫通孔
1031   支持部
1032   押圧部
1033   測定部
1034   制御部
1035   記憶部
1036   通信部
1037   浸漬検知部
1038   表示部
1040   外部機器
1041   通信部
1042   制御部
1043   表示部
1044   入力部
1112  制御ユニット
1112a 選択回路
1116  センサ
1116a 本体部
1122  浸漬検知電極部
1122a 第1電極
1122b 第2電極
1122c 第3電極
1123a 第1面
1134  制御部
1212  制御ユニット
1216  センサ
1216a 本体部
1222  浸漬検知電極部
1222a 第1電極
1223a 第1面
1234  制御部
1312  制御ユニット
1312c 対極側回路
1316  センサ
1316a 本体部
1322  浸漬検知電極部
1322a 第1電極
1323a 第1面
1324  保護膜
1334  制御部
1416  センサ
1416a 本体部
1421a 作用極
1422  浸漬検知電極部
1422a 櫛歯
1423a 第1面
1516  センサ
1516a 本体部
1522  浸漬検知電極部
1522a 電極
1522b 電極
1522c 電極
1523a 第1面
1616  センサ
1616a 本体部
1621  電極部(測定電極部)
1621a 作用極
1621b 対極
1622  浸漬検知電極部
1622a 電極
1623aa,1623ab 第1面
1624  保護膜
1716  センサ
1716a 本体部
1721  電極部(測定電極部)
1721a 作用極
1721b 対極
1721c 参照極
1722  浸漬検知電極部
1722a 電極
1723a 第1面
1724  保護膜
1816  センサ
1816a 本体部
1821a 作用極
1821b 対極
1821c 参照極
1822  浸漬検知電極部
1822a 電極
1823a 第1面
1824  保護膜
1825  接続パッド
1916  センサ
1916a 本体部
1921  電極部(測定電極部)
1921a 作用極
1921b 対極
1921c 参照極
1922  浸漬検知電極部
1922a 電極
1923a 第1面
1924  保護膜
2007  培養容器
2008a,2008b ウェル(容器)
2016  センサ
2016a 本体部
2021  電極部(測定電極部)
2021a 作用極
2021b 対極
2021c 参照極
2022  浸漬検知電極部
2022a 電極
2023aa,2023ab 第1面
2024  保護膜
2112  制御ユニット
2116  センサ
2116a 本体部
2122  浸漬検知電極部
2122a 電極
2122b 電極
2212  制御ユニット
2222  浸漬検知電極部
2222a~2222e 電極
2316a 本体部
2416a 本体部
d1,d2 距離
 L   培地
 O   中心

Claims (44)

  1.  容器内に入れられた液体試料に浸漬された状態で使用され、前記液体試料の測定を行うセンサであって、
     第1面と前記第1面とは反対側の第2面とを有する本体部と、
     前記本体部における前記第1面に設けられており、前記液体試料中に浸漬された状態で前記測定を行う際に、所定の電圧が印加される電極部と、
     前記第1面における前記電極部の周囲に設けられており、前記容器の内壁面に対して近接配置されて前記内壁面との間に前記電極部の上方まで前記液体試料を保持する液体保持部と、
    を備えているセンサ。
  2.  前記液体保持部は、前記電極部が前記液体試料中に浸漬された状態において、前記第2面側よりも高い位置まで前記第1面側において前記液体試料を保持する、
    請求項1に記載のセンサ。
  3.  前記液体保持部は、前記電極部が前記液体試料中に浸漬された状態において、前記第1面における前記電極部の上部に設けられている、
    請求項1または2に記載のセンサ。
  4.  前記液体保持部は、前記電極部が設けられた部分における前記第1面の幅とほぼ同じ、あるいは前記第1面の幅よりも大きい幅を有している、
    請求項1から3のいずれか1項に記載のセンサ。
  5.  前記本体部は、前記第1面と前記容器の内壁面との間に保持される前記液体試料に表面張力が発生する距離まで、前記内壁面に対して近接配置される、
    請求項1から4のいずれか1項に記載のセンサ。
  6.  前記容器は、上面視において略円形であって、
     前記第1面は、上面視において略円形の前記容器の内壁面に対して、前記略円形の弦の位置に配置される、
    請求項5に記載のセンサ。
  7.  前記電極部が設けられた前記第1面の幅は、略円形の前記容器の直径よりも小さい、
    請求項6に記載のセンサ。
  8.  前記容器は、上面視において略方形であって、
     前記第1面は、上面視において略方形の前記容器の内壁面の一辺に対して近接するように配置される、
    請求項5に記載のセンサ。
  9.  前記電極部が設けられた前記第1面の幅は、略方形の前記容器の対角線の長さよりも小さい、
    請求項8に記載のセンサ。
  10.  前記電極部は、参照極、作用極、対極の少なくとも1つを含む、
    請求項1から9のいずれか1項に記載のセンサ。
  11.  前記本体部は、正面視において、略L字状あるいは略逆T字状の形状を有している、
    請求項1から10のいずれか1項に記載のセンサ。
  12.  請求項1から11のいずれか1項に記載のセンサと、
     前記センサが複数設けられた基板と、
     前記基板と前記センサとを接続する接続部と、
    を備えたセンサユニニット。
  13.  前記複数のセンサは、前記基板の一部を切り抜いて形成されている、
    請求項12に記載のセンサユニット。
  14.  前記基板の下方に設けられたボトムカバーと、前記基板の上方に設けられたトップカバーと、をさらに備え、
     前記基板は、前記ボトムカバーと前記トップカバーとで上下から挟まれて構成されている、
    請求項12または13に記載のセンサユニット。
  15.  前記ボトムカバーには、前記センサを下方に貫通させる貫通孔が設けられている、
    請求項14に記載のセンサユニット。
  16.  請求項12から15のいずれか1項に記載のセンサユニットと、
     前記センサユニットと、前記液体試料が入れられる前記容器とが載置される培養容器設置部と、
    を備えた細胞培養分析装置。
  17.  容器内に入れられた液体試料に浸漬された状態で使用され、前記液体試料の測定を行うセンサであって、
     第1面と前記第1面とは反対側の第2面とを有する本体部と、
     前記本体部における前記第1面に設けられており、前記液体試料中に浸漬された状態で前記測定を行う際に、所定の電圧が印加される電極部と、
    を備え、
     前記測定を実施する際には、前記本体部が前記容器の中央からオフセットされた位置に設置される、
    センサ。
  18.  容器内に入れられた液体試料に浸漬された状態で使用され、前記液体試料の測定を行うセンサであって、
     本体部と、
     前記本体部に設けられており、前記液体試料中に浸漬された状態で前記測定を行う際に、所定の第1電圧が印加される測定電極部と、
     前記液体試料中に浸漬された状態で前記本体部における前記測定電極部よりも上方に設けられており、前記液体試料中に前記測定電極部が浸漬された状態であるか否かを検出する際に所定の第2電圧が印加される浸漬検知電極部と、
    を備えているセンサ。
  19.  前記本体部は、前記測定電極部が設けられた第1面を有しており、
     前記浸漬検知電極部は、前記第1面における前記測定電極部の上方に配置されている、
    請求項18に記載のセンサ。
  20.  前記測定電極部の少なくとも一部を覆う保護膜を、さらに備えている、
    請求項18または19に記載のセンサ。
  21.  前記測定電極部は、作用極および対極の2極を含む、あるいは作用極、対極、参照極の3極を含む、
    請求項18から20のいずれか1項に記載のセンサ。
  22.  前記保護膜は、少なくとも、前記測定電極部に含まれる作用極を覆うように設けられている、
    請求項20に記載のセンサ。
  23.  前記浸漬検知電極部は、前記測定電極部に含まれる作用極の直上に配置されている、
    請求項18から22のいずれか1項に記載のセンサ。
  24.  前記浸漬検知電極部は、前記測定電極部に含まれる作用極の略水平方向における幅に合わせて設置されている、
    請求項18から23のいずれか1項に記載のセンサ。
  25.  前記浸漬検知電極部は、2本または3本の電極を有している、
    請求項18から24のいずれか1項に記載のセンサ。
  26.  前記浸漬検知電極部は、1本の電極を有しており、
     前記測定電極部を構成する少なくとも1つの電極との間に前記第2電圧が印加される、
    請求項18から25のいずれか1項に記載のセンサ。
  27.  前記浸漬検知電極部は、前記液体試料の液面に対して略平行に延伸した複数の櫛歯状の形状を有している、
    請求項18から26のいずれか1項に記載のセンサ。
  28.  前記浸漬検知電極部は、前記液体試料に浸漬された状態で、略水平方向における寸法が浸漬深さ方向において変化する形状を有している、
    請求項18から27のいずれか1項に記載のセンサ。
  29.  前記浸漬検知電極部は、略三角形の形状を有している、
    請求項28に記載のセンサ。
  30.  前記測定電極部に含まれる作用極は、前記本体部において、前記測定電極部に含まれる対極と離間した位置に配置されている、
    請求項18から29のいずれか1項に記載のセンサ。
  31.  前記浸漬検知電極部は、前記容器における略中央部分に配置されている、
    請求項18から30のいずれか1項に記載のセンサ。
  32.  請求項18から31のいずれか1項に記載のセンサと、
     前記測定電極部および前記浸漬検知電極部に対して所定の前記第1電圧および前記第2電圧を印加する電圧印加部と、
     前記測定電極部に前記第1電圧が印加されて得られる第1電流値に基づいて、前記液体試料の測定を行うとともに、前記浸漬検知電極部に前記第2電圧が印加されて得られる第2電流値に基づいて、前記測定電極部の浸漬状態の有無を検知する制御部と、
    を備えた測定装置。
  33.  前記制御部は、前記浸漬検知電極部に前記第2電圧が印加されて得られる前記第2電流値に基づいて、前記液体試料の液面レベルを検知する、
    請求項32に記載の測定装置。
  34.  前記電圧印加部は、前記測定電極部および前記浸漬検知電極部に対して、略交流の電圧を印加する、
    請求項32または33に記載の測定装置。
  35.  請求項18から31のいずれか1項に記載のセンサと、
     前記センサが複数設けられた基板と、
     前記基板と前記センサとを接続する接続部と、
    を備えたセンサユニニット。
  36.  前記複数のセンサは、前記基板の一部を切り抜いて形成されている、
    請求項35に記載のセンサユニット。
  37.  前記基板の下方に設けられたボトムカバーと、前記基板の上方に設けられたトップカバーと、をさらに備え、
     前記基板は、前記ボトムカバーと前記トップカバーとで上下から挟まれて構成されている、
    請求項35または36に記載のセンサユニット。
  38.  前記ボトムカバーには、前記センサを下方に貫通させる貫通孔が設けられている、
    請求項37に記載のセンサユニット。
  39.  複数の容器に入れられた液体試料に対して浸漬された状態で使用される複数のセンサを備えたセンサユニットであって、
     前記複数の容器のうち、少なくとも一方の縁に配置された第1容器に対応する位置に設けられた第1センサと、
     前記複数の容器のうち、前記第1センサ以外の位置に配置された第2容器に対応する位置に設けられた第2センサと、
    を備え、
     前記第1センサは、前記液体試料に浸漬される前記第2センサの測定電極が前記液体試料に浸漬されているか否かを検知する浸漬検知電極部を有し、
     前記第2センサは、前記液体試料の測定を行う測定電極部を有している、
    センサユニット。
  40.  前記第1センサは、略方形に配置された複数の容器のうち、四隅に配置された容器に対応する位置に配置されている、
    請求項39に記載のセンサユニット。
  41.  請求項35から40のいずれか1項に記載のセンサユニットと、
     前記センサユニットと、前記液体試料が入れられる前記容器とが載置される培養容器設置部と、
    を備えた細胞培養分析装置。
  42.  前記基板に設けられた複数の前記センサの前記浸漬検知電極部に接続されており、前記容器に入れられた前記液体試料に対する前記測定電極部の浸漬状態を検知する浸漬検知部と、
     前記浸漬検知部における検知結果を表示する表示部と、
    をさらに備えた、
    請求項41に記載の細胞培養分析装置。
  43.  請求項18から31のいずれか1項に記載のセンサを用いて測定を行う液体試料測定方法であって、
     前記浸漬検知電極部に対して前記第2電圧が印加される浸漬検知ステップと、
     前記測定電極部に対する前記第1電圧を印加させる測定ステップと、
    を備えた液体試料測定方法。
  44.  前記浸漬検知ステップと前記測定ステップとの間に、前記浸漬検知電極部に対する前記第2電圧の印加を停止させる電圧印加停止ステップを、さらに備えた、
    請求項43に記載の液体試料測定方法。
PCT/JP2020/042273 2019-12-09 2020-11-12 センサおよびこれを備えた測定装置、センサユニット、細胞培養分析装置、液体試料測定方法 WO2021117412A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/781,848 US20230008595A1 (en) 2019-12-09 2020-11-12 Sensor, measurement device provided therewith, sensor unit, cell culture analysis device, and liquid sample measurement method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019222086A JP2021090368A (ja) 2019-12-09 2019-12-09 センサおよびこれを備えたセンサユニット、細胞培養分析装置
JP2019-222086 2019-12-09
JP2019234144A JP2021101643A (ja) 2019-12-25 2019-12-25 センサおよびこれを備えた測定装置、センサユニット、細胞培養分析装置、液体試料測定方法
JP2019-234144 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021117412A1 true WO2021117412A1 (ja) 2021-06-17

Family

ID=76329781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042273 WO2021117412A1 (ja) 2019-12-09 2020-11-12 センサおよびこれを備えた測定装置、センサユニット、細胞培養分析装置、液体試料測定方法

Country Status (2)

Country Link
US (1) US20230008595A1 (ja)
WO (1) WO2021117412A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043007A (ja) * 2001-07-26 2003-02-13 Matsushita Electric Works Ltd 電気化学的水質測定器及びこれを備えた水処理装置
JP2004226273A (ja) * 2003-01-23 2004-08-12 Kono Me Kenkyusho:Kk 液量測定装置及び尿検査装置
JP2007232628A (ja) * 2006-03-02 2007-09-13 National Institute Of Advanced Industrial & Technology バイオセンサー
JP2007256092A (ja) * 2006-03-23 2007-10-04 National Institute Of Advanced Industrial & Technology バイオセンサー
JP2008026178A (ja) * 2006-07-21 2008-02-07 Advanced Telecommunication Research Institute International 触覚センサ装置
JP2010256015A (ja) * 2009-04-21 2010-11-11 Panasonic Corp センサ装置
US20130264222A1 (en) * 2012-03-14 2013-10-10 Korea Hydro & Nuclear Power Co., Ltd. Monitoring method and system of metal ions or oxygen ions applicable to high concentration non-aqueous electrolyte
JP2013221751A (ja) * 2012-04-12 2013-10-28 Yazaki Corp 液体濃度検出装置
JP2015145844A (ja) * 2014-02-04 2015-08-13 愛三工業株式会社 センサ装置
JP2018138901A (ja) * 2017-02-24 2018-09-06 いすゞ自動車株式会社 検出装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043007A (ja) * 2001-07-26 2003-02-13 Matsushita Electric Works Ltd 電気化学的水質測定器及びこれを備えた水処理装置
JP2004226273A (ja) * 2003-01-23 2004-08-12 Kono Me Kenkyusho:Kk 液量測定装置及び尿検査装置
JP2007232628A (ja) * 2006-03-02 2007-09-13 National Institute Of Advanced Industrial & Technology バイオセンサー
JP2007256092A (ja) * 2006-03-23 2007-10-04 National Institute Of Advanced Industrial & Technology バイオセンサー
JP2008026178A (ja) * 2006-07-21 2008-02-07 Advanced Telecommunication Research Institute International 触覚センサ装置
JP2010256015A (ja) * 2009-04-21 2010-11-11 Panasonic Corp センサ装置
US20130264222A1 (en) * 2012-03-14 2013-10-10 Korea Hydro & Nuclear Power Co., Ltd. Monitoring method and system of metal ions or oxygen ions applicable to high concentration non-aqueous electrolyte
JP2013221751A (ja) * 2012-04-12 2013-10-28 Yazaki Corp 液体濃度検出装置
JP2015145844A (ja) * 2014-02-04 2015-08-13 愛三工業株式会社 センサ装置
JP2018138901A (ja) * 2017-02-24 2018-09-06 いすゞ自動車株式会社 検出装置

Also Published As

Publication number Publication date
US20230008595A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
ES2212969T3 (es) Deteccion de una muestra para iniciar la medicion de tiempos de una reaccion electroquimica.
Liu et al. Determination of sulpiride by capillary electrophoresis with end-column electrogenerated chemiluminescence detection
Quintino et al. Batch injection analysis: An almost unexplored powerful tool
ES2585356T3 (es) Sistemas y métodos de solución de control discriminatorio de una muestra de sangre fisiológica
Brett et al. Poly (methylene blue) modified electrode sensor for haemoglobin
TWI468679B (zh) 決定樣本中之待測物濃度的方法及使用該方法的手持式測量裝置和生物感測器系統
CN101078719B (zh) 测量仪操作方法及测量仪
Glazer et al. The dynamic response of optical oxygen sensors and voltammetric electrodes to temporal changes in dissolved oxygen concentrations
EP2371942A3 (en) Bioreactor and bioprocessing technique
CN1448722A (zh) 分析物浓度测定仪及其使用方法
CN1394280A (zh) 用于测定血球比率校正的分析物浓度的电化学方法及装置
WO2022120923A1 (zh) 一种基于功能化纳米探针的单细胞电化学传感器及其应用
JP2010536026A (ja) 電気化学的バイオセンサ及びその測定器
WO2015137356A1 (ja) 微生物夾雑物の濃度検出方法、電極チップおよびオリゴペプチド
CN103675060A (zh) 一种微电极阵列及其在检测单细胞表面活化胆固醇上的应用
CN105784810B (zh) 一种非标记型核酸适配体传感器及对双酚a的检测方法
Zhang et al. based electrochemiluminescence bipolar conductivity sensing mechanism: A critical supplement for the bipolar system
CN110779971A (zh) 一种微量维生素a检测用样本处理液及其电化学检测方法
WO2021117412A1 (ja) センサおよびこれを備えた測定装置、センサユニット、細胞培養分析装置、液体試料測定方法
Zhang et al. Correlation between cell growth rate and glucose consumption determined by electrochemical monitoring
Zhao et al. Determination of sulfite in beer samples using an amperometric fill and flow channel biosensor employing sulfite oxidase
Wang et al. Simultaneous microchip enzymatic measurements of blood lactate and glucose
CN106687803A (zh) 分析物浓度测量
Stoikov et al. Flow-through electrochemical biosensor with a replaceable enzyme reactor and screen-printed electrode for the determination of uric acid and tyrosine
Somov et al. Tubular amperometric high-temperature sensors: simultaneous determination of oxygen, nitrogen oxides and combustible components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899313

Country of ref document: EP

Kind code of ref document: A1